1
|
Arash A, Dehgan F, Zamanlui Benisi S, Jafari-Nodoushan M, Pezeshki-Modaress M. Polysaccharide base electrospun nanofibrous scaffolds for cartilage tissue engineering: Challenges and opportunities. Int J Biol Macromol 2024; 277:134054. [PMID: 39038580 DOI: 10.1016/j.ijbiomac.2024.134054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Polysaccharides, known as naturally abundant macromolecular materials which can be easily modified chemically, have always attracted scientists' interest due to their outstanding properties in tissue engineering. Moreover, their intrinsic similarity to cartilage ECM components, biocompatibility, and non-harsh processing conditions make polysaccharides an excellent option for cartilage tissue engineering. Imitating the natural ECM structure to form a fibrous scaffold at the nanometer scale in order to recreate the optimal environment for cartilage regeneration has always been attractive for researchers in the past few years. However, there are some challenges for polysaccharides electrospun nanofibers preparation, such as poor solubility (Alginate, cellulose, chitin), high viscosity (alginate, chitosan, and Hyaluronic acid), high surface tension, etc. Several methods are reported in the literature for facing polysaccharide electrospinning issues, such as using carrier polymers, modification of polysaccharides, and using different solvent systems. In this review, considering the importance of polysaccharide-based electrospun nanofibers in cartilage tissue engineering applications, the main achievements in the past few years, and challenges for their electrospinning process are discussed. After careful investigation of reported studies in the last few years, alginate, chitosan, hyaluronic acid, chondroitin sulfate, and cellulose were chosen as the main polysaccharide base electrospun nanofibers used for cartilage regeneration.
Collapse
Affiliation(s)
- Atefeh Arash
- Department of Biomedical Engineering, Faculty of Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Fatemeh Dehgan
- Department of Biomedical Engineering, Faculty of Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran; Stem cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Milad Jafari-Nodoushan
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran; Hard Tissue Engineering Resarch Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mohamad Pezeshki-Modaress
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Li S, Wang R, Huang L, Jiang Y, Xing F, Duan W, Cen Y, Zhang Z, Xie H. Promotion of diced cartilage survival and regeneration with grafting of small intestinal submucosa loaded with urine-derived stem cells. Cell Prolif 2024; 57:e13542. [PMID: 37723928 PMCID: PMC10849789 DOI: 10.1111/cpr.13542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
Cartilage absorption and calcification are prone to occur after the implantation of diced cartilage wrapped with autologous materials, as well as prolong the operation time, aggravate surgical trauma and postoperative pain during the acquisition process. Small intestinal submucosa (SIS) has suitable toughness and excellent degradability, which has been widely used in the clinic. Urine-derived stem cells (USCs), as a new type of stem cells, have multi-directional differentiation potential. In this study, we attempt to create the tissue engineering membrane material, termed USCs-SIS (U-SIS), and wrap the diced cartilage with it, assuming that they can promote the survival and regeneration of cartilage. In this study, after co-culture with the SIS and U-SIS, the proliferation, migration and chondrogenesis ability of the auricular-derived chondrocyte cells (ACs) were significantly improved. Further, the expression levels of chondrocyte phenotype-related genes were up-regulated, whilst that of dedifferentiated genes was down-regulated. The signal pathway proteins (Wnt3a and Wnt5a) were also participated in regulation of chondrogenesis. In vivo, compared with perichondrium, the diced cartilage wrapped with the SIS and U-SIS attained higher survival rate, less calcification and absorption in both short and long terms. Particularly, USCs promoted chondrogenesis and modulated local immune responses via paracrine pathways. In conclusion, SIS have the potential to be a new choice of membrane material for diced cartilage graft. U-SIS can enhance survival and regeneration of diced cartilage as a bioactive membrane material.
Collapse
Affiliation(s)
- Shang Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
- Department of Plastic and Burn Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Medical Cosmetic Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Rui Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Liping Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yanlin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Weiqiang Duan
- Department of Plastic and Burn Surgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Ying Cen
- Department of Plastic and Burn Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu HospitalSichuan UniversityChengduSichuanChina
| | - Zhenyu Zhang
- Department of Plastic and Burn Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu HospitalSichuan UniversityChengduSichuanChina
| | - Huiqi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuanChina
| |
Collapse
|
3
|
Azizi P, Drobek C, Budday S, Seitz H. Simulating the mechanical stimulation of cells on a porous hydrogel scaffold using an FSI model to predict cell differentiation. Front Bioeng Biotechnol 2023; 11:1249867. [PMID: 37799813 PMCID: PMC10549991 DOI: 10.3389/fbioe.2023.1249867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
3D-structured hydrogel scaffolds are frequently used in tissue engineering applications as they can provide a supportive and biocompatible environment for the growth and regeneration of new tissue. Hydrogel scaffolds seeded with human mesenchymal stem cells (MSCs) can be mechanically stimulated in bioreactors to promote the formation of cartilage or bone tissue. Although in vitro and in vivo experiments are necessary to understand the biological response of cells and tissues to mechanical stimulation, in silico methods are cost-effective and powerful approaches that can support these experimental investigations. In this study, we simulated the fluid-structure interaction (FSI) to predict cell differentiation on the entire surface of a 3D-structured hydrogel scaffold seeded with cells due to dynamic compressive load stimulation. The computational FSI model made it possible to simultaneously investigate the influence of both mechanical deformation and flow of the culture medium on the cells on the scaffold surface during stimulation. The transient one-way FSI model thus opens up significantly more possibilities for predicting cell differentiation in mechanically stimulated scaffolds than previous static microscale computational approaches used in mechanobiology. In a first parameter study, the impact of the amplitude of a sinusoidal compression ranging from 1% to 10% on the phenotype of cells seeded on a porous hydrogel scaffold was analyzed. The simulation results show that the number of cells differentiating into bone tissue gradually decreases with increasing compression amplitude, while differentiation into cartilage cells initially multiplied with increasing compression amplitude in the range of 2% up to 7% and then decreased. Fibrous cell differentiation was predicted from a compression of 5% and increased moderately up to a compression of 10%. At high compression amplitudes of 9% and 10%, negligible areas on the scaffold surface experienced high stimuli where no cell differentiation could occur. In summary, this study shows that simulation of the FSI system is a versatile approach in computational mechanobiology that can be used to study the effects of, for example, different scaffold designs and stimulation parameters on cell differentiation in mechanically stimulated 3D-structured scaffolds.
Collapse
Affiliation(s)
- Pedram Azizi
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Christoph Drobek
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Silvia Budday
- Department of Mechanical Engineering, Institute of Applied Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hermann Seitz
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Sturabotti E, Vetica F, Toscano G, Calcaterra A, Martinelli A, Migneco LM, Leonelli F. N-Acetyl-l-phenylalanine Racemization during TBTU Amidation: An In-Depth Study for the Synthesis of Anti-Inflammatory 2-( N-Acetyl)-l-phenylalanylamido-2-deoxy-d-glucose (NAPA). MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020581. [PMID: 36677671 PMCID: PMC9863357 DOI: 10.3390/molecules28020581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
A thorough study on the amidation conditions of N-acetyl-l-phenylalanine using TBTU and various bases is reported for the synthesis of 2-(N-acetyl)-l-phenylalanylamido-2-deoxy-d-glucose (NAPA), a promising drug for the treatment of joints diseases. TBTU-mediated diastereoselective amidation reaction with 1,3,4,6-tetra-O-acetyl-β-d-glucosamine always gave racemization of N-acetyl-l-phenylalanine. The stereochemical retention under amidation conditions was studied in detail in the presence of difference bases and via other control experiments, evidencing the possibility to reduce racemization using pyridine as base.
Collapse
Affiliation(s)
- Elisa Sturabotti
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- Correspondence: (E.S.); (A.C.); (F.L.)
| | - Fabrizio Vetica
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giorgia Toscano
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- Correspondence: (E.S.); (A.C.); (F.L.)
| | - Andrea Martinelli
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Luisa Maria Migneco
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- Correspondence: (E.S.); (A.C.); (F.L.)
| |
Collapse
|
5
|
Popov VL, Poliakov AM, Pakhaliuk VI. In silico evaluation of the mechanical stimulation effect on the regenerative rehabilitation for the articular cartilage local defects. Front Med (Lausanne) 2023; 10:1134786. [PMID: 36960336 PMCID: PMC10027915 DOI: 10.3389/fmed.2023.1134786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Osteoarthritis is one of the most severe diseases of the human musculoskeletal system, and therefore, for many years, special attention has been paid to the search for effective methods of its treatment. However, even the most modern methods only in a limited number of cases in the early or intermediate stages of osteoarthritis lead to positive treatment results. In the later stages of development, osteoarthritis is practically incurable and most often ends with disability or the need for joint replacement for a large number of people. One of the main reasons hindering the development of osteoarthritis treatment methods is the peculiarities of articular cartilage, in which there is practically no vascular network and tissue homeostasis is carried out mainly due to the diffusion of nutrients present in the synovial fluid. In modern medicine, for the treatment of osteoarthritis, tissue engineering strategies have been developed based on the implantation of scaffolds populated with chondrogenic cells into the area of the defect. In vitro studies have established that these cells are highly mechanosensitive and, under the influence of mechanical stimuli of a certain type and intensity, their ability to proliferate and chondrogenesis increases. This property can be used to improve the efficiency of regenerative rehabilitation technologies based on the synergistic combination of cellular technologies, tissue engineering strategies, and mechanical tissue stimulation. In this work, using a regenerative rehabilitation mathematical model of local articular cartilage defects, numerical experiments were performed, the results of which indicate that the micro-and macro environment of the restored tissue, which changes during mechanical stimulation, has a significant effect on the formation of the extracellular matrix, and, consequently, cartilage tissue generally. The results obtained can be used to plan strategies for mechanical stimulation, based on the analysis of the results of cell proliferation experimental assessment after each stimulation procedure in vivo.
Collapse
Affiliation(s)
- Valentin L. Popov
- Institute of Mechanics, Technische Universität Berlin, Berlin, Germany
- *Correspondence: Valentin L. Popov,
| | | | - Vladimir I. Pakhaliuk
- Polytechnic Institute, Sevastopol State University, Sevastopol, Russia
- Vladimir I. Pakhaliuk,
| |
Collapse
|
6
|
Khalid T, O'Leary C. Engineering Large Airways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:121-135. [PMID: 37195529 DOI: 10.1007/978-3-031-26625-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A key issue facing trachea replacement attempts has been the discrepancy of the mechanical properties between the native tracheal tissue and that of the replacement construct; this difference is often one of the major causes for implant failure in vivo and within clinical efforts. The trachea is composed of distinct structural regions, with each component fulfilling a different role in maintaining overall tracheal stability. The trachea's horseshoe-shaped hyaline cartilage rings, smooth muscle and annular ligament collectively produce an anisotropic tissue that allows for longitudinal extensibility and lateral rigidity. Therefore, any tracheal substitute must be mechanically robust in order to withstand intra-thoracic pressure changes that occur during respiration. Conversely, they must also be able to deform radially to allow for changes in the cross-sectional area during coughing and swallowing. These complicated native tissue characteristics, coupled with a lack of standardised protocols to accurately quantify tracheal biomechanics as guidance for implant design, constitute a significant hurdle for tracheal biomaterial scaffold fabrication. This chapter aims to highlight the pressure forces exerted on the trachea and how they can influence tracheal construct design and also the biomechanical properties of the three main components of the trachea and how to mechanically assess them.
Collapse
Affiliation(s)
- Tehreem Khalid
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, RCSI, Dublin, Ireland
- Advanced Materials & Bioengineering Research (AMBER) Centre, RCSI & Trinity College, Dublin, Ireland
| | - Cian O'Leary
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Tissue Engineering Research Group, RCSI, Dublin, Ireland.
- Advanced Materials & Bioengineering Research (AMBER) Centre, RCSI & Trinity College, Dublin, Ireland.
| |
Collapse
|
7
|
Chen J, Chen N, Zhang T, Lin J, Huang Y, Wu G. Rongjin Niantong Fang ameliorates cartilage degeneration by regulating the SDF-1/CXCR4-p38MAPK signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2253-2265. [PMID: 36428240 PMCID: PMC10013506 DOI: 10.1080/13880209.2022.2143533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Rongjin Niantong Fang (RJNTF) is a Traditional Chinese Medicine formulation with a good therapeutic effect on osteoarthritis (OA). However, the underlying mechanisms remain unclear. OBJECTIVE This study investigates whether RJNTF could delay OA cartilage degeneration by regulating the SDF-1/CXCR4-p38MAPK signalling pathway. MATERIALS AND METHODS The Sprague-Dawley (SD) rats were used to establish the OA model by a modified Hulth's method. SD rats were divided into three groups (n = 10): blank group, model group (0.9% saline, 10 mL/kg/day), and treatment group (RJNTF, 4.5 g/kg/day). After 12 weeks of treatment, each group was analysed by H&E, Safranine-O solid green, ELISA, Immunohistochemistry, and Western blot. An in vitro model was induced with 100 ng/mL SDF-1 by ELISA, the blank group, model group, RJNTF group, and inhibitor group with intervention for 12 h, each group was analysed by Immunofluorescence staining and Western blot. RESULTS SDF-1 content in the synovium was reduced in RJNTF treatment group compared to non-treatment model group (788.10 vs. 867.32 pg/mL) and down-regulation of CXCR4, MMP-3, MMP-9, MMP-13 protein expression, along with p38 protein phosphorylated were observed in RJNTF treatment group. In vitro results showed that RJNTF (IC50 = 8.925 mg/mL) intervention could down-regulate SDF-1 induced CXCR4 and p38 protein phosphorylated and reduce the synthesis of MMP-3, MMP-9, and MMP-13 proteins of chondrocytes from SD rat cartilage tissues. DISCUSSION AND CONCLUSION RJNTF alleviates OA cartilage damage by SDF-1/CXCR4-p38MAPK signalling pathway inhibition. Our ongoing research focuses on Whether RJNTF treats OA through alternative pathways.
Collapse
Affiliation(s)
- Jun Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Nan Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ting Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jie Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yunmei Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guangwen Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of Traditional Chinese Medicine), Ministry of Education, China
| |
Collapse
|
8
|
Bednarczyk E. Chondrocytes In Vitro Systems Allowing Study of OA. Int J Mol Sci 2022; 23:ijms231810308. [PMID: 36142224 PMCID: PMC9499487 DOI: 10.3390/ijms231810308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is an extremely complex disease, as it combines both biological-chemical and mechanical aspects, and it also involves the entire joint consisting of various types of tissues, including cartilage and bone. This paper describes the methods of conducting cell cultures aimed at searching for the mechanical causes of OA development, therapeutic solutions, and methods of preventing the disease. It presents the systems for the cultivation of cartilage cells depending on the level of their structural complexity, and taking into account the most common solutions aimed at recreating the most important factors contributing to the development of OA, that is mechanical loads. In-vitro systems used in tissue engineering to investigate the phenomena associated with OA were specified depending on the complexity and purposefulness of conducting cell cultures.
Collapse
Affiliation(s)
- Ewa Bednarczyk
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
| |
Collapse
|
9
|
Rao C, Shi S. Development of Nanomaterials to Target Articular Cartilage for Osteoarthritis Therapy. Front Mol Biosci 2022; 9:900344. [PMID: 36032667 PMCID: PMC9402910 DOI: 10.3389/fmolb.2022.900344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is an obstinate, degradative, and complicated disease that has drawn much attention worldwide. Characterized by its stubborn symptoms and various sequela, OA causes much financial burden on both patients and the health system. What’s more, conventional systematic therapy is not effective enough and causes multiple side effects. There’s much evidence that nanoparticles have unique properties such as high penetration, biostability, and large specific surface area. Thus, it is urgent to exploit novel medications for OA. Nanomaterials have been sufficiently studied, exploiting diverse nano-drug delivery systems (DDSs) and targeted nano therapeutical molecules. The nanomaterials are primarily intra-articular injected under the advantages of high topical concentration and low dosage. After administration, the DDS and targeted nano therapeutical molecules can specifically react with the components, including cartilage and synovium of a joint in OA, furthermore attenuate the chondrocyte apoptosis, matrix degradation, and macrophage recruitment. Thus, arthritis would be alleviated. The DDSs could load with conventional anti-inflammatory drugs, antibodies, RNA, and so on, targeting chondrocytes, synovium, or extracellular matrix (ECM) and releasing the molecules sequentially. The targeted nano therapeutical molecules could directly get to the targeted tissue, alleviating the inflammation and promoting tissue healing. This review will comprehensively collect and evaluate the targeted nanomaterials to articular cartilage in OA.
Collapse
|
10
|
A Critical Aspect of Bioreactor Designing and Its Application for the Generation of Tissue Engineered Construct: Emphasis on Clinical Translation of Bioreactor. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Tsao CK, Liao KH, Hsiao HY, Liu YH, Wu CT, Cheng MH, Zhong WB. Tracheal reconstruction with pedicled tandem grafts engineered by a radial stretch bioreactor. J Biomater Appl 2022; 37:118-131. [PMID: 35412872 DOI: 10.1177/08853282221082357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The engineering of tracheal substitutes is pivotal in improving tracheal reconstruction. In this study, we aimed to investigate the effects of biomechanical stimulation on tissue engineering tracheal cartilage by mimicking the trachea motion through a novel radial stretching bioreactor, which enables to dynamically change the diameter of the hollow cylindrical implants. Applying our bioreactor, we demonstrated that chondrocytes seeded on the surface of Poly (ε-caprolactone) scaffold respond to mechanical stimulation by improvement of infiltration into implants and upregulation of cartilage-specific genes. Further, the mechanical stimulation enhanced the accumulation of cartilage neo-tissues and cartilage-specific extracellular macromolecules in the muscle flap-remodeled implants and reconstructed trachea. Nevertheless, the invasion of fibrous tissues in the reconstructed trachea was suppressed upon mechanical loading.
Collapse
Affiliation(s)
- Chung-Kan Tsao
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, 38014Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Kuan-Hao Liao
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, 38014Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Hui-Yi Hsiao
- Center for Tissue Engineering, 38014Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Yun-Hen Liu
- Division of Thoracic Surgery, 38014Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Chieh-Tsai Wu
- Division of Pediatric Neurosurgery, Chang Gung Children's Hospital, 38014Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Ming-Huei Cheng
- Center of Lymphedema Microsurgery, Department of Plastic and Reconstructive Surgery, 38014Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Wen-Bin Zhong
- Center for Tissue Engineering, 38014Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan.,Center for Biomedical Engineering, College of Engineering, 38014Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
12
|
Alizadeh Sardroud H, Wanlin T, Chen X, Eames BF. Cartilage Tissue Engineering Approaches Need to Assess Fibrocartilage When Hydrogel Constructs Are Mechanically Loaded. Front Bioeng Biotechnol 2022; 9:787538. [PMID: 35096790 PMCID: PMC8790514 DOI: 10.3389/fbioe.2021.787538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Chondrocytes that are impregnated within hydrogel constructs sense applied mechanical force and can respond by expressing collagens, which are deposited into the extracellular matrix (ECM). The intention of most cartilage tissue engineering is to form hyaline cartilage, but if mechanical stimulation pushes the ratio of collagen type I (Col1) to collagen type II (Col2) in the ECM too high, then fibrocartilage can form instead. With a focus on Col1 and Col2 expression, the first part of this article reviews the latest studies on hyaline cartilage regeneration within hydrogel constructs that are subjected to compression forces (one of the major types of the forces within joints) in vitro. Since the mechanical loading conditions involving compression and other forces in joints are difficult to reproduce in vitro, implantation of hydrogel constructs in vivo is also reviewed, again with a focus on Col1 and Col2 production within the newly formed cartilage. Furthermore, mechanotransduction pathways that may be related to the expression of Col1 and Col2 within chondrocytes are reviewed and examined. Also, two recently-emerged, novel approaches of load-shielding and synchrotron radiation (SR)–based imaging techniques are discussed and highlighted for future applications to the regeneration of hyaline cartilage. Going forward, all cartilage tissue engineering experiments should assess thoroughly whether fibrocartilage or hyaline cartilage is formed.
Collapse
Affiliation(s)
- Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Hamed Alizadeh Sardroud,
| | - Tasker Wanlin
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - B. Frank Eames
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Santos-Beato P, Midha S, Pitsillides AA, Miller A, Torii R, Kalaskar DM. Biofabrication of the osteochondral unit and its applications: Current and future directions for 3D bioprinting. J Tissue Eng 2022; 13:20417314221133480. [PMID: 36386465 PMCID: PMC9643769 DOI: 10.1177/20417314221133480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/30/2022] [Indexed: 07/20/2023] Open
Abstract
Multiple prevalent diseases, such as osteoarthritis (OA), for which there is no cure or full understanding, affect the osteochondral unit; a complex interface tissue whose architecture, mechanical nature and physiological characteristics are still yet to be successfully reproduced in vitro. Although there have been multiple tissue engineering-based approaches to recapitulate the three dimensional (3D) structural complexity of the osteochondral unit, there are various aspects that still need to be improved. This review presents the different pre-requisites necessary to develop a human osteochondral unit construct and focuses on 3D bioprinting as a promising manufacturing technique. Examples of 3D bioprinted osteochondral tissues are reviewed, focusing on the most used bioinks, chosen cell types and growth factors. Further information regarding the applications of these 3D bioprinted tissues in the fields of disease modelling, drug testing and implantation is presented. Finally, special attention is given to the limitations that currently hold back these 3D bioprinted tissues from being used as models to investigate diseases such as OA. Information regarding improvements needed in bioink development, bioreactor use, vascularisation and inclusion of additional tissues to further complete an OA disease model, are presented. Overall, this review gives an overview of the evolution in 3D bioprinting of the osteochondral unit and its applications, as well as further illustrating limitations and improvements that could be performed explicitly for disease modelling.
Collapse
Affiliation(s)
| | - Swati Midha
- Kennedy Institute of Rheumatology,
University of Oxford, Oxford, UK
| | | | - Aline Miller
- Department of Chemical Engineering,
University of Manchester, Manchester, UK
| | - Ryo Torii
- Department of Mechanical Engineering,
University College London, London, UK
| | - Deepak M Kalaskar
- Institute of Orthopaedics and
Musculoskeletal Science, Division of Surgery & Interventional Science,
University College London (UCL), UK
| |
Collapse
|
14
|
Kanda K, Asawa Y, Inaki R, Fujihara Y, Hoshi K, Hikita A. Requirement of direct contact between chondrocytes and macrophages for the maturation of regenerative cartilage. Sci Rep 2021; 11:22476. [PMID: 34795319 PMCID: PMC8602279 DOI: 10.1038/s41598-021-01437-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022] Open
Abstract
Regenerative cartilage prepared from cultured chondrocytes is generally immature in vitro and matures after transplantation. Although many factors, including host cells and humoral factors, have been shown to affect cartilage maturation in vivo, the requirement of direct cell-cell contact between host and donor cells remains to be verified. In this study, we examined the host cells that promote cartilage maturation via cell-cell contact. Based on analysis of the transplanted chondrocytes, we examined the contribution of endothelial cells and macrophages. Using a semiclosed device that is permeable to tissue fluids while blocking host cells, we selectively transplanted chondrocytes and HUVECs or untreated/M1-polarized/M2-polarized RAW264.7 cells. As a result, untreated RAW264.7 cells induced cartilage regeneration. Furthermore, an in vitro coculture assay indicated communication between chondrocytes and RAW264.7 cells mediated by RNA, suggesting the involvement of extracellular vesicles in this process. These findings provide insights for establishing a method of in vitro cartilage regeneration.
Collapse
Affiliation(s)
- Kengo Kanda
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiyo Asawa
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan
| | - Ryoko Inaki
- Department of Tissue Stem Cell and Dental Life Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuko Fujihara
- Department of Oral-Maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan
- Department of Oral-Maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Tokyo, Japan
| | - Atsuhiko Hikita
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan.
| |
Collapse
|
15
|
Uzieliene I, Bironaite D, Bernotas P, Sobolev A, Bernotiene E. Mechanotransducive Biomimetic Systems for Chondrogenic Differentiation In Vitro. Int J Mol Sci 2021; 22:9690. [PMID: 34575847 PMCID: PMC8469886 DOI: 10.3390/ijms22189690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a long-term chronic joint disease characterized by the deterioration of bones and cartilage, which results in rubbing of bones which causes joint stiffness, pain, and restriction of movement. Tissue engineering strategies for repairing damaged and diseased cartilage tissue have been widely studied with various types of stem cells, chondrocytes, and extracellular matrices being on the lead of new discoveries. The application of natural or synthetic compound-based scaffolds for the improvement of chondrogenic differentiation efficiency and cartilage tissue engineering is of great interest in regenerative medicine. However, the properties of such constructs under conditions of mechanical load, which is one of the most important factors for the successful cartilage regeneration and functioning in vivo is poorly understood. In this review, we have primarily focused on natural compounds, particularly extracellular matrix macromolecule-based scaffolds and their combinations for the chondrogenic differentiation of stem cells and chondrocytes. We also discuss different mechanical forces and compression models that are used for In Vitro studies to improve chondrogenic differentiation. Summary of provided mechanical stimulation models In Vitro reviews the current state of the cartilage tissue regeneration technologies and to the potential for more efficient application of cell- and scaffold-based technologies for osteoarthritis or other cartilage disorders.
Collapse
Affiliation(s)
- Ilona Uzieliene
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, LT-08406 Vilnius, Lithuania; (I.U.); (D.B.); (P.B.)
| | - Daiva Bironaite
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, LT-08406 Vilnius, Lithuania; (I.U.); (D.B.); (P.B.)
| | - Paulius Bernotas
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, LT-08406 Vilnius, Lithuania; (I.U.); (D.B.); (P.B.)
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia;
| | - Eiva Bernotiene
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, LT-08406 Vilnius, Lithuania; (I.U.); (D.B.); (P.B.)
| |
Collapse
|
16
|
Stampoultzis T, Karami P, Pioletti DP. Thoughts on cartilage tissue engineering: A 21st century perspective. Curr Res Transl Med 2021; 69:103299. [PMID: 34192658 DOI: 10.1016/j.retram.2021.103299] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/11/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022]
Abstract
In mature individuals, hyaline cartilage demonstrates a poor intrinsic capacity for repair, thus even minor defects could result in progressive degeneration, impeding quality of life. Although numerous attempts have been made over the past years for the advancement of effective treatments, significant challenges still remain regarding the translation of in vitro cartilage engineering strategies from bench to bedside. This paper reviews the latest concepts on engineering cartilage tissue in view of biomaterial scaffolds, tissue biofabrication, mechanobiology, as well as preclinical studies in different animal models. The current work is not meant to provide a methodical review, rather a perspective of where the field is currently focusing and what are the requirements for bridging the gap between laboratory-based research and clinical applications, in light of the current state-of-the-art literature. While remarkable progress has been accomplished over the last 20 years, the current sophisticated strategies have reached their limit to further enhance healthcare outcomes. Considering a clinical aspect together with expertise in mechanobiology, biomaterial science and biofabrication methods, will aid to deal with the current challenges and will present a milestone for the furtherance of functional cartilage engineering.
Collapse
Affiliation(s)
| | - Peyman Karami
- Laboratory of Biomechanical Orthopedics, EPFL, Lausanne, Switzerland.
| | | |
Collapse
|
17
|
Schmitt C, Radetzki F, Stirnweiss A, Mendel T, Ludtka C, Friedmann A, Baerthel A, Brehm W, Milosevic J, Meisel HJ, Goehre F, Schwan S. Long-term pre-clinical evaluation of an injectable chitosan nanocellulose hydrogel with encapsulated adipose-derived stem cells in an ovine model for IVD regeneration. J Tissue Eng Regen Med 2021; 15:660-673. [PMID: 33989456 DOI: 10.1002/term.3216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2023]
Abstract
The potential therapeutic benefit of adipose-derived stem cells (ASCs) encapsulated in an injectable hydrogel for stimulating intervertebral disc (IVD) regeneration has been assessed by a number of translational and preclinical studies. However, previous work has been primarily limited to small animal models and short-term outcomes of only a few weeks. Long-term studies in representative large animal models are crucial for translation into clinical success, especially for permanent stabilization of major defects such as disc herniation. An injectable chitosan carboxymethyl cellulose hydrogel scaffold loaded with ASCs was evaluated regarding its intraoperative handling, crosslinking kinetics, cell viability, fully-crosslinked viscoelasticity, and long-term therapeutic effects in an ovine model. Three IVDs per animal were damaged in 10 sheep. Subcutaneous adipose tissue was the source for autologous ASCs. Six weeks after IVD damage, two of the damaged IVDs were treated via ASC-loaded hydrogel injection. After 12 months following the implantation, IVD disc height and histological and cellular changes were assessed. This system was reliable and easy to handle intraoperatively. Over 12 months, IVD height was stabilized and degeneration progression significantly mitigated compared to untreated, damaged IVDs. Here we show for the first time in a large animal model that an injectable chitosan carboxymethyl cellulose hydrogel system with encapsulated ASCs is able to affect long-term stabilization of an injured IVD and significantly decrease degeneration processes as compared to controls.
Collapse
Affiliation(s)
- Christine Schmitt
- Halle Wittenberg, Department for Orthopaedics and Traumatology, Martin Luther University, Halle (Saale), Germany.,Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Florian Radetzki
- Halle Wittenberg, Department for Orthopaedics and Traumatology, Martin Luther University, Halle (Saale), Germany.,Department of Orthopedic and Trauma Surgery, Dessau Municipal Hospital, Dessau-Roßlau, Germany
| | - Annika Stirnweiss
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Thomas Mendel
- Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena, Jena, Germany.,Department of Trauma and Reconstructive Surgery, BG Klinikum Bergmannstrost Halle gGmbH, Halle (Saale), Germany
| | - Christopher Ludtka
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Andrea Friedmann
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany.,Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Andre Baerthel
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany.,Department of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Walther Brehm
- Department of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | - Hans Jörg Meisel
- Spinplant GmbH, Halle, Germany.,Department of Neurosurgery, BG Klinikum Bergmannstrost Halle gGmbH, Halle (Saale), Germany
| | - Felix Goehre
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany.,Department of Neurosurgery, BG Klinikum Bergmannstrost Halle gGmbH, Halle (Saale), Germany.,Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Stefan Schwan
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany.,Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| |
Collapse
|
18
|
Ansari S, Sami N, Yasin D, Ahmad N, Fatma T. Biomedical applications of environmental friendly poly-hydroxyalkanoates. Int J Biol Macromol 2021; 183:549-563. [PMID: 33932421 DOI: 10.1016/j.ijbiomac.2021.04.171] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Biological polyesters of hydroxyacids are known as polyhydroxyalkanoates (PHA). They have proved to be an alternative, environmentally friendly and attractive candidate for the replacement of petroleum-based plastics in many applications. Many bacteria synthesize these compounds as an intracellular carbon and energy compound usually under unbalanced growth conditions. Biodegradability and biocompatibility of different PHA has been studied in cell culture systems or in an animal host during the last few decades. Such investigations have proposed that PHA can be used as biomaterials for applications in conventional medical devices such as sutures, patches, meshes, implants, and tissue engineering scaffolds as well. Moreover, findings related to encapsulation capability and degradation kinetics of some PHA polymers has paved their way for development of controlled drug delivery systems. The present review discusses about bio-plastics, their characteristics, examines the key findings and recent advances highlighting the usage of bio-plastics in different medical devices. The patents concerning to PHA application in biomedical field have been also enlisted that will provide a brief overview of the status of research in bio-plastic. This would help medical researchers and practitioners to replace the synthetic plastics aids that are currently being used. Simultaneously, it could also prove to be a strong step in reducing the plastic pollution that surged abruptly due to the COVID-19 medical waste.
Collapse
Affiliation(s)
- Sabbir Ansari
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Neha Sami
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Durdana Yasin
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Nazia Ahmad
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India.
| |
Collapse
|
19
|
Fu L, Li P, Li H, Gao C, Yang Z, Zhao T, Chen W, Liao Z, Peng Y, Cao F, Sui X, Liu S, Guo Q. The Application of Bioreactors for Cartilage Tissue Engineering: Advances, Limitations, and Future Perspectives. Stem Cells Int 2021; 2021:6621806. [PMID: 33542736 PMCID: PMC7843191 DOI: 10.1155/2021/6621806] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Tissue engineering (TE) has brought new hope for articular cartilage regeneration, as TE can provide structural and functional substitutes for native tissues. The basic elements of TE involve scaffolds, seeded cells, and biochemical and biomechanical stimuli. However, there are some limitations of TE; what most important is that static cell culture on scaffolds cannot simulate the physiological environment required for the development of natural cartilage. Recently, bioreactors have been used to simulate the physical and mechanical environment during the development of articular cartilage. This review aims to provide an overview of the concepts, categories, and applications of bioreactors for cartilage TE with emphasis on the design of various bioreactor systems.
Collapse
Affiliation(s)
- Liwei Fu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Pinxue Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Hao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Cangjian Gao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhen Yang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Tianyuan Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Wei Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhiyao Liao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yu Peng
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Fuyang Cao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiang Sui
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
De Angelis E, Grolli S, Saleri R, Conti V, Andrani M, Berardi M, Cavalli V, Passeri B, Ravanetti F, Borghetti P. Platelet lysate reduces the chondrocyte dedifferentiation during in vitro expansion: Implications for cartilage tissue engineering. Res Vet Sci 2020; 133:98-105. [PMID: 32961475 DOI: 10.1016/j.rvsc.2020.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/08/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
In vitro studies have demonstrated that platelet lysate (PL) can serve as an alternative to platelet-rich plasma (PRP) to sustain chondrocyte proliferation and production of extracellular matrix components in chondrocytes. The present study aimed to evaluate the direct effects of PL on equine articular chondrocytes in vitro in order to provide a rationale for in vivo use of PL. An in vitro cell proliferation and de-differentiation model was used: primary articular chondrocytes isolated from horse articular cartilage were cultured at low density under adherent conditions to promote cell proliferation. Chondrocytes were cultured in serum-free medium, 10% foetal bovine serum (FBS) supplemented medium, or in the presence of alginate beads containing 5%, 10% and 20% PL. Cell proliferation and gene expression of relevant chondrocyte differentiation markers were investigated. The proliferative capacity of cultured chondrocytes, was sustained more effectively at certain concentrations of PL as compared to that with FBS. In addition, as opposed to FBS, PL, particularly at percentages of 5% and 10%, could maintain the gene expression pattern of relevant chondrocyte differentiation markers. In particular, 5% PL supplementation showed the best compromise between chondrocyte proliferation capacity and maintenance of differentiation. The results of the present study provide a rationale for using PL as an alternative to FBS for in vitro expansion of chondrocytes for matrix-assisted chondrocyte implantation, construction of 3D scaffolds for tissue engineering, and treatment of damaged articular cartilage.
Collapse
Affiliation(s)
| | - Stefano Grolli
- Department of Veterinary Sciences, University of Parma, Italy
| | - Roberta Saleri
- Department of Veterinary Sciences, University of Parma, Italy
| | - Virna Conti
- Department of Veterinary Sciences, University of Parma, Italy
| | - Melania Andrani
- Department of Veterinary Sciences, University of Parma, Italy
| | - Martina Berardi
- Department of Veterinary Sciences, University of Parma, Italy
| | - Valeria Cavalli
- Department of Veterinary Sciences, University of Parma, Italy
| | | | | | - Paolo Borghetti
- Department of Veterinary Sciences, University of Parma, Italy
| |
Collapse
|
21
|
Clark JN, Heyraud A, Tavana S, Al-Jabri T, Tallia F, Clark B, Blunn GW, Cobb JP, Hansen U, Jones JR, Jeffers JRT. Exploratory Full-Field Mechanical Analysis across the Osteochondral Tissue-Biomaterial Interface in an Ovine Model. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3911. [PMID: 32899671 PMCID: PMC7559087 DOI: 10.3390/ma13183911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/26/2022]
Abstract
Osteochondral injuries are increasingly prevalent, yet success in articular cartilage regeneration remains elusive, necessitating the development of new surgical interventions and novel medical devices. As part of device development, animal models are an important milestone in illustrating functionality of novel implants. Inspection of the tissue-biomaterial system is vital to understand and predict load-sharing capacity, fixation mechanics and micromotion, none of which are directly captured by traditional post-mortem techniques. This study aims to characterize the localised mechanics of an ex vivo ovine osteochondral tissue-biomaterial system extracted following six weeks in vivo testing, utilising laboratory micro-computed tomography, in situ loading and digital volume correlation. Herein, the full-field displacement and strain distributions were visualised across the interface of the system components, including newly formed tissue. The results from this exploratory study suggest that implant micromotion in respect to the surrounding tissue could be visualised in 3D across multiple loading steps. The methodology provides a non-destructive means to assess device performance holistically, informing device design to improve osteochondral regeneration strategies.
Collapse
Affiliation(s)
- Jeffrey N. Clark
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (S.T.); (U.H.)
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (A.H.); (F.T.); (J.R.J.)
| | - Agathe Heyraud
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (A.H.); (F.T.); (J.R.J.)
| | - Saman Tavana
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (S.T.); (U.H.)
| | - Talal Al-Jabri
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK; (T.A.-J.); (J.P.C.)
| | - Francesca Tallia
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (A.H.); (F.T.); (J.R.J.)
| | - Brett Clark
- Imaging and Analysis Centre, Natural History Museum London, London SW7 5BD, UK;
| | - Gordon W. Blunn
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK;
| | - Justin P. Cobb
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK; (T.A.-J.); (J.P.C.)
| | - Ulrich Hansen
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (S.T.); (U.H.)
| | - Julian R. Jones
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (A.H.); (F.T.); (J.R.J.)
| | - Jonathan R. T. Jeffers
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (S.T.); (U.H.)
| |
Collapse
|
22
|
Rahmani Del Bakhshayesh A, Babaie S, Tayefi Nasrabadi H, Asadi N, Akbarzadeh A, Abedelahi A. An overview of various treatment strategies, especially tissue engineering for damaged articular cartilage. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1089-1104. [DOI: 10.1080/21691401.2020.1809439] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Babaie
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
New Insights on Mechanical Stimulation of Mesenchymal Stem Cells for Cartilage Regeneration. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Successful tissue regeneration therapies require further understanding of the environment in which the cells are destined to be set. The aim is to structure approaches that aspire to a holistic view of biological systems and to scientific reliability. Mesenchymal stem cells represent a valuable resource for cartilage tissue engineering, due to their chondrogenic differentiation capacity. Promoting chondrogenesis, not only by growth factors but also by exogenous enhancers such as biomechanics, represents a technical enhancement. Tribological evaluation of the articular joint has demonstrated how mechanical stimuli play a pivotal role in cartilage repair and participate in the homeostasis of this tissue. Loading stresses, physiologically experienced by chondrocytes, can upregulate the production of proteins like glycosaminoglycan or collagen, fundamental for articular wellness, as well as promote and preserve cell viability. Therefore, there is a rising interest in the development of bioreactor devices that impose compression, shear stress, and hydrostatic pressure on stem cells. This strategy aims to mimic chondrogenesis and overcome complications like hypertrophic phenotyping and inappropriate mechanical features. This review will analyze the dynamics inside the joint, the natural stimuli experienced by the chondrocytes, and how the biomechanical stimuli can be applied to a stem cell culture in order to induce chondrogenesis.
Collapse
|
24
|
Antunes BP, Vainieri ML, Alini M, Monsonego-Ornan E, Grad S, Yayon A. Enhanced chondrogenic phenotype of primary bovine articular chondrocytes in Fibrin-Hyaluronan hydrogel by multi-axial mechanical loading and FGF18. Acta Biomater 2020; 105:170-179. [PMID: 31982592 DOI: 10.1016/j.actbio.2020.01.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
Current treatments for cartilage lesions are often associated with fibrocartilage formation and donor site morbidity. Mechanical and biochemical stimuli play an important role in hyaline cartilage formation. Biocompatible scaffolds capable of transducing mechanical loads and delivering bioactive instructive factors may better support cartilage regeneration. In this study we aimed to test the interplay between mechanical and FGF-18 mediated biochemical signals on the proliferation and differentiation of primary bovine articular chondrocytes embedded in a chondro-conductive Fibrin-Hyaluronan (FB/HA) based hydrogel. Chondrocytes seeded in a Fibrin-HA hydrogel, with or without a chondro-inductive, FGFR3 selective FGF18 variant (FGF-18v) were loaded into a joint-mimicking bioreactor applying controlled, multi-axial movements, simulating the natural movements of articular joints. Samples were evaluated for DNA content, sulphated glycosaminoglycan (sGAG) accumulation, key chondrogenic gene expression markers and histology. Under moderate loading, samples produced particularly significant amounts of sGAG/DNA compared to unloaded controls. Interestingly there was no significant effect of FGF-18v on cartilage gene expression at rest. Following moderate multi-axial loading, FGF-18v upregulated the expression of Aggrecan (ACAN), Cartilage Oligomeric Matrix Protein (COMP), type II collagen (COL2) and Lubricin (PRG4). Moreover, the combination of load and FGF-18v, significantly downregulated Matrix Metalloproteinase-9 (MMP-9) and Matrix Metaloproteinase-13 (MMP-13), two of the most important factors contributing to joint destruction in OA. Biomimetic mechanical signals and FGF-18 may work in concert to support hyaline cartilage regeneration and repair. STATEMENT OF SIGNIFICANCE: Articular cartilage has very limited repair potential and focal cartilage lesions constitute a challenge for current standard clinical procedures. The aim of the present research was to explore novel procedures and constructs, based on biomaterials and biomechanical algorithms that can better mimic joints mechanical and biochemical stimulation to promote regeneration of damaged cartilage. Using a hydrogel-based platform for chondrocyte 3D culture revealed a synergy between mechanical forces and growth factors. Exploring the mechanisms underlying this mechano-biochemical interplay may enhance our understanding of cartilage remodeling and the development of new strategies for cartilage repair and regeneration.
Collapse
|
25
|
De Angelis E, Cacchioli A, Ravanetti F, Bileti R, Cavalli V, Martelli P, Borghetti P. Gene expression markers in horse articular chondrocytes: Chondrogenic differentiaton IN VITRO depends on the proliferative potential and ageing. Implication for tissue engineering of cartilage. Res Vet Sci 2019; 128:107-117. [PMID: 31778851 DOI: 10.1016/j.rvsc.2019.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/05/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Chondrocyte dedifferentiation is a key limitation in therapies based on autologous chondrocyte implantation for cartilage repair. Articular chondrocytes, obtained from (metacarpophalangeal and metatarsophalangeal) joints of different aged horses, were cultured in monolayer for several passages (P0 to P8). Cumulative Populations Doublings Levels (PDL) and gene expression of relevant chondrocyte phenotypic markers were analysed during culturing. Overall data confirmed that, during proliferation in vitro, horse chondrocytes undergo marked morphological and phenotypic alterations of their differentiation status. Particularly, the dedifferentiation started early in culture (P0-P1) and was very marked at P3 subculture (PDL 4-6): proliferative phase after P3 could be critical for maintenance/loss of differentiation potential. In elderly animals, chondrocytes showed aspects of dedifferentiation shortly after their isolation, associated with reduced proliferative capacity. Regarding the gene expression of major cartilage markers (Col2, Aggrecan, SOX9) there was a very early reduction (P1) in proliferating chondrocytes independent of age. The chondrocytes from adult donors showed a more stable expression (up to P3) of some (Col6, Fibromodulin, SOX6, TGβ1) markers of mature cartilage; these markers could be tested as parameter to determine the dedifferentiation level. This study can provide parameters to identify up to which "culture step" chondrocytes for implantation with a conserved phenotypic potential can be obtained, and to test the efficiency of biomaterial scaffold or chondroinductive media/signals to maintain/recover the chondrocyte phenotype. Moreover, the determination of levels and time related expression of these markers can be useful during the chondroinduction of mesenchymal stem cells.
Collapse
Affiliation(s)
| | | | | | - Rossana Bileti
- Department of Veterinary Sciences, University of Parma, Italy
| | - Valeria Cavalli
- Department of Veterinary Sciences, University of Parma, Italy
| | - Paolo Martelli
- Department of Veterinary Sciences, University of Parma, Italy
| | - Paolo Borghetti
- Department of Veterinary Sciences, University of Parma, Italy
| |
Collapse
|
26
|
Evaluation of Cartilage Regeneration in Gellan Gum/agar Blended Hydrogel with Improved Injectability. Macromol Res 2019. [DOI: 10.1007/s13233-019-7085-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Glatt V, Evans CH, Stoddart MJ. Regenerative rehabilitation: The role of mechanotransduction in orthopaedic regenerative medicine. J Orthop Res 2019; 37:1263-1269. [PMID: 30561813 PMCID: PMC6546504 DOI: 10.1002/jor.24205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/28/2018] [Indexed: 02/04/2023]
Abstract
Regenerative rehabilitation is an emerging area of investigation that seeks to integrate regenerative medicine with rehabilitation medicine. It is based on the realization that combining these two areas of medicine at an early stage of treatment will produce a better clinical outcome than the traditional linear approach of first administering the elements of regeneration followed, after a delay, by rehabilitation. Indeed, in certain settings, a case can be made for initiating rehabilitation protocols before starting regenerative intervention. This review summarizes the contents of a workshop held during the 2018 annual meeting of the Orthopaedic Research Society. It introduced the concept of regenerative rehabilitation and then provided two orthopaedic examples drawn from the domains of cartilage repair and bone healing. Rehabilitation medicine can supply a variety of physical stimuli, including electrical stimulation, thermal stimulation and mechanical stimulation. Of these, mechanical stimulation has the most obvious relevance to orthopaedics. The mechano-responsiveness of cartilage and bone has been known for a long time, but is poorly understood and has led to only limited clinical application. Improved bioreactor designs that allow multi-axial loading enable new insights into the responsiveness of chondrocytes and chondroprogenitor cells to specific types of load, especially shear. Recent studies on the mechanobiology of bone healing show that modulating the mechanical environment of an experimental osseous lesion by a process of "Reverse Dynamization" soon after injury considerably enhances healing. Future studies are needed to probe the molecular mechanisms responsible for these phenomena and to translate these findings into clinical practice. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1263-1269, 2019.
Collapse
Affiliation(s)
- Vaida Glatt
- Department of Orthopaedic Surgery, University of Texas Health Science Center, San Antonio, Texas
| | | | | |
Collapse
|
28
|
Martínez-Moreno D, Jiménez G, Gálvez-Martín P, Rus G, Marchal JA. Cartilage biomechanics: A key factor for osteoarthritis regenerative medicine. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1067-1075. [PMID: 30910703 DOI: 10.1016/j.bbadis.2019.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 11/26/2022]
Abstract
Osteoarthritis (OA) is a joint disorder that is highly extended in the global population. Several researches and therapeutic strategies have been probed on OA but without satisfactory long-term results in joint replacement. Recent evidences show how the cartilage biomechanics plays a crucial role in tissue development. This review describes how physics alters cartilage and its extracellular matrix (ECM); and its role in OA development. The ECM of the articular cartilage (AC) is widely involved in cartilage turnover processes being crucial in regeneration and joint diseases. We also review the importance of physicochemical pathways following the external forces in AC. Moreover, new techniques probed in cartilage tissue engineering for biomechanical stimulation are reviewed. The final objective of these novel approaches is to create a cellular implant that maintains all the biochemical and biomechanical properties of the original tissue for long-term replacements in patients with OA.
Collapse
Affiliation(s)
- D Martínez-Moreno
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - G Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada E-18071, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada E-18016, Spain
| | - P Gálvez-Martín
- Advanced Therapies Area, Pharmascience Division, Bioibérica S.A.U., E-08029 Barcelona, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada E-18071, Spain
| | - G Rus
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, Granada E-18071, Spain.
| | - J A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada E-18071, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada E-18016, Spain.
| |
Collapse
|
29
|
Cao W, Lin W, Cai H, Chen Y, Man Y, Liang J, Wang Q, Sun Y, Fan Y, Zhang X. Dynamic mechanical loading facilitated chondrogenic differentiation of rabbit BMSCs in collagen scaffolds. Regen Biomater 2019; 6:99-106. [PMID: 30967964 PMCID: PMC6446999 DOI: 10.1093/rb/rbz005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023] Open
Abstract
Mechanical signals have been played close attention to regulate chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In this study, dynamic mechanical loading simulation with natural frequencies and intensities were applied to the 3D cultured BMSCs-collagen scaffold constructs. We investigated the effects of dynamic mechanical loading on cell adhesion, uniform distribution, proliferation, secretion of extracellular matrix (ECM) and chondrogenic differentiation of BMSCs-collagen scaffold constructs. The results indicated that dynamic mechanical loading facilitated the BMSCs adhesion, uniform distribution, proliferation and secretion of ECM with a slight contraction, which significantly improved the mechanical strength of the BMSCs-collagen scaffold constructs for better mimicking the structure and function of a native cartilage. Gene expression results indicated that dynamic mechanical loading contributed to the chondrogenic differentiation of BMSCs with higher levels of AGG, COL2A1 and SOX9 genes, and prevented of hypertrophic process with lower levels of COL10A1, and reduced the possibility of fibrocartilage formation due to down-regulated COL1A2. In conclusion, this study emphasized the important role of dynamic mechanical loading on promoting BMSCs chondrogenic differentiation and maintaining the cartilage phenotype for in vitro reconstruction of tissue-engineered cartilage, which provided an attractive prospect and a feasibility strategy for cartilage repair.
Collapse
Affiliation(s)
- Wanxu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hanxu Cai
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Yafang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Liang
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| |
Collapse
|
30
|
Francis SL, Di Bella C, Wallace GG, Choong PFM. Cartilage Tissue Engineering Using Stem Cells and Bioprinting Technology-Barriers to Clinical Translation. Front Surg 2018; 5:70. [PMID: 30547034 PMCID: PMC6278684 DOI: 10.3389/fsurg.2018.00070] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 01/08/2023] Open
Abstract
There is no long-term treatment strategy for young and active patients with cartilage defects. Early and effective joint preserving treatments in these patients are crucial in preventing the development of osteoarthritis. Tissue engineering over the past few decades has presented hope in overcoming the issues involved with current treatment strategies. Novel advances in 3D bioprinting technology have promoted more focus on efficient delivery of engineered tissue constructs. There have been promising in-vitro studies and several animal studies looking at 3D bioprinting of engineered cartilage tissue. However, to date there are still no human clinical trials using 3D printed engineered cartilage tissue. This review begins with discussion surrounding the difficulties with articular cartilage repair and the limitations of current clinical management options which have led to research in cartilage tissue engineering. Next, the major barriers in each of the 4 components of cartilage tissue engineering; cells, scaffolds, chemical, and physical stimulation will be reviewed. Strategies that may overcome these barriers will be discussed. Finally, we will discuss the barriers surrounding intraoperative delivery of engineered tissue constructs and possible solutions.
Collapse
Affiliation(s)
- Sam L Francis
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.,Department of Orthopaedics, St Vincent's Hospital, Melbourne, VIC, Australia.,Biofab 3D, Aikenhead Centre for Medical Discovery, Melbourne, VIC, Australia
| | - Claudia Di Bella
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.,Department of Orthopaedics, St Vincent's Hospital, Melbourne, VIC, Australia.,Biofab 3D, Aikenhead Centre for Medical Discovery, Melbourne, VIC, Australia
| | - Gordon G Wallace
- Biofab 3D, Aikenhead Centre for Medical Discovery, Melbourne, VIC, Australia.,Australian Research Council, Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Peter F M Choong
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.,Department of Orthopaedics, St Vincent's Hospital, Melbourne, VIC, Australia.,Biofab 3D, Aikenhead Centre for Medical Discovery, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Zhang X, Zhai C, Fei H, Liu Y, Wang Z, Luo C, Zhang J, Ding Y, Xu T, Fan W. Composite Silk-Extracellular Matrix Scaffolds for Enhanced Chondrogenesis of Mesenchymal Stem Cells. Tissue Eng Part C Methods 2018; 24:645-658. [PMID: 30351193 DOI: 10.1089/ten.tec.2018.0199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Xiao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenjun Zhai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Orthopedics, Yixing People's Hospital, Yixing, China
| | - Hao Fei
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunyang Luo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiyong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanzi Ding
- Department of Cardiovascular, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Zhao X, Xiong D, Liu Y. Improving surface wettability and lubrication of polyetheretherketone (PEEK) by combining with polyvinyl alcohol (PVA) hydrogel. J Mech Behav Biomed Mater 2018; 82:27-34. [DOI: 10.1016/j.jmbbm.2018.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 11/24/2022]
|
33
|
Naghizadeh Z, Karkhaneh A, Khojasteh A. Simultaneous release of melatonin and methylprednisolone from an injectable in situ
self-crosslinked hydrogel/microparticle system for cartilage tissue engineering. J Biomed Mater Res A 2018; 106:1932-1940. [DOI: 10.1002/jbm.a.36401] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/24/2018] [Accepted: 03/15/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Ziba Naghizadeh
- Department of Biomedical Engineering; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | - Arash Khojasteh
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
34
|
Sasaki S, Omata S, Murakami T, Nagasawa N, Taguchi M, Suzuki A. Effect of Gamma Ray Irradiation on Friction Property of Poly(vinyl alcohol) Cast-Drying on Freeze-Thawed Hybrid Gel. Gels 2018; 4:E30. [PMID: 30674806 PMCID: PMC6209256 DOI: 10.3390/gels4020030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022] Open
Abstract
Poly(vinyl alcohol) (PVA) is a biocompatible polymer with low toxicity. It is possible to prepare physically cross-linked PVA gels having hydrogen bonds without using a cross-linking agent. The newly reported physically cross-linked PVA cast-drying (CD) on freeze-thawed (FT) hybrid gel has an excellent friction property, which is expected to be applied as a candidate material for artificial cartilage. Gamma ray sterilization for clinical applications usually causes additional chemical cross-linking and changes physical properties of gels. In this study, CD on FT hybrid gels were irradiated using gamma rays at a different dose rate and irradiance. The results showed the optimized irradiation conditions for gamma irradiated gels to retain excellent friction characteristics.
Collapse
Affiliation(s)
- Saori Sasaki
- Research Center for Advanced Biomechanics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- Institute for Material Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Seiji Omata
- Research Center for Advanced Biomechanics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Teruo Murakami
- Research Center for Advanced Biomechanics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- Faculty of Fukuoka Medical Technology, Teikyo University, 6-22 Misaki-machi, Omuta 836-8505, Japan.
| | - Naotsugu Nagasawa
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Watanuki 1233, Takasaki, Gunma 370-1292, Japan.
| | - Mitsumasa Taguchi
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Watanuki 1233, Takasaki, Gunma 370-1292, Japan.
| | - Atsushi Suzuki
- Research Institute of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| |
Collapse
|
35
|
Dikina AD, Lai BP, Cao M, Zborowski M, Alsberg E. Magnetic field application or mechanical stimulation via magnetic microparticles does not enhance chondrogenesis in mesenchymal stem cell sheets. Biomater Sci 2018; 5:1241-1245. [PMID: 28589998 DOI: 10.1039/c7bm00061h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Using a novel magnetic field bioreactor, this work evaluated the chondrogenesis of scaffold-free human mesenchymal stem cell sheets in response to static and variable magnetic fields, as well as mechanical stimulation via 4.4 μm magnetic particles. Neither static nor variable magnetic fields generated by 1.44-1.45 T permanent magnets affected cartilage formation. Notably, magnetic field-induced mechanical stimulation by magnetic particles, which applied forces to the cells and ECM statically (4.39 pN) or cyclically (1.06-63.6 pN; 16.7 mHz), also did not affect cartilage formation.
Collapse
Affiliation(s)
- A D Dikina
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Trachea replacement for nonoperable defects remains an unsolved problem due to complications with stenosis and mechanical insufficiency. While native trachea has anisotropic mechanical properties, the vast majority of engineered constructs focus on uniform cartilaginous-like conduits. These conduits often lack quantitative mechanical analysis at the construct level, which limits analysis of functional outcomes in vivo, as well as comparisons across studies. This review aims to present a clear picture of native tracheal mechanics at the tissue and organ level, as well as loading conditions to establish design criteria for trachea replacements. We further explore the implications of failing to match native properties with regards to implant collapse, stenosis, and infection.
Collapse
Affiliation(s)
- Elizabeth M Boazak
- Department of Biomedical Engineering, The City College of New York, Steinman Hall, 160 Convent Avenue, New York, New York 10031, United States
| | - Debra T Auguste
- Department of Biomedical Engineering, The City College of New York, Steinman Hall, 160 Convent Avenue, New York, New York 10031, United States.,Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
37
|
Daly AC, Sathy BN, Kelly DJ. Engineering large cartilage tissues using dynamic bioreactor culture at defined oxygen conditions. J Tissue Eng 2018; 9:2041731417753718. [PMID: 29399319 PMCID: PMC5788092 DOI: 10.1177/2041731417753718] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/22/2017] [Indexed: 11/23/2022] Open
Abstract
Mesenchymal stem cells maintained in appropriate culture conditions are capable of producing robust cartilage tissue. However, gradients in nutrient availability that arise during three-dimensional culture can result in the development of spatially inhomogeneous cartilage tissues with core regions devoid of matrix. Previous attempts at developing dynamic culture systems to overcome these limitations have reported suppression of mesenchymal stem cell chondrogenesis compared to static conditions. We hypothesize that by modulating oxygen availability during bioreactor culture, it is possible to engineer cartilage tissues of scale. The objective of this study was to determine whether dynamic bioreactor culture, at defined oxygen conditions, could facilitate the development of large, spatially homogeneous cartilage tissues using mesenchymal stem cell laden hydrogels. A dynamic culture regime was directly compared to static conditions for its capacity to support chondrogenesis of mesenchymal stem cells in both small and large alginate hydrogels. The influence of external oxygen tension on the response to the dynamic culture conditions was explored by performing the experiment at 20% O2 and 3% O2. At 20% O2, dynamic culture significantly suppressed chondrogenesis in engineered tissues of all sizes. In contrast, at 3% O2 dynamic culture significantly enhanced the distribution and amount of cartilage matrix components (sulphated glycosaminoglycan and collagen II) in larger constructs compared to static conditions. Taken together, these results demonstrate that dynamic culture regimes that provide adequate nutrient availability and a low oxygen environment can be employed to engineer large homogeneous cartilage tissues. Such culture systems could facilitate the scaling up of cartilage tissue engineering strategies towards clinically relevant dimensions.
Collapse
Affiliation(s)
- Andrew C Daly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Binulal N Sathy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
Khurshid M, Mulet-Sierra A, Adesida A, Sen A. Osteoarthritic human chondrocytes proliferate in 3D co-culture with mesenchymal stem cells in suspension bioreactors. J Tissue Eng Regen Med 2017; 12:e1418-e1432. [PMID: 28752579 DOI: 10.1002/term.2531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a painful disease, characterized by progressive surface erosion of articular cartilage. The use of human articular chondrocytes (hACs) sourced from OA patients has been proposed as a potential therapy for cartilage repair, but this approach is limited by the lack of scalable methods to produce clinically relevant quantities of cartilage-generating cells. Previous studies in static culture have shown that hACs co-cultured with human mesenchymal stem cells (hMSCs) as 3D pellets can upregulate proliferation and generate neocartilage with enhanced functional matrix formation relative to that produced from either cell type alone. However, because static culture flasks are not readily amenable to scale up, scalable suspension bioreactors were investigated to determine if they could support the co-culture of hMSCs and OA hACs under serum-free conditions to facilitate clinical translation of this approach. When hACs and hMSCs (1:3 ratio) were inoculated at 20,000 cells/ml into 125-ml suspension bioreactors and fed weekly, they spontaneously formed 3D aggregates and proliferated, resulting in a 4.75-fold increase over 16 days. Whereas the apparent growth rate was lower than that achieved during co-culture as a 2D monolayer in static culture flasks, bioreactor co-culture as 3D aggregates resulted in a significantly lower collagen I to II mRNA expression ratio and more than double the glycosaminoglycan/DNA content (5.8 vs. 2.5 μg/μg). The proliferation of hMSCs and hACs as 3D aggregates in serum-free suspension culture demonstrates that scalable bioreactors represent an accessible platform capable of supporting the generation of clinical quantities of cells for use in cell-based cartilage repair.
Collapse
Affiliation(s)
- Madiha Khurshid
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Adetola Adesida
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
39
|
A novel bioreactor system for biaxial mechanical loading enhances the properties of tissue-engineered human cartilage. Sci Rep 2017; 7:16997. [PMID: 29208903 PMCID: PMC5717235 DOI: 10.1038/s41598-017-16523-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/13/2017] [Indexed: 11/15/2022] Open
Abstract
The ex vivo engineering of autologous cartilage tissues has the potential to revolutionize the clinical management of joint disorders. Yet, high manufacturing costs and variable outcomes associated with tissue-engineered implants are still limiting their application. To improve clinical outcomes and facilitate a wider use of engineered tissues, automated bioreactor systems capable of enhancing and monitoring neotissues are required. Here, we developed an innovative system capable of applying precise uni- or biaxial mechanical stimulation to developing cartilage neotissues in a tightly controlled and automated fashion. The bioreactor allows for simple control over the loading parameters with a user-friendly graphical interface and is equipped with a load cell for monitoring tissue maturation. Applying our bioreactor, we demonstrate that human articular chondrocytes encapsulated in hydrogels composed of gelatin methacryloyl (GelMA) and hyaluronic acid methacrylate (HAMA) respond to uni- and biaxial mechanical stimulation by upregulation of hyaline cartilage-specific marker genes. We further demonstrate that intermittent biaxial mechanostimulation enhances accumulation of hyaline cartilage-specific extracellular matrix. Our study underlines the stimulatory effects of mechanical loading on the biosynthetic activity of human chondrocytes in engineered constructs and the need for easy-to-use, automated bioreactor systems in cartilage tissue engineering.
Collapse
|
40
|
Yang SW, Ku KC, Chen SY, Kuo SM, Chen IF, Wang TY, Chang SJ. Development of chondrocyte-seeded electrosprayed nanoparticles for repair of articular cartilage defects in rabbits. J Biomater Appl 2017; 32:800-812. [DOI: 10.1177/0885328217740729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to limited self-healing capacity in cartilages, there is a rising demand for an innovative therapy that promotes chondrocyte proliferation while maintaining its biofunctionality for transplantation. Chondrocyte transplantation has received notable attention; however, the tendencies of cell de-differentiation and de-activation of biofunctionality have been major hurdles in its development, delaying this therapy from reaching the clinic. We believe it is due to the non-stimulative environment in the injured cartilage, which is unable to provide sustainable physical and biological supports to the newly grafted chondrocytes. Therefore, we evaluated whether providing an appropriate matrix to the transplanted chondrocytes could manipulate cell fate and recovery outcomes. Here, we proposed the development of electrosprayed nanoparticles composed of cartilage specific proteins, namely collagen type II and hyaluronic acid, for implantation with pre-seeded chondrocytes into articular cartilage defects. The fabricated nanoparticles were pre-cultured with chondrocytes before implantation into injured articular cartilage. The study revealed a significant potential for nanoparticles to support pre-seeded chondrocytes in cartilage repair, serving as a protein delivery system while improving the survival and biofunctionality of transplanted chondrocytes for prolonged period of time.
Collapse
Affiliation(s)
- Shan-Wei Yang
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kai-Chi Ku
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Shu-Ying Chen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Shyh-Ming Kuo
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - I-Fen Chen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Ting-Yi Wang
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Shwu-Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
41
|
Princz S, Wenzel U, Tritschler H, Schwarz S, Dettmann C, Rotter N, Hessling M. Automated bioreactor system for cartilage tissue engineering of human primary nasal septal chondrocytes. ACTA ACUST UNITED AC 2017; 62:481-486. [PMID: 27701132 DOI: 10.1515/bmt-2015-0248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 08/19/2016] [Indexed: 11/15/2022]
Abstract
An automated bioreactor system for three-dimensional (3D) cultivation of facial cartilage replacement matrices (e.g. whole human auricles) with automatised medium exchange, gas flow and temperature control was developed. The measurement of O2 saturation and pH value in the medium was performed with a non-invasive optical method. The whole system can be observed via remote monitoring worldwide. First results demonstrated that the complete system remained sterile throughout a period of 42 days. Human chondrocytes migrated into the employed cartilage replacement matrix consisting of decellularised porcine nasoseptal cartilage (pNSC). Furthermore, an improved migration and new synthesis of aggrecan was detected. A first evaluation of the system was conducted by comparison of the results from laboratory analysis with computational fluid dynamics (CFD).
Collapse
|
42
|
Choi JR, Yong KW, Choi JY. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering. J Cell Physiol 2017; 233:1913-1928. [PMID: 28542924 DOI: 10.1002/jcp.26018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022]
Abstract
Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.,UBC Engineering Lab, University of British Columbia, Vancouver, Canada
| | - Kar Wey Yong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.,Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Canada
| | - Jean Yu Choi
- Faculty of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
43
|
Completo A, Bandeiras C, Fonseca F. Comparative assessment of intrinsic mechanical stimuli on knee cartilage and compressed agarose constructs. Med Eng Phys 2017; 44:87-93. [PMID: 28318948 DOI: 10.1016/j.medengphy.2017.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 11/28/2022]
Abstract
A well-established cue for improving the properties of tissue-engineered cartilage is mechanical stimulation. However, the explicit ranges of mechanical stimuli that correspond to favorable metabolic outcomes are elusive. Usually, these outcomes have only been associated with the applied strain and frequency, an oversimplification that can hide the fundamental relationship between the intrinsic mechanical stimuli and the metabolic outcomes. This highlights two important key issues: the firstly is related to the evaluation of the intrinsic mechanical stimuli of native cartilage; the second, assuming that the intrinsic mechanical stimuli will be important, deals with the ability to replicate them on the tissue-engineered constructs. This study quantifies and compares the volume of cartilage and agarose subjected to a given magnitude range of each intrinsic mechanical stimulus, through a numerical simulation of a patient-specific knee model coupled with experimental data of contact during the stance phase of gait, and agarose constructs under direct-dynamic compression. The results suggest that direct compression loading needs to be parameterized with time-dependence during the initial culture period in order to better reproduce each one of the intrinsic mechanical stimuli developed in the patient-specific cartilage. A loading regime which combines time periods of low compressive strain (5%) and frequency (0.5Hz), in order to approach the maximal principal strain and fluid velocity stimulus of the patient-specific cartilage, with time periods of high compressive strain (20%) and frequency (3Hz), in order to approach the pore pressure values, may be advantageous relatively to a single loading regime throughout the full culture period.
Collapse
Affiliation(s)
- A Completo
- Mechanical Engineering Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal .
| | - C Bandeiras
- Mechanical Engineering Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - F Fonseca
- Coimbra Hospital and University Centre, Av. Bissaya Barreto, 3000-075 Coimbra, Portugal
| |
Collapse
|
44
|
Ultrasound palpation for fast in-situ quantification of articular cartilage stiffness, thickness and relaxation capacity. Biomech Model Mechanobiol 2017; 16:1171-1185. [PMID: 28210824 DOI: 10.1007/s10237-017-0880-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
Most current cartilage testing devices require the preparation of excised samples and therefore do not allow intra-operative application for diagnostic purposes. The gold standard during open or arthroscopic surgery is still the subjective perception of manual palpation. This work presents a new diagnostic method of ultrasound palpation (USP) to acquire applied stress and strain data during manual palpation of articular cartilage. With the proposed method, we obtain cartilage thickness and stiffness. Moreover, repeated palpations allow the quantification of relaxation effects. USP measurements on elastomer phantoms demonstrated very good repeatability for both, stage-guided (97.2%) and handheld (96.0%) applications. The USP measurements were compared with conventional indentation experiments and revealed very good agreement on elastomer phantoms ([Formula: see text]) and good agreement on porcine cartilage samples ([Formula: see text]). Artificially degenerated cartilage samples showed reduced stiffness, weak capacity to relax after palpation and an increase of stiffness of approximately 50% with each single palpation. Intact cartilage was measured by USP directly at the patella (in situ) and after excision and removal of the subchondral bone (ex situ), leading to stiffness values of [Formula: see text] and [Formula: see text] ([Formula: see text]), respectively. The results demonstrate the potential of the USP system for cartilage testing, its sensitivity to degenerative changes and as a method for quantifying relaxation processes by means of repeated palpations. Furthermore, the differences in the results of in-situ and ex-situ measurements are of general interest, since such comparison has not been reported previously. We point out the limited comparability of ex-situ cartilage with its in-situ biomechanical behavior.
Collapse
|
45
|
Kim DK, In Kim J, Sim BR, Khang G. Bioengineered porous composite curcumin/silk scaffolds for cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:571-578. [PMID: 28576023 DOI: 10.1016/j.msec.2017.02.067] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/12/2016] [Accepted: 02/14/2017] [Indexed: 01/03/2023]
Abstract
Articular cartilage repair is a challenge due to its limited self-repair capacity. Cartilage tissue engineering supports to overcome following injuries or degenerative diseases. Herein, we fabricated the scaffold composed of curcumin and silk fibroin as an appropriate clinical replacement for defected cartilage. The scaffolds were designed to have adequate pore size and mechanical strength for cartilage repair. Cell proliferation, sulfated glycosaminoglycan (sGAG) content and mRNA expression analysis indicated that chondrocytes remained viable and showed its growth ability in the curcumin/silk scaffolds. Especially, in 1mg/ml curcumin/silk scaffold showed higher cell viability rate and extracellular matrix formation than other experimental groups. Furthermore, curcumin/silk scaffold showed its biocompatibility and favorable environment for cartilage repair after transplantation in vivo, as indicated in histological examination results. Overall, the functional composite curcumin/silk scaffold can be applied in cartilage tissue engineering and promising substrate for cartilage repair.
Collapse
Affiliation(s)
- Do Kyung Kim
- Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Jeong In Kim
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Bo Ra Sim
- Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Gilson Khang
- Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
46
|
Han X, Zhuang Y, Zhang Z, Guo L, Wang W. Regulatory Mechanisms of the Ihh/PTHrP Signaling Pathway in Fibrochondrocytes in Entheses of Pig Achilles Tendon. Stem Cells Int 2016; 2016:8235172. [PMID: 27994624 PMCID: PMC5138489 DOI: 10.1155/2016/8235172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/15/2016] [Indexed: 11/28/2022] Open
Abstract
This study is aimed at exploring the effect of stress stimulation on the proliferation and differentiation of fibrochondrocytes in entheses mediated via the Indian hedgehog (Ihh)/parathyroid hormone-related protein (PTHrP) signaling pathway. Differential stress stimulation on fibrochondrocytes in entheses was imposed. Gene expression and protein levels of signaling molecules including collagen type I (Col I), Col II, Col X, Ihh, and PTHrP in the cytoplasm of fibrochondrocytes were detected. Ihh signal blocking group was set up using Ihh signaling pathway-specific blocking agent cyclopamine. PTHrP enhancement group was set up using PTHrP reagent. Ihh/PTHrP double intervention group, as well as control group, was included to study the regulatory mechanisms of the Ihh/PTHrP signaling pathway in fibrochondrocytes. Under low cyclic stress tensile (CTS), PTHrP, Col I, and Col II gene expression and protein synthesis increased. Under high CTS, Ihh and Col X gene expression and protein synthesis increased. Blocking Ihh signaling with cyclopamine resulted in reduced PTHrP gene expression and protein synthesis and increased Col X gene expression and protein synthesis. Ihh and PTHrP coregulate fibrochondrocyte proliferation and differentiation in entheses through negative feedback regulation. Fibrochondrocyte is affected by the CTS. This phenomenon is regulated by stress stimulation through the Ihh/PTHrP signaling pathway.
Collapse
Affiliation(s)
- Xuesong Han
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| | - Yanfeng Zhuang
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| | - Zhihong Zhang
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| | - Lin Guo
- Center of Joint Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Wanming Wang
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| |
Collapse
|
47
|
Zhang C, Qiu L, Gao L, Guan Y, Xu Q, Zhang X, Chen Q. A novel dual-frequency loading system for studying mechanobiology of load-bearing tissue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:262-7. [PMID: 27612712 DOI: 10.1016/j.msec.2016.06.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/30/2016] [Accepted: 06/25/2016] [Indexed: 01/04/2023]
Abstract
In mechanobiological research, an appropriate loading system is an essential tool to mimic mechanical signals in a native environment. To achieve this goal, we have developed a novel loading system capable of applying dual-frequency loading including both a low-frequency high-amplitude loading and a high-frequency low-amplitude loading, according to the mechanical conditions experienced by bone and articular cartilage tissues. The low-frequency high-amplitude loading embodies the main force from muscular contractions and/or reaction forces while the high-frequency low-amplitude loading represents an assistant force from small muscles, ligaments and/or other tissue in order to maintain body posture during human activities. Therefore, such dual frequency loading system may reflect the natural characteristics of complex mechanical load on bone or articular cartilage than the single frequency loading often applied during current mechanobiological experiments. The dual-frequency loading system is validated by experimental tests using precision miniature plane-mirror interferometers. The dual-frequency loading results in significantly more solute transport in articular cartilage than that of the low-frequency high-amplitude loading regiment alone, as determined by quantitative fluorescence microscopy of tracer distribution in articular cartilage. Thus, the loading system can provide a new method to mimic mechanical environment in bone and cartilage, thereby revealing the in vivo mechanisms of mechanosensation, mechanotransduction and mass-transport, and improving mechanical conditioning of cartilage and/or bone constructs for tissue engineering.
Collapse
Affiliation(s)
- Chunqiu Zhang
- Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin 300384, China; Cell and Molecular Biology Laboratory, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA.
| | - Lulu Qiu
- Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin 300384, China
| | - Lilan Gao
- Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin 300384, China
| | - Yinjie Guan
- Cell and Molecular Biology Laboratory, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| | - Qiang Xu
- Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin 300384, China
| | - Xizheng Zhang
- Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin 300384, China
| | - Qian Chen
- Cell and Molecular Biology Laboratory, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA.
| |
Collapse
|
48
|
Hoch E, Tovar GEM, Borchers K. Biopolymer-based hydrogels for cartilage tissue engineering. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2016. [DOI: 10.1680/jbibn.15.00017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Luciani N, Du V, Gazeau F, Richert A, Letourneur D, Le Visage C, Wilhelm C. Successful chondrogenesis within scaffolds, using magnetic stem cell confinement and bioreactor maturation. Acta Biomater 2016; 37:101-10. [PMID: 27063490 DOI: 10.1016/j.actbio.2016.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 01/24/2023]
Abstract
UNLABELLED Tissue engineering strategies, such as cellularized scaffolds approaches, have been explored for cartilage replacement. The challenge, however, remains to produce a cartilaginous tissue incorporating functional chondrocytes and being large and thick enough to be compatible with the replacement of articular defects. Here, we achieved unprecedented cartilage tissue production into a porous polysaccharide scaffold by combining of efficient magnetic condensation of mesenchymal stem cells, and dynamic maturation in a bioreactor. In optimal conditions, all the hallmarks of chondrogenesis were enhanced with a 50-fold increase in collagen II expression compared to negative control, an overexpression of aggrecan and collagen XI, and a very low expression of collagen I and RUNX2. Histological staining showed a large number of cellular aggregates, as well as an increased proteoglycan synthesis by chondrocytes. Interestingly, electron microscopy showed larger chondrocytes and a more abundant extracellular matrix. In addition, the periodicity of the neosynthesized collagen fibers matched that of collagen II. These results represent a major step forward in replacement tissue for cartilage defects. STATEMENT OF SIGNIFICANCE A combination of several innovative technologies (magnetic cell seeding, polysaccharide porous scaffolds, and dynamic maturation in bioreactor) enabled unprecedented successful chondrogenesis within scaffolds.
Collapse
Affiliation(s)
- Nathalie Luciani
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS & University Paris Diderot, Paris F-75205 Cedex 13, France.
| | - Vicard Du
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS & University Paris Diderot, Paris F-75205 Cedex 13, France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS & University Paris Diderot, Paris F-75205 Cedex 13, France
| | - Alain Richert
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS & University Paris Diderot, Paris F-75205 Cedex 13, France
| | - Didier Letourneur
- Laboratoire de recherche vasculaire translationnelle, INSERM UMR 1148 & University Paris Diderot, Paris, France
| | | | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS & University Paris Diderot, Paris F-75205 Cedex 13, France
| |
Collapse
|
50
|
Bernhard JC, Vunjak-Novakovic G. Should we use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther 2016; 7:56. [PMID: 27089917 PMCID: PMC4836146 DOI: 10.1186/s13287-016-0314-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
For a long time, cartilage has been a major focus of the whole field of tissue engineering, both because of the constantly growing need for more effective options for joint repair and the expectation that this apparently simple tissue will be easy to engineer. After several decades, cartilage regeneration has proven to be anything but easy. With gratifying progress in our understanding of the factors governing cartilage development and function, and cell therapy being successfully used for several decades, there is still a lot to do. We lack reliable methods to generate durable articular cartilage that would resemble the original tissue lost to injury or disease. The question posed here is whether the answer would come from the methods using cells, biomaterials, or tissue engineering. We present a concise review of some of the most meritorious efforts in each area, and propose that the solution will most likely emerge from the ongoing attempts to recapitulate certain aspects of native cartilage development. While an ideal recipe for cartilage regeneration is yet to be formulated, we believe that it will contain cell, biomaterial, and tissue engineering approaches, blended into an effective method for seamless repair of articular cartilage.
Collapse
Affiliation(s)
- Jonathan C Bernhard
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY, 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY, 10032, USA. .,Department of Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY, 10032, USA.
| |
Collapse
|