1
|
Din MAU, Wan A, Chu Y, Zhou J, Yan Y, Xu Z. Therapeutic role of extracellular vesicles from human umbilical cord mesenchymal stem cells and their wide therapeutic implications in inflammatory bowel disease and other inflammatory disorder. Front Med (Lausanne) 2024; 11:1406547. [PMID: 39139783 PMCID: PMC11319305 DOI: 10.3389/fmed.2024.1406547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
The chronic immune-mediated inflammatory condition known as inflammatory bowel disease (IBD) significantly affects the gastrointestinal system. While the precise etiology of IBD remains elusive, extensive research suggests that a range of pathophysiological pathways and immunopathological mechanisms may significantly contribute as potential factors. Mesenchymal stem cells (MSCs) have shown significant potential in the development of novel therapeutic approaches for various medical conditions. However, some MSCs have been found to exhibit tumorigenic characteristics, which limit their potential for medical treatments. The extracellular vesicles (EVs), paracrine factors play a crucial role in the therapeutic benefits conferred by MSCs. The EVs consist of proteins, microRNAs, and lipids, and are instrumental in facilitating intercellular communication. Due to the ease of maintenance, and decreased immunogenicity, tumorigenicity the EVs have become a new and exciting option for whole cell treatment. This review comprehensively assesses recent preclinical research on human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs as a potential IBD therapy. It comprehensively addresses key aspects of various conditions, including diabetes, cancer, dermal injuries, neurological disorders, cardiovascular issues, liver and kidney diseases, and bone-related afflictions.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, China
| | | | - Ying Chu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Zhiliang Xu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| |
Collapse
|
2
|
Chamakioti M, Chrousos GP, Kassi E, Vlachakis D, Yapijakis C. Stress-Related Roles of Exosomes and Exosomal miRNAs in Common Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:8256. [PMID: 39125827 PMCID: PMC11311345 DOI: 10.3390/ijms25158256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Exosomes, natural nanovesicles that contain a cargo of biologically active molecules such as lipids, proteins, and nucleic acids, are released from cells to the extracellular environment. They then act as autocrine, paracrine, or endocrine mediators of communication between cells by delivering their cargo into recipient cells and causing downstream effects. Exosomes are greatly enriched in miRNAs, which are small non-coding RNAs that act both as cytoplasmic post-transcriptional repression agents, modulating the translation of mRNAs into proteins, as well as nuclear transcriptional gene activators. Neuronal exosomal miRNAs have important physiologic functions in the central nervous system (CNS), including cell-to-cell communication, synaptic plasticity, and neurogenesis, as well as modulating stress and inflammatory responses. Stress-induced changes in exosomal functions include effects on neurogenesis and neuroinflammation, which can lead to the appearance of various neuropsychiatric disorders such as schizophrenia, major depression, bipolar disorder, and Alzheimer's and Huntington's diseases. The current knowledge regarding the roles of exosomes in the pathophysiology of common mental disorders is discussed in this review.
Collapse
Affiliation(s)
- Myrsini Chamakioti
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - Eva Kassi
- 1st Department of Internal Medicine, School of Medicine, National Kapodistrian University of Athens, Laikon Hospital, 115 27 Athens, Greece;
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece;
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| |
Collapse
|
3
|
Cheng FC, Wang LH, Lai YJ, Chiang CP. The utility of microbiome (microbiota) and exosomes in dentistry. J Dent Sci 2024; 19:1313-1319. [PMID: 39035305 PMCID: PMC11259687 DOI: 10.1016/j.jds.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Indexed: 07/23/2024] Open
Abstract
The concept of the oral-systemic link is important in both basic and clinical dentistry. The microbiome (microbiota) and exosomes are two prevalent issues in the modern medical researches. The common advent of oral and general microbiological investigation originated from the initial observations of oral bacteria within the dental plaque known as oral microbiome. In addition to oral diseases related to oral microbiome, the disruption of the oral and intestinal microbiome could result in the onset of systemic diseases. In the past decade, the exosomes have emerged in the field of the medical researches as they play a role in regulating the transport of intracellular vesicles. However, with the rapid advancement of exosomes researches in recent years, oral tissues (such as dental pulp stem cells and salivary gland cells) are used as the research materials to further promote the development of regenerative medicine. This article emphasized the importance of the concept of the oral-systemic link through the examples of microbiome (microbiota) and exosomes. Through the researches related to microbiome (microbiota) and exosomes, many evidences showed that as the basic dentistry developed directly from the assistance of the basic medicine, indirectly the progress of the basic dentistry turns back to promote the development of the basic medicine, indicating the importance of the concept of the oral-systemic link. The understanding of the oral-systemic link is essential for both clinicians and medical researchers, regardless of their dental backgrounds.
Collapse
Affiliation(s)
- Feng-Chou Cheng
- Chia-Te Dental Clinic, New Taipei City, Taiwan
- School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
- Science Education Center, National Taiwan Normal University, Taipei, Taiwan
| | - Ling-Hsia Wang
- Center for the Literature and Art, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Yun-Ju Lai
- School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chun-Pin Chiang
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
4
|
Xu K, Fu A, Li Z, Miao L, Lou Z, Jiang K, Lau C, Su T, Tong T, Bao J, Lyu A, Kwan HY. Elevated extracellular matrix protein 1 in circulating extracellular vesicles supports breast cancer progression under obesity conditions. Nat Commun 2024; 15:1685. [PMID: 38402239 PMCID: PMC10894219 DOI: 10.1038/s41467-024-45995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
The cargo content in small extracellular vesicles (sEVs) changes under pathological conditions. Our data shows that in obesity, extracellular matrix protein 1 (ECM1) protein levels are significantly increased in circulating sEVs, which is dependent on integrin-β2. Knockdown of integrin-β2 does not affect cellular ECM1 protein levels but significantly reduces ECM1 protein levels in the sEVs released by these cells. In breast cancer (BC), overexpressing ECM1 increases matrix metalloproteinase 3 (MMP3) and S100A/B protein levels. Interestingly, sEVs purified from high-fat diet-induced obesity mice (D-sEVs) deliver more ECM1 protein to BC cells compared to sEVs from control diet-fed mice. Consequently, BC cells secrete more ECM1 protein, which promotes cancer cell invasion and migration. D-sEVs treatment also significantly enhances ECM1-mediated BC metastasis and growth in mouse models, as evidenced by the elevated tumor levels of MMP3 and S100A/B. Our study reveals a mechanism and suggests sEV-based strategies for treating obesity-associated BC.
Collapse
Affiliation(s)
- Keyang Xu
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ai Fu
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaoyi Li
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liangbin Miao
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhonghan Lou
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keying Jiang
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tiejun Tong
- Department of Mathematics, Hong Kong Baptist University, Hong Kong, China
| | - Jianfeng Bao
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Aiping Lyu
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Systems Medicine and Health Sciences, Hong Kong Baptist University, Hong Kong, China.
| | - Hiu Yee Kwan
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Systems Medicine and Health Sciences, Hong Kong Baptist University, Hong Kong, China.
- Institute of Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
5
|
Han W, Zhang H, Feng L, Dang R, Wang J, Cui C, Jiang P. The emerging role of exosomes in communication between the periphery and the central nervous system. MedComm (Beijing) 2023; 4:e410. [PMID: 37916034 PMCID: PMC10616655 DOI: 10.1002/mco2.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
Exosomes, membrane-enclosed vesicles, are secreted by all types of cells. Exosomes can transport various molecules, including proteins, lipids, functional mRNAs, and microRNAs, and can be circulated to various recipient cells, leading to the production of local paracrine or distal systemic effects. Numerous studies have proved that exosomes can pass through the blood-brain barrier, thus, enabling the transfer of peripheral substances into the central nervous system (CNS). Consequently, exosomes may be a vital factor in the exchange of information between the periphery and CNS. This review will discuss the structure, biogenesis, and functional characterization of exosomes and summarize the role of peripheral exosomes deriving from tissues like the lung, gut, skeletal muscle, and various stem cell types in communicating with the CNS and influencing the brain's function. Then, we further discuss the potential therapeutic effects of exosomes in brain diseases and the clinical opportunities and challenges. Gaining a clearer insight into the communication between the CNS and the external areas of the body will help us to ascertain the role of the peripheral elements in the maintenance of brain health and illness and will facilitate the design of minimally invasive techniques for diagnosing and treating brain diseases.
Collapse
Affiliation(s)
- Wenxiu Han
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Hailiang Zhang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Lei Feng
- Department of NeurosurgeryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
| | - Ruili Dang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Jing Wang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Changmeng Cui
- Department of NeurosurgeryAffiliated Hospital of Jining Medical UniversityJiningP. R. China
| | - Pei Jiang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| |
Collapse
|
6
|
András IE, Serrano N, Djuraskovic I, Fattakhov N, Sun E, Toborek M. Extracellular Vesicle-Serpine-1 Affects Neural Progenitor Cell Mitochondrial Networks and Synaptic Density: Modulation by Amyloid Beta and HIV-1. Mol Neurobiol 2023; 60:6441-6465. [PMID: 37458985 PMCID: PMC10533645 DOI: 10.1007/s12035-023-03456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/17/2023] [Indexed: 07/28/2023]
Abstract
Brain endothelial extracellular vesicles carrying amyloid beta (EV-Aβ) can be transferred to neural progenitor cells (NPCs) leading to NPC dysfunction. However, the events involved in this EV-mediated Aβ pathology are unclear. EV-proteomics studies identified Serpine-1 (plasminogen activator inhibitor 1, PAI-1) as a major connecting "hub" on several protein-protein interaction maps. Serpine-1 was described as a key player in Aβ pathology and was linked to HIV-1 infection as well. Therefore, the aim of this work was to address the hypothesis that Serpine-1 can be transferred via EVs from brain endothelial cells (HBMEC) to NPCs and contribute to NPC dysfunction. HBMEC concentrated and released Serpine-1 via EVs, the effect that was potentiated by HIV-1 and Aβ. EVs loaded with Serpine-1 were readily taken up by NPCs, and HIV-1 enhanced this event. Interestingly, a highly specific Serpine-1 inhibitor PAI039 increased EV-Aβ transfer to NPCs in the presence of HIV-1. PAI039 also partially blocked mitochondrial network morphology alterations in the recipient NPCs, which developed mainly after HIV + Aβ-EV transfer. PAI039 partly attenuated HIV-EV-mediated decreased synaptic protein levels in NPCs, while increased synaptic protein levels in NPC projections. These findings contribute to a better understanding of the complex mechanisms underlying EV-Serpine-1 related Aβ pathology in the context of HIV infection. They are relevant to HIV-1 associated neurocognitive disorders (HAND) in an effort to elucidate the mechanisms of neuropathology in HIV infection.
Collapse
Affiliation(s)
- Ibolya E. András
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Nelson Serrano
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Irina Djuraskovic
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Enze Sun
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| |
Collapse
|
7
|
Bhatnagar D, Ladhe S, Kumar D. Discerning the Prospects of miRNAs as a Multi-Target Therapeutic and Diagnostic for Alzheimer's Disease. Mol Neurobiol 2023; 60:5954-5974. [PMID: 37386272 DOI: 10.1007/s12035-023-03446-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Although over the last few decades, numerous attempts have been made to halt Alzheimer's disease (AD) progression and mitigate its symptoms, only a few have been proven beneficial. Most medications available, still only cater to the symptoms of the disease rather than fixing the cause at the root level. A novel approach involving the use of miRNAs, which work on the principle of gene silencing, is being explored by scientists. Naturally present miRNAs in the biological system help to regulate various genes than may be implicated in AD-like BACE-1 and APP. One miRNA thus, holds the power to keep a check on several genes, conferring it the ability to be used as a multi-target therapeutic. With aging and the onset of diseased pathology, dysregulation of these miRNAs is observed. This flawed miRNA expression is responsible for the unusual buildup of amyloid proteins, fibrillation of tau proteins in the brain, neuronal death and other hallmarks leading to AD. The use of miRNA mimics and miRNA inhibitors provides an attractive perspective for fixing the upregulation and downregulation of miRNAs that led to abnormal cellular activities. Furthermore, the detection of miRNAs in the CSF and serum of diseased patients might be considered an earlier biomarker for the disease. While most of the therapies designed around AD have not succeeded completely, the targeting of dysregulated miRNAs in AD patients might give a new direction to scholars to develop an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Devyani Bhatnagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Shreya Ladhe
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India.
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Kalia V, Baccarelli AA, Happel C, Hollander JA, Jukic AM, McAllister KA, Menon R, Merrick BA, Milosavljevic A, Ravichandran LV, Roth ME, Subramanian A, Tyson FL, Worth L, Shaughnessy DT. Seminar: Extracellular Vesicles as Mediators of Environmental Stress in Human Disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:104201. [PMID: 37861803 PMCID: PMC10588739 DOI: 10.1289/ehp12980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs), membrane-bound particles containing a variety of RNA types, DNA, proteins, and other macromolecules, are now appreciated as an important means of communication between cells and tissues, both in normal cellular physiology and as a potential indicator of cellular stress, environmental exposures, and early disease pathogenesis. Extracellular signaling through EVs is a growing field of research for understanding fundamental mechanisms of health and disease and for the potential for biomarker discovery and therapy development. EVs are also known to play important roles in mediating the effects of exposure to environmental stress. OBJECTIVES This seminar addresses the application of new tools and approaches for EV research, developed in part through the National Institutes of Health (NIH) Extracellular RNA Communication Program, and reflects presentations and discussions from a workshop held 27-28 September 2021 by the National Institute of Environmental Health Sciences (NIEHS) and the National Center for Advancing Translational Sciences (NCATS) on "Extracellular Vesicles, Exosomes, and Cell-Cell Signaling in Response to Environmental Stress." The panel of experts discussed current research on EVs and environmental exposures, highlighted recent advances in EV isolation and characterization, and considered research gaps and opportunities toward identifying and characterizing the roles for EVs in environmentally related diseases, as well as the current challenges and opportunities in this field. DISCUSSION The authors discuss the application of new experimental models, particularly organ-on-chip (OOC) systems and in vitro approaches and how these have the potential to extend findings in population-based studies of EVs in exposure-related diseases. Given the complex challenges of identifying cell-specific EVs related to environmental exposures, as well as the general heterogeneity and variability in EVs in blood and other accessible biological samples, there is a critical need for rigorous reporting of experimental methods and validation studies. The authors note that these efforts, combined with cross-disciplinary approaches, would ensure that future research efforts in environmental health studies on EV biomarkers are rigorous and reproducible. https://doi.org/10.1289/EHP12980.
Collapse
Affiliation(s)
- Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Christine Happel
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), U.S. Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Jonathan A. Hollander
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Anne Marie Jukic
- Division of Intramural Research, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Kimberly A. McAllister
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Bruce A. Merrick
- Division of Translational Toxicology, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | | | - Lingamanaidu V. Ravichandran
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Matthew E. Roth
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Anita Subramanian
- Division of Intramural Research, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Frederick L. Tyson
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Leroy Worth
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Daniel T. Shaughnessy
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| |
Collapse
|
9
|
Lee KS, Park JY, Jeong YJ, Lee MS. The Fatal Role of Enterohaemorrhagic Escherichia coli Shiga Toxin-associated Extracellular Vesicles in Host Cells. J Microbiol 2023; 61:715-727. [PMID: 37665555 DOI: 10.1007/s12275-023-00066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a specific subset of Shiga toxin-producing Escherichia coli (STEC) strains that are characterized by their ability to cause bloody diarrhea (hemorrhagic colitis) and potentially life-threatening, extraintestinal complications such as hemolytic uremic syndrome (HUS), which is associated with acute renal failure., contributing to severe clinical outcomes. The Shiga toxins (Stxs), produced by EHEC, are primary virulence factors. These potent cytotoxins are composed of one enzymatically active A subunit (StxA) and five receptor-binding B subunits (StxB). Although the toxins are primarily associated with cytotoxic effects, they also elicit other pathogenic consequences due to their induction of a number of biological processes, including apoptosis through ER-stress, pro-inflammatory responses, autophagy, and post-translational modification (PTM). Moreover, several studies have reported the association between Stxs and extracellular vesicles (EVs), including microvesicles and exosomes, demonstrating that Stx-containing EVs secreted by intoxicated macrophages are taken up by recipient cells, such as toxin-sensitive renal proximal tubular epithelial cells. This mechanism likely contributes to the spreading of Stxs within the host, and may exacerbate gastrointestinal illnesses and kidney dysfunction. In this review, we summarize recent findings relating to the host responses, in different types of cells in vitro and in animal models, mediated by Stxs-containing exosomes. Due to their unique properties, EVs have been explored as therapeutic agents, drug delivery systems, and diagnostic tools. Thus, potential therapeutic applications of EVs in EHEC Stxs-mediated pathogenesis are also briefly reviewed.
Collapse
Affiliation(s)
- Kyung-Soo Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jun-Young Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Yu-Jin Jeong
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
10
|
Soloveva N, Novikova S, Farafonova T, Tikhonova O, Zgoda V. Proteomic Signature of Extracellular Vesicles Associated with Colorectal Cancer. Molecules 2023; 28:molecules28104227. [PMID: 37241967 DOI: 10.3390/molecules28104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The proteins of extracellular vesicles (EVs) provide proteomic signatures that reflect molecular features of EV-producing cells, including cancer cells. Detection of cancer cell EV proteins is of great interest due to the development of novel predictive diagnostic approaches. Using targeted mass spectrometry with stable-isotope-labeled peptide standards (SIS), we measured in this study the levels of 34 EV-associated proteins in vesicles and whole lysate derived from the colorectal cancer (CRC) cell lines Caco-2, HT29 and HCT116. We also evaluated the abundance of 13 EV-associated proteins (FN1, TLN1, ITGB3, HSPA8, TUBA4A, CD9, CD63, HSPG2, ITGB1, GNAI2, TSG101, PACSIN2, and CDC42) in EVs isolated from blood plasma samples from 11 CRC patients and 20 healthy volunteers. Downregulation of TLN1, ITGB3, and TUBA4A with simultaneous upregulation of HSPG2 protein were observed in cancer samples compared to healthy controls. The proteomic cargo of the EVs associated with CRC represents a promising source of potential prognostic markers.
Collapse
Affiliation(s)
- Natalia Soloveva
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Svetlana Novikova
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Tatiana Farafonova
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Olga Tikhonova
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Victor Zgoda
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| |
Collapse
|
11
|
András IE, Serrano N, Djuraskovic I, Fattakhov N, Sun E, Toborek M. Extracellular vesicle-Serpine-1 affects neural progenitor cell mitochondrial functions and synaptic density: modulation by amyloid beta and HIV-1. RESEARCH SQUARE 2023:rs.3.rs-2551245. [PMID: 36824983 PMCID: PMC9949237 DOI: 10.21203/rs.3.rs-2551245/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Brain endothelial extracellular vesicles carrying amyloid beta (EV-Aβ) can be transferred to neural progenitor cells (NPCs) leading to NPC dysfunction. However, the events involved in this EV-mediated Aβ pathology are unclear. EV-proteomics studies identified Serpine-1 (plasminogen activator inhibitor 1, PAI-1) as a major connecting "hub" on several protein-protein interaction maps. Serpine-1 was described as a key player in Aβ pathology and was linked to HIV-1 infection as well. Therefore, the aim of this work was to address the hypothesis that Serpine-1 can be transferred via EVs from brain endothelial cells to NPCs and contribute to NPC dysfunction. HBMEC concentrated and released Serpine-1 via EVs, the effect that was potentiated by HIV-1 and Aβ. EVs loaded with Serpine-1 were readily taken up by NPCs, and HIV-1 enhanced this event. Interestingly, a highly specific Serpine-1 inhibitor PAI039 increased EV-Aβ transfer to NPCs in the presence of HIV-1. PAI039 also partially blocked mitochondrial network morphology and mitochondrial function alterations in the recipient NPCs, which developed mainly after HIV + Aβ-EV transfer. PAI039 partly attenuated HIV-EV-mediated decreased synaptic protein levels in NPCs, while increased synaptic protein levels in NPC projections. These findings contribute to a better understanding of the complex mechanisms underlying EV-Serpine-1 related Aβ pathology in the context of HIV infection. They are relevant to HIV-1 associated neurocognitive disorders (HAND) in an effort to elucidate the mechanisms of neuropathology in HIV infection.
Collapse
Affiliation(s)
- Ibolya E András
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Nelson Serrano
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Irina Djuraskovic
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Nikolai Fattakhov
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Enze Sun
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Michal Toborek
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| |
Collapse
|
12
|
Rangel-Ramírez VV, González-Sánchez HM, Lucio-García C. Exosomes: from biology to immunotherapy in infectious diseases. Infect Dis (Lond) 2023; 55:79-107. [PMID: 36562253 DOI: 10.1080/23744235.2022.2149852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular vesicles derived from the endosomal compartment, which are released by all kinds of eukaryotic and prokaryotic organisms. These vesicles contain a variety of biomolecules that differ both in quantity and type depending on the origin and cellular state. Exosomes are internalized by recipient cells, delivering their content and thus contributing to cell-cell communication in health and disease. During infections exosomes may exert a dual role, on one hand, they can transmit pathogen-related molecules mediating further infection and damage, and on the other hand, they can protect the host by activating the immune response and reducing pathogen spread. Selective packaging of pathogenic components may mediate these effects. Recently, quantitative analysis of samples by omics technologies has allowed a deep characterization of the proteins, lipids, RNA, and metabolite cargoes of exosomes. Knowledge about the content of these vesicles may facilitate their therapeutic application. Furthermore, as exosomes have been detected in almost all biological fluids, pathogenic or host-derived components can be identified in liquid biopsies, making them suitable for diagnosis and prognosis. This review attempts to organize the recent findings on exosome composition and function during viral, bacterial, fungal, and protozoan infections, and their contribution to host defense or to pathogen spread. Moreover, we summarize the current perspectives and future directions regarding the potential application of exosomes for prophylactic and therapeutic purposes.
Collapse
Affiliation(s)
| | | | - César Lucio-García
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| |
Collapse
|
13
|
Noori L, Filip K, Nazmara Z, Mahakizadeh S, Hassanzadeh G, Caruso Bavisotto C, Bucchieri F, Marino Gammazza A, Cappello F, Wnuk M, Scalia F. Contribution of Extracellular Vesicles and Molecular Chaperones in Age-Related Neurodegenerative Disorders of the CNS. Int J Mol Sci 2023; 24:927. [PMID: 36674442 PMCID: PMC9861359 DOI: 10.3390/ijms24020927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Many neurodegenerative disorders are characterized by the abnormal aggregation of misfolded proteins that form amyloid deposits which possess prion-like behavior such as self-replication, intercellular transmission, and consequent induction of native forms of the same protein in surrounding cells. The distribution of the accumulated proteins and their correlated toxicity seem to be involved in the progression of nervous system degeneration. Molecular chaperones are known to maintain proteostasis, contribute to protein refolding to protect their function, and eliminate fatally misfolded proteins, prohibiting harmful effects. However, chaperone network efficiency declines during aging, prompting the onset and the development of neurological disorders. Extracellular vesicles (EVs) are tiny membranous structures produced by a wide range of cells under physiological and pathological conditions, suggesting their significant role in fundamental processes particularly in cellular communication. They modulate the behavior of nearby and distant cells through their biological cargo. In the pathological context, EVs transport disease-causing entities, including prions, α-syn, and tau, helping to spread damage to non-affected areas and accelerating the progression of neurodegeneration. However, EVs are considered effective for delivering therapeutic factors to the nervous system, since they are capable of crossing the blood-brain barrier (BBB) and are involved in the transportation of a variety of cellular entities. Here, we review the neurodegeneration process caused mainly by the inefficiency of chaperone systems as well as EV performance in neuropathies, their potential as diagnostic biomarkers and a promising EV-based therapeutic approach.
Collapse
Affiliation(s)
- Leila Noori
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Kamila Filip
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Zohreh Nazmara
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Simin Mahakizadeh
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj 3149779453, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
14
|
de Menezes EGM, Liu JS, Bowler SA, Giron LB, D’Antoni ML, Shikuma CM, Abdel-Mohsen M, Ndhlovu LC, Norris PJ. Circulating brain-derived extracellular vesicles expressing neuroinflammatory markers are associated with HIV-related neurocognitive impairment. Front Immunol 2022; 13:1033712. [PMID: 36601110 PMCID: PMC9806169 DOI: 10.3389/fimmu.2022.1033712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Background Neurocognitive impairment remains prevalent in people with HIV (PWH) despite long term virological suppression by antiretroviral therapy (ART) regimens. Systemic and neuro-inflammatory processes are suggested to contribute to the complex pathology leading to cognitive impairment in this population, yet the underlying mechanisms remain unresolved. Extracellular vesicles (EVs) play a central role in intracellular communication and have emerged as key modulators of immunological and inflammatory responses. In this report, we examined the impact of EVs in PWH experiencing cognitive deficits to determine their relevance in HIV associated neuropathology. Methods EV phenotypes were measured in plasma samples from 108 PWH with either cognitive impairment (CI, n=92) or normal cognition (NC, n=16) by flow cytometry. Matched cerebrospinal fluid (CSF)-derived EVs were similarly profiled from a subgroup of 84 individuals who underwent a lumbar puncture. Peripheral blood mononuclear cells were assayed by flow cytometry to measure monocyte frequencies in a subset of 32 individuals. Results Plasma-EVs expressing CD14, CD16, CD192, C195, and GFAP were significantly higher in HIV-infected individuals with cognitive impairment compared to individuals with normal cognition. Increased CSF-EVs expressing GFAP and CD200 were found in the cognitive impairment group compared to the normal cognition group. Frequencies of patrolling monocytes correlated with plasma-EVs expressing CD14, CD66b, MCSF, MAP2, and GFAP. Frequencies of CD195 expression on monocytes correlated positively with plasma-EVs expressing CD41a, CD62P, and CD63. Expression of CD163 on monocytes correlated positively with CSF-EVs expressing GFAP and CD200. Finally, the expression of CD192 on total monocytes correlated with CSF-EVs expressing CD200, CD62P, and CD63. Conclusions EVs expressing monocyte activation and neuronal markers associated with HIV associated cognitive impairment, suggesting that distinct EV subsets may serve as novel biomarkers of neuronal injury in HIV infection. Further circulating platelet EV levels were linked to monocyte activation indicating a potential novel interaction in the pathogenesis of HIV-related cognitive impairment.
Collapse
Affiliation(s)
- Erika G. Marques de Menezes
- Vitalant Research Institute, San Francisco, CA, United States,Department of Laboratory Medicine, University of California, San Francisco, CA, United States,*Correspondence: Erika G. Marques de Menezes,
| | - Jocelyn S. Liu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Scott A. Bowler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | | | - Michelle L. D’Antoni
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Cecilia M. Shikuma
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | | | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States,Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States,Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA, United States,Department of Laboratory Medicine, University of California, San Francisco, CA, United States,Department of Medicine, University of California, San Francisco, CA, United States
| |
Collapse
|
15
|
Natale F, Fusco S, Grassi C. Dual role of brain-derived extracellular vesicles in dementia-related neurodegenerative disorders: cargo of disease spreading signals and diagnostic-therapeutic molecules. Transl Neurodegener 2022; 11:50. [PMID: 36437458 PMCID: PMC9701396 DOI: 10.1186/s40035-022-00326-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022] Open
Abstract
Neurodegenerative disorders are one of the most common causes of disability and represent 6.3% of the global burden of disease. Among them, Alzheimer's, Parkinson's, and Huntington's diseases cause cognitive decline, representing the most disabling symptom on both personal and social levels. The molecular mechanisms underlying the onset and progression of dementia are still poorly understood, and include secretory factors potentially affecting differentiated neurons, glial cells and neural stem cell niche. In the last decade, much attention has been devoted to exosomes as novel carriers of information exchanged among both neighbouring and distant cells. These vesicles can be generated and internalized by different brain cells including neurons, neural stem cells, astrocytes, and microglia, thereby affecting neural plasticity and cognitive functions in physiological and pathological conditions. Here, we review data on the roles of exosomes as carriers of bioactive molecules potentially involved in the pathogenesis of neurodegenerative disorders and detectable in biological fluids as biomarkers of dementia. We also discuss the experimental evidence of the therapeutic potential of stem cell-derived vesicles in experimental models of neurodegeneration-dependent cognitive decline.
Collapse
Affiliation(s)
- Francesca Natale
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Salvatore Fusco
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Grassi
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
16
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. RNA-Binding Proteins as Epigenetic Regulators of Brain Functions and Their Involvement in Neurodegeneration. Int J Mol Sci 2022; 23:ijms232314622. [PMID: 36498959 PMCID: PMC9739182 DOI: 10.3390/ijms232314622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
A central aspect of nervous system development and function is the post-transcriptional regulation of mRNA fate, which implies time- and site-dependent translation, in response to cues originating from cell-to-cell crosstalk. Such events are fundamental for the establishment of brain cell asymmetry, as well as of long-lasting modifications of synapses (long-term potentiation: LTP), responsible for learning, memory, and higher cognitive functions. Post-transcriptional regulation is in turn dependent on RNA-binding proteins that, by recognizing and binding brief RNA sequences, base modifications, or secondary/tertiary structures, are able to control maturation, localization, stability, and translation of the transcripts. Notably, most RBPs contain intrinsically disordered regions (IDRs) that are thought to be involved in the formation of membrane-less structures, probably due to liquid-liquid phase separation (LLPS). Such structures are evidenced as a variety of granules that contain proteins and different classes of RNAs. The other side of the peculiar properties of IDRs is, however, that, under altered cellular conditions, they are also prone to form aggregates, as observed in neurodegeneration. Interestingly, RBPs, as part of both normal and aggregated complexes, are also able to enter extracellular vesicles (EVs), and in doing so, they can also reach cells other than those that produced them.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-238-97 (ext. 415/446)
| |
Collapse
|
17
|
Khan N, Umar MS, Haq M, Rauf T, Zubair S, Owais M. Exosome-encapsulated ncRNAs: Emerging yin and yang of tumor hallmarks. Front Genet 2022; 13:1022734. [PMID: 36338993 PMCID: PMC9632295 DOI: 10.3389/fgene.2022.1022734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
Tumorigenesis is a multifaceted process, where multiple physiological traits serving as cancer’s distinctive characteristics are acquired. “Hallmarks of cancer” is a set of cognitive abilities acquired by human cells that are pivotal to their tumor-forming potential. With limited or no protein-coding ability, non-coding RNAs (ncRNAs) interact with their target molecules and yield significant regulatory effects on several cell cycle processes. They play a “yin” and “yang” role, thereby functioning both as oncogenic and tumor suppressor and considered important in the management of various types of cancer entities. ncRNAs serve as important post-transcriptional and translational regulators of not only unrestricted expansion and metastasis of tumor cells but also of various biological processes, such as genomic mutation, DNA damage, immune escape, and metabolic disorder. Dynamical attributes such as increased proliferative signaling, migration, invasion, and epithelial–mesenchymal transition are considered to be significant determinants of tumor malignancy, metastatic dissemination, and therapeutic resistance. Furthermore, these biological attributes engage tumor cells with immune cells within the tumor microenvironment to promote tumor formation. We elaborate the interaction of ncRNAs with various factors in order to regulate cancer intra/intercellular signaling in a specific tumor microenvironment, which facilitates the cancer cells in acquiring malignant hallmarks. Exosomes represent a means of intercellular communication and participate in the maintenance of the tumor hallmarks, adding depth to the intricate, multifactorial character of malignant neoplasia. To summarize, ncRNAs have a profound impact on tumors, affecting their microcirculation, invasiveness, altered metabolism, microenvironment, and the capacity to modify the host immunological environment. Though the significance of ncRNAs in crosstalk between the tumor and its microenvironment is being extensively explored, we intend to review the hallmarks in the light of exosome-derived non-coding RNAs and their impact on the tumor microenvironment.
Collapse
Affiliation(s)
- Nazoora Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Saad Umar
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohamed Haq
- University of Houston, Houston, TX, United States
| | - Talha Rauf
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Swaleha Zubair
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
- *Correspondence: Mohammad Owais,
| |
Collapse
|
18
|
Aimaletdinov AM, Gomzikova MO. Tracking of Extracellular Vesicles' Biodistribution: New Methods and Approaches. Int J Mol Sci 2022; 23:11312. [PMID: 36232613 PMCID: PMC9569979 DOI: 10.3390/ijms231911312] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized lipid bilayer vesicles that are released by almost all cell types. They range in diameter from 30 nm to several micrometres and have the ability to carry biologically active molecules such as proteins, lipids, RNA, and DNA. EVs are natural vectors and play an important role in many physiological and pathological processes. The amount and composition of EVs in human biological fluids serve as biomarkers and are used for diagnosing diseases and monitoring the effectiveness of treatment. EVs are promising for use as therapeutic agents and as natural vectors for drug delivery. However, the successful use of EVs in clinical practice requires an understanding of their biodistribution in an organism. Numerous studies conducted so far on the biodistribution of EVs show that, after intravenous administration, EVs are mostly localized in organs rich in blood vessels and organs associated with the reticuloendothelial system, such as the liver, lungs, spleen, and kidneys. In order to improve resolution, new dyes and labels are being developed and detection methods are being optimized. In this work, we review all available modern methods and approaches used to assess the biodistribution of EVs, as well as discuss their advantages and limitations.
Collapse
Affiliation(s)
| | - Marina O. Gomzikova
- Laboratory of Intercellular Communication, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|
19
|
Sbarigia C, Vardanyan D, Buccini L, Tacconi S, Dini L. SARS-CoV-2 and extracellular vesicles: An intricate interplay in pathogenesis, diagnosis and treatment. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.987034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) are widely recognized as intercellular communication mediators. Among the different biological processes, EVs play a role in viral infections, supporting virus entrance and spread into host cells and immune response evasion. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection became an urgent public health issue with significant morbidity and mortality worldwide, being responsible for the current COVID-19 pandemic. Since EVs are implicated in SARS-CoV-2 infection in a morphological and functional level, they have gained growing interest for a better understanding of SARS-CoV-2 pathogenesis and represent possible diagnostic tools to track the disease progression. Furthermore, thanks to their biocompatibility and efficient immune activation, the use of EVs may also represent a promising strategy for the development of new therapeutic strategies against COVID-19. In this review, we explore the role of EVs in viral infections with a focus on SARS-CoV-2 biology and pathogenesis, considering recent morphometric studies. The common biogenesis aspects and structural similarities between EVs and SARS-CoV-2 will be examined, offering a panoramic of their multifaceted interplay and presenting EVs as a machinery supporting the viral cycle. On the other hand, EVs may be exploited as early diagnostic biomarkers and efficient carriers for drug delivery and vaccination, and ongoing studies will be reviewed to highlight EVs as potential alternative therapeutic strategies against SARS-CoV-2 infection.
Collapse
|
20
|
Fitzpatrick G, Nader D, Watkin R, McCoy CE, Curley GF, Kerrigan SW. Human endothelial cell-derived exosomal microRNA-99a/b drives a sustained inflammatory response during sepsis by inhibiting mTOR expression. Front Cell Infect Microbiol 2022; 12:854126. [PMID: 36061862 PMCID: PMC9434345 DOI: 10.3389/fcimb.2022.854126] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of sepsis and its accompanying hyper-inflammatory response are key events that lead to multi-organ failure and death. A growing body of literature now suggests that the vascular endothelium plays a critical role in driving early events of sepsis progression. In this study, we demonstrate how endothelial-derived exosomes contribute to a successive pro-inflammatory phenotype of monocytes. Exosomes isolated from S. aureus infected endothelial cells drive both CD11b and MHCII expression in monocytes and contribute dysregulated cytokine production. Conversely, healthy endothelial exosomes had no major effect. microRNA (miRNA) profiling of exosomes identified miR-99 upregulation which we hypothesised as driving this phenotypic change through mechanistic target of rapamycin (mTOR). Knockdown of mTOR with miR-99a and miR-99b mimetics in S. aureus infected monocytes increased IL-6 and decreased IL-10 production. Interestingly, inhibition of miRNAs with antagomirs has the opposing effect. Collectively, endothelial exosomes are driving a pro-inflammatory phenotype in monocytes through dysregulated expression of miR-99a and miR-99b.
Collapse
Affiliation(s)
- Glenn Fitzpatrick
- Cardiovascular Infection Research Group, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Danielle Nader
- Cardiovascular Infection Research Group, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Rebecca Watkin
- Cardiovascular Infection Research Group, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gerard F. Curley
- Department of Anaesthesia and Critical Care Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Steven W. Kerrigan
- Cardiovascular Infection Research Group, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- *Correspondence: Steven W. Kerrigan,
| |
Collapse
|
21
|
Huntingtin Co-Isolates with Small Extracellular Vesicles from Blood Plasma of TgHD and KI-HD Pig Models of Huntington's Disease and Human Blood Plasma. Int J Mol Sci 2022; 23:ijms23105598. [PMID: 35628406 PMCID: PMC9147436 DOI: 10.3390/ijms23105598] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Huntington’s disease (HD) is rare incurable hereditary neurodegenerative disorder caused by CAG repeat expansion in the gene coding for the protein huntingtin (HTT). Mutated huntingtin (mHTT) undergoes fragmentation and accumulation, affecting cellular functions and leading to neuronal cell death. Porcine models of HD are used in preclinical testing of currently emerging disease modifying therapies. Such therapies are aimed at reducing mHTT expression, postpone the disease onset, slow down the progression, and point out the need of biomarkers to monitor disease development and therapy efficacy. Recently, extracellular vesicles (EVs), particularly exosomes, gained attention as possible carriers of disease biomarkers. We aimed to characterize HTT and mHTT forms/fragments in blood plasma derived EVs in transgenic (TgHD) and knock-in (KI-HD) porcine models, as well as in HD patients’ plasma. (2) Methods: Small EVs were isolated by ultracentrifugation and HTT forms were visualized by western blotting. (3) Results: The full length 360 kDa HTT co-isolated with EVs from both the pig model and HD patient plasma. In addition, a ~70 kDa mutant HTT fragment was specific for TgHD pigs. Elevated total huntingtin levels in EVs from plasma of HD groups compared to controls were observed in both pig models and HD patients, however only in TgHD were they significant (p = 0.02). (4) Conclusions: Our study represents a valuable initial step towards the characterization of EV content in the search for HD biomarkers.
Collapse
|
22
|
Liu X, Xia T, Fang Y, Zuo H, Dong X, Xu P, Ouyang J. Overcoming the blood-brain barrier by using a multistage exosome delivery system to inhibit central nervous system lymphoma. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 41:102523. [PMID: 35092855 DOI: 10.1016/j.nano.2022.102523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/02/2021] [Accepted: 01/09/2022] [Indexed: 10/19/2022]
Abstract
Due to the presence of blood-brain barrier (BBB), various chemotherapy drugs against B-cell lymphoma cannot be effectively transmitted into the brain, leading to poor prognosis of primary central nervous system lymphoma (PCNSL). Exosomes can cross the BBB as a bio- and immune-compatible drug carrier. In this study, we developed a novel drug delivery system, in which the exosomes (Exo) are conjugated with anti-CD22 monoclonal antibody fragments (CD22-F(ab')2) and encapsulate doxorubicin (DOX) to form CD22-F(ab')2-Exo-DOX. We showed that CD22-F(ab')2-Exo-DOX can cross BBB and deliver DOX precisely to tumor cells. The average apoptosis rate of lymphoma cells was 84.60% ± 10.69%. The tumor-bearing mice treated with CD22-F(ab')2-Exo-DOX have significantly prolonged life expectancy and the enhanced anti-tumor activity. CD22-F(ab')2-Exo-DOX might be ingested by brain microvascular endothelial cells through endocytosis to cross the BBB. Therefore, targeted chemotherapy mediated by CD22-F(ab')2-Exo-DOX is a promising option for the treatment of PCNSL.
Collapse
Affiliation(s)
- Xu Liu
- Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Tian Xia
- Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Yiran Fang
- Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Huaqin Zuo
- Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, China
| | - Xiaoqing Dong
- Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Peipei Xu
- Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China; Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jian Ouyang
- Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
| |
Collapse
|
23
|
Dai LG, Huang NC, Kang LY, Fu KY, Hsieh PS, Dai NT. An In Vitro Study of the Effects of Mechanical and Enzymatic Isolation of Stromal Vascular Fraction on Wound Healing. Ann Plast Surg 2022; 88:S13-S21. [PMID: 35225844 DOI: 10.1097/sap.0000000000003087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT The adipose-derived stromal vascular fraction (SVF) is considered to be an attractive source of stem cells in cell therapy. Besides stem cells, it also contains functional cells, such as macrophages, precursor cells, somatic stem cells, and pericytes. Collagenase digestion is the most frequently used method to isolate SVF, but it is time-consuming and costly and has some problems, such as infectious agents and immune reactions. In this research, we compared the yield, cell population ratios, and cell viability when isolating SVF by the ultrasonic physics (U-SVF) method and traditional enzymatic method (E-SVF). Then, we isolated exosomes from U-SVF and E-SVF, respectively, and cocultured them with fibroblasts to investigate the potential of applying this cell secretion in wound repair. The results showed that there was no significant difference between the ultrasonic method and enzymatic method in terms of cell viability, cell numbers, or the expression of CD markers of stem cells. However, exosome analysis identified a greater number and smaller size of exosome particles obtained by U-SVF. In terms of cell proliferation efficiency, although the proliferation efficiency of U-SVF was lower than that of E-SVF. Trilineage differentiation experiments revealed that both E-SVF and U-SVF had good differentiation ability, owing to high stem cell content. Finally, E-SVF and U-SVF exosomes were cocultured with fibroblasts. The efficiency of fibroblast migration increased in the SVF exosome treated groups, and the expression of related genes (integrin α5β1) was slightly upregulated; however, the expression of FAK, AKT, ERK, and RhoA was significantly upregulated at 24 hours. From the abovementioned experiments, we found that there was no significant difference in stem cell-related characteristics between SVF isolated by ultrasonic cavitation and SVF isolated by the enzymatic method. In addition, exosomes secreted by SVF may have excellent therapeutic effect on skin injuries, which provides a new viewpoint and therapeutic strategy for soft tissue repair.
Collapse
Affiliation(s)
- Lien-Guo Dai
- From the Department of Orthopaedic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Nien-Chi Huang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Lan-Ya Kang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Keng-Yen Fu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Pai-Shan Hsieh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
24
|
The procoagulant effects of extracellular vesicles derived from hypoxic endothelial cells can be selectively inhibited by inorganic nitrite. Nitric Oxide 2022; 122-123:6-18. [DOI: 10.1016/j.niox.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
|
25
|
Upadhya R, Shetty AK. Extracellular Vesicles for the Diagnosis and Treatment of Parkinson's Disease. Aging Dis 2021; 12:1438-1450. [PMID: 34527420 PMCID: PMC8407884 DOI: 10.14336/ad.2021.0516] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/16/2021] [Indexed: 12/25/2022] Open
Abstract
Extracellular vesicles (EVs) shed by neurons and glia in the central nervous system carry a cargo of specific bioactive molecules, facilitating intercellular communication. However, in neurodegenerative disease conditions, EVs carry pathological miRNAs and/or proteins involved in spreading the disease. Such EVs are also found in the cerebrospinal fluid (CSF) or the circulating blood, the characterization of which could identify biomarkers linked to specific neurodegenerative diseases. Moreover, EVs secreted by various stem/progenitor cells carry therapeutic miRNAs and proteins, which have shown promise to alleviate symptoms and slow down the progression of neurodegenerative diseases. The ability of exogenously administered EVs to easily cross the blood-brain barrier with no risk for thrombosis and incorporate into neurons and glia has also opened up the possibility of using nano-sized EVs as carriers of therapeutic drugs or bioactive proteins. This review summarizes the role and function of EVs in alpha-synuclein-mediated neurodegeneration and the spread of alpha-synuclein from neurons to glia, leading to the activation of the inflammatory response in Parkinson’s disease (PD). Moreover, the promise of brain-derived EVs in the CSF and the circulating blood for biomarker discovery and the efficacy of stem/progenitor cell-derived EVs or EVs loaded with bioactive molecules such as dopamine, catalase, curcumin, and siRNAs, in alleviating Parkinsonian symptoms are discussed.
Collapse
Affiliation(s)
- Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| |
Collapse
|
26
|
Luong N, Olson JK. Exosomes Secreted by Microglia During Virus Infection in the Central Nervous System Activate an Inflammatory Response in Bystander Cells. Front Cell Dev Biol 2021; 9:661935. [PMID: 34485270 PMCID: PMC8415116 DOI: 10.3389/fcell.2021.661935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Microglia become persistently infected during Theiler’s murine encephalomyelitis virus (TMEV) infection in the central nervous system (CNS) of susceptible mice. We have previously shown that microglia infected with TMEV become activated through the innate immune receptors to express type I interferons, cytokines, and chemokines. Persistent TMEV infection in the CNS promotes chronic neuroinflammation and development of demyelinating disease similar to multiple sclerosis. In the current studies, we wanted to determine whether TMEV-infected microglia secrete exosomes which contribute to neuroinflammation in the CNS thus promoting the development of demyelinating disease. Exosomes are vesicles containing RNA, DNA, and proteins that are released from one cell and taken up by another cell to facilitate communication between cells. These studies isolated exosomes secreted by microglia during TMEV infection in vitro as well as exosomes secreted by microglia during early TMEV infection in mice. These studies show that microglia secrete exosomes during TMEV infection which contain the viral RNA coding region. The exosomes secreted by microglia during TMEV infection can be taken up by uninfected bystander cells, including CNS resident microglia, astrocytes, and neurons. The viral RNA in the exosomes can be transferred to the bystander cells. In addition, the bystander cells that took up these exosomes were activated through the innate immune response to express type I interferons, IFNα and IFNβ, pro-inflammatory cytokines, IL-6, IL-12, and TNFα, and chemokines, CCL2. Most interestingly, exosomes secreted by microglia during early TMEV infection in mice activated an inflammatory response when transferred to the brains of naïve mice. These results show that exosomes secreted by microglia during early TMEV infection contain viral RNA and can activate uninfected bystander CNS cells to promote an inflammatory immune response. Thus, exosomes secreted by microglia during virus infection may promote viral persistence and neuroinflammation which contributes to the development of demyelinating disease.
Collapse
Affiliation(s)
- Nhungoc Luong
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Julie K Olson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, MN, United States.,Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
27
|
Shetty AK, Upadhya R. Extracellular Vesicles in Health and Disease. Aging Dis 2021; 12:1358-1362. [PMID: 34527414 PMCID: PMC8407881 DOI: 10.14336/ad.2021.0827] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022] Open
Abstract
The journal, Aging and Disease, has released a special issue on "Extracellular Vesicles (EVs) in Health and Disease." The special issue comprises review and original research articles discussing the role of EVs in aging and senescence, the utility of evaluating EVs in body fluids for understanding the pathophysiology or progression of various diseases such as Parkinson's Disease, Multiple Sclerosis, Chronic Traumatic Encephalopathy, and Morphine induced amyloidopathy. Also, a series of articles discussed the promise of stem cell-derived EVs for treating Parkinson's Disease, Sjogren's Syndrome, and Inflammatory Bowel Disease, and advancements in loading EVs to deliver nucleic acid therapies. This editorial discusses the highlights from these articles.
Collapse
Affiliation(s)
- Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| |
Collapse
|
28
|
Imanbekova M, Suarasan S, Rojalin T, Mizenko RR, Hilt S, Mathur M, Lepine P, Nicouleau M, Mohamed NV, Durcan TM, Carney RP, Voss JC, Wachsmann-Hogiu S. Identification of amyloid beta in small extracellular vesicles via Raman spectroscopy. NANOSCALE ADVANCES 2021; 3:4119-4132. [PMID: 34355118 PMCID: PMC8276787 DOI: 10.1039/d1na00330e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 05/20/2023]
Abstract
One of the hallmarks of Alzheimer's disease (AD) pathogenesis is believed to be the production and deposition of amyloid-beta (Aβ) peptide into extracellular plaques. Existing research indicates that extracellular vesicles (EVs) can carry Aβ associated with AD. However, characterization of the EVs-associated Aβ and its conformational variants has yet to be realized. Raman spectroscopy is a label-free and non-destructive method that is able to assess the biochemical composition of EVs. This study reports for the first time the Raman spectroscopic fingerprint of the Aβ present in the molecular cargo of small extracellular vesicles (sEVs). Raman spectra were measured from sEVs isolated from Alzheimer's disease cell culture model, where secretion of Aβ is regulated by tetracycline promoter, and from midbrain organoids. The averaged spectra of each sEV group showed considerable variation as a reflection of the biochemical content of sEVs. Spectral analysis identified more intense Raman peaks at 1650 cm-1 and 2930 cm-1 attributable to the Aβ peptide incorporated in sEVs produced by the Alzheimer's cell culture model. Subsequent analysis of the spectra by principal component analysis differentiated the sEVs of the Alzheimer's disease cell culture model from the control groups of sEVs. Moreover, the results indicate that Aβ associated with secreted sEVs has a α-helical secondary structure and the size of a monomer or small oligomer. Furthermore, by analyzing the lipid content of sEVs we identified altered fatty acid chain lengths in sEVs that carry Aβ that may affect the fluidity of the EV membrane. Overall, our findings provide evidence supporting the use of Raman spectroscopy for the identification and characterization of sEVs associated with potential biomarkers of neurological disorders such as toxic proteins.
Collapse
Affiliation(s)
| | - Sorina Suarasan
- Department of Bioengineering, McGill University Montreal QC H3A 0E9 Canada
| | - Tatu Rojalin
- Department of Biomedical Engineering, University of California Davis CA 95616 USA
| | - Rachel R Mizenko
- Department of Biomedical Engineering, University of California Davis CA 95616 USA
| | - Silvia Hilt
- Department of Biochemistry & Molecular Medicine, University of California Davis CA 95616 USA
| | - Meghna Mathur
- The Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University Montreal QC H3A 2B4 Canada
| | - Paula Lepine
- The Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University Montreal QC H3A 2B4 Canada
| | - Michael Nicouleau
- The Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University Montreal QC H3A 2B4 Canada
| | - Nguyen-Vi Mohamed
- The Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University Montreal QC H3A 2B4 Canada
| | - Thomas M Durcan
- The Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University Montreal QC H3A 2B4 Canada
| | - Randy P Carney
- Department of Biomedical Engineering, University of California Davis CA 95616 USA
| | - John C Voss
- Department of Biochemistry & Molecular Medicine, University of California Davis CA 95616 USA
| | | |
Collapse
|
29
|
Meldolesi J. Extracellular vesicles (exosomes and ectosomes) play key roles in the pathology of brain diseases. MOLECULAR BIOMEDICINE 2021; 2:18. [PMID: 35006460 PMCID: PMC8607397 DOI: 10.1186/s43556-021-00040-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Last century, neurons and glial cells were mostly believed to play distinct functions, relevant for the brain. Progressively, however, it became clear that neurons, astrocytes and microglia co-operate intensely with each other by release/binding of signaling factors, direct surface binding and generation/release of extracellular vesicles, the exosomes and ectosomes, called together vesicles in this abstract. The present review is focused on these vesicles, fundamental in various brain diseases. Their properties are extraordinary. The specificity of their membrane governs their fusion with distinct target cells, variable depending on the state and specificity of their cells of origin and target. Result of vesicle fusion is the discharge of their cargos into the cytoplasm of target cells. Cargos are composed of critical molecules, from proteins (various nature and function) to nucleotides (especially miRNAs), playing critical roles in immune and neurodegenerative diseases. Among immune diseases is multiple sclerosis, affected by extensive dysregulation of co-trafficking neural and glial vesicles, with distinct miRNAs inducing severe or reducing effects. The vesicle-dependent differences between progressive and relapsing-remitting forms of the disease are relevant for clinical developments. In Alzheimer’s disease the vesicles can affect the brain by changing their generation and inducing co-release of effective proteins, such Aβ and tau, from neurons and astrocytes. Specific miRNAs can delay the long-term development of the disease. Upon their traffic through the blood-brainbarrier, vesicles of various origin reach fluids where they are essential for the identification of biomarkers, important for diagnostic and therapeutic innovations, critical for the future of many brain patients.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- Division of Neuroscience, San Raffaele Institute and Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
30
|
Ananbeh H, Vodicka P, Kupcova Skalnikova H. Emerging Roles of Exosomes in Huntington's Disease. Int J Mol Sci 2021; 22:ijms22084085. [PMID: 33920936 PMCID: PMC8071291 DOI: 10.3390/ijms22084085] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Huntington’s disease (HD) is a rare hereditary autosomal dominant neurodegenerative disorder, which is caused by expression of mutant huntingtin protein (mHTT) with an abnormal number of glutamine repeats in its N terminus, and characterized by intracellular mHTT aggregates (inclusions) in the brain. Exosomes are small extracellular vesicles that are secreted generally by all cell types and can be isolated from almost all body fluids such as blood, urine, saliva, and cerebrospinal fluid. Exosomes may participate in the spreading of toxic misfolded proteins across the central nervous system in neurodegenerative diseases. In HD, such propagation of mHTT was observed both in vitro and in vivo. On the other hand, exosomes might carry molecules with neuroprotective effects. In addition, due to their capability to cross blood-brain barrier, exosomes hold great potential as sources of biomarkers available from periphery or carriers of therapeutics into the central nervous system. In this review, we discuss the emerging roles of exosomes in HD pathogenesis, diagnosis, and therapy.
Collapse
|
31
|
Esposito CL, Quintavalle C, Ingenito F, Rotoli D, Roscigno G, Nuzzo S, Thomas R, Catuogno S, de Franciscis V, Condorelli G. Identification of a novel RNA aptamer that selectively targets breast cancer exosomes. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:982-994. [PMID: 33614245 PMCID: PMC7868932 DOI: 10.1016/j.omtn.2021.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/14/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is a leading cause of cancer mortality in women. Despite advances in its management, the identification of new options for early-stage diagnosis and therapy of this tumor still represents a crucial challenge. Increasing evidence indicates that extracellular vesicles called exosomes may have great potential as early diagnostic biomarkers and regulators of many cancers, including breast cancer. Therefore, exploiting molecules able to selectively recognize them is of great interest. Here, we developed a novel differential SELEX strategy, called Exo-SELEX, to isolate nucleic acid aptamers against intact exosomes derived from primary breast cancer cells. Among the obtained sequences, we optimized a high-affinity aptamer (ex-50.T) able to specifically recognize exosomes from breast cancer cells or patient serum samples. Furthermore, we demonstrated that the ex.50.T is a functional inhibitor of exosome cellular uptake and antagonizes cancer exosome-induced cell migration in vitro. This molecule provides an innovative tool for the specific exosome detection and the development of new therapeutic approaches for breast cancer.
Collapse
Affiliation(s)
- Carla Lucia Esposito
- Institute for Experimental Endocrinology and Oncology, “G.Salvatore” IEOS, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Cristina Quintavalle
- Institute for Experimental Endocrinology and Oncology, “G.Salvatore” IEOS, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Francesco Ingenito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II,” 80100 Naples, Italy
| | - Deborah Rotoli
- Institute for Experimental Endocrinology and Oncology, “G.Salvatore” IEOS, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II,” 80100 Naples, Italy
| | | | | | - Silvia Catuogno
- Institute for Experimental Endocrinology and Oncology, “G.Salvatore” IEOS, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Vittorio de Franciscis
- Institute for Experimental Endocrinology and Oncology, “G.Salvatore” IEOS, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Gerolama Condorelli
- Institute for Experimental Endocrinology and Oncology, “G.Salvatore” IEOS, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II,” 80100 Naples, Italy
| |
Collapse
|
32
|
Abstract
The sudden outbreak of COVID-19 has once again shrouded people in the enormous threat of RNA virus. Extracellular vesicles (EVs), eukaryotic cells-derived small bi-layer vesicles mainly consisting of exosomes and microvesicles, share many properties with RNA viruses including structure, size, generation, and uptake. Emerging evidence has implicated the involvement of EVs in the pathogenesis of infectious diseases induced by RNA viruses. EVs can transfer viral receptors (e.g., ACE2 and CD9) to recipient cells to facilitate viral infection, directly transport infectious viral particles to adjacent cells for virus spreading, and mask viruses with a host structure to escape immune surveillance. Here, we examine the current status of EVs to summarize their roles in mediating RNA virus infection, together with a comprehensive discussion of the underlying mechanisms.
Collapse
|
33
|
Han KY, Chang JH, Azar DT. Proteomics-Based Characterization of the Effects of MMP14 on the Protein Content of Exosomes from Corneal Fibroblasts. Protein Pept Lett 2021; 27:979-988. [PMID: 32268857 DOI: 10.2174/0929866527666200408142827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Exosomes secreted by corneal fibroblasts contain matrix metalloproteinase (MMP) 14, which is known to influence pro-MMP2 accumulation on exosomes. Accordingly, we hypothesized that the enzymatic activity of MMP14 may alter the protein content of corneal fibroblast- secreted exosomes. OBJECTIVE The aim of this study was to investigate the effects of MMP14 on the composition and biological activity of corneal fibroblast-derived exosomes. METHODS Knock out of the catalytic domain (ΔExon4) of MMP14 in corneal fibroblasts was used to determine the effect of MMP14 expression on the characteristics of fibroblast-secreted exosomes. The amount of secreted proteins and their size distribution were measured using Nano Tracking Analysis. Proteins within exosomes from wild-type (WT) and ΔExon4-deficient fibroblasts were identified by liquid chromatography-tandem mass spectrometry (MS/MS) proteomics analysis. The proteolytic effects of MMP14 were evaluated in vitro via MS identification of eliminated proteins. The biological functions of MMP14-carrying exosomes were investigated via fusion to endothelial cells and flow cytometric assays. RESULTS Exosomes isolated from WT and ΔExon4-deficient fibroblasts exhibited similar size distributions and morphologies, although WT fibroblasts secreted a greater amount of exosomes. The protein content, however, was higher in ΔExon4-deficient fibroblast-derived exosomes than in WT fibroblast-derived exosomes. Proteomics analysis revealed that WT-derived exosomes included proteins that regulated cell migration, and ΔExon4 fibroblast-derived exosomes contained additional proteins that were cleaved by MMP14. CONCLUSION Our findings suggest that MMP14 expression influences the protein composition of exosomes secreted by corneal fibroblasts, and through those biological components, MMP14 in corneal fibroblasts derived-exosomes may regulate corneal angiogenesis.
Collapse
Affiliation(s)
- Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
34
|
Pinnell JR, Cui M, Tieu K. Exosomes in Parkinson disease. J Neurochem 2021; 157:413-428. [PMID: 33372290 DOI: 10.1111/jnc.15288] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Parkinson disease (PD) is a prevalent neurodegenerative disease, in which the formation of misfolded and aggregated α-synuclein is a key neuropathological hallmark. Recent studies reveal that extracellular vesicles such as exosomes present a potential mechanism for propagation of pathological α-synuclein throughout the brain. The ability of exosomes to transport proteins and genetic material between cells, including mRNA and microRNAs which have been implicated in PD pathology, provides critical insights as to how exosomes may contribute to pathological progression in PD. Advances have also been made in the investigation of exosomes as potential tools for the modulation of Parkinson's pathology; their detection extracellularly may facilitate their use as biomarkers, while their small size could be utilised as vectors for the delivery of therapeutics. The aim of this review was to highlight our current knowledge of the role of exosomes in PD and potential clinical application.
Collapse
Affiliation(s)
- Jennifer R Pinnell
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA.,Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, UK
| | - Mei Cui
- Department of Neurology, Huashan hospital, Fudan University, Shanghai, China
| | - Kim Tieu
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
35
|
Biadglegne F, König B, Rodloff AC, Dorhoi A, Sack U. Composition and Clinical Significance of Exosomes in Tuberculosis: A Systematic Literature Review. J Clin Med 2021; 10:E145. [PMID: 33406750 PMCID: PMC7795701 DOI: 10.3390/jcm10010145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) remains a major health issue worldwide. In order to contain TB infections, improved vaccines as well as accurate and reliable diagnostic tools are desirable. Exosomes are employed for the diagnosis of various diseases. At present, research on exosomes in TB is still at the preliminary stage. Recent studies have described isolation and characterization of Mycobacterium tuberculosis (Mtb) derived exosomes in vivo and in vitro. Mtb-derived exosomes (Mtbexo) may be critical for TB pathogenesis by delivering mycobacterial-derived components to the recipient cells. Proteomic and transcriptomic analysis of Mtbexo have revealed a variety of proteins and miRNA, which are utilized by the TB bacteria for pathogenesis. Exosomes has been isolated in body fluids, are amenable for fast detection, and could contribute as diagnostic or prognostic biomarker to disease control. Extraction of exosomes from biological fluids is essential for the exosome research and requires careful standardization for TB. In this review, we summarized the different studies on Mtbexo molecules, including protein and miRNA and the method used to detect exosomes in biological fluids and cell culture supernatants. Thus, the detection of Mtbexo molecules in biological fluids may have a potential to expedite the diagnosis of TB infection. Moreover, the analysis of Mtbexo may generate new aspects in vaccine development.
Collapse
Affiliation(s)
- Fantahun Biadglegne
- College of Medicine and Health Sciences, Bahir Dar University, 79 Bahir Dar, Ethiopia
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany;
| | - Brigitte König
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
| | - Arne C. Rodloff
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
| | - Anca Dorhoi
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
36
|
Abstract
Exosomes are small vesicles secreted by all cell types in the brain and play a role in cell-cell communication through the transfer of cargo or encapsulation. Exosomes in the brain have considerable impact on neuronal development, activation, and regeneration. In addition, exosomes are reported to be involved in the onset and propagation of various neurodegenerative diseases. In this review, we discuss the content of exosomes derived from major cell types in the brain, and their function under physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiao-Hui Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230001, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, Anhui 230026, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Juan Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230001, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, Anhui 230026, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ding-Feng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230001, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, Anhui 230026, China.,National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Wu
- Organ Transplantation Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Zhong-Wen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China. E-mail:
| | - Qiang Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230001, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, Anhui 230026, China.,CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, Anhui 230026, China. E-mail:
| |
Collapse
|
37
|
Attili D, Schill DJ, DeLong CJ, Lim KC, Jiang G, Campbell KF, Walker K, Laszczyk A, McInnis MG, O'Shea KS. Astrocyte-Derived Exosomes in an iPSC Model of Bipolar Disorder. ADVANCES IN NEUROBIOLOGY 2020; 25:219-235. [PMID: 32578149 DOI: 10.1007/978-3-030-45493-7_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bipolar I Disorder (BP) is a serious, recurrent mood disorder that is characterized by alternating episodes of mania and depression. To begin to identify novel approaches and pathways involved in BP, we have obtained skin samples from BP patients and undiagnosed control (C) individuals, reprogrammed them to form induced pluripotent stem cells (iPSC), and then differentiated the stem cells into astrocytes. RNAs from BP and C astrocytes were extracted and RNAseq analysis carried out. 501 differentially expressed genes were identified, including genes for cytoskeletal elements, extracellular matrix, signaling pathways, neurodegeneration, and notably transcripts that identify exosomes. When we compared highly expressed genes using hierarchial cluster analysis, "Exosome" was the first and most highly significant cluster identified, p < 5 × 10-13, Benjamini correction. Exosomes are membrane-bound vesicles that package and remove toxic proteins from cells and also enable cell to cell communication. They carry genetic material, including DNA, mRNA and microRNAs, proteins, and lipids to target cells throughout the body. Exosomes are released by cortical neurons and astrocytes in culture and are present in BP vs C postmortem brain tissue. Little is known about what transcripts and proteins are targeted to neurons, how they regulate biological functions of the acceptor cell, or how that may be altered in mood disorders. Since astrocyte-derived exosomes have been suggested to promote neuronal plasticity, as well as to remove toxic proteins in the brain, alterations in their function or content may be involved in neurodevelopmental, neuropathological, and neuropsychiatric conditions. To examine exosome cargos and interactions with neural precursor cells, astrocytes were differentiated from four bipolar disorder (BP) and four control (C) iPSC lines. Culture supernatants from these astrocytes were collected, and exosomes isolated by ultra-centrifugation. Western blot analysis demonstrated the presence of the exosome markers CD9, CD81, and Hsp70. Nanosight technology was used to characterize exosomes from each astrocyte cell line, suggesting that exosomes were slightly more concentrated in culture supernatants derived from BP compared with C astrocytes but there was no difference in the mean sizes of the exosomes. Analysis of their function in neuronal differentiation is being carried out by labeling exosomes derived from bipolar patient and control astrocytes and adding them to control neural progenitor cells. Given the current interest in clearing toxic proteins from brains of patients with neurodegenerative disorders, exosomes may present similar opportunities in BP.
Collapse
Affiliation(s)
- D Attili
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA
| | - D J Schill
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA
| | - C J DeLong
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA
| | - K C Lim
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA
| | - G Jiang
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA
| | - K F Campbell
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA
| | - K Walker
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA
| | - A Laszczyk
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA
| | - M G McInnis
- Department of Psychiatry, The University of Michigan, Ann Arbor, MI, USA
| | - K S O'Shea
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA.
- Department of Psychiatry, The University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Witwer KW, Languino LR, Weaver AM, Wauben MH. Announcing the ISEV2020 special achievement award recipients: Andrew Hill and Edit Buzás; and the recipient of the ISEV2020 special education award: Carolina Soekmadji. J Extracell Vesicles 2020; 10:e12021. [PMID: 33304475 PMCID: PMC7710126 DOI: 10.1002/jev2.12021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/08/2020] [Indexed: 12/03/2022] Open
Affiliation(s)
- Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Lucia R. Languino
- Sidney Kimmel Cancer CenterProstate Cancer Discovery and Development ProgramThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Cancer BiologySidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Alissa M. Weaver
- Department of Cell and Developmental BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Program in Cancer BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of PathologyMicrobiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Marca H. Wauben
- Department of Biochemistry and Cell BiologyFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
39
|
Jakubec M, Maple-Grødem J, Akbari S, Nesse S, Halskau Ø, Mork-Jansson AE. Plasma-derived exosome-like vesicles are enriched in lyso-phospholipids and pass the blood-brain barrier. PLoS One 2020; 15:e0232442. [PMID: 32956358 PMCID: PMC7505448 DOI: 10.1371/journal.pone.0232442] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are vesicles involved in intercellular communication. Their membrane structure and core content is largely dependent on the cell of origin. Exosomes have been investigated both for their biological roles and their possible use as disease biomarkers and drug carriers. These potential technological applications require the rigorous characterization of exosomal blood brain barrier permeability and a description of their lipid bilayer composition. To achieve these goals, we have established a 3D static blood brain barrier system based on existing systems for liposomes and a complementary LC-MS/MS and 31P nuclear magnetic resonance methodology for the analysis of purified human plasma-derived exosome-like vesicles. Results show that the isolated vesicles pass the blood brain barrier and are taken up in endothelial cells. The compositional analysis revealed that the isolated vesicles are enriched in lyso phospholipids and do not contain phosphatidylserine. These findings deviate significantly from the composition of exosomes originating from cell culture, and may reflect active removal by macrophages that respond to exposed phosphahtidylserine.
Collapse
Affiliation(s)
- Martin Jakubec
- Department of Biological Sciences, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway
| | - Jodi Maple-Grødem
- Faculty of Science and Technology, Department of Chemistry, Biochemistry and Environmental Technology, University of Stavanger, Stavanger, Norway
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Saleha Akbari
- Faculty of Science and Technology, Department of Chemistry, Biochemistry and Environmental Technology, University of Stavanger, Stavanger, Norway
| | - Susanne Nesse
- Faculty of Science and Technology, Department of Chemistry, Biochemistry and Environmental Technology, University of Stavanger, Stavanger, Norway
| | - Øyvind Halskau
- Department of Biological Sciences, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway
| | - Astrid Elisabeth Mork-Jansson
- Faculty of Science and Technology, Department of Chemistry, Biochemistry and Environmental Technology, University of Stavanger, Stavanger, Norway
- * E-mail:
| |
Collapse
|
40
|
Muraoka S, Jedrychowski MP, Yanamandra K, Ikezu S, Gygi SP, Ikezu T. Proteomic Profiling of Extracellular Vesicles Derived from Cerebrospinal Fluid of Alzheimer's Disease Patients: A Pilot Study. Cells 2020; 9:E1959. [PMID: 32854315 PMCID: PMC7565882 DOI: 10.3390/cells9091959] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pathological hallmarks of Alzheimer's disease (AD) are deposits of amyloid beta (Aβ) and hyper-phosphorylated tau aggregates in brain plaques. Recent studies have highlighted the importance of Aβ and tau-containing extracellular vesicles (EVs) in AD. We therefore examined EVs separated from cerebrospinal fluid (CSF) of AD, mild cognitive impairment (MCI), and control (CTRL) patient samples to profile the protein composition of CSF EV. EV fractions were separated from AD (n = 13), MCI (n = 10), and CTRL (n = 10) CSF samples using MagCapture Exosome Isolation kit. The CSF-derived EV proteins were identified and quantified by label-free and tandem mass tag (TMT)-labeled mass spectrometry. Label-free proteomics analysis identified 2546 proteins that were significantly enriched for extracellular exosome ontology by Gene Ontology analysis. Canonical Pathway Analysis revealed glia-related signaling. Quantitative proteomics analysis, moreover, showed that EVs expressed 1284 unique proteins in AD, MCI and CTRL groups. Statistical analysis identified three proteins-HSPA1A, NPEPPS, and PTGFRN-involved in AD progression. In addition, the PTGFRN showed a moderate correlation with amyloid plaque (rho = 0.404, p = 0.027) and tangle scores (rho = 0.500, p = 0.005) in AD, MCI and CTRL. Based on the CSF EV proteomics, these data indicate that three proteins, HSPA1A, NPEPPS and PTGFRN, may be used to monitor the progression of MCI to AD.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (S.M.); (S.I.)
| | - Mark P. Jedrychowski
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; (M.P.J.); (S.P.G.)
| | - Kiran Yanamandra
- Abbvie Inc. Foundational Neuroscience Center, Cambridge, MA 02139, USA;
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (S.M.); (S.I.)
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; (M.P.J.); (S.P.G.)
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (S.M.); (S.I.)
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| |
Collapse
|
41
|
Mitsis T, Pierouli K, Diakou KL, Papakonstantinou E, Bacopoulou F, Chrousos GP, Vlachakis D. Exosomics. ACTA ACUST UNITED AC 2020; 26. [PMID: 32832420 PMCID: PMC7440046 DOI: 10.14806/ej.26.0.934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles have been the focus of a large number of studies in the past five years. Exosomes, a subgroup of extracellular vesicles, are of particularly high interest because they partake in a wide number of biological pathways. Produced by a variety of cells, exosomes have an important role in both physiological and pathological conditions. Exosome cargo heavily defines the vesicles’ unique characteristics, and the cargo with the most intriguing prospects in its’ biomedical applications is the non-coding RNAs. Non-coding RNAs, and specifically microRNAs are implicated in the regulation of many biological processes and have been associated with numerous diseases. Exosomes containing such important cargo can be used as biomarkers, therapeutic biomaterials, or even drug carriers. The potential media use of exosomes seems promising. However, some obstacles should be overcome before their clinical application. Synthetic exosome-like biomolecules may be a solution, but their production is still in their beginning stages. This review provides concise information regarding the current trends in exosome studies.
Collapse
Affiliation(s)
- Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Kalliopi Lo Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
42
|
Sun Y, Song L, Zhang Y, Wang H, Dong X. Adipose stem cells from type 2 diabetic mice exhibit therapeutic potential in wound healing. Stem Cell Res Ther 2020; 11:298. [PMID: 32680569 PMCID: PMC7368682 DOI: 10.1186/s13287-020-01817-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Background Diabetic patients suffer from impaired wound healing. Mesenchymal stem cell (MSC) therapy represents a promising approach toward improving skin wound healing through the release of soluble growth factors and cytokines that stimulate new vessel formation and modulate inflammation. Whether adipose tissue-derived MSCs (ASCs) from type 2 diabetes (T2D) donors are suitable for skin damage repair remains largely unknown. Methods In this study, we compared the phenotype and functionality of ASCs harvested from high-fat diet (HFD) and streptozotocin (STZ)-induced T2D or control mice, and assessed their abilities to promote wound healing in an excisional wound splinting mouse model with T2D. Results T2D ASCs expressed similar cellular markers as control ASCs but secreted less hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and transforming growth factor β (TGF-β). T2D ASCs were somewhat less effective in promoting healing of the wound, as manifested by slightly reduced re-epithelialization, cutaneous appendage regeneration, and collagen III deposition in wound tissues. In vitro, T2D ASCs promoted proliferation and migration of skin fibroblasts to a comparable extent as control ASCs via suppression of inflammation and macrophage infiltration. Conclusions From these findings, we conclude that, although ASCs from T2D mice are marginally inferior to control ASCs, they possess comparable therapeutic effects in wound healing.
Collapse
Affiliation(s)
- Yongfa Sun
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Lili Song
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Yong Zhang
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Hongjun Wang
- Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiao Dong
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
| |
Collapse
|
43
|
Martinez EF, de Araújo VC, Navarini NF, de Souza IF, Rena GB, Demasi APD, de Paula E, Teixeira LN. Microvesicles derived from squamous cell carcinoma induce cell death, autophagy, and invasion of benign myoepithelial cells. J Oral Pathol Med 2020; 49:761-770. [PMID: 32453894 DOI: 10.1111/jop.13037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND There has been great interest recently in the mechanisms of cell-to-cell communication through microvesicles (MV). These structures are produced by many different cell types and can modulate cellular activity by induction of epigenetic alterations. These vesicles may promote tumor mass increase either by stimulating cell proliferation via growth factors or by inhibiting apoptosis, which reinforces the role of such vesicles as important modulators of tumor progression. METHODS The present in vitro study aimed to characterize MV derived from malignant neoplastic epithelial cell cultures (EP) and their effect on the expression of apoptosis/autophagy and invasion related genes of benign myoepithelial (Myo) cell cultures. RESULTS The results revealed round structures with a mean size of 153.6 (±0.2) nm, with typical MV morphology. CD63 quantification indicated that EP cell culture at 70%-80% confluence secreted 3.088 × 108 MV/mL. Overall, Myo exposed to MVs derived from EP showed both up- and downregulation of tumorigenesis promoting genes. MVs from EP cells promoted cell death of Myo cells and positively modulate BAX, SURVIVIN, LC3B, MMP-2, and MMP-9 expression. Furthermore, an increasing of MMP-2 and MMP-9 secretion by Myo was observed after MV exposure. CONCLUSIONS These findings suggest that MVs from EP modulate autophagy of Myo cells, which may, in part, explain the disappearance of these cells in in situ areas of invasive carcinoma ex-pleomorphic adenoma. Additionally, the overexpression of MMPs contributes to the development of an invasive phenotype of Myo cells, which could favor the dissolution of the basement membrane during tumorigenesis process.
Collapse
Affiliation(s)
| | | | | | | | - Gabriel Bernardo Rena
- Cell Biology and Oral Pathology Division, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Ana Paula Dias Demasi
- Cell Biology and Oral Pathology Division, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| | - Lucas Novaes Teixeira
- Cell Biology and Oral Pathology Division, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| |
Collapse
|
44
|
Gao PF, Huang D, Wen JY, Liu W, Zhang HW. Advances in the role of exosomal non-coding RNA in the development, diagnosis, and treatment of gastric cancer (Review). Mol Clin Oncol 2020; 13:101-108. [PMID: 32714531 DOI: 10.3892/mco.2020.2068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are small vesicles secreted by a variety of cells that contain vrious biological macromolecules, including RNA, non-coding RNA and protein. An increasing number of studies have demonstrated that exosomes and particularly the non-coding RNAs they contain, serve important roles in many cellular processes, including the transmission of information. It is well established that the occurrence and development of gastric cancer, one of the four most common malignant tumors worldwide, involves the transmission of information. Based on the urgent need for the elucidation of the mechanism involved in this process, as well as advances in the diagnosis and treatment of gastric cancer, numerous reports have assessed the association between non-coding RNAs in exosomes and gastric cancer. The purpose of the present review was to summarize recent evidence on certain non-coding RNAs associated with the development, diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Peng-Fei Gao
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Da Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jun-Yan Wen
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wei Liu
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hong-Wu Zhang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
45
|
András IE, Sewell BB, Toborek M. HIV-1 and Amyloid Beta Remodel Proteome of Brain Endothelial Extracellular Vesicles. Int J Mol Sci 2020; 21:ijms21082741. [PMID: 32326569 PMCID: PMC7215366 DOI: 10.3390/ijms21082741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 01/01/2023] Open
Abstract
Amyloid beta (Aβ) depositions are more abundant in HIV-infected brains. The blood-brain barrier, with its backbone created by endothelial cells, is assumed to be a core player in Aβ homeostasis and may contribute to Aβ accumulation in the brain. Exposure to HIV increases shedding of extracellular vesicles (EVs) from human brain endothelial cells and alters EV-Aβ levels. EVs carrying various cargo molecules, including a complex set of proteins, can profoundly affect the biology of surrounding neurovascular unit cells. In the current study, we sought to examine how exposure to HIV, alone or together with Aβ, affects the surface and total proteomic landscape of brain endothelial EVs. By using this unbiased approach, we gained an unprecedented, high-resolution insight into these changes. Our data suggest that HIV and Aβ profoundly remodel the proteome of brain endothelial EVs, altering the pathway networks and functional interactions among proteins. These events may contribute to the EV-mediated amyloid pathology in the HIV-infected brain and may be relevant to HIV-1-associated neurocognitive disorders.
Collapse
|
46
|
András IE, Garcia-Contreras M, Yanick C, Perez P, Sewell B, Durand L, Toborek M. Extracellular vesicle-mediated amyloid transfer to neural progenitor cells: implications for RAGE and HIV infection. Mol Brain 2020; 13:21. [PMID: 32066471 PMCID: PMC7027073 DOI: 10.1186/s13041-020-0562-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Amyloid beta (Aβ) deposition was demonstrated to be elevated in the brains of HIV-infected patients and associated with neurocognitive decline; however, the mechanisms of these processes are poorly understood. The goal of the current study was to address the hypothesis that Aβ can be transferred via extracellular vesicles (ECVs) from brain endothelial cells to neural progenitor cells (NPCs) and that this process can contribute to abnormal NPC differentiation. Mechanistically, we focused on the role of the receptor for advanced glycation end products (RAGE) and activation of the inflammasome in these events. ECVs loaded with Aβ (Aβ-ECVs) were readily taken up by NPCs and Aβ partly colocalized with the inflammasome markers ASC and NLRP3 in the nuclei of the recipient NPCs. This colocalization was affected by HIV and RAGE inhibition by a high-affinity specific inhibitor FPS-ZM1. Blocking RAGE resulted also in an increase in ECV number produced by brain endothelial cells, decreased Aβ content in ECVs, and diminished Aβ-ECVs transfer to NPC nuclei. Interestingly, both Aβ-ECVs and RAGE inhibition altered NPC differentiation. Overall, these data indicate that RAGE inhibition affects brain endothelial ECV release and Aβ-ECVs transfer to NPCs. These events may modulate ECV-mediated amyloid pathology in the HIV-infected brain and contribute to the development of HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Ibolya E. András
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Marta Garcia-Contreras
- Diabetes Research Institute, University of Miami School of Medicine, 1450 NW 10th Ave, Miami, FL 33136-1011 USA
| | - Christopher Yanick
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Paola Perez
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Brice Sewell
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Leonardo Durand
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| |
Collapse
|
47
|
Baskara-Yhuellou I, Tost J. The impact of microRNAs on alterations of gene regulatory networks in allergic diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:237-312. [PMID: 32085883 DOI: 10.1016/bs.apcsb.2019.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allergic diseases including asthma are worldwide on the rise and contribute significantly to health expenditures. Allergic diseases are prototypic diseases with a strong gene by environment interaction component and epigenetic mechanisms might mediate the effects of the environment on the disease phenotype. MicroRNAs, small non-coding RNAs (miRNAs), regulate gene expression post-transcriptionally. Functional single-stranded miRNAs are generated in multiple steps of enzymatic processing from their precursors and mature miRNAs are included into the RNA-induced silencing complex (RISC). They imperfectly base-pair with the 3'UTR region of targeted genes leading to translational repression or mRNA decay. The cellular context and microenvironment as well the isoform of the mRNA control the dynamics and complexity of the regulatory circuits induced by miRNAs that regulate cell fate decisions and function. MiR-21, miR-146a/b and miR-155 are among the best understood miRNAs of the immune system and implicated in different diseases including allergic diseases. MiRNAs are implicated in the induction of the allergy reinforcing the Th2 phenotype (miR-19a, miR-24, miR-27), while other miRNAs promote regulatory T cells associated with allergen tolerance or unresponsiveness. In the current chapter we describe in detail the biogenesis and regulatory function of miRNAs and summarize current knowledge on miRNAs in allergic diseases and allergy relevant cell fate decisions focusing mainly on immune cells. Furthermore, we evoke the principles of regulatory loops and feedback mechanisms involving miRNAs on examples with relevance for allergic diseases. Finally, we show the potential of miRNAs and exosomes containing miRNAs present in several biological fluids that can be exploited with non-invasive procedures for diagnostic and potentially therapeutic purposes.
Collapse
Affiliation(s)
- Indoumady Baskara-Yhuellou
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| |
Collapse
|
48
|
de la Torre P, Pérez-Lorenzo MJ, Alcázar-Garrido Á, Flores AI. Cell-Based Nanoparticles Delivery Systems for Targeted Cancer Therapy: Lessons from Anti-Angiogenesis Treatments. Molecules 2020; 25:E715. [PMID: 32046010 PMCID: PMC7038177 DOI: 10.3390/molecules25030715] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023] Open
Abstract
The main strategy of cancer treatment has focused on attacking the tumor cells. Some cancers initially responsive to chemotherapy become treatment-resistant. Another strategy is to block the formation of tumor vessels. However, tumors also become resistant to anti-angiogenic treatments, mostly due to other cells and factors present in the tumor microenvironment, and hypoxia in the central part of the tumor. The need for new cancer therapies is significant. The use of nanoparticle-based therapy will improve therapeutic efficacy and targeting, while reducing toxicity. However, due to inefficient accumulation in tumor sites, clearance by reticuloendothelial organs and toxicity, internalization or conjugation of drug-loaded nanoparticles (NPs) into mesenchymal stem cells (MSCs) can increase efficacy by actively delivering them into the tumor microenvironment. Nanoengineering MSCs with drug-loaded NPs can increase the drug payload delivered to tumor sites due to the migratory and homing abilities of MSCs. However, MSCs have some disadvantages, and exosomes and membranes from different cell types can be used to transport drug-loaded NPs actively to tumors. This review gives an overview of different cancer approaches, with a focus on hypoxia and the emergence of NPs as drug-delivery systems and MSCs as cellular vehicles for targeted delivery due to their tumor-homing potential.
Collapse
Affiliation(s)
| | | | | | - Ana I. Flores
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas 12), Avda. de Cordoba s/n, 28041 Madrid, Spain; (P.d.l.T.); (M.J.P.-L.)
| |
Collapse
|
49
|
Cell-to-Cell Communication in Learning and Memory: From Neuro- and Glio-Transmission to Information Exchange Mediated by Extracellular Vesicles. Int J Mol Sci 2019; 21:ijms21010266. [PMID: 31906013 PMCID: PMC6982255 DOI: 10.3390/ijms21010266] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/14/2019] [Accepted: 12/28/2019] [Indexed: 02/06/2023] Open
Abstract
Most aspects of nervous system development and function rely on the continuous crosstalk between neurons and the variegated universe of non-neuronal cells surrounding them. The most extraordinary property of this cellular community is its ability to undergo adaptive modifications in response to environmental cues originating from inside or outside the body. Such ability, known as neuronal plasticity, allows long-lasting modifications of the strength, composition and efficacy of the connections between neurons, which constitutes the biochemical base for learning and memory. Nerve cells communicate with each other through both wiring (synaptic) and volume transmission of signals. It is by now clear that glial cells, and in particular astrocytes, also play critical roles in both modes by releasing different kinds of molecules (e.g., D-serine secreted by astrocytes). On the other hand, neurons produce factors that can regulate the activity of glial cells, including their ability to release regulatory molecules. In the last fifteen years it has been demonstrated that both neurons and glial cells release extracellular vesicles (EVs) of different kinds, both in physiologic and pathological conditions. Here we discuss the possible involvement of EVs in the events underlying learning and memory, in both physiologic and pathological conditions.
Collapse
|
50
|
Mathews PM, Levy E. Exosome Production Is Key to Neuronal Endosomal Pathway Integrity in Neurodegenerative Diseases. Front Neurosci 2019; 13:1347. [PMID: 31911768 PMCID: PMC6920185 DOI: 10.3389/fnins.2019.01347] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/29/2019] [Indexed: 12/28/2022] Open
Abstract
Dysfunction of the endosomal–lysosomal system is a prominent pathogenic factor in Alzheimer’s disease (AD) and other neurodevelopmental and neurodegenerative disorders. We and others have extensively characterized the neuronal endosomal pathway pathology that results from either triplication of the amyloid-β precursor protein (APP) gene in Down syndrome (DS) or from expression of the apolipoprotein E ε4 allele (APOE4), the greatest genetic risk factor for late-onset AD. More recently brain exosomes, extracellular vesicles that are generated within and released from endosomal compartments, have been shown to be altered in DS and by APOE4 expression. In this review, we discuss the emerging data arguing for an interdependence between exosome production and endosomal pathway integrity in the brain. In vitro and in vivo studies indicate that altered trafficking through the endosomal pathway or compromised cargo turnover within lysosomes can affect the production, secretion, and content of exosomes. Conversely, exosome biogenesis can affect the endosomal–lysosomal system. Indeed, we propose that efficient exosome release helps to modulate flux through the neuronal endosomal pathway by decompressing potential “traffic jams.” Exosome secretion may have the added benefit of unburdening the neuron’s lysosomal system by delivering endosomal–lysosomal material into the extracellular space, where other cell types may contribute to the degradation of neuronal debris. Thus, maintaining robust neuronal exosome production may prevent or mitigate endosomal and lysosomal abnormalities linked to aging and neurodegenerative diseases. While the current evidence suggests that the exosomal system in the brain can be modulated both by membrane lipid composition and the expression of key proteins that contribute to the formation and secretion of exosomes, how exosomal pathway-regulatory elements sense and respond to perturbations in the endosomal pathway is not well understood. Based upon findings from the extensively studied DS and APOE4 models, we propose that enhanced neuronal exosome secretion can be a protective response, reducing pathological disruption of the endosomal–lysosomal system in disease-vulnerable neurons. Developing therapeutic approaches that help to maintain or enhance neuronal exosome biogenesis and release may be beneficial in a range of disorders of the central nervous system.
Collapse
Affiliation(s)
- Paul M Mathews
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,Department of Psychiatry, New York University Langone Health, New York, NY, United States.,NYU Neuroscience Institute, New York University Langone Health, New York, NY, United States
| | - Efrat Levy
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,Department of Psychiatry, New York University Langone Health, New York, NY, United States.,NYU Neuroscience Institute, New York University Langone Health, New York, NY, United States.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY, United States
| |
Collapse
|