1
|
Perrotta BG, Kidd KA, Marcarelli AM, Paterson G, Walters DM. Effects of chronic metal exposure and metamorphosis on the microbiomes of larval and adult insects, and riparian spiders through the aquatic-riparian food web. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:125867. [PMID: 39978531 DOI: 10.1016/j.envpol.2025.125867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
The macroinvertebrate microbiome controls various aspects of the host's physiology, from regulation of environmental contaminants to reproductive output. Aquatic insects provide critical nutritional subsidies linking aquatic and riparian food webs while simultaneously serving as a contaminant pathway for riparian insectivores in polluted ecosystems. Previous studies have characterized the transport and transfer of contaminants from aquatic to riparian ecosystems through insect metamorphosis, but both contaminant exposure and metamorphosis are energetically intensive processes that may cause host microbiomes to undergo radical transformation in structure and function, potentially affecting the host's physiology. We collected arthropods from three sites within Torch Lake, a historical copper mine in the Keweenaw Peninsula, Michigan, USA, and three sites within a nearby reference lake. Our objectives were to: 1) characterize the variation in microbiome communities and predicted metagenomic functions with legacy copper mining activity across space, among host types and family-level host taxonomy, 2) characterize how insect metamorphosis alters the microbiome community, including the degree of endosymbiotic infection, and predicted metagenomic function. We field-collected organisms, extracted their DNA, and sequenced the 16S region of the rRNA gene to characterize microbiome communities, then predicted metagenomic function. Site, lake, and host taxonomy affected the host microbiome community composition. Copper exposure increased the abundance of xenobiotic and lipid metabolism pathways in the Araneidae spider microbiome. Metamorphosis reduced the alpha diversity, altered the community composition, and predicted metagenomic function. We observed a bioconcentration of endosymbiotic bacteria in adult insects, especially holometabolous insects. Through metamorphosis, we observed a transition in function from xenobiotic degradation pathways to carbohydrate metabolism. Overall, contaminant exposure alters the microbiome composition in aquatic insects and riparian spiders and alters the function of the microbiome across the aquatic-riparian interface. Furthermore, metamorphosis is a critical element in shaping the aquatic insect microbiome across its life history.
Collapse
Affiliation(s)
- Brittany G Perrotta
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA; Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Karen A Kidd
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Amy M Marcarelli
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| | - Gordon Paterson
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| | - David M Walters
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| |
Collapse
|
2
|
Siddiqui JA, Fan R, Liu Y, Syed AH, Benlin Y, Chu Q, Ding Z, Ghani MI, Liu X, Wakil W, Liu DD, Chen X, Cernava T, Smagghe G. The larval gut of Spodoptera frugiperda harbours culturable bacteria with metabolic versatility after insecticide exposure. INSECT MOLECULAR BIOLOGY 2025. [PMID: 39952648 DOI: 10.1111/imb.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025]
Abstract
Spodoptera frugiperda (fall armyworm) poses a substantial risk to crops worldwide, resulting in considerable economic damage. The gut microbiota of insects plays crucial roles in digestion, nutrition, immunity, growth and, sometimes, the degradation of insecticides. The current study examines the effect of synthetic insecticides on the gut microbiome of third instar S. frugiperda larvae using both culture-dependent techniques and 16S rRNA gene sequencing for bacterial community profiling and diversity analysis. In untreated larvae, the sequencing approach revealed a diverse microbiome dominated by the phyla Firmicutes, Proteobacteria and Bacteroidota, with key genera including Bacteroides, Faecalibacterium and Pelomonas. In parallel, 323 bacterial strains were isolated and assigned to the orders Bacillales, Burkholderiales, Enterobacterales, Flavobacteriales, Lactobacillales, Micrococcales, Neisseriaies, Pseudomonadales, Sphingobacteriales and Xanthomonadales. The prevailing culturable species included Serratia marcescens, Klebsiella variicola and Enterobacter quasiroggenkampii. Treatment with sublethal concentrations of three insecticides (broflanilide, spinosad and indoxacarb) caused significant changes in gut microbiome diversity and composition. Treated larvae showed a shift towards increased Proteobacteria abundance and decreased Firmicutes. Specifically, Acinetobacter and Rhodococcus were dominant in treated samples. Functional predictions highlighted significant metabolic versatility involving nutrient processing, immune response, detoxification, xenobiotic metabolism, and stress response, suggesting microbial adaptation to insecticide exposure. Network correlation analysis highlighted disrupted microbial interactions and altered community structures under insecticide treatment. These findings enhance our understanding of how insecticides impact the gut microbiota in S. frugiperda and may inform future strategies for managing pest resistance through microbiome-based approaches.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
| | - Ruidong Fan
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Yanjiang Liu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Ali Hassan Syed
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Yi Benlin
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
| | - Qingshuai Chu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Zeyang Ding
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Muhammad Imran Ghani
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
| | - Xuemi Liu
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
| | - Waqas Wakil
- Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Dong-Dong Liu
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Xiaoyulong Chen
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Tomislav Cernava
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Guy Smagghe
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Institute of Entomology, Guizhou University, Guiyang, China
- Department of Plants and Crops, Ghent University, Ghent, Belgium
- Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
3
|
Degregori S, Wang X, Kommala A, Schulhof N, Moradi S, MacDonald A, Eblen K, Jukovich S, Smith E, Kelleher E, Suzuki K, Hall Z, Knight R, Amato KR. Comparative gut microbiome research through the lens of ecology: theoretical considerations and best practices. Biol Rev Camb Philos Soc 2024. [PMID: 39530277 DOI: 10.1111/brv.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Comparative approaches in animal gut microbiome research have revealed patterns of phylosymbiosis, dietary and physiological convergences, and environment-host interactions. However, most large-scale comparative studies, especially those that are highly cited, have focused on mammals, and efforts to integrate comparative approaches with existing ecological frameworks are lacking. While mammals serve as useful model organisms, developing generalised principles of how animal gut microbiomes are shaped and how these microbiomes interact bidirectionally with host ecology and evolution requires a more complete sampling of the animal kingdom. Here, we provide an overview of what past comparative studies have taught us about the gut microbiome, and how community ecology theory may help resolve certain contradictions in comparative gut microbiome research. We explore whether certain hypotheses are supported across clades, and how the disproportionate focus on mammals has introduced potential bias into gut microbiome theory. We then introduce a methodological solution by which public gut microbiome data of understudied hosts can be compiled and analysed in a comparative context. Our aggregation and analysis of 179 studies shows that generating data sets with rich host diversity is possible with public data and that key gut microbes associated with mammals are widespread across the animal kingdom. We also show the effects that sample size and taxonomic rank have on comparative gut microbiome studies and that results of multivariate analyses can vary significantly with these two parameters. While challenges remain in developing a universal model of the animal gut microbiome, we show that existing ecological frameworks can help bring us one step closer to integrating the gut microbiome into animal ecology and evolution.
Collapse
Affiliation(s)
- Samuel Degregori
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Xiaolin Wang
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Akhil Kommala
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Noah Schulhof
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Sadaf Moradi
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA, 90095, USA
| | - Allison MacDonald
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Kaitlin Eblen
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA, 90095, USA
| | - Sophia Jukovich
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Emma Smith
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Emily Kelleher
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Kota Suzuki
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Zoey Hall
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Katherine Ryan Amato
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| |
Collapse
|
4
|
Zhang N, Qian Z, He J, Shen X, Lei X, Sun C, Fan J, Felton GW, Shao Y. Gut bacteria of lepidopteran herbivores facilitate digestion of plant toxins. Proc Natl Acad Sci U S A 2024; 121:e2412165121. [PMID: 39392666 PMCID: PMC11494336 DOI: 10.1073/pnas.2412165121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Lepidopterans commonly feed on plant material, being the most significant insect herbivores in nature. Despite plant resistance to herbivory, such as producing toxic secondary metabolites, herbivores have developed mechanisms encoded in their genomes to tolerate or detoxify plant defensive compounds. Recent studies also highlight the role of gut microbiota in mediating detoxification in herbivores; however, convincing evidence supporting the significant contribution of gut symbionts is rare in Lepidoptera. Here, we show that the growth of various lepidopteran species was inhibited by a mulberry-derived secondary metabolite, 1-deoxynojirimycin (DNJ); as expected, the specialist silkworm Bombyx mori grew well, but interestingly, gut microbiota of early-instar silkworms was affected by the DNJ level, and several bacterial species responded positively to enriched DNJ. Among these, a bacterial strain isolated from the silkworm gut (Pseudomonas fulva ZJU1) can degrade and utilize DNJ as the sole energy source, and after inoculation into nonspecialists (e.g., beet armyworm Spodoptera exigua), P. fulva ZJU1 increased host resistance to DNJ and significantly promoted growth. We used genomic and transcriptomic analyses to identify genes potentially involved in DNJ degradation, and CRISPR-Cas9-mediated mutagenesis verified the function of ilvB, a key binding protein, in metabolizing DNJ. Furthermore, the ilvB deletion mutant, exhibiting normal bacterial growth, could no longer enhance nonspecialist performance, supporting a role in DNJ degradation in vivo. Therefore, our study demonstrated causality between the gut microbiome and detoxification of plant chemical defense in Lepidoptera, facilitating a mechanistic understanding of host-microbe relationships across this complex, abundant insect group.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
| | - Zhaoyi Qian
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
| | - Jintao He
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
| | - Xiaoqiang Shen
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
| | - Xiaoyu Lei
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou310058, China
| | - Jie Fan
- Department of Chemistry, Zhejiang University, Hangzhou310027, China
| | - Gary W. Felton
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA16802
| | - Yongqi Shao
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou310058, China
| |
Collapse
|
5
|
Khara A, Chakraborty A, Modlinger R, Synek J, Roy A. Comparative metagenomic study unveils new insights on bacterial communities in two pine-feeding Ips beetles (Coleoptera: Curculionidae: Scolytinae). Front Microbiol 2024; 15:1400894. [PMID: 39444680 PMCID: PMC11496174 DOI: 10.3389/fmicb.2024.1400894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Background Climate change has recently boosted the severity and frequency of pine bark beetle attacks. The bacterial community associated with these beetles acts as "hidden players," enhancing their ability to infest and thrive on defense-rich pine trees. There is limited understanding of the environmental acquisition of these hidden players and their life stage-specific association with different pine-feeding bark beetles. There is inadequate knowledge on novel bacterial introduction to pine trees after the beetle infestation. Hence, we conducted the first comparative bacterial metabarcoding study revealing the bacterial communities in the pine trees before and after beetle feeding and in different life stages of two dominant pine-feeding bark beetles, namely Ips sexdentatus and Ips acuminatus. We also evaluated the bacterial association between wild and lab-bred beetles to measure the deviation due to inhabiting a controlled environment. Results Significant differences in bacterial amplicon sequence variance (ASVs) abundance existed among different life stages within and between the pine beetles. However, Pseudomonas, Serratia, Pseudoxanthomonas, Taibaiella, and Acinetobacter served as core bacteria. Interestingly, I. sexdentatus larvae correspond to significantly higher bacterial diversity and community richness and evenness compared to other developmental stages, while I. acuminatus adults displayed higher bacterial richness with no significant variation in the diversity and evenness between the life stages. Both wild and lab-bred I. sexdentatus beetles showed a prevalence of the bacterial family Pseudomonadaceae. In addition, wild I. sexdentatus showed dominance of Yersiniaceae, whereas Erwiniaceae was abundant in lab-bred beetles. Alternatively, Acidobacteriaceae, Corynebacteriaceae, and Microbacteriaceae were highly abundant bacterial families in lab-bred, whereas Chitinophagaceae and Microbacteriaceae were highly abundant in wild I. accuminatus. We validated the relative abundances of selected bacterial taxa estimated by metagenomic sequencing with quantitative PCR. Conclusion Our study sheds new insights into bacterial associations in pine beetles under the influence of various drivers such as environment, host, and life stages. We documented that lab-breeding considerably influences beetle bacterial community assembly. Furthermore, beetle feeding alters bacteriome at the microhabitat level. Nevertheless, our study revisited pine-feeding bark beetle symbiosis under the influence of different drivers and revealed intriguing insight into bacterial community assembly, facilitating future functional studies.
Collapse
Affiliation(s)
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | | | | | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
6
|
Yang F, Ma Q, Zhang X, Shang Y, Ngando FJ, Ren L, Cai J. The gut bacterial composition across life stages of Sarcophaga peregrina (Diptera: Sarcophagidae) and the effects of amikacin on their development. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1093-1104. [PMID: 38902886 DOI: 10.1093/jme/tjae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024]
Abstract
Insects and microorganisms, ubiquitous organisms in the natural world, have developed intricate relationships throughout their evolutionary histories. However, most studies have concentrated on specific time points or life stages, but some limited studies have investigated the dynamics of microbial diversity within insects across life stages. Here, 16S rDNA sequencing technology was used to investigate the gut bacterial community across the life stages of Sarcophaga peregrina (Robineau-Desvoidy) (Diptera: Sarcophagidae). The results revealed that the gut bacterial diversity of S. peregrina varied with life stage and showed similarity in the nearby life stages. Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were the dominant phyla in S. peregrina. Genera such as Providencia, Ignatzschineria, and Myroides are implicated in potentially pivotal roles during the developmental processes of this flesh fly. Furthermore, the effects of amikacin on the growth and development of S. peregrina were not statistically significant. However, we did observe significant changes at the protein level, which suggests a close association between protein-level alterations and growth and development. Additionally, we speculate that S. peregrina regulates its nutritional status during nonfeeding stages to meet the demands of eclosion. This study represents the first comprehensive examination of the intestinal bacterial composition across various life stages of S. peregrina. Our findings deepen our understanding of the gut microbiota in this flesh fly and lay the groundwork for further exploration into the intricate interactions between microorganisms and insects.
Collapse
Affiliation(s)
- Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Hunan, Changsha, China
| | - Qiongshan Ma
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Hunan, Changsha, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Hunan, Changsha, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Hunan, Changsha, China
| | - Fernand Jocelin Ngando
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Hunan, Changsha, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Hunan, Changsha, China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Hunan, Changsha, China
| |
Collapse
|
7
|
Kibet S, Mudalungu CM, Kimani NM, Makwatta JO, Kabii J, Sevgan S, Kelemu S, Tanga CM. Unearthing Lactococcus lactis and Scheffersomyeces symbionts from edible wood-boring beetle larvae as a bio-resource for industrial applications. BMC Microbiol 2024; 24:282. [PMID: 39080520 PMCID: PMC11290184 DOI: 10.1186/s12866-024-03428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Gut microbiota have several advantages in influencing the host nutrition, metabolism, immunity and growth. However, the understanding of the gut microbiota in key edible wood-boring beetle larvae remain largely undefined. In the present study, the characteristics of the gut microbiota of two edible wood-boring species (Titocerus jaspideus and Passalus punctiger) from two indigenous forested areas were investigated. RESULTS Over 50% of Amplicon Sequence Variants (ASVs) constituted of Firmicutes in T. jaspideus. The dominant phyla in both beetle species were Bacteroidota (4.20-19.79%) and Proteobacteria (15.10-23.90%). Lactococcus lactis was the most abundant and core prokaryote in the guts of T. jaspideus. The fungi identified in the gut of both insects belong to the phylum Obazoa (66%) and Ascomycota (> 15%). Scheffersomyeces sp. was the core eukaryote recorded. The diversity of gut microbiota in both insect species did not vary significantly. Most of the prokaryotic genes expressed were predominantly associated with biosynthesis and metabolism. CONCLUSION Our findings demonstrated that Lactococcus lactis and Scheffersomyeces are core gut microbes of wood boring beetle larvae with desirable probiotic properties and promising use in food product fermentation for improved growth performance, gut barrier health, intestinal flora balance and immune protection for human and animals. Further studies to highlight the latest medical-based applications of L. lactis as live-delivery vector for the administration of therapeutics against both communicable and non-communicable diseases are warranted.
Collapse
Affiliation(s)
- Shadrack Kibet
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772, Nairobi, 00100, Kenya
- Department of Physical Sciences, University of Embu, P.O Box 6, Embu, 60100, Kenya
| | - Cynthia M Mudalungu
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772, Nairobi, 00100, Kenya.
- School of Chemistry and Material Science, The Technical University of Kenya, P.O Box 52428, 00200, Nairobi, Kenya.
| | - Njogu M Kimani
- Department of Physical Sciences, University of Embu, P.O Box 6, Embu, 60100, Kenya
| | - JohnMark O Makwatta
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772, Nairobi, 00100, Kenya
| | - James Kabii
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772, Nairobi, 00100, Kenya
| | - Subramanian Sevgan
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772, Nairobi, 00100, Kenya
| | - Segenet Kelemu
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772, Nairobi, 00100, Kenya
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772, Nairobi, 00100, Kenya.
| |
Collapse
|
8
|
Li X, Jia JJ, An JL, Meng FX, Liu TX, Zhang SZ. Effect of Cotesia ruficrus Parasitization on Diversity and Community Composition of Intestinal Bacteria in Spodoptera frugiperda. INSECTS 2024; 15:570. [PMID: 39194775 DOI: 10.3390/insects15080570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Parasitoids have the potential to alter the gut microbiota of their host insects post-parasitization, thereby influencing the host's physiological functions and creating a more favorable environment for the survival of the parasitoid's progeny. Cotesia ruficrus is a native enemy of the important invasive fall armyworm (FAW) pest, Spodoptera frugiperda, in China, exhibiting significant pest control capabilities. To investigate the impact of C. ruficrus on the gut bacteria of FAW caterpillars following parasitism, we used 16S rRNA sequencing technology to analyze the diversity and richness of gut bacteria in both long-term laboratory and short-term laboratory FAW caterpillars. The results revealed Enterococcus as the predominant bacteria across all treatments, while no significant differences were observed in the diversity and richness of gut bacteria between non-parasitized and parasitized long-term laboratory FAW caterpillars. Similarly, while the diversity of gut bacteria in non-parasitized and parasitized short-term laboratory FAWs showed no significant variance, a marked discrepancy in richness was noted. Moreover, the richness of gut bacteria in short-term laboratory FAW caterpillars surpassed that of their long-term laboratory counterparts. In addition, it was found that Corynebacterium existed only in the intestinal tract of FAW caterpillars that were parasitized by C. ruficrus. These results substantiate that C. ruficrus parasitization can alter the gut microbiota of FAW caterpillars, providing valuable insights into the interplay between gut microbiota and the dynamics of parasitoid-host interactions.
Collapse
Affiliation(s)
- Xian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jing-Jing Jia
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Research Center of Quality Safety and Standards for Agro-Products, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Jun-Long An
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Fan-Xin Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Tong-Xian Liu
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
9
|
Subrahmanyam G, Thirupathaiah Y, Vijay N, Debnath R, Arunkumar KP, Gadwala M, Sangannavar PA, Manthira Moorthy S, Chutia M. Contrasting gut bacteriomes unveiled between wild Antheraea assamensis Helfer (Lepidoptera: Saturniidae) and domesticated Bombyx mori L. (Lepidoptera: Bombycidae) silkworms. Mol Biol Rep 2024; 51:666. [PMID: 38777963 DOI: 10.1007/s11033-024-09629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Insect gut microbiomes play a fundamental role in various aspects of insect physiology, including digestion, nutrient metabolism, detoxification, immunity, growth and development. The wild Muga silkworm, Antheraea assamensis Helfer holds significant economic importance, as it produces golden silk. METHODS AND RESULTS In the current investigation, we deciphered its intricate gut bacteriome through high-throughput 16S rRNA amplicon sequencing. Further, to understand bacterial community dynamics among silkworms raised under outdoor environmental conditions, we compared its gut bacteriomes with those of the domesticated mulberry silkworm, Bombyx mori L. Most abundant bacterial phyla identified in the gut of A. assamensis were Proteobacteria (78.1%), Bacteroidetes (8.0%) and Firmicutes (6.6%), whereas the most-abundant phyla in B. mori were Firmicutes (49-86%) and Actinobacteria (10-36%). Further, Gammaproteobacteria (57.1%), Alphaproteobacteria (10.47%) and Betaproteobacteria (8.28%) were the dominant bacterial classes found in the gut of A. assamensis. The predominant bacterial families in A. assamensis gut were Enterobacteriaceae (27.7%), Comamonadaceae (9.13%), Pseudomonadaceae (9.08%) Flavobacteriaceae (7.59%) Moraxellaceae (7.38%) Alteromonadaceae (6.8%) and Enterococcaceae (4.46%). In B. mori, the most-abundant bacterial families were Peptostreptococcaceae, Enterococcaceae, Lactobacillaceae and Bifidobacteriaceae, though all showed great variability among the samples. The core gut bacteriome of A. assamensis consisted of Pseudomonas, Acinetobacter, Variovorax, Myroides, Alteromonas, Enterobacter, Enterococcus, Sphingomonas, Brevundimonas, Oleispira, Comamonas, Oleibacter Vagococcus, Aminobacter, Marinobacter, Cupriavidus, Aeromonas, and Bacillus. Comparative gut bacteriome analysis revealed a more complex gut bacterial diversity in wild A. assamensis silkworms than in domesticated B. mori silkworms, which contained a relatively simple gut bacteriome as estimated by OTU richness. Predictive functional profiling of the gut bacteriome suggested that gut bacteria in A. assamensis were associated with a wide range of physiological, nutritional, and metabolic functions, including biodegradation of xenobiotics, lipid, amino acid, carbohydrate metabolism, and biosynthesis of secondary metabolites and amino acids. CONCLUSIONS These results showed great differences in the composition and diversity of gut bacteria between the two silkworm species. Both insect species harbored core bacterial taxa commonly found in insects, but the relative abundance and composition of these taxa varied markedly.
Collapse
Affiliation(s)
- Gangavarapu Subrahmanyam
- Seri-biotech Research Laboratory, Central Silk Board, Ministry of Textiles, Govt. of India, Kodathi, Carmelram Post, Bangalore, Karnataka, 560035, India.
| | - Yeruva Thirupathaiah
- Central Sericultural Research & Training Institute, Central Silk Board, Manandawadi Road, Srirampura, Mysore, Karnataka, 570008, India
| | - N Vijay
- Central Muga Eri Research & Training Institute, Central Silk Board, Ministry of Textiles, Govt. of India, Lahdoigarh, Jorhat, Assam, 785700, India
| | - Rajal Debnath
- Seri-biotech Research Laboratory, Central Silk Board, Ministry of Textiles, Govt. of India, Kodathi, Carmelram Post, Bangalore, Karnataka, 560035, India
| | - K P Arunkumar
- Central Muga Eri Research & Training Institute, Central Silk Board, Ministry of Textiles, Govt. of India, Lahdoigarh, Jorhat, Assam, 785700, India
| | - Mallikarjuna Gadwala
- Central Sericultural Research & Training Institute, Central Silk Board, Manandawadi Road, Srirampura, Mysore, Karnataka, 570008, India
| | - Prashant A Sangannavar
- Central Silk Board, Ministry of Textiles, Govt. of India, B.T.M. Layout, Madivala, Bangalore, Karnataka, 560068, India
| | - S Manthira Moorthy
- Seri-biotech Research Laboratory, Central Silk Board, Ministry of Textiles, Govt. of India, Kodathi, Carmelram Post, Bangalore, Karnataka, 560035, India
| | - Mahananda Chutia
- Muga Eri Silkworm Seed Organization, Central Silk Board, Reshom Nagar, Khanapara, Guwahati, Assam, 781022, India
| |
Collapse
|
10
|
Marulanda-Moreno SM, Saldamando-Benjumea CI, Vivero Gomez R, Cadavid-Restrepo G, Moreno-Herrera CX. Comparative analysis of Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) corn and rice strains microbiota revealed minor changes across life cycle and strain endosymbiont association. PeerJ 2024; 12:e17087. [PMID: 38623496 PMCID: PMC11017975 DOI: 10.7717/peerj.17087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/20/2024] [Indexed: 04/17/2024] Open
Abstract
Background Spodoptera frugiperda (FAW) is a pest that poses a significant threat to corn production worldwide, causing millions of dollars in losses. The species has evolved into two strains (corn and rice) that differ in their genetics, reproductive isolation, and resistance to insecticides and Bacillus thuringiensis endotoxins. The microbiota plays an important role in insects' physiology, nutrient acquisition, and response to chemical and biological controls. Several studies have been carried out on FAW microbiota from larvae guts using laboratory or field samples and a couple of studies have analyzed the corn strain microbiota across its life cycle. This investigation reveals the first comparison between corn strain (CS) and rice strain (RS) of FAW during different developmental insect stages and, more importantly, endosymbiont detection in both strains, highlighting the importance of studying both FAW populations and samples from different stages. Methods The composition of microbiota during the life cycle of the FAW corn and rice strains was analyzed through high-throughput sequencing of the bacterial 16S rRNA gene using the MiSeq system. Additionally, culture-dependent techniques were used to isolate gut bacteria and the Transcribed Internal Spacer-ITS, 16S rRNA, and gyrB genes were examined to enhance bacterial identification. Results Richness, diversity, and bacterial composition changed significantly across the life cycle of FAW. Most diversity was observed in eggs and males. Differences in gut microbiota diversity between CS and RS were minor. However, Leuconostoc, A2, Klebsiella, Lachnoclostridium, Spiroplasma, and Mucispirilum were mainly associated with RS and Colidextribacter, Pelomonas, Weissella, and Arsenophonus to CS, suggesting that FAW strains differ in several genera according to the host plant. Firmicutes and Proteobacteria were the dominant phyla during FAW metamorphosis. Illeobacterium, Ralstonia, and Burkholderia exhibited similar abundancies in both strains. Enterococcus was identified as a conserved taxon across the entire FAW life cycle. Microbiota core communities mainly consisted of Enterococcus and Illeobacterium. A positive correlation was found between Spiroplasma with RS (sampled from eggs, larvae, pupae, and adults) and Arsenophonus (sampled from eggs, larvae, and adults) with CS. Enterococcus mundtii was predominant in all developmental stages. Previous studies have suggested its importance in FAW response to B. thuringensis. Our results are relevant for the characterization of FAW corn and rice strains microbiota to develop new strategies for their control. Detection of Arsenophonus in CS and Spiroplasma in RS are promising for the improvement of this pest management, as these bacteria induce male killing and larvae fitness reduction in other Lepidoptera species.
Collapse
Affiliation(s)
- Sandra María Marulanda-Moreno
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Colombia
| | - Clara Inés Saldamando-Benjumea
- Grupo de Biotecnología Vegetal UNALMED-CIB. Línea en Ecología y Evolución de Insectos, Facultad de Ciencias, Universidad Nacional de Colombia, Medellín, Colombia
| | - Rafael Vivero Gomez
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Universidad Nacional de Colombia, sede Medellín, Colombia
| | - Gloria Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Colombia
| | - Claudia Ximena Moreno-Herrera
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Colombia
| |
Collapse
|
11
|
Lateef AA, Azeez AA, Ren W, Hamisu HS, Oke OA, Asiegbu FO. Bacterial biota associated with the invasive insect pest Tuta absoluta (Meyrick). Sci Rep 2024; 14:8268. [PMID: 38594362 PMCID: PMC11003966 DOI: 10.1038/s41598-024-58753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Tuta absoluta (the tomato pinworm) is an invasive insect pest with a highly damaging effect on tomatoes causing between 80 and 100% yield losses if left uncontrolled. Resistance to chemical pesticides have been reported in some T. absoluta populations. Insect microbiome plays an important role in the behavior, physiology, and survivability of their host. In a bid to explore and develop an alternative control method, the associated microbiome of this insect was studied. In this study, we unraveled the bacterial biota of T. absoluta larvae and adults by sequencing and analyzing the 16S rRNA V3-V4 gene regions using Illumina NovaSeq PE250. Out of 2,092,015 amplicon sequence variants (ASVs) recovered from 30 samples (15 larvae and 15 adults), 1,268,810 and 823,205 ASVs were obtained from the larvae and adults, respectively. A total of 433 bacterial genera were shared between the adults and larval samples while 264 and 139 genera were unique to the larvae and adults, respectively. Amplicon metagenomic analyses of the sequences showed the dominance of the phylum Proteobacteria in the adult samples while Firmicutes and Proteobacteria dominated in the larval samples. Linear discriminant analysis effect size (LEfSe) comparison revealed the genera Pseudomonas, Delftia and Ralstonia to be differentially enriched in the adult samples while Enterococcus, Enterobacter, Lactococcus, Klebsiella and Wiessella were differentially abundant in the larvae. The diversity indices showed that the bacterial communities were not different between the insect samples collected from different geographical regions. However, the bacterial communities significantly differed based on the sample type between larvae and adults. A co-occurrence network of significantly correlated taxa revealed a strong interaction between the microbial communities. The functional analysis of the microbiome using FAPROTAX showed that denitrification, arsenite oxidation, methylotrophy and methanotrophy as the active functional groups of the adult and larvae microbiomes. Our results have revealed the core taxonomic, functional, and interacting microbiota of T. absoluta and these indicate that the larvae and adults harbor a similar but transitory set of bacteria. The results provide a novel insight and a basis for exploring microbiome-based biocontrol strategy for this invasive insect pest as well as the ecological significance of some of the identified microbiota is discussed.
Collapse
Affiliation(s)
- A A Lateef
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland.
- Department of Plant Biology, University of Ilorin, Kwara State, Ilorin, Nigeria.
| | - A A Azeez
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Rainforest Research Station, Forestry Research Institute of Nigeria, Jericho Hill, Ibadan, Nigeria
| | - W Ren
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - H S Hamisu
- National Horticultural Research Institute, Ibadan, Nigeria
| | - O A Oke
- National Horticultural Research Institute, Ibadan, Nigeria
| | - F O Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Shao Y, Mason CJ, Felton GW. Toward an Integrated Understanding of the Lepidoptera Microbiome. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:117-137. [PMID: 37585608 DOI: 10.1146/annurev-ento-020723-102548] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Research over the past 30 years has led to a widespread acceptance that insects establish widespread and diverse associations with microorganisms. More recently, microbiome research has been accelerating in lepidopteran systems, leading to a greater understanding of both endosymbiont and gut microorganisms and how they contribute to integral aspects of the host. Lepidoptera are associated with a robust assemblage of microorganisms, some of which may be stable and routinely detected in larval and adult hosts, while others are ephemeral and transient. Certain microorganisms that populate Lepidoptera can contribute significantly to the hosts' performance and fitness, while others are inconsequential. We emphasize the context-dependent nature of the interactions between players. While our review discusses the contemporary literature, there are major avenues yet to be explored to determine both the fundamental aspects of host-microbe interactions and potential applications for the lepidopteran microbiome; we describe these avenues after our synthesis.
Collapse
Affiliation(s)
- Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China;
| | - Charles J Mason
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye US Pacific Basin Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Hilo, Hawaii, USA;
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
13
|
Qu H, Long Y, Wang X, Wang K, Chen L, Yang Y, Chen L. Diversity and Abundance of Bacterial and Fungal Communities Inhabiting Camellia sinensis Leaf, Rhizospheric Soil, and Gut of Agriophara rhombata. Microorganisms 2023; 11:2188. [PMID: 37764032 PMCID: PMC10536862 DOI: 10.3390/microorganisms11092188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Agriophara rhombata is a tea leaf moth that is considered one of the most destructive pests of Camellia sinensis (tea plant). Several recent studies have shown that many insects acquire part of the microbiome from their host and soil, but the pattern and diversity of their microbiome have not been clearly demonstrated. The present study aimed to investigate the bacterial and fungal communities present in the rhizospheric soil and leaf of tea plant compared to the gut of tea moth at different developmental stages (larvae, pupae, adult female and male) using Illumina MiSeq technology. Alpha diversity (Shannon index) showed higher (p < 0.05) bacterial and fungal diversity in soil samples than in leaf and tea moth larvae, pupae, and adult gut samples. However, during different developmental stages of tea moth, bacterial and fungal diversity did not differ (p > 0.05) between larvae, pupae, female, and male guts. Beta diversity also revealed more distinct bacterial and fungal communities in soil and leaf samples compared with tea moth gut samples, which had a more similar microbiome. Furthermore, Proteobacteria, Firmicutes, and Tenericutes were detected as the dominant bacterial phyla, while Ascomycota, Basidiomycota, and Mortierellomycota were the most abundant fungal phyla among all groups, but their relative abundance was comparatively higher (p < 0.05) in soil and leaf samples compared to tea moth gut samples. Similarly, Klebsiella, Streptophyta, and Enterococcus were the top three bacterial genera, while Candida, Aureobasidium, and Strelitziana were the top three fungal genera, and their relative abundance varied significantly (p < 0.05) among all groups. The KEGG analysis also revealed significantly higher (p < 0.5) enrichment of the functional pathways of bacterial communities in soil and leaf samples than in tea moth gut samples. Our study concluded that the bacterial and fungal communities of soil and tea leaves were more diverse and were significantly different from the tea moth gut microbiome at different developmental stages. Our findings contribute to our understanding of the gut microbiota of the tea moth and its potential application in the development of pest management techniques.
Collapse
Affiliation(s)
- Hao Qu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - Yaqin Long
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - Xuesong Wang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - Kaibo Wang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - Long Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230000, China
| | - Linbo Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| |
Collapse
|
14
|
Mason CJ, Auth J, Geib SM. Gut bacterial population and community dynamics following adult emergence in pest tephritid fruit flies. Sci Rep 2023; 13:13723. [PMID: 37607978 PMCID: PMC10444893 DOI: 10.1038/s41598-023-40562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023] Open
Abstract
Gut microbiota are important contributors to insect success. Host-microbe interactions are dynamic and can change as hosts age and/or encounter different environments. A turning point in these relationships the transition from immature to adult life stages, particularly for holometabolous insects where there is radical restructuring of the gut. Improved knowledge of population and community dynamics of gut microbiomes upon adult emergence inform drivers of community assembly and physiological aspects of host-microbe interactions. Here, we evaluated the bacterial communities of the pest tephritid species melon fly (Zeugodacus cucurbitae) and Medditeranean fruit fly (medfly, Ceratitis capitata) associated with the pupae life stage and timepoints immediately following adult eclosion. We used a combination of culturing to determine cultivatable bacterial titers, qPCR to determine 16S-rRNA SSU copy numbers, and 16S V4 sequencing to determine changes in communities. Both culturing and qPCR revealed that fly bacterial populations declined upon adult emergence by 10 to 100-fold followed by recovery within 24 h following eclosion. Titers reached ~ 107 CFUs (~ 108 16S rRNA copies) within a week post-emergence. We also observed concurrent changes in amplicon sequence variance (ASVs), where the ASV composition differed overtime for both melon fly and medfly adults at different timepoints. Medfly, in particular, had different microbiome compositions at each timepoint, indicating greater levels of variation before stabilization. These results demonstrate that tephritid microbiomes experience a period of flux following adult emergence, where both biomass and the makeup of the community undergoes dramatic shifts. The host-microbe dynamics we document suggest plasticity in the community and that there may be specific periods where the tephritid gut microbiome may be pliable to introduce and establish new microbial strains in the host.
Collapse
Affiliation(s)
- Charles J Mason
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, USDA, 64 Nowelo Street, Hilo, HI, 96720, USA.
| | - Jean Auth
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, USDA, 64 Nowelo Street, Hilo, HI, 96720, USA
| | - Scott M Geib
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, USDA, 64 Nowelo Street, Hilo, HI, 96720, USA
| |
Collapse
|
15
|
Boonroumkaew P, Rodpai R, Saeung A, Aupalee K, Saingamsook J, Poolphol P, Sadaow L, Sanpool O, Janwan P, Thanchomnang T, Intapan PM, Maleewong W. Bacterial community structure of Anopheles hyrcanus group, Anopheles nivipes, Anopheles philippinensis, and Anopheles vagus from a malaria-endemic area in Thailand. PLoS One 2023; 18:e0289733. [PMID: 37590198 PMCID: PMC10434920 DOI: 10.1371/journal.pone.0289733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
Bacterial content of mosquitoes has given rise to the development of innovative tools that influence and seek to control malaria transmission. This study identified the bacterial microbiota in field-collected female adults of the Anopheles hyrcanus group and three Anopheles species, Anopheles nivipes, Anopheles philippinensis, and Anopheles vagus, from an endemic area in the southeastern part of Ubon Ratchathani Province, northeastern Thailand, near the Lao PDR-Cambodia-Thailand border. A total of 17 DNA libraries were generated from pooled female Anopheles abdomen samples (10 abdomens/ sample). The mosquito microbiota was characterized through the analysis of DNA sequences from the V3-V4 regions of the 16S rRNA gene, and data were analyzed in QIIME2. A total of 3,442 bacterial ASVs were obtained, revealing differences in the microbiota both within the same species/group and between different species/group. Statistical difference in alpha diversity was observed between An. hyrcanus group and An. vagus and between An. nivipes and An. vagus, and beta diversity analyses showed that the bacterial community of An. vagus was the most dissimilar from other species. The most abundant bacteria belonged to the Proteobacteria phylum (48%-75%) in which Pseudomonas, Serratia, and Pantoea were predominant genera among four Anopheles species/group. However, the most significantly abundant genus observed in each Anopheles species/group was as follows: Staphylococcus in the An. hyrcanus group, Pantoea in the An. nivipes, Rosenbergiella in An. philippinensis, and Pseudomonas in An. vagus. Particularly, Pseudomonas sp. was highly abundant in all Anopheles species except An. nivipes. The present study provides the first study on the microbiota of four potential malaria vectors as a starting step towards understanding the role of the microbiota on mosquito biology and ultimately the development of potential tools for malaria control.
Collapse
Affiliation(s)
- Patcharaporn Boonroumkaew
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Rutchanee Rodpai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Atiporn Saeung
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kittipat Aupalee
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jassada Saingamsook
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Petchaboon Poolphol
- The Office of Disease Prevention and Control Region 10th, Ubon Ratchathani, Thailand
| | - Lakkhana Sadaow
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Penchom Janwan
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Tongjit Thanchomnang
- Faculty of Medicine, Mahasarakham University, Kham Riang, Maha Sarakham, Thailand
| | - Pewpan M. Intapan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
16
|
Mason CJ, Peiffer M, Hoover K, Felton G. Tomato Chemical Defenses Intensify Corn Earworm (Helicoverpa zea) Mortality from Opportunistic Bacterial Pathogens. J Chem Ecol 2023; 49:313-324. [PMID: 36964896 DOI: 10.1007/s10886-023-01420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023]
Abstract
Insect herbivores face multiple challenges to their ability to grow and reproduce. Plants can produce a series of defenses that disrupt and damage the herbivore digestive system, which are heightened upon injury by insect feeding. Additionally, insects face threats from virulent microorganisms that can incur their own set of potential costs to hosts. Microorganisms that invade through the digestive system may function in concert with defenses generated by plants, creating combined assailments on host insects. In our study, we evaluated how tomato defenses interact with an enteric bacterial isolate, Serratia marcescens, in the corn earworm (Helicoverpa zea). We performed bioassays using different tomato cultivars that were induced by methyl jasmonate and larvae orally inoculated with a S. marcescens isolate. Untreated corn earworm larval mortality was low on constitutive tomato, while larvae inoculated with S. marcescens exhibited > 50% mortality within 5 days. Induction treatments elevated both control mortality (~ 45%) and in combination with S. marcescens (> 95%). Larvae also died faster when encountering induced defenses and Serratia. Using a tomato mutant, foliar polyphenol oxidase activity likely had stronger impacts on S. marcescens-mediated larval mortality. Induction treatments also elevated the number of bacterial colony-forming units in the hemolymph of larvae inoculated with Serratia. Larval mortality by S. marcescens was low (< 10%) on artificial diets. Our results demonstrate that plant chemical defenses enhance larval mortality from an opportunistic gut microbe. We propose that the combined damage from both the plant and microbial agent overwhelm the herbivore to increase mortality rates and expedite host death.
Collapse
Affiliation(s)
- Charles J Mason
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA.
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, USDA, 64 Nowelo Street, Hilo, HI, 96720, USA.
| | - Michelle Peiffer
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| | - Kelli Hoover
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| | - Gary Felton
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| |
Collapse
|
17
|
Gao H, Jiang S, Wang Y, Hu M, Xue Y, Cao B, Dou H, Li R, Yi X, Jiang L, Zhang B, Li Y. Comparison of gut bacterial communities of Hyphantriacunea Drury (Lepidoptera, Arctiidae), based on 16S rRNA full-length sequencing. Biodivers Data J 2023; 11:e98143. [PMID: 38327372 PMCID: PMC10848398 DOI: 10.3897/bdj.11.e98143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/14/2023] [Indexed: 02/09/2024] Open
Abstract
There are a large number of microorganisms in the gut of insects, which form a symbiotic relationship with the host during the long-term co-evolution process and have a significant impact on the host's nutrition, physiology, development, immunity, stress tolerance and other aspects. However, the composition of the gut microbes of Hyphantriacunea remains unclear. In order to investigate the difference and diversity of intestinal microbiota of H.cunea larvae feeding on different host plants, we used PacBio sequencing technology for the first time to sequence the 16S rRNA full-length gene of the intestinal microbiota of H.cunea. The species classification, β diversity and function of intestinal microflora of the 5th instar larvae of four species of H.cunea feeding on apricot, plum, redbud and Chinese ash were analysed. The results showed that a total of nine phyla and 65 genera were identified by PacBio sequencing, amongst which Firmicutes was the dominant phylum and Enterococcus was the dominant genus, with an average relative abundance of 59.29% and 52.16%, respectively. PERMANOVA analysis and cluster heat map showed that the intestinal microbiomes of H.cunea larvae, fed on different hosts, were significantly different. LEfSe analysis confirmed the effect of host diet on intestinal community structure and PICRUSt2 analysis showed that most of the predictive functions were closely related to material transport and synthetic, metabolic and cellular processes. The results of this study laid a foundation for revealing the interaction between the intestinal microorganisms of H.cunea and its hosts and provided ideas for exploring new green prevention and control strategies of H.cunea.
Collapse
Affiliation(s)
- Hui Gao
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
- School of Life Sciences, Shandong University, Qingdao, ChinaSchool of Life Sciences, Shandong UniversityQingdaoChina
| | - Sai Jiang
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Yinan Wang
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Meng Hu
- Forestry Protection and Development Service Center of Jining City, Jining, ChinaForestry Protection and Development Service Center of Jining CityJiningChina
| | - Yuyan Xue
- Qufu Bureau of Natural Resources and Planning, Qufu, ChinaQufu Bureau of Natural Resources and PlanningQufuChina
| | - Bing Cao
- Animal Husbandry and Fisheries Development Centre of Tengzhou, Tengzhou, ChinaAnimal Husbandry and Fisheries Development Centre of TengzhouTengzhouChina
| | - Hailong Dou
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Ran Li
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Lina Jiang
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Bin Zhang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia Autonomous Region, ChinaCollege of Life Sciences and Technology, Inner Mongolia Normal UniversityHohhot, Inner Mongolia Autonomous RegionChina
| | - Yujian Li
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| |
Collapse
|
18
|
Chiang MR, Shelomi M. Anatomical changes of the beetle digestive tract during metamorphosis correspond to dietary changes. J Morphol 2023; 284:e21575. [PMID: 36826409 DOI: 10.1002/jmor.21575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
During pupation, the tissues of holometabolous insects change in preparation for the adult lifestyles, although little literature exists examining this hidden process in detail. Using beetles as a model, we hypothesized that species where the adult and larva have the same diets will show less pronounced changes of the digestive tract during metamorphosis than species where the adults diets differ. We also wanted to observe these changes and document them at a level of detail missing from the current record. We compared the structure of the digestive tracts of scarab beetles Oryctes rhinoceros, Thaumastopeus shangaicus, and Protaetia spp. (Coleoptera: Scarabaeidae)-where the larvae eat wood, soil, or compost while the adults feed on soft plant matter, tree sap, and rotting fruits-with the tortoise beetle, Cassida circumdata (Coleoptera: Chrysomelidae), which feeds on leaves as both larva and adult. In the scarab beetles we observed considerable changes in the digestive tracts during the pupal stage, which we could divide into distinct stages, while in the leaf beetle pupae, the gut did not change. This information can provide new insight into metamorphosis, and the illustrations of what occurs during pupation are novel contributions to this field that will facilitate future work.
Collapse
Affiliation(s)
- Min-Rou Chiang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Matan Shelomi
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Šigutová H, Šigut M, Pyszko P, Kostovčík M, Kolařík M, Drozd P. Seasonal Shifts in Bacterial and Fungal Microbiomes of Leaves and Associated Leaf-Mining Larvae Reveal Persistence of Core Taxa Regardless of Diet. Microbiol Spectr 2023; 11:e0316022. [PMID: 36629441 PMCID: PMC9927363 DOI: 10.1128/spectrum.03160-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Microorganisms are key mediators of interactions between insect herbivores and their host plants. Despite a substantial interest in studying various aspects of these interactions, temporal variations in microbiomes of woody plants and their consumers remain understudied. In this study, we investigated shifts in the microbiomes of leaf-mining larvae (Insecta: Lepidoptera) and their host trees over one growing season in a deciduous temperate forest. We used 16S and ITS2 rRNA gene metabarcoding to profile the bacterial and fungal microbiomes of leaves and larvae. We found pronounced shifts in the leaf and larval microbiota composition and richness as the season progressed, and bacteria and fungi showed consistent patterns. The quantitative similarity between leaf and larval microbiota was very low for bacteria (~9%) and decreased throughout the season, whereas fungal similarity increased and was relatively high (~27%). In both leaves and larvae, seasonality, along with host taxonomy, was the most important factor shaping microbial communities. We identified frequently occurring microbial taxa with significant seasonal trends, including those more prevalent in larvae (Streptococcus, Candida sake, Debaryomyces prosopidis, and Neoascochyta europaea), more prevalent in leaves (Erwinia, Seimatosporium quercinum, Curvibasidium cygneicollum, Curtobacterium, Ceramothyrium carniolicum, and Mycosphaerelloides madeirae), and frequent in both leaves and larvae (bacterial strain P3OB-42, Methylobacterium/Methylorubrum, Bacillus, Acinetobacter, Cutibacterium, and Botrytis cinerea). Our results highlight the importance of considering seasonality when studying the interactions between plants, herbivorous insects, and their respective microbiomes, and illustrate a range of microbial taxa persistent in larvae, regardless of their occurrence in the diet. IMPORTANCE Leaf miners are endophagous insect herbivores that feed on plant tissues and develop and live enclosed between the epidermis layers of a single leaf for their entire life cycle. Such close association is a precondition for the evolution of more intimate host-microbe relationships than those found in free-feeding herbivores. Simultaneous comparison of bacterial and fungal microbiomes of leaves and their tightly linked consumers over time represents an interesting study system that could fundamentally contribute to the ongoing debate on the microbial residence of insect gut. Furthermore, leaf miners are ideal model organisms for interpreting the ecological and evolutionary roles of microbiota in host plant specialization. In this study, the larvae harbored specific microbial communities consisting of core microbiome members. Observed patterns suggest that microbes, especially bacteria, may play more important roles in the caterpillar holobiont than generally presumed.
Collapse
Affiliation(s)
- Hana Šigutová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Kostovčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
20
|
Crosstalk between the microbiota and insect postembryonic development. Trends Microbiol 2023; 31:181-196. [PMID: 36167769 DOI: 10.1016/j.tim.2022.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
Insect sequential development evolves from a simple molt towards complete metamorphosis. Like any multicellular host, insects interact with a complex microbiota. In this review, factors driving the microbiota dynamics were pointed out along their development. Special focus was put on tissue renewal, shift in insect ecology, and microbial interactions. Conversely, how the microbiota modulates its host development through nutrient acquisition, hormonal control, and cellular or tissue differentiation was exemplified. Such modifications might have long-term carry-over effects on insect physiology. Finally, remarkable microbe-driven control of insect behaviors along their life cycle was highlighted. Increasing knowledge of those interactions might offer new insights on how insects respond to their environment as well as perspectives on pest- or vector-control strategies.
Collapse
|
21
|
Wang X, Wang H, Su X, Zhang J, Bai J, Zeng J, Li H. Dynamic changes of gut bacterial communities present in larvae of Anoplophora glabripennies collected at different developmental stages. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21978. [PMID: 36377756 DOI: 10.1002/arch.21978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The Asian long-horned beetle, Anoplophora glabripennies (Motschulsky), is a destructive wood-boring pest that is capable of killing healthy trees. Gut bacteria in the larvae of the wood-boring pest is essential for the fitness of hosts. However, little is known about the structure of the intestinal microbiome of A. glabripennies during larval development. Here, we used Illumina MiSeq high-throughput sequencing technology to analyze the larval intestinal bacterial communities of A. glabripennies at the stages of newly hatched larvae, 1st instar larvae and 4th instar larvae. Significant differences were found in larval gut microbial community structure at different larvae developmental stages. Different dominant genus was detected during larval development. Acinetobacter were dominant in the newly hatched larvae, Enterobacter and Raoultella in the 1st instar larvae, and Enterococcus and Gibbsiella in the 4th instar larvae. The microbial richness in the newly hatched larvae was higher than those in the 1st and 4th instar larvae. Many important functions of the intestinal microbiome were predicted, for example, fermentation and chemoheterotrophy functions that may play an important role in insect growth and development was detected in the bacteria at all tested stages. However, some specific functions are found to be associated with different development stages. Our study provides a theoretical basis for investigating the function of the intestinal symbiosis bacteria of A. glabripennies.
Collapse
Affiliation(s)
- XueFei Wang
- College of Forestry, Hebei Agricultural University, Hebei, China
| | - HuaLing Wang
- College of Forestry, Hebei Agricultural University, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei, China
| | - XiaoYu Su
- College of Forestry, Hebei Agricultural University, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei, China
| | - Jie Zhang
- College of Forestry, Hebei Agricultural University, Hebei, China
| | - JiaWei Bai
- College of Forestry, Hebei Agricultural University, Hebei, China
| | - JianYong Zeng
- College of Forestry, Hebei Agricultural University, Hebei, China
- Key Laboratory of Forest Germplasm Resources and Protection of Hebei Province, Hebei, China
| | - HuiPing Li
- College of Forestry, Hebei Agricultural University, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei, China
| |
Collapse
|
22
|
Juottonen H, Moghadam NN, Murphy L, Mappes J, Galarza JA. Host's genetic background determines the outcome of reciprocal faecal transplantation on life-history traits and microbiome composition. Anim Microbiome 2022; 4:67. [PMID: 36564793 PMCID: PMC9789590 DOI: 10.1186/s42523-022-00210-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microbes play a role in their host's fundamental ecological, chemical, and physiological processes. Host life-history traits from defence to growth are therefore determined not only by the abiotic environment and genotype but also by microbiota composition. However, the relative importance and interactive effects of these factors may vary between organisms. Such connections remain particularly elusive in Lepidoptera, which have been argued to lack a permanent microbiome and have microbiota primarily determined by their diet and environment. We tested the microbiome specificity and its influence on life-history traits of two colour genotypes of the wood tiger moth (Arctia plantaginis) that differ in several traits, including growth. All individuals were grown in the laboratory for several generations with standardized conditions. We analyzed the bacterial community of the genotypes before and after a reciprocal frass (i.e., larval faeces) transplantation and followed growth rate, pupal mass, and the production of defensive secretion. RESULTS After transplantation, the fast-growing genotype grew significantly slower compared to the controls, but the slow-growing genotype did not change its growth rate. The frass transplant also increased the volume of defensive secretions in the fast-growing genotype but did not affect pupal mass. Overall, the fast-growing genotype appeared more susceptible to the transplantation than the slow-growing genotype. Microbiome differences between the genotypes strongly suggest genotype-based selective filtering of bacteria from the diet and environment. A novel cluster of insect-associated Erysipelotrichaceae was exclusive to the fast-growing genotype, and specific Enterococcaceae were characteristic to the slow-growing genotype. These Enterococcaceae became more prevalent in the fast-growing genotype after the transplant, which suggests that a slower growth rate is potentially related to their presence. CONCLUSIONS We show that reciprocal frass transplantation can reverse some genotype-specific life-history traits in a lepidopteran host. The results indicate that genotype-specific selective filtering can fine-tune the bacterial community at specific life stages and tissues like the larval frass, even against a background of a highly variable community with stochastic assembly. Altogether, our findings suggest that the host's genotype can influence its susceptibility to being colonized by microbiota, impacting key life-history traits.
Collapse
Affiliation(s)
- Heli Juottonen
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Neda N. Moghadam
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Liam Murphy
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Johanna Mappes
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland ,grid.7737.40000 0004 0410 2071Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter 3, 00014 Helsinki, Finland
| | - Juan A. Galarza
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland ,grid.7737.40000 0004 0410 2071Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter 3, 00014 Helsinki, Finland
| |
Collapse
|
23
|
Studying Plant-Insect Interactions through the Analyses of the Diversity, Composition, and Functional Inference of Their Bacteriomes. Microorganisms 2022; 11:microorganisms11010040. [PMID: 36677331 PMCID: PMC9863603 DOI: 10.3390/microorganisms11010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
As with many other trophic interactions, the interchange of microorganisms between plants and their herbivorous insects is unavoidable. To test the hypothesis that the composition and diversity of the insect bacteriome are driven by the bacteriome of the plant, the bacteriomes of both the plant Datura inoxia and its specialist insect Lema daturaphila were characterised using 16S sRNA gene amplicon sequencing. Specifically, the bacteriomes associated with seeds, leaves, eggs, guts, and frass were described and compared. Then, the functions of the most abundant bacterial lineages found in the samples were inferred. Finally, the patterns of co-abundance among both bacteriomes were determined following a multilayer network approach. In accordance with our hypothesis, most genera were shared between plants and insects, but their abundances differed significantly within the samples collected. In the insect tissues, the most abundant genera were Pseudomonas (24.64%) in the eggs, Serratia (88.46%) in the gut, and Pseudomonas (36.27%) in the frass. In contrast, the most abundant ones in the plant were Serratia (40%) in seeds, Serratia (67%) in foliar endophytes, and Hymenobacter (12.85%) in foliar epiphytes. Indeed, PERMANOVA analysis showed that the composition of the bacteriomes was clustered by sample type (F = 9.36, p < 0.001). Functional inferences relevant to the interaction showed that in the plant samples, the category of Biosynthesis of secondary metabolites was significantly abundant (1.4%). In turn, the category of Xenobiotics degradation and metabolism was significantly present (2.5%) in the insect samples. Finally, the phyla Proteobacteria and Actinobacteriota showed a pattern of co-abundance in the insect but not in the plant, suggesting that the co-abundance and not the presence−absence patterns might be more important when studying ecological interactions.
Collapse
|
24
|
Fungi are more transient than bacteria in caterpillar gut microbiomes. Sci Rep 2022; 12:15552. [PMID: 36114345 PMCID: PMC9481635 DOI: 10.1038/s41598-022-19855-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Despite an increasing number of studies on caterpillar (Insecta: Lepidoptera) gut microbiota, bacteria have been emphasized more than fungi. Therefore, we lack data on whether fungal microbiota is resident or transient and shaped by factors similar to those of bacteria. We sampled nine polyphagous caterpillar species from several tree species at multiple sites to determine the factors shaping leaf and gut bacterial and fungal microbiota as well as the extent to which caterpillars acquire microbiota from their diet. We performed 16S and ITS2 DNA metabarcoding of the leaves and guts to determine the composition and richness of the respective microbiota. While spatial variables shaped the bacterial and fungal microbiota of the leaves, they only affected fungi in the guts, whereas the bacteria were shaped primarily by caterpillar species, with some species harboring more specific bacterial consortia. Leaf and gut microbiota significantly differed; in bacteria, this difference was more pronounced. The quantitative similarity between leaves and guts significantly differed among caterpillar species in bacteria but not fungi, suggesting that some species have more transient bacterial microbiota. Our results suggest the complexity of the factors shaping the gut microbiota, while highlighting interspecific differences in microbiota residency within the same insect functional group.
Collapse
|
25
|
Zhang X, Zhang F, Lu X. Diversity and Functional Roles of the Gut Microbiota in Lepidopteran Insects. Microorganisms 2022; 10:microorganisms10061234. [PMID: 35744751 PMCID: PMC9231115 DOI: 10.3390/microorganisms10061234] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Lepidopteran insects are one of the most widespread and speciose lineages on Earth, with many common pests and beneficial insect species. The evolutionary success of their diversification depends on the essential functions of gut microorganisms. This diverse gut microbiota of lepidopteran insects provides benefits in nutrition and reproductive regulation and plays an important role in the defence against pathogens, enhancing host immune homeostasis. In addition, gut symbionts have shown promising applications in the development of novel tools for biological control, biodegradation of waste, and blocking the transmission of insect-borne diseases. Even though most microbial symbionts are unculturable, the rapidly expanding catalogue of microbial genomes and the application of modern genetic techniques offer a viable alternative for studying these microbes. Here, we discuss the gut structure and microbial diversity of lepidopteran insects, as well as advances in the understanding of symbiotic relationships and interactions between hosts and symbionts. Furthermore, we provide an overview of the function of the gut microbiota, including in host nutrition and metabolism, immune defence, and potential mechanisms of detoxification. Due to the relevance of lepidopteran pests in agricultural production, it can be expected that the research on the interactions between lepidopteran insects and their gut microbiota will be used for biological pest control and protection of beneficial insects in the future.
Collapse
Affiliation(s)
- Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
- Correspondence: (F.Z.); (X.L.)
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
- Correspondence: (F.Z.); (X.L.)
| |
Collapse
|
26
|
Ma M, Chen X, Li S, Luo J, Han R, Xu L. Composition and Diversity of Gut Bacterial Community in Different Life Stages of a Leaf Beetle Gastrolina depressa. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02054-0. [PMID: 35648155 DOI: 10.1007/s00248-022-02054-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Insect gut bacteria have a significant impact on host biology, which has a favorable or negative impact on insect fitness. The walnut leaf beetle (Gastrolina depressa) is a notorious pest in China, causing severe damage to Juglandaceae trees including Juglans regia and Pterocarya rhoifolia. To date, however, we know surprisingly little about the gut microbiota of G. depressa. This study used a high-throughput sequencing platform to investigate the gut bacterial community of G. depressa throughout its life cycle, including the 1st, 2nd, and 3rd instar larvae, as well as male, female, and pre-pregnant female adults. Our results showed that the diversity of the gut bacterial community in larvae was generally higher than that in adults, and young larvae (1st and 2nd larvae) possessed the most diversified and abundant community. Principal coordinate analysis results showed that the gut microbiota of adults cluster together, which is independent of the 1st and 2nd instar larvae. The main phyla were Proteobacteria and Firmicutes in the microbial community of G. depressa, while the dominant genera were Enterobacter, Rosenbergiella, Erwinia, Pseudomonas, and Lactococcus. The gut bacteria of G. depressa were mostly enriched in metabolic pathways (carbohydrate metabolism and amino acid metabolism) as revealed by functional prediction. This study contributes to a better knowledge of G. depressa's gut microbiota and its potential interactions with the host insect, facilitating the development of a microbial-based pest management strategy.
Collapse
Affiliation(s)
- Meiqi Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiaotong Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Siqun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Runhua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
27
|
Devi S, Saini HS, Kaur S. Assessing the pathogenicity of gut bacteria associated with tobacco caterpillar Spodoptera litura (Fab.). Sci Rep 2022; 12:8257. [PMID: 35585189 PMCID: PMC9117240 DOI: 10.1038/s41598-022-12319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/09/2022] [Indexed: 11/08/2022] Open
Abstract
The symbiotic relationship between insects and gut microbes contributes to their fitness by serving immense range of functions viz. nutrition and digestion, detoxification, communication and reproduction etc. However, this relationship between insect and gut microbes varies from mutualistic to pathogenic. Gut microbes become pathogenic when the healthy normal microbial composition is perturbed leading to the death of insect host. Spodoptera litura (Fab.) is a polyphagous pest that causes significant damage to many agricultural crops. The management of this pest primarily depends upon chemical insecticides which have resulted in development of resistance. Thus in search for alternative strategies, culturable gut bacteria isolated from S. litura were screened for insecticidal potential. Among these Serratia marcescens and Enterococcus mundtii induced higher larval mortality in S. litura. The mortality rate increased from 32 to 58% due to S. marcescens at concentrations ranging from 2.6 × 108 to 5.2 × 109 cfu/ml and 26 to 52% in case of E. mundtii due to increase in concentration from 4.6 × 108 to 6.1 × 109 cfu/ml. Both the bacteria negatively affected the development, nutritional physiology and reproductive potential of insect. The results indicated a change in gut microbial composition as well as damage to the gut epithelial membrane. Invasion of gut bacteria into the haemocoel led to septicaemia and ultimately death of host insect. In conclusion both these gut bacteria may serve as potential biocontrol agents against S. litura.
Collapse
Affiliation(s)
- Sarita Devi
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harvinder Singh Saini
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
28
|
Combined transcriptomic and proteomic analysis of developmental features in the immune system of Plutella xylostella during larva-to-adult metamorphosis. Genomics 2022; 114:110381. [DOI: 10.1016/j.ygeno.2022.110381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022]
|
29
|
Zhou Z, Huang H, Che X. Bacterial Communities in the Feces of Laboratory Reared Gampsocleis gratiosa (Orthoptera: Tettigoniidae) across Different Developmental Stages and Sexes. INSECTS 2022; 13:insects13040361. [PMID: 35447806 PMCID: PMC9024567 DOI: 10.3390/insects13040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Many insects host a diverse gut microbial community, ranging from pathogenic to obligate mutualistic organisms. Little is known about the bacteria associated with katydids. Gampsocleis gratiosa (Orthoptera, Tettigoniidae) is an economically important singing pet in China. In the present study, the bacterial communities of the laboratory-reared G. gratiosa feces were characterized using Illumina sequencing of the 16S rDNA V3-V4 region. Abstract We used Illumina sequencing of the 16S rDNA V3-V4 region to identify the bacterial community in laboratory-reared G. gratiosa feces across different developmental stages (1st–7th instar nymph day 0, and 0-, 7-, 14-, and 21-day adult) and sexes. In total, 14,480,559 high-quality reads were clustered into 2982 species-level operational taxonomic units (OTUs), with an average of 481.197 (±137.366) OTUs per sample. These OTUs were assigned into 25 phyla, 42 classes, 60 orders, 116 families, 241 genera, and some unclassified groups. Only 21 core OTUs were shared by all samples. The most representative phylum was Proteobacteria, followed by Firmicutes, Bacteroidetes, and Acidobacteria. At the genus level, Kluyvera (387 OTUs), Obesumbacterium (339 OTUs), Buttiauxella (296 OTUs), Lactobacillus (286 OTUs), and Hafnia (152 OTUs) were dominant bacteria. The early-instar nymphs harbored a similar bacterial community with other developmental stages, which contain higher species diversity. Both principal coordinate analysis (PCoA) and non-metric multidimensional scaling analysis (NMDS) failed to provide a clear clustering based on the developmental stages and sexes. Overall, we assume that G. gratiosa transmits bacteria vertically by eating contaminated eggshells, and both developmental stages and sexes had no significant effect on the fecal bacterial community.
Collapse
Affiliation(s)
- Zhijun Zhou
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.H.); (X.C.)
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Correspondence:
| | - Huimin Huang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.H.); (X.C.)
| | - Xuting Che
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.H.); (X.C.)
| |
Collapse
|
30
|
Ni’matuzahroh, Affandi M, Fatimah, Trikurniadewi N, Khiftiyah AM, Sari SK, Abidin AZ, Ibrahim SNMM. Comparative study of gut microbiota from decomposer fauna in household composter using metataxonomic approach. Arch Microbiol 2022; 204:210. [DOI: 10.1007/s00203-022-02785-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
|
31
|
Similar Bacterial Communities among Different Populations of a Newly Emerging Invasive Species, Tuta absoluta (Meyrick). INSECTS 2022; 13:insects13030252. [PMID: 35323550 PMCID: PMC8951508 DOI: 10.3390/insects13030252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary As an invasive pest in China, the moth Tuta absoluta has spread extremely quickly, and now causes serious harm to the Chinese tomato industry. Understanding gut microbial diversity and composition can potentially identify the adaptive potential of introduced species. In this study, we found there were no significant differences in microbial diversity among three geographical populations, and the gut microbial compositions were similar among the Spanish, Xinjiang and Yunnan geographical populations. Abstract Microorganisms in the guts of insects enhance the adaptability of their hosts with different lifestyles, or those that live in different habitats. Tuta absoluta is an invasive pest that is a serious threat to tomato production in China. It has quickly spread and colonized Xinjiang, Yunnan and other provinces and regions. We used Illumina HiSeq next generation sequencing of the 16S rRNA gene to study and analyze the composition and diversity of the gut microbiota of three geographical populations of T. absoluta. At the phylum level, the most common bacteria in T. absoluta across all three geographical populations were Proteobacteria and Firmicutes. An uncultured bacterium in the Enterobacteriaceae was the dominant bacterial genus in the T. absoluta gut microbiotas. There were no significant differences in alpha diversity metrics among the Spanish, Yunnan and Xinjiang populations. The structures of the gut microbiota of the three populations were similar based on PCoA and NMDS results. The results confirmed that the microbial structures of T. absoluta from different regions were similar.
Collapse
|
32
|
Marín-Miret J, González-Serrano F, Rosas T, Baixeras J, Latorre A, Pérez-Cobas AE, Moya A. Temporal variations shape the gut microbiome ecology of the moth Brithys crini. Environ Microbiol 2022; 24:3939-3953. [PMID: 35243736 DOI: 10.1111/1462-2920.15952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jesús Marín-Miret
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Francisco González-Serrano
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain.,Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Tania Rosas
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Joaquín Baixeras
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain.,Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), Valencia, Spain.,Biomedical Research Center Network of Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Ana Elena Pérez-Cobas
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain.,Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), Valencia, Spain.,Biomedical Research Center Network of Epidemiology and Public Health (CIBEResp), Madrid, Spain
| |
Collapse
|
33
|
Laviad-Shitrit S, Sela R, Sharaby Y, Thorat L, Nath BB, Halpern M. Comparative Microbiota Composition Across Developmental Stages of Natural and Laboratory-Reared Chironomus circumdatus Populations From India. Front Microbiol 2021; 12:746830. [PMID: 34899634 PMCID: PMC8661057 DOI: 10.3389/fmicb.2021.746830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
Chironomids are aquatic insects that undergo a complete metamorphosis of four life stages. Here we studied, for the first time, the microbiota composition of Chironomus circumdatus, a tropical midge species, both from the Mula and Mutha Rivers in Pune, India and as a laboratory-reared culture. We generated a comparative microbial profile of the eggs, larvae and pupae, the three aquatic life stages of C. circumdatus. Non-metric multidimensional scaling analysis (NMDS) demonstrated that the developmental stage had a more prominent effect on the microbiota composition compared to the sampling location. Notably, the microbiota composition of the egg masses from the different sampling points clustered together and differed from laboratory culture larvae. Proteobacteria was the dominant phylum in all the environmental and laboratory-reared egg masses and pupal samples, and in the laboratory-reared larvae, while Fusobacteria was the dominant phylum in the larvae collected from the field environment. The most abundant genera were Cetobacterium, Aeromonas, Dysgonomonas, Vibrio, and Flavobacterium. The ten amplicon sequence variants (ASVs) that most significantly contributed to differences in microbiota composition between the three sampled locations were: Burkholderiaceae (ASVs 04 and 37), C39 (Rhodocyclaceae, ASV 14), Vibrio (ASV 07), Arcobacter (ASV 21), Sphaerotilus (ASV 22), Bacteroidia (ASVs 12 and 28), Flavobacterium (ASV 29), and Gottschalkia (ASV 10). No significant differences were found in the microbial richness (Chao1) or diversity (Shannon H’) of the three sampled locations. In contrast, significant differences were found between the microbial richness of the three life stages. Studying the microbiota of this Chironomus species may contribute to a better understanding of the association of C. circumdatus and its microbial inhabitants.
Collapse
Affiliation(s)
- Sivan Laviad-Shitrit
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Rotem Sela
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Yehonatan Sharaby
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Leena Thorat
- Department of Zoology, Savitribai Phule Pune University, Pune, India.,Department of Biology, York University, Toronto, ON, Canada
| | - Bimalendu B Nath
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.,Department of Biology and Environment, University of Haifa, Haifa, Israel
| |
Collapse
|
34
|
Gut Microbiota Cannot Compensate the Impact of (quasi) Aposymbiosis in Blattella germanica. BIOLOGY 2021; 10:biology10101013. [PMID: 34681115 PMCID: PMC8533614 DOI: 10.3390/biology10101013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary The German cockroach Blattella germanica is a good model to study complex symbiotic relationships because the following two symbiotic systems coexist in a single individual: the endosymbiont Blattabacterium (living inside specialized cells called bacteriocytes) and the gut microbiota. Although the role of the endosymbiont has been fully elucidated, the function of the gut microbiota remains unclear. The study of the gut microbiota will benefit from the availability of insects deprived of Blattabacterium. Our goal is to determine the effect of the removal (or, at least, the reduction) of the endosymbiont population on the cockroach’s fitness, in a normal gut microbiota community. For this purpose, we treated our cockroach population with rifampicin to decrease the amount of endosymbiont in the following generation. As the treatment also affects rifampicin-sensitive gut bacteria, we allowed it to recover for at least 20 days before sampling. We found that after this antibiotic treatment, the endosymbiont population remained extremely reduced and only the microbiota were able to recover, although it could not compensate for the endosymbiont role, and the host’s fitness was drastically affected. This accomplished reduction, however, is not homogenous and requires further study to develop stable quasi-aposymbiotic cockroaches. Abstract Blattella germanica presents a very complex symbiotic system, involving the following two kinds of symbionts: the endosymbiont Blattabacterium and the gut microbiota. Although the role of the endosymbiont has been fully elucidated, the function of the gut microbiota remains unclear. The study of the gut microbiota will benefit from the availability of insects deprived of Blattabacterium. Our goal is to determine the effect of the removal (or, at least, the reduction) of the endosymbiont population on the cockroach’s fitness, in a normal gut microbiota community. For this purpose, we treated our cockroach population, over several generations, with rifampicin, an antibiotic that only affects the endosymbiont during its extracellular phase, and decreases its amount in the following generation. As rifampicin also affects gut bacteria that are sensitive to this antibiotic, the treatment was performed during the first 12 days of the adult stage, which is the period when the endosymbiont infects the oocytes and lacks bacteriocyte protection. We found that after this antibiotic treatment, the endosymbiont population remained extremely reduced and only the microbiota was able to recover, although it could not compensate for the endosymbiont role, and the host’s fitness was drastically affected. This accomplished reduction, however, is not homogenous and requires further study to develop stable quasi-aposymbiotic cockroaches.
Collapse
|
35
|
Vesga P, Augustiny E, Keel C, Maurhofer M, Vacheron J. Phylogenetically closely related pseudomonads isolated from arthropods exhibit differential insect-killing abilities and genetic variations in insecticidal factors. Environ Microbiol 2021; 23:5378-5394. [PMID: 34190383 PMCID: PMC8519069 DOI: 10.1111/1462-2920.15623] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
Strains belonging to the Pseudomonas protegens and Pseudomonas chlororaphis species are able to control soilborne plant pathogens and to kill pest insects by producing virulence factors such as toxins, chitinases, antimicrobials or two‐partner secretion systems. Most insecticidal Pseudomonas described so far were isolated from roots or soil. It is unknown whether these bacteria naturally occur in arthropods and how they interact with them. Therefore, we isolated P. protegens and P. chlororaphis from various healthy insects and myriapods, roots and soil collected in an agricultural field and a neighbouring grassland. The isolates were compared for insect killing, pathogen suppression and host colonization abilities. Our results indicate that neither the origin of isolation nor the phylogenetic position mirror the degree of insecticidal activity. Pseudomonas protegens strains appeared homogeneous regarding phylogeny, biocontrol and insecticidal capabilities, whereas P. chlororaphis strains were phylogenetically and phenotypically more heterogenous. A phenotypic and genomic analysis of five closely related P. chlororaphis isolates displaying varying levels of insecticidal activity revealed variations in genes encoding insecticidal factors that may account for the reduced insecticidal activity of certain isolates. Our findings point towards an adaption to insects within closely related pseudomonads and contribute to understand the ecology of insecticidal Pseudomonas.
Collapse
Affiliation(s)
- Pilar Vesga
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Eva Augustiny
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
Yuan X, Zhang X, Liu X, Dong Y, Yan Z, Lv D, Wang P, Li Y. Comparison of Gut Bacterial Communities of Grapholita molesta (Lepidoptera: Tortricidae) Reared on Different Host Plants. Int J Mol Sci 2021; 22:ijms22136843. [PMID: 34202141 PMCID: PMC8268091 DOI: 10.3390/ijms22136843] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/06/2023] Open
Abstract
Intestinal symbiotic bacteria have played an important role in the digestion, immunity detoxification, mating, and reproduction of insects during long-term coevolution. The oriental fruit moth, Grapholita molesta, is an important fruit tree pest worldwide. However, the composition of the G. molesta microbial community, especially of the gut microbiome, remains unclear. To explore the differences of gut microbiota of G. molesta when reared on different host plants, we determined the gut bacterial structure when G. molesta was transferred from an artificial diet to different host plants (apples, peaches, nectarines, crisp pears, plums, peach shoots) by amplicon sequencing technology. The results showed that Proteobacteria and Firmicutes are dominant in the gut microbiota of G. molesta. Plum-feeding G. molesta had the highest richness and diversity of gut microbiota, while apple-feeding G. molesta had the lowest. PCoA and PERMANOVA analysis revealed that there were significant differences in the gut microbiota structure of G. molesta on different diets. PICRUSt2 analysis indicated that most of the functional prediction pathways were concentrated in metabolic and cellular processes. Our results confirmed that gut bacterial communities of G. molesta can be influenced by host diets and may play an important role in host adaptation.
Collapse
Affiliation(s)
- Xiangqun Yuan
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Xuan Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Xueying Liu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Yanlu Dong
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Zizheng Yan
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Dongbiao Lv
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Ping Wang
- Department of Entomology, Cornell University, Ithaca, NY 14850, USA
| | - Yiping Li
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
37
|
Transcriptomics Reveal the Survival Strategies of Enterococcus mundtii in the Gut of Spodoptera littoralis. J Chem Ecol 2021; 47:227-241. [PMID: 33459999 DOI: 10.1007/s10886-021-01246-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 12/25/2022]
Abstract
The complex interaction between a higher organism and its resident gut flora is a subject of immense interest in the field of symbiosis. Many insects harbor a complex community of microorganisms in their gut. Larvae of Spodoptera littoralis, a lepidopteran pest, house a bacterial community that varies both spatially (along the length of the gut) and temporally (during the insect's life cycle). To monitor the rapid adaptation of microbes to conditions in the gut, a GFP-tagged reporter strain of E. mundtii, a major player in the gut community, was constructed. After early-instar S. littoralis larvae were fed with the tagged microbes, these were recovered from the larval fore- and hindgut by flow cytometry. The fluorescent reporter confirmed the persistence of E. mundtii in the gut. RNA-sequencing of the sorted bacteria highlighted various strategies of the symbiont's survival, including upregulated pathways for tolerating alkaline stress, forming biofilms and two-component signaling systems for quorum sensing, and resisting oxidative stress. Although these symbionts depend on the host for amino acid and fatty acids, differential regulation among various metabolic pathways points to an enriched lysine synthesis pathway of E. mundtii in the hindgut of the larvae.
Collapse
|
38
|
Ourry M, Lopez V, Hervé M, Lebreton L, Mougel C, Outreman Y, Poinsot D, Cortesero AM. Long-lasting effects of antibiotics on bacterial communities of adult flies. FEMS Microbiol Ecol 2020; 96:5775305. [PMID: 32123899 DOI: 10.1093/femsec/fiaa028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/28/2020] [Indexed: 01/01/2023] Open
Abstract
Insect symbionts benefit their host and their study requires large spectrum antibiotic use like tetracycline to weaken or suppress symbiotic communities. While antibiotics have a negative impact on insect fitness, little is known about antibiotic effects on insect microbial communities and how long they last. We characterized the bacterial communities of adult cabbage root fly Delia radicum in a Wolbachia-free population and evaluated the effect of tetracycline treatment on these communities over several generations. Three D. radicum generations were used: the first- and second-generation flies either ingested tetracycline or not, while the third-generation flies were untreated but differed with their parents and/or grandparents that had or had not been treated. Fly bacterial communities were sequenced using a 16S rRNA gene. Tetracycline decreased fly bacterial diversity and induced modifications in both bacterial abundance and relative frequencies, still visible on untreated offspring whose parents and/or grandparents had been treated, therefore demonstrating long-lasting transgenerational effects on animal microbiomes after antibiotic treatment. Flies with an antibiotic history shared bacterial genera, potentially tetracycline resistant and heritable. Next, the transmission should be investigated by comparing several insect development stages and plant compartments to assess vertical and horizontal transmissions of D. radicum bacterial communities.
Collapse
Affiliation(s)
- Morgane Ourry
- Agrocampus Ouest, INRAE, Université de Rennes, IGEPP, F-35650 Le Rheu, France
| | - Valérie Lopez
- Agrocampus Ouest, INRAE, Université de Rennes, IGEPP, F-35000 Rennes, France
| | - Maxime Hervé
- Agrocampus Ouest, INRAE, Université de Rennes, IGEPP, F-35000 Rennes, France
| | - Lionel Lebreton
- Agrocampus Ouest, INRAE, Université de Rennes, IGEPP, F-35650 Le Rheu, France
| | - Christophe Mougel
- Agrocampus Ouest, INRAE, Université de Rennes, IGEPP, F-35650 Le Rheu, France
| | - Yannick Outreman
- Agrocampus Ouest, INRAE, Université de Rennes, IGEPP, F-35000 Rennes, France
| | - Denis Poinsot
- Agrocampus Ouest, INRAE, Université de Rennes, IGEPP, F-35000 Rennes, France
| | | |
Collapse
|
39
|
Sela R, Laviad-Shitrit S, Halpern M. Changes in Microbiota Composition Along the Metamorphosis Developmental Stages of Chironomus transvaalensis. Front Microbiol 2020; 11:586678. [PMID: 33240240 PMCID: PMC7677345 DOI: 10.3389/fmicb.2020.586678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/09/2020] [Indexed: 01/04/2023] Open
Abstract
Chironomids (Diptera; Chironomidae), also known as non-biting midges, are one of the most abundant insects in freshwater habitats. Our aim was to understand whether the metamorphosis developmental stages affect the endogenous microbiota composition of Chironomus transvaalensis. Toward our objective, we analyzed the endogenous microbiota composition of C. transvaalensis' four life stages: egg masses, larvae, pupae, and adults. Significant differences were found between the microbiota compositions of the different developmental stages of this Chironomus species. We observed a decline in bacterial diversity as the insect evolved from egg mass to adult, while the highest richness was observed in the pupal stage. Although there were significant differences between the microbiota compositions of each life stage, a bacterial core, which included 27 Amplicon Sequence Variants (ASVs), was found in all the developmental life stages (in ≥75% of samples). Chironomids are natural reservoirs of Vibrio cholerae and Aeromonas species, and the Vibrio and Aeromonas ASVs were part of the core bacteria. The presence of the ompW gene, which is specific to V. cholerae, confirmed the presence of this species in all the chironomid's life stages. Thus, the results provide important insights about the host-microbe interactions in chironomids with a specific understanding of chironomids-Vibrio-Aeromonas-microbiota interactions.
Collapse
Affiliation(s)
- Rotem Sela
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Sivan Laviad-Shitrit
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.,Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Tivon, Israel
| |
Collapse
|