1
|
Rezaei M, Mehta JL, Zadeh GM, Khedri A, Rezaei HB. Myosin light chain phosphatase is a downstream target of Rho-kinase in endothelin-1-induced transactivation of the TGF-β receptor. Cell Biochem Biophys 2024; 82:1109-1120. [PMID: 38834831 DOI: 10.1007/s12013-024-01262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Rho-kinase (ROCK) regulates actomyosin contraction, coronary vasospasm, and cytoskeleton dynamics. ROCK and of NADPH oxidase (NOX) play an essential role in cardiovascular disease and proteoglycan synthesis, which promotes atherosclerosis by trapping low density lipoprotein. ROCK is activated by endothelin-1 (ET1) and transactivates the transforming growth factor beta receptor (TGFβR1), intensifying Smad signaling and proteoglycan production. This study aimed to identify the role of myosin light chain phosphatase (MLCP) as a downstream target of ROCK in TβR1 transactivation. METHODS Vascular smooth muscle cells were treated with ET1 and inhibitors of ROCK and MLCP were added. The phosphorylation levels of Smad2C, myosin light chain (MLC), and MLCP were monitored by western blot, and the mRNA expression of chondroitin 4-O-sulfotransferase 1 (C4ST1) was assessed by quantitative real-time PCR. RESULTS We examined ROCK's role in ET1-induced TGFβR1 activation. ROCK phosphorylated MLCP at the MYPT1 T853 residue, blocked by the ROCK inhibitor Y27632. ROCK also increased MLC phosphorylation and actomyosin contraction in response to ET1, enhanced by the phosphatase inhibitor Calyculin A. Calyculin A also increased C4ST1 expression, GAG-chain synthesizing enzymes. CONCLUSIONS This work suggests that ROCK is involved in ET1-mediated TβR1 activation through increased MLCP phosphorylation, which leads to Smad2C phosphorylation and stimulates C4ST1 expression.
Collapse
Affiliation(s)
- Maryam Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jawahar Lal Mehta
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ghorban Mohammad Zadeh
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azam Khedri
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Hyodo T, Asano-Inami E, Ito S, Sugiyama M, Nawa A, Rahman ML, Hasan MN, Mihara Y, Lam VQ, Karnan S, Ota A, Tsuzuki S, Hamaguchi M, Hosokawa Y, Konishi H. Leucine zipper protein 1 (LUZP1) regulates the constriction velocity of the contractile ring during cytokinesis. FEBS J 2024; 291:927-944. [PMID: 38009294 DOI: 10.1111/febs.17017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
There has been a great deal of research on cell division and its mechanisms; however, its processes still have many unknowns. To find novel proteins that regulate cell division, we performed the screening using siRNAs and/or the expression plasmid of the target genes and identified leucine zipper protein 1 (LUZP1). Recent studies have shown that LUZP1 interacts with various proteins and stabilizes the actin cytoskeleton; however, the function of LUZP1 in mitosis is not known. In this study, we found that LUZP1 colocalized with the chromosomal passenger complex (CPC) at the centromere in metaphase and at the central spindle in anaphase and that these LUZP1 localizations were regulated by CPC activity and kinesin family member 20A (KIF20A). Mass spectrometry analysis identified that LUZP1 interacted with death-associated protein kinase 3 (DAPK3), one regulator of the cleavage furrow ingression in cytokinesis. In addition, we found that LUZP1 also interacted with myosin light chain 9 (MYL9), a substrate of DAPK3, and comprehensively inhibited MYL9 phosphorylation by DAPK3. In line with a known role for MYL9 in the actin-myosin contraction, LUZP1 suppression accelerated the constriction velocity at the division plane in our time-lapse analysis. Our study indicates that LUZP1 is a novel regulator for cytokinesis that regulates the constriction velocity of the contractile ring.
Collapse
Affiliation(s)
- Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Eri Asano-Inami
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Japan
| | | | - Mai Sugiyama
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Japan
| | - Akihiro Nawa
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Japan
| | - Md Lutfur Rahman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Muhammad Nazmul Hasan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yuko Mihara
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Vu Quang Lam
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | | | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
3
|
Zhao X, Cao Y, Li H, Wu Y, Yao Y, Wang L, Li J, Yao Y. Development of myofibers and muscle transcriptomic analysis in growing Yili geese. Poult Sci 2024; 103:103328. [PMID: 38157792 PMCID: PMC10790089 DOI: 10.1016/j.psj.2023.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
In poultries, muscle growth is a quantitative trait controlled by multiple genes. The regulatory mechanisms governing muscle tissue growth and development in poultry, particularly during the early stages of growth, are intricate. Through the examination of leg muscle transcripts from Yili geese during various stages of development, this study offers valuable insights into the molecular mechanisms underlying the growth and development of Yili geese. This study aimed to perform a comparative analysis of the histological characteristics of leg muscles and the mRNA expression profiles of leg muscles in Yili geese at different ages (2, 4, 6, 8, and 10 wk). The objective was to identify differentially expressed genes related to muscle development in Yili geese and utilize bioinformatics to predict the potential biological functions of these genes. Through histological studies on leg muscle tissues, it was discerned that male geese at 4 wk exhibit a significantly reduced muscle fiber density in comparison to females (P < 0.01). In contrast, by the time they reach 6, 8, and 10 wk, their muscle fiber diameter and cross-sectional dimensions significantly outpace the females (P < 0.01). With the advancement in age, muscle fiber density tends to decrease. It is worth noting that 4- and 6-wk-old male geese have a substantially elevated muscle fiber density when matched against females (P < 0.01). Conversely, at the age of 10 wk, their muscle fiber density is notably inferior to the females (P < 0.01). Furthermore, male geese exhibit the most rapid increase in muscle fiber diameter and cross-sectional area between 4 and 6 wk of age. The density of muscle fibers in these geese significantly decreases from 4 to 8 wk. In contrast, female geese show the most pronounced growth in muscle fiber diameter and cross-sectional area between 2 and 6 wk, with a swift decline in density following the 6-wk mark, accompanied by a gradual reduction in the rate of muscle fiber growth. A comprehensive analysis of the leg muscle mRNA expression profiles from 12 Yili geese generated a cumulative total of 502,065,268 valid sequence reads, corresponding to a data volume of 75.30 Gb. In a comparative analysis between 4-wk-old and 2-wk-old groups (T4 vs. T2), 8-wk-old and 2-wk-old groups (T8 vs. T2), and 8-wk-old and 4-wk-old groups (T8 vs. T4), we identified 1,700, 1,583, and 221 differentially expressed genes (DEGs), respectively. Differentially expressed genes were significantly enriched in Gene Ontology (GO) terms such as organelle organization, cytoskeletal protein binding, cation transport, myosin complex, and actin cytoskeleton. Among the significantly enriched signaling pathways, 5 pathways were found to be significantly related to growth and development: adhesion patch, extracellular matrix receptor interaction, tight junction, TGF-β signaling pathway, and MAPK signaling pathway, with a total of 38 differentially differentiated genes contained in these 5 pathways, and it was hypothesized that the above pathways as well as the DEGs in the pathways played an important role in the regulation of early growth and development of the Yili goose. This investigation serves as a foundational reference for elucidating the molecular regulatory mechanisms involved in the development of goose muscle. Furthermore, it contributes to the expansion of the theoretical framework concerning the genetic regulation of muscle growth in geese.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Yan Cao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China.
| | - Yingping Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - YingYing Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Ling Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jiahui Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Yang Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
4
|
Szedlak P, Steele D, Hopkins P. Cardiac muscle physiology. BJA Educ 2023; 23:350-357. [PMID: 37600215 PMCID: PMC10435365 DOI: 10.1016/j.bjae.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
- P. Szedlak
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - P.M. Hopkins
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
- University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Kazmierczak K, Liang J, Maura LG, Scott NK, Szczesna-Cordary D. Phosphorylation Mimetic of Myosin Regulatory Light Chain Mitigates Cardiomyopathy-Induced Myofilament Impairment in Mouse Models of RCM and DCM. Life (Basel) 2023; 13:1463. [PMID: 37511838 PMCID: PMC10381296 DOI: 10.3390/life13071463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
This study focuses on mimicking constitutive phosphorylation in the N-terminus of the myosin regulatory light chain (S15D-RLC) as a rescue strategy for mutation-induced cardiac dysfunction in transgenic (Tg) models of restrictive (RCM) and dilated (DCM) cardiomyopathy caused by mutations in essential (ELC, MYL3 gene) or regulatory (RLC, MYL2 gene) light chains of myosin. Phosphomimetic S15D-RLC was reconstituted in left ventricular papillary muscle (LVPM) fibers from two mouse models of cardiomyopathy, RCM-E143K ELC and DCM-D94A RLC, along with their corresponding Tg-ELC and Tg-RLC wild-type (WT) mice. The beneficial effects of S15D-RLC in rescuing cardiac function were manifested by the S15D-RLC-induced destabilization of the super-relaxed (SRX) state that was observed in both models of cardiomyopathy. S15D-RLC promoted a shift from the SRX state to the disordered relaxed (DRX) state, increasing the number of heads readily available to interact with actin and produce force. Additionally, S15D-RLC reconstituted with fibers demonstrated significantly higher maximal isometric force per cross-section of muscle compared with reconstitution with WT-RLC protein. The effects of the phosphomimetic S15D-RLC were compared with those observed for Omecamtiv Mecarbil (OM), a myosin activator shown to bind to the catalytic site of cardiac myosin and increase myocardial contractility. A similar SRX↔DRX equilibrium shift was observed in OM-treated fibers as in S15D-RLC-reconstituted preparations. Additionally, treatment with OM resulted in significantly higher maximal pCa 4 force per cross-section of muscle fibers in both cardiomyopathy models. Our results suggest that both treatments with S15D-RLC and OM may improve the function of myosin motors and cardiac muscle contraction in RCM-ELC and DCM-RLC mice.
Collapse
Affiliation(s)
- Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Luis G Maura
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Natissa K Scott
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| |
Collapse
|
6
|
Hitsumoto T, Tsukamoto O, Matsuoka K, Li J, Liu L, Kuramoto Y, Higo S, Ogawa S, Fujino N, Yoshida S, Kioka H, Kato H, Hakui H, Saito Y, Okamoto C, Inoue H, Hyejin J, Ueda K, Segawa T, Nishimura S, Asano Y, Asanuma H, Tani A, Imamura R, Komagawa S, Kanai T, Takamura M, Sakata Y, Kitakaze M, Haruta JI, Takashima S. Restoration of Cardiac Myosin Light Chain Kinase Ameliorates Systolic Dysfunction by Reducing Superrelaxed Myosin. Circulation 2023; 147:1902-1918. [PMID: 37128901 PMCID: PMC10270284 DOI: 10.1161/circulationaha.122.062885] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cardiac-specific myosin light chain kinase (cMLCK), encoded by MYLK3, regulates cardiac contractility through phosphorylation of ventricular myosin regulatory light chain. However, the pathophysiological and therapeutic implications of cMLCK in human heart failure remain unclear. We aimed to investigate whether cMLCK dysregulation causes cardiac dysfunction and whether the restoration of cMLCK could be a novel myotropic therapy for systolic heart failure. METHODS We generated the knock-in mice (Mylk3+/fs and Mylk3fs/fs) with a familial dilated cardiomyopathy-associated MYLK3 frameshift mutation (MYLK3+/fs) that had been identified previously by us (c.1951-1G>T; p.P639Vfs*15) and the human induced pluripotent stem cell-derived cardiomyocytes from the carrier of the mutation. We also developed a new small-molecule activator of cMLCK (LEUO-1154). RESULTS Both mice (Mylk3+/fs and Mylk3fs/fs) showed reduced cMLCK expression due to nonsense-mediated messenger RNA decay, reduced MLC2v (ventricular myosin regulatory light chain) phosphorylation in the myocardium, and systolic dysfunction in a cMLCK dose-dependent manner. Consistent with this result, myocardium from the mutant mice showed an increased ratio of cardiac superrelaxation/disordered relaxation states that may contribute to impaired cardiac contractility. The phenotypes observed in the knock-in mice were rescued by cMLCK replenishment through the AAV9_MYLK3 vector. Human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation reduced cMLCK expression by 50% and contractile dysfunction, accompanied by an increased superrelaxation/disordered relaxation ratio. CRISPR-mediated gene correction, or cMLCK replenishment by AAV9_MYLK3 vector, successfully recovered cMLCK expression, the superrelaxation/disordered relaxation ratio, and contractile dysfunction. LEUO-1154 increased human cMLCK activity ≈2-fold in the Vmax for ventricular myosin regulatory light chain phosphorylation without affecting the Km. LEUO-1154 treatment of human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation restored the ventricular myosin regulatory light chain phosphorylation level and superrelaxation/disordered relaxation ratio and improved cardiac contractility without affecting calcium transients, indicating that the cMLCK activator acts as a myotrope. Finally, human myocardium from advanced heart failure with a wide variety of causes had a significantly lower MYLK3/PPP1R12B messenger RNA expression ratio than control hearts, suggesting an altered balance between myosin regulatory light chain kinase and phosphatase in the failing myocardium, irrespective of the causes. CONCLUSIONS cMLCK dysregulation contributes to the development of cardiac systolic dysfunction in humans. Our strategy to restore cMLCK activity could form the basis of a novel myotropic therapy for advanced systolic heart failure.
Collapse
Affiliation(s)
- Tatsuro Hitsumoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Osamu Tsukamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Ken Matsuoka
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Junjun Li
- Department of Cardiovascular Surgery (J.L., L.L.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Li Liu
- Department of Cardiovascular Surgery (J.L., L.L.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Yuki Kuramoto
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Shuichiro Higo
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Shou Ogawa
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Noboru Fujino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University. Kanazawa, Ishikawa, Japan (N.F., S.Y., M.T.)
| | - Shohei Yoshida
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University. Kanazawa, Ishikawa, Japan (N.F., S.Y., M.T.)
| | - Hidetaka Kioka
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Hideyuki Hakui
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Yuki Saito
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Chisato Okamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Hijiri Inoue
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Jo Hyejin
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Kyoko Ueda
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Takatsugu Segawa
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Shunsuke Nishimura
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Yoshihiro Asano
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (Y.A.)
| | - Hiroshi Asanuma
- Department of Internal Medicine, Meiji University of Integrative Medicine, Nantan, Kyoto, Japan (H.A.)
| | - Akiyoshi Tani
- Compound Library Screening Center (A.T.), Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Riyo Imamura
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan (R.I.)
| | - Shinsuke Komagawa
- Lead Explorating Units (S.K., T.K., J.-i.H.), Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Toshio Kanai
- Lead Explorating Units (S.K., T.K., J.-i.H.), Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University. Kanazawa, Ishikawa, Japan (N.F., S.Y., M.T.)
| | - Yasushi Sakata
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | | | - Jun-ichi Haruta
- Lead Explorating Units (S.K., T.K., J.-i.H.), Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| |
Collapse
|
7
|
Jani V, Aslam MI, Fenwick AJ, Ma W, Gong H, Milburn G, Nissen D, Cubero Salazar IM, Hanselman O, Mukherjee M, Halushka MK, Margulies KB, Campbell KS, Irving TC, Kass DA, Hsu S. Right Ventricular Sarcomere Contractile Depression and the Role of Thick Filament Activation in Human Heart Failure With Pulmonary Hypertension. Circulation 2023; 147:1919-1932. [PMID: 37194598 PMCID: PMC10270283 DOI: 10.1161/circulationaha.123.064717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Right ventricular (RV) contractile dysfunction commonly occurs and worsens outcomes in patients with heart failure with reduced ejection fraction and pulmonary hypertension (HFrEF-PH). However, such dysfunction often goes undetected by standard clinical RV indices, raising concerns that they may not reflect aspects of underlying myocyte dysfunction. We thus sought to characterize RV myocyte contractile depression in HFrEF-PH, identify those components reflected by clinical RV indices, and uncover underlying biophysical mechanisms. METHODS Resting, calcium-, and load-dependent mechanics were prospectively studied in permeabilized RV cardiomyocytes isolated from explanted hearts from 23 patients with HFrEF-PH undergoing cardiac transplantation and 9 organ donor controls. RESULTS Unsupervised machine learning using myocyte mechanical data with the highest variance yielded 2 HFrEF-PH subgroups that in turn mapped to patients with decompensated or compensated clinical RV function. This correspondence was driven by reduced calcium-activated isometric tension in decompensated clinical RV function, whereas surprisingly, many other major myocyte contractile measures including peak power and myocyte active stiffness were similarly depressed in both groups. Similar results were obtained when subgroups were first defined by clinical indices, and then myocyte mechanical properties in each group compared. To test the role of thick filament defects, myofibrillar structure was assessed by x-ray diffraction of muscle fibers. This revealed more myosin heads associated with the thick filament backbone in decompensated clinical RV function, but not compensated clinical RV function, as compared with controls. This corresponded to reduced myosin ATP turnover in decompensated clinical RV function myocytes, indicating less myosin in a crossbridge-ready disordered-relaxed (DRX) state. Altering DRX proportion (%DRX) affected peak calcium-activated tension in the patient groups differently, depending on their basal %DRX, highlighting potential roles for precision-guided therapeutics. Last, increasing myocyte preload (sarcomere length) increased %DRX 1.5-fold in controls but only 1.2-fold in both HFrEF-PH groups, revealing a novel mechanism for reduced myocyte active stiffness and by extension Frank-Starling reserve in human heart failure. CONCLUSIONS Although there are many RV myocyte contractile deficits in HFrEF-PH, commonly used clinical indices only detect reduced isometric calcium-stimulated force, which is related to deficits in basal and recruitable %DRX myosin. Our results support use of therapies to increase %DRX and enhance length-dependent recruitment of DRX myosin heads in such patients.
Collapse
Affiliation(s)
- Vivek Jani
- Department of Biomedical Engineering (V.J., O.H., D.A.K.), Johns Hopkins School of Medicine, Baltimore, MD
- Division of Cardiology, Department of Medicine (V.J., A.J.F., I.M.C.S., M.M., D.A.K., S.H.), Johns Hopkins School of Medicine, Baltimore, MD
| | - M. Imran Aslam
- Division of Cardiology, Department of Medicine, University of Texas San Antonio School of Medicine (M.I.A.)
| | - Axel J. Fenwick
- Division of Cardiology, Department of Medicine (V.J., A.J.F., I.M.C.S., M.M., D.A.K., S.H.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Weikang Ma
- Biophysics Collaborative Access Team (BioCAT), Department of Biology, Illinois Institute of Technology, Chicago (W.M., H.G., D.N., T.C.I.)
| | - Henry Gong
- Biophysics Collaborative Access Team (BioCAT), Department of Biology, Illinois Institute of Technology, Chicago (W.M., H.G., D.N., T.C.I.)
| | - Gregory Milburn
- Division of Cardiovascular Medicine, Department of Medicine, University of Kentucky, Lexington (G.M., K.S.C.)
| | - Devin Nissen
- Biophysics Collaborative Access Team (BioCAT), Department of Biology, Illinois Institute of Technology, Chicago (W.M., H.G., D.N., T.C.I.)
| | - Ilton M. Cubero Salazar
- Division of Cardiology, Department of Medicine (V.J., A.J.F., I.M.C.S., M.M., D.A.K., S.H.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Olivia Hanselman
- Department of Biomedical Engineering (V.J., O.H., D.A.K.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Monica Mukherjee
- Division of Cardiology, Department of Medicine (V.J., A.J.F., I.M.C.S., M.M., D.A.K., S.H.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Marc K. Halushka
- Division of Cardiovascular Pathology, Department of Pathology (M.K.H.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Kenneth B. Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.B.M.)
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, Department of Medicine, University of Kentucky, Lexington (G.M., K.S.C.)
| | - Thomas C. Irving
- Biophysics Collaborative Access Team (BioCAT), Department of Biology, Illinois Institute of Technology, Chicago (W.M., H.G., D.N., T.C.I.)
| | - David A. Kass
- Department of Biomedical Engineering (V.J., O.H., D.A.K.), Johns Hopkins School of Medicine, Baltimore, MD
- Division of Cardiology, Department of Medicine (V.J., A.J.F., I.M.C.S., M.M., D.A.K., S.H.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Steven Hsu
- Division of Cardiology, Department of Medicine (V.J., A.J.F., I.M.C.S., M.M., D.A.K., S.H.), Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
8
|
Jani V, Aslam MI, Fenwick AJ, Ma W, Gong H, Milburn G, Nissen D, Salazar IC, Hanselman O, Mukherjee M, Halushka MK, Margulies KB, Campbell K, Irving TC, Kass DA, Hsu S. Right Ventricular Sarcomere Contractile Depression and the Role of Thick Filament Activation in Human Heart Failure with Pulmonary Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531988. [PMID: 36945606 PMCID: PMC10029011 DOI: 10.1101/2023.03.09.531988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Rationale Right ventricular (RV) contractile dysfunction commonly occurs and worsens outcomes in heart failure patients with reduced ejection fraction and pulmonary hypertension (HFrEF-PH). However, such dysfunction often goes undetected by standard clinical RV indices, raising concerns that they may not reflect aspects of underlying myocyte dysfunction. Objective To determine components of myocyte contractile depression in HFrEF-PH, identify those reflected by clinical RV indices, and elucidate their underlying biophysical mechanisms. Methods and Results Resting, calcium- and load-dependent mechanics were measured in permeabilized RV cardiomyocytes isolated from explanted hearts from 23 HFrEF-PH patients undergoing cardiac transplantation and 9 organ-donor controls. Unsupervised machine learning using myocyte mechanical data with the highest variance yielded two HFrEF-PH subgroups that in turn mapped to patients with depressed (RVd) or compensated (RVc) clinical RV function. This correspondence was driven by reduced calcium-activated isometric tension in RVd, while surprisingly, many other major myocyte contractile measures including peak power, maximum unloaded shortening velocity, and myocyte active stiffness were similarly depressed in both groups. Similar results were obtained when subgroups were first defined by clinical indices, and then myocyte mechanical properties in each group compared. To test the role of thick-filament defects, myofibrillar structure was assessed by X-ray diffraction of muscle fibers. This revealed more myosin heads associated with the thick filament backbone in RVd but not RVc, as compared to controls. This corresponded to reduced myosin ATP turnover in RVd myocytes, indicating less myosin in a cross-bridge ready disordered-relaxed (DRX) state. Altering DRX proportion (%DRX) affected peak calcium-activated tension in the patient groups differently, depending on their basal %DRX, highlighting potential roles for precision-guided therapeutics. Lastly, increasing myocyte preload (sarcomere length) increased %DRX 1.5-fold in controls but only 1.2-fold in both HFrEF-PH groups, revealing a novel mechanism for reduced myocyte active stiffness and by extension Frank-Starling reserve in human HF. Conclusions While there are multiple RV myocyte contractile deficits In HFrEF-PH, clinical indices primarily detect reduced isometric calcium-stimulated force related to deficits in basal and recruitable %DRX myosin. Our results support use of therapies to increase %DRX and enhance length-dependent recruitment of DRX myosin heads in such patients.
Collapse
|
9
|
Le G, Baumann CW, Warren GL, Lowe DA. In vivo potentiation of muscle torque is enhanced in female mice through estradiol-estrogen receptor signaling. J Appl Physiol (1985) 2023; 134:722-730. [PMID: 36735234 PMCID: PMC10027088 DOI: 10.1152/japplphysiol.00731.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023] Open
Abstract
Estradiol affects several properties of skeletal muscle in females including strength. Here, we developed an approach to measure in vivo posttetanic twitch potentiation (PTP) of the anterior crural muscles of anesthetized mice and tested the hypothesis that 17β-estradiol (E2) enhances PTP through estrogen receptor (ER) signaling. Peak torques of potentiated twitches were ∼40%-60% greater than those of unpotentiated twitches and such PTP was greater in ovary-intact mice, or ovariectomized (Ovx) mice treated with E2, compared with Ovx mice (P ≤ 0.047). PTP did not differ between mice with and without ERα ablated in skeletal muscle fibers (P = 0.347). Treatment of ovary-intact and Ovx mice with ERβ antagonist and agonist (PHTPP and DPN, respectively) did not affect PTP (P ≥ 0.258). Treatment with G1, an agonist of the G protein-coupled estrogen receptor (GPER), significantly increased PTP in Ovx mice from 41 ± 10% to 66 ± 21% (means ± SD; P = 0.034). Collectively, these data indicate that E2 signals through GPER, and not ERα or ERβ, in skeletal muscles of female mice to augment an in vivo parameter of strength, namely, PTP.NEW & NOTEWORTHY A novel in vivo approach was developed to measure potentiation of skeletal muscle torque in female mice and highlight another parameter of strength that is impacted by estradiol. The enhancement of PTP by estradiol is mediated distinctively through the G-protein estrogen receptor, GPER.
Collapse
Affiliation(s)
- Gengyun Le
- Division of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Cory W Baumann
- Division of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Gordon L Warren
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia, United States
| | - Dawn A Lowe
- Division of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| |
Collapse
|
10
|
Gonçalves AN, Moura RS, Correia-Pinto J, Nogueira-Silva C. Intraluminal chloride regulates lung branching morphogenesis: involvement of PIEZO1/PIEZO2. Respir Res 2023; 24:42. [PMID: 36740669 PMCID: PMC9901166 DOI: 10.1186/s12931-023-02328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Clinical and experimental evidence shows lung fluid volume as a modulator of fetal lung growth with important value in treating fetal lung hypoplasia. Thus, understanding the mechanisms underlying these morphological dynamics has been the topic of multiple investigations with, however, limited results, partially due to the difficulty of capturing or recapitulating these movements in the lab. In this sense, this study aims to establish an ex vivo model allowing the study of lung fluid function in branching morphogenesis and identify the subsequent molecular/ cellular mechanisms. METHODS Ex vivo lung explant culture was selected as a model to study branching morphogenesis, and intraluminal injections were performed to change the composition of lung fluid. Distinct chloride (Cl-) concentrations (5.8, 29, 143, and 715 mM) or Cl- channels inhibitors [antracene-9-carboxylic acid (A9C), cystic fibrosis transmembrane conductance regulator inhibitor172 (CFTRinh), and calcium-dependent Cl- channel inhibitorA01 (CaCCinh)] were injected into lung lumen at two timepoints, day0 (D0) and D2. At D4, morphological and molecular analyses were performed in terms of branching morphogenesis, spatial distribution (immunofluorescence), and protein quantification (western blot) of mechanoreceptors (PIEZO1 and PIEZO2), neuroendocrine (bombesin, ghrelin, and PGP9.5) and smooth muscle [alpha-smooth muscle actin (α-SMA) and myosin light chain 2 (MLC2)] markers. RESULTS For the first time, we described effective intraluminal injections at D0 and D2 and demonstrated intraluminal movements at D4 in ex vivo lung explant cultures. Through immunofluorescence assay in in vivo and ex vivo branching morphogenesis, we show that PGP9.5 colocalizes with PIEZO1 and PIEZO2 receptors. Fetal lung growth is increased at higher [Cl-], 715 mM Cl-, through the overexpression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. In contrast, intraluminal injection of CFTRinh or CaCCinh decreases fetal lung growth and the expression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. Finally, the inhibition of PIEZO1/PIEZO2 by GsMTx4 decreases branching morphogenesis and ghrelin, bombesin, MLC2, and α-SMA expression in an intraluminal injection-independent manner. CONCLUSIONS Our results identify PIEZO1/PIEZO2 expressed in neuroendocrine cells as a regulator of fetal lung growth induced by lung fluid.
Collapse
Affiliation(s)
- Ana N. Gonçalves
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rute S. Moura
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal ,Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| | - Cristina Nogueira-Silva
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057, Braga, Portugal. .,Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal.
| |
Collapse
|
11
|
Kazmierczak K, Liang J, Gomez-Guevara M, Szczesna-Cordary D. Functional comparison of phosphomimetic S15D and T160D mutants of myosin regulatory light chain exchanged in cardiac muscle preparations of HCM and WT mice. Front Cardiovasc Med 2022; 9:988066. [PMID: 36204565 PMCID: PMC9530205 DOI: 10.3389/fcvm.2022.988066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 12/30/2022] Open
Abstract
In this study, we investigated the rescue potential of two phosphomimetic mutants of the myosin regulatory light chain (RLC, MYL2 gene), S15D, and T160D RLCs. S15D-RLC mimics phosphorylation of the established serine-15 site of the human cardiac RLC. T160D-RLC mimics the phosphorylation of threonine-160, identified by computational analysis as a high-score phosphorylation site of myosin RLC. Cardiac myosin and left ventricular papillary muscle (LVPM) fibers were isolated from a previously generated model of hypertrophic cardiomyopathy (HCM), Tg-R58Q, and Tg-wild-type (WT) mice. Muscle specimens were first depleted of endogenous RLC and then reconstituted with recombinant human cardiac S15D and T160D phosphomimetic RLCs. Preparations reconstituted with recombinant human cardiac WT-RLC and R58Q-RLC served as controls. Mouse myosins were then tested for the actin-activated myosin ATPase activity and LVPM fibers for the steady-state force development and Ca2+-sensitivity of force. The data showed that S15D-RLC significantly increased myosin ATPase activity compared with T160D-RLC or WT-RLC reconstituted preparations. The two S15D and T160D phosphomimetic RLCs were able to rescue Vmax of Tg-R58Q myosin reconstituted with recombinant R58Q-RLC, but the effect of S15D-RLC was more pronounced than T160D-RLC. Low tension observed for R58Q-RLC reconstituted LVPM from Tg-R58Q mice was equally rescued by both phosphomimetic RLCs. In the HCM Tg-R58Q myocardium, the S15D-RLC caused a shift from the super-relaxed (SRX) state to the disordered relaxed (DRX) state, and the number of heads readily available to interact with actin and produce force was increased. At the same time, T160D-RLC stabilized the SRX state at a level similar to R58Q-RLC reconstituted fibers. We report here on the functional superiority of the established S15 phospho-site of the human cardiac RLC vs. C-terminus T160-RLC, with S15D-RLC showing therapeutic potential in mitigating a non-canonical HCM behavior underlined by hypocontractile behavior of Tg-R58Q myocardium.
Collapse
|
12
|
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-To-Cell Communication in the Resistance Vasculature. Compr Physiol 2022; 12:3833-3867. [PMID: 35959755 DOI: 10.1002/cphy.c210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.
Collapse
Affiliation(s)
- D Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Meghan W Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Xinyan Eaton
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
13
|
Markandran K, Yu H, Song W, Lam DTUH, Madathummal MC, Ferenczi MA. Functional and Molecular Characterisation of Heart Failure Progression in Mice and the Role of Myosin Regulatory Light Chains in the Recovery of Cardiac Muscle Function. Int J Mol Sci 2021; 23:ijms23010088. [PMID: 35008512 PMCID: PMC8745055 DOI: 10.3390/ijms23010088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) as a result of myocardial infarction (MI) is a major cause of fatality worldwide. However, the cause of cardiac dysfunction succeeding MI has not been elucidated at a sarcomeric level. Thus, studying the alterations within the sarcomere is necessary to gain insights on the fundamental mechansims leading to HF and potentially uncover appropriate therapeutic targets. Since existing research portrays regulatory light chains (RLC) to be mediators of cardiac muscle contraction in both human and animal models, its role was further explored In this study, a detailed characterisation of the physiological changes (i.e., isometric force, calcium sensitivity and sarcomeric protein phosphorylation) was assessed in an MI mouse model, between 2D (2 days) and 28D post-MI, and the changes were related to the phosphorylation status of RLCs. MI mouse models were created via complete ligation of left anterior descending (LAD) coronary artery. Left ventricular (LV) papillary muscles were isolated and permeabilised for isometric force and Ca2+ sensitivity measurement, while the LV myocardium was used to assay sarcomeric proteins’ (RLC, troponin I (TnI) and myosin binding protein-C (MyBP-C)) phosphorylation levels and enzyme (myosin light chain kinase (MLCK), zipper interacting protein kinase (ZIPK) and myosin phosphatase target subunit 2 (MYPT2)) expression levels. Finally, the potential for improving the contractility of diseased cardiac papillary fibres via the enhancement of RLC phosphorylation levels was investigated by employing RLC exchange methods, in vitro. RLC phosphorylation and isometric force potentiation were enhanced in the compensatory phase and decreased in the decompensatory phase of HF failure progression, respectively. There was no significant time-lag between the changes in RLC phosphorylation and isometric force during HF progression, suggesting that changes in RLC phosphorylation immediately affect force generation. Additionally, the in vitro increase in RLC phosphorylation levels in 14D post-MI muscle segments (decompensatory stage) enhanced its force of isometric contraction, substantiating its potential in HF treatment. Longitudinal observation unveils potential mechanisms involving MyBP-C and key enzymes regulating RLC phosphorylation, such as MLCK and MYPT2 (subunit of MLCP), during HF progression. This study primarily demonstrates that RLC phosphorylation is a key sarcomeric protein modification modulating cardiac function. This substantiates the possibility of using RLCs and their associated enzymes to treat HF.
Collapse
Affiliation(s)
- Kasturi Markandran
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
| | - Haiyang Yu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
| | - Weihua Song
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
| | - Do Thuy Uyen Ha Lam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
- Laboratory of Precision Disease Therapeutics, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Mufeeda Changaramvally Madathummal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
- A*STAR Microscopy Platform—Electron Microscopy, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Michael A. Ferenczi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
- Brunel Medical School, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
- Correspondence:
| |
Collapse
|
14
|
Shatavari Supplementation in Postmenopausal Women Improves Handgrip Strength and Increases Vastus lateralis Myosin Regulatory Light Chain Phosphorylation but Does Not Alter Markers of Bone Turnover. Nutrients 2021; 13:nu13124282. [PMID: 34959836 PMCID: PMC8708006 DOI: 10.3390/nu13124282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Shatavari has long been used as an Ayurvedic herb for women's health, but empirical evidence for its effectiveness has been lacking. Shatavari contains phytoestrogenic compounds that bind to the estradiol receptor. Postmenopausal estradiol deficiency contributes to sarcopenia and osteoporosis. In a randomised double-blind trial, 20 postmenopausal women (68.5 ± 6 years) ingested either placebo (N = 10) or shatavari (N = 10; 1000 mg/d, equivalent to 26,500 mg/d fresh weight shatavari) for 6 weeks. Handgrip and knee extensor strength were measured at baseline and at 6 weeks. Vastus lateralis (VL) biopsy samples were obtained. Data are presented as difference scores (Week 6-baseline, median ± interquartile range). Handgrip (but not knee extensor) strength was improved by shatavari supplementation (shatavari +0.7 ± 1.1 kg, placebo -0.4 ± 1.3 kg; p = 0.04). Myosin regulatory light chain phosphorylation, a known marker of improved myosin contractile function, was increased in VL following shatavari supplementation (immunoblotting; placebo -0.08 ± 0.5 a.u., shatavari +0.3 ± 1 arbitrary units (a.u.); p = 0.03). Shatavari increased the phosphorylation of Aktser473 (Aktser473 (placebo -0.6 ± 0.6 a.u., shatavari +0.2 ± 1.3 a.u.; p = 0.03) in VL. Shatavari supplementation did not alter plasma markers of bone turnover (P1NP, β-CTX) and stimulation of human osteoblasts with pooled sera (N = 8 per condition) from placebo and shatavari supplementation conditions did not alter cytokine or metabolic markers of osteoblast activity. Shatavari may improve muscle function and contractility via myosin conformational change and further investigation of its utility in conserving and enhancing musculoskeletal function, in larger and more diverse cohorts, is warranted.
Collapse
|
15
|
Zuloaga R, Dettleff P, Bastias-Molina M, Meneses C, Altamirano C, Valdés JA, Molina A. RNA-Seq-Based Analysis of Cortisol-Induced Differential Gene Expression Associated with Piscirickettsia salmonis Infection in Rainbow Trout ( Oncorhynchus mykiss) Myotubes. Animals (Basel) 2021; 11:ani11082399. [PMID: 34438856 PMCID: PMC8388646 DOI: 10.3390/ani11082399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Salmonid rickettsial septicemia (SRS) is the major infectious disease of the Chilean salmonid aquaculture industry caused by Piscirickettsia salmonis. Intensive farming conditions generate stress and increased susceptibility to diseases, being skeletal muscle mainly affected. However, the interplay between pathogen infection and stress in muscle is poorly understood. In this study, we perform an RNA-seq analysis on rainbow trout myotubes that are pretreated for 3 h with cortisol (100 ng/mL) and then infected with P. salmonis strain LF-89 for 8 h (MOI 50). Twelve libraries are constructed from RNA samples (n = 3 per group) and sequenced on Illumina HiSeq 4000. A total of 704,979,454 high-quality reads are obtained, with 70.25% mapped against the reference genome. In silico DETs include 175 total genes-124 are upregulated and 51 are downregulated. GO enrichment analysis reveals highly impacted biological processes related to apoptosis, negative regulation of cell proliferation, and innate immune response. These results are validated by RT-qPCR of nine candidate transcripts. Furthermore, cortisol pretreatment significantly stimulated bacterial gene expression of ahpC and 23s compared to infection. In conclusion, for the first time, we describe a transcriptomic response of trout myotubes infected with P. salmonis by inducing apoptosis, downregulating cell proliferation, and intrinsic immune-like response that is differentially regulated by cortisol.
Collapse
Affiliation(s)
- Rodrigo Zuloaga
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (R.Z.); (P.D.); (J.A.V.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Phillip Dettleff
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (R.Z.); (P.D.); (J.A.V.)
| | - Macarena Bastias-Molina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (M.B.-M.); (C.M.)
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (M.B.-M.); (C.M.)
| | - Claudia Altamirano
- Laboratorio de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362803, Chile;
| | - Juan Antonio Valdés
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (R.Z.); (P.D.); (J.A.V.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaíso 2340000, Chile
| | - Alfredo Molina
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (R.Z.); (P.D.); (J.A.V.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaíso 2340000, Chile
- Correspondence: ; Tel.: +56-227703067
| |
Collapse
|
16
|
Effect of Electroacupuncture on Bladder Dysfunction via Regulation of MLC and MLCK Phosphorylation in a Rat Model of Type 2 Diabetes Mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5558890. [PMID: 34221075 PMCID: PMC8213478 DOI: 10.1155/2021/5558890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022]
Abstract
Previous studies observed have reported that electroacupuncture (EA) is effective in relieving diabetic bladder dysfunction (DBD); however, little is known about the mechanism. Therefore, we explored the effects and mechanisms of EA on DBD in streptozotocin–high-fat diet- (STZ–HFD-) induced diabetic rats. The Sprague-Dawley male rats were divided randomly into four groups: normal group, diabetes mellitus group (DM group), DM with EA treatment group (EA group), and DM with sham EA treatment group (sham EA group). After 8 weeks of EA treatment, the body weight, serum glucose, bladder weight, and cystometrogram were evaluated. The bladder wall thickness was examined by abdominal ultrasound imaging. After the transabdominal ultrasound measurements, hematoxylin-eosin (HE) staining was used to observe the bladder mucosa layer. The bladder detrusor smooth muscle cells (SMCs) and fibroblasts were observed under transmission electron microscopy (TEM). The phospho-myosin light chain (p-MLC), phospho-myosin light chain kinase (p-MLCK), and phospho-myosin phosphatase target subunit 1 (p-MYPT1) levels in the bladder were examined using Western blot. The bladder weight, serum glucose, bladder wall thickness, volume threshold for micturition, and postvoid residual (PVR) volume in the diabetic rats were significantly higher than those in the control animals. EA treatment significantly reduced the bladder weight, bladder wall thickness, volume threshold for micturition, and PVR volume in diabetic rats. EA caused a significant increase in the MLC dephosphorylation and MLCK phosphorylation levels in the group compared to the sham EA and model groups. EA reduced the infiltration of inflammatory cells in the bladder mucosa layer of diabetic rats. In addition, EA repaired the damaged bladder detrusor muscle of diabetic rats by reducing mitochondrial damage of the SMCs and fibroblasts. Therefore, EA could reduce the bladder hypertrophy to ameliorate DBD by reversing the impairment in the mucosa layer and detrusor SMCs, which might be mainly mediated by the regulation of p-MLC and p-MLCK levels.
Collapse
|
17
|
Regulatory Light Chains in Cardiac Development and Disease. Int J Mol Sci 2021; 22:ijms22094351. [PMID: 33919432 PMCID: PMC8122660 DOI: 10.3390/ijms22094351] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/18/2022] Open
Abstract
The role of regulatory light chains (RLCs) in cardiac muscle function has been elucidated progressively over the past decade. The RLCs are among the earliest expressed markers during cardiogenesis and persist through adulthood. Failing hearts have shown reduced RLC phosphorylation levels and that restoring baseline levels of RLC phosphorylation is necessary for generating optimal force of muscle contraction. The signalling mechanisms triggering changes in RLC phosphorylation levels during disease progression remain elusive. Uncovering this information may provide insights for better management of heart failure patients. Given the cardiac chamber-specific expression of RLC isoforms, ventricular RLCs have facilitated the identification of mature ventricular cardiomyocytes, opening up possibilities of regenerative medicine. This review consolidates the standing of RLCs in cardiac development and disease and highlights knowledge gaps and potential therapeutic advancements in targeting RLCs.
Collapse
|
18
|
Ramirez I, Gholkar AA, Velasquez EF, Guo X, Tofig B, Damoiseaux R, Torres JZ. The myosin regulatory light chain Myl5 localizes to mitotic spindle poles and is required for proper cell division. Cytoskeleton (Hoboken) 2021; 78:23-35. [PMID: 33641240 DOI: 10.1002/cm.21654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022]
Abstract
Myosins are ATP-dependent actin-based molecular motors critical for diverse cellular processes like intracellular trafficking, cell motility, and cell invasion. During cell division, myosin MYO10 is important for proper mitotic spindle assembly, the anchoring of the spindle to the cortex, and positioning of the spindle to the cell mid-plane. However, myosins are regulated by myosin regulatory light chains (RLCs), and whether RLCs are important for cell division has remained unexplored. Here, we have determined that the previously uncharacterized myosin RLC Myl5 associates with the mitotic spindle and is required for cell division. We show that Myl5 localizes to the leading edge and filopodia during interphase and to mitotic spindle poles and spindle microtubules during early mitosis. Importantly, depletion of Myl5 led to defects in mitotic spindle assembly, chromosome congression, and chromosome segregation and to a slower transition through mitosis. Furthermore, Myl5 bound to MYO10 in vitro and co-localized with MYO10 at the spindle poles. These results suggest that Myl5 is important for cell division and that it may be performing its function through MYO10.
Collapse
Affiliation(s)
- Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Ankur A Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Erick F Velasquez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Xiao Guo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Bobby Tofig
- California NanoSystems Institute, Los Angeles, California, USA
| | - Robert Damoiseaux
- California NanoSystems Institute, Los Angeles, California, USA.,Department of Molecular and Medical Pharmacology, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
19
|
Abstract
Since the discovery of muscle in the 19th century, myosins as molecular motors have been extensively studied. However, in the last decade, a new functional super-relaxed (SRX) state of myosin has been discovered, which has a 10-fold slower ATP turnover rate than the already-known non-actin-bound, disordered relaxed (DRX) state. These two states are in dynamic equilibrium under resting muscle conditions and are thought to be significant contributors to adaptive thermogenesis in skeletal muscle and can act as a reserve pool that may be recruited when there is a sustained demand for increased cardiac muscle power. This report provides an evolutionary perspective of how striated muscle contraction is regulated by modulating this myosin DRX↔SRX state equilibrium. We further discuss this equilibrium with respect to different physiological and pathophysiological perturbations, including insults causing hypertrophic cardiomyopathy, and small-molecule effectors that modulate muscle contractility in diseased pathology.
Collapse
Affiliation(s)
- Suman Nag
- Department of Biology, MyoKardia IncBrisbaneUnited States
| | - Darshan V Trivedi
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
20
|
Magliozzi JO, Moseley JB. Connecting cell polarity signals to the cytokinetic machinery in yeast and metazoan cells. Cell Cycle 2021; 20:1-10. [PMID: 33397181 DOI: 10.1080/15384101.2020.1864941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Polarized growth and cytokinesis are two fundamental cellular processes that exist in virtually all cell types. Mechanisms for asymmetric distribution of materials allow for cells to grow in a polarized manner. This gives rise to a variety of cell shapes seen throughout all cell types. Following polarized growth during interphase, dividing cells assemble a cytokinetic ring containing the protein machinery to constrict and separate daughter cells. Here, we discuss how cell polarity signaling pathways act on cytokinesis, with a focus on direct regulation of the contractile actomyosin ring (CAR). Recent studies have exploited phosphoproteomics to identify new connections between cell polarity kinases and CAR proteins. Existing evidence suggests that some polarity kinases guide the local organization of CAR proteins and structures while also contributing to global organization of the division plane within a cell. We provide several examples of this regulation from budding yeast, fission yeast, and metazoan cells. In some cases, kinase-substrate connections point to conserved processes in these different organisms. We point to several examples where future work can indicate the degree of conservation and divergence in the cell division process of these different organisms.
Collapse
Affiliation(s)
- Joseph O Magliozzi
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth , Hanover, New Hampshire, USA
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth , Hanover, New Hampshire, USA
| |
Collapse
|
21
|
Douglas CM, Hesketh SJ, Esser KA. Time of Day and Muscle Strength: A Circadian Output? Physiology (Bethesda) 2021; 36:44-51. [PMID: 33325817 PMCID: PMC8425416 DOI: 10.1152/physiol.00030.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022] Open
Abstract
For more than 20 years, physiologists have observed a morning-to-evening increase in human muscle strength. Recent data suggest that time-of-day differences are the result of intrinsic, nonneural, muscle factors. We evaluate circadian clock data sets from human and mouse circadian studies and highlight possible mechanisms through which the muscle circadian clock may contribute to time-of-day muscle strength outcomes.
Collapse
Affiliation(s)
- Collin M Douglas
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FloridaMyology Institute, University of Florida, Gainesville, Florida
| | - Stuart J Hesketh
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FloridaMyology Institute, University of Florida, Gainesville, Florida
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FloridaMyology Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
22
|
The effect of pre-slaughter starvation on muscle protein degradation in sea bream (Sparus aurata): formation of ACE inhibitory peptides and increased digestibility of fillet. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Parker F, Peckham M. Disease mutations in striated muscle myosins. Biophys Rev 2020; 12:887-894. [PMID: 32651905 PMCID: PMC7429545 DOI: 10.1007/s12551-020-00721-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/02/2020] [Indexed: 01/23/2023] Open
Abstract
Over 1000 disease-causing missense mutations have been found in human β-cardiac, α-cardiac, embryonic and adult fast myosin 2a myosin heavy chains. Most of these are found in human β-cardiac myosin heavy chain. Mutations in β-cardiac myosin cause hypertrophic cardiomyopathy predominantly, whereas those in α-cardiac are associated with many types of heart disease, of which the most common is dilated cardiomyopathy. Mutations in embryonic and fast myosin 2a affect skeletal muscle function. This review provides a short overview of the mutations in the different myosin isoforms and their disease-causing effects.
Collapse
Affiliation(s)
- Francine Parker
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
24
|
Manivannan SN, Darouich S, Masmoudi A, Gordon D, Zender G, Han Z, Fitzgerald-Butt S, White P, McBride KL, Kharrat M, Garg V. Novel frameshift variant in MYL2 reveals molecular differences between dominant and recessive forms of hypertrophic cardiomyopathy. PLoS Genet 2020; 16:e1008639. [PMID: 32453731 PMCID: PMC7274480 DOI: 10.1371/journal.pgen.1008639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/05/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by thickening of the ventricular muscle without dilation and is often associated with dominant pathogenic variants in cardiac sarcomeric protein genes. Here, we report a family with two infants diagnosed with infantile-onset HCM and mitral valve dysplasia that led to death before one year of age. Using exome sequencing, we discovered that one of the affected children had a homozygous frameshift variant in Myosin light chain 2 (MYL2:NM_000432.3:c.431_432delCT: p.Pro144Argfs*57;MYL2-fs), which alters the last 20 amino acids of the protein and is predicted to impact the most C-terminal of the three EF-hand domains in MYL2. The parents are unaffected heterozygous carriers of the variant and the variant is absent in control cohorts from gnomAD. The absence of the phenotype in carriers and the infantile presentation of severe HCM is in contrast to HCM associated with dominant MYL2 variants. Immunohistochemical analysis of the ventricular muscle of the deceased patient with the MYL2-fs variant showed a marked reduction of MYL2 expression compared to an unaffected control. In vitro overexpression studies further indicate that the MYL2-fs variant is actively degraded. In contrast, an HCM-associated missense variant (MYL2:p.Gly162Arg) and three other MYL2 stop-gain variants (p.E22*, p.K62*, p.E97*) that result in loss of the EF domains are stably expressed but show impaired localization. The degradation of the MYL2-fs can be rescued by inhibiting the cell’s proteasome function supporting a post-translational effect of the variant. In vivo rescue experiments with a Drosophila MYL2-homolog (Mlc2) knockdown model indicate that neither the MYL2-fs nor the MYL2:p.Gly162Arg variant supports normal cardiac function. The tools that we have generated provide a rapid screening platform for functional assessment of variants of unknown significance in MYL2. Our study supports an autosomal recessive model of inheritance for MYL2 loss-of-function variants in infantile HCM and highlights the variant-specific molecular differences found in MYL2-associated cardiomyopathy. We report a novel frameshift variant in MYL2 that is associated with a severe form of infantile-onset hypertrophic cardiomyopathy. The impact of the variant is only observed in the recessive form of the disease found in the proband and not in the parents who are carriers of the variant. This contrasts with other dominant variants in MYL2 that are associated with cardiomyopathies. We compared the stability of this variant to that of other cardiomyopathy associated MYL2 variants and found molecular differences that correlated with disease pathology. We also show different protein domain requirements for stability and localization of MYL2 in cardiomyocytes. Furthermore, we used a fly model to demonstrate functional deficits due to the variant in the developing heart. Overall, our study shows a molecular mechanism by which loss-of-function variants in MYL2 are recessive while missense variants are dominant. We highlight the use of exome sequencing and functional testing to assist in the diagnosis of rare forms of disease where pathogenicity of the variant is not obvious. The new tools we developed for in vitro functional study and the fly fluorescent reporter analysis will permit rapid analysis of MYL2 variants of unknown significance.
Collapse
Affiliation(s)
- Sathiya N. Manivannan
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sihem Darouich
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Laboratory of Human Genetics, Tunis, Tunisia
- * E-mail: (SD); (VG)
| | - Aida Masmoudi
- University of Tunis El Manar, Faculty of Medicine of Tunis, Department of Embryo-Fetopathology, Maternity and Neonatology Center, Tunis, Tunisia
| | - David Gordon
- Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Gloria Zender
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Zhe Han
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sara Fitzgerald-Butt
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Peter White
- Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Kim L. McBride
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Maher Kharrat
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Laboratory of Human Genetics, Tunis, Tunisia
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (SD); (VG)
| |
Collapse
|
25
|
Kallabis S, Abraham L, Müller S, Dzialas V, Türk C, Wiederstein JL, Bock T, Nolte H, Nogara L, Blaauw B, Braun T, Krüger M. High-throughput proteomics fiber typing (ProFiT) for comprehensive characterization of single skeletal muscle fibers. Skelet Muscle 2020; 10:7. [PMID: 32293536 PMCID: PMC7087369 DOI: 10.1186/s13395-020-00226-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Skeletal muscles are composed of a heterogeneous collection of fiber types with different physiological adaption in response to a stimulus and disease-related conditions. Each fiber has a specific molecular expression of myosin heavy chain molecules (MyHC). So far, MyHCs are currently the best marker proteins for characterization of individual fiber types, and several proteome profiling studies have helped to dissect the molecular signature of whole muscles and individual fibers. METHODS Herein, we describe a mass spectrometric workflow to measure skeletal muscle fiber type-specific proteomes. To bypass the limited quantities of protein in single fibers, we developed a Proteomics high-throughput fiber typing (ProFiT) approach enabling profiling of MyHC in single fibers. Aliquots of protein extracts from separated muscle fibers were subjected to capillary LC-MS gradients to profile MyHC isoforms in a 96-well format. Muscle fibers with the same MyHC protein expression were pooled and subjected to proteomic, pulsed-SILAC, and phosphoproteomic analysis. RESULTS Our fiber type-specific quantitative proteome analysis confirmed the distribution of fiber types in the soleus muscle, substantiates metabolic adaptions in oxidative and glycolytic fibers, and highlighted significant differences between the proteomes of type IIb fibers from different muscle groups, including a differential expression of desmin and actinin-3. A detailed map of the Lys-6 incorporation rates in muscle fibers showed an increased turnover of slow fibers compared to fast fibers. In addition, labeling of mitochondrial respiratory chain complexes revealed a broad range of Lys-6 incorporation rates, depending on the localization of the subunits within distinct complexes. CONCLUSION Overall, the ProFiT approach provides a versatile tool to rapidly characterize muscle fibers and obtain fiber-specific proteomes for different muscle groups.
Collapse
Affiliation(s)
- Sebastian Kallabis
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931, Cologne, Germany
| | - Lena Abraham
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931, Cologne, Germany
| | - Stefan Müller
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931, Cologne, Germany
| | - Verena Dzialas
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931, Cologne, Germany
| | - Clara Türk
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931, Cologne, Germany
| | - Janica Lea Wiederstein
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931, Cologne, Germany
| | - Theresa Bock
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931, Cologne, Germany
| | - Hendrik Nolte
- Max Planck Institute for the Biology of Aging, 50931, Cologne, Germany
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padova, Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padova, Italy
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Marcus Krüger
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
26
|
Zhou DD, Ran J, Li CC, Lu J, Zhao QY, Liu XY, Xu YD, Wang Y, Yang YQ, Yin LM. Metallothionein-2 is associated with the amelioration of asthmatic pulmonary function by acupuncture through protein phosphorylation. Biomed Pharmacother 2019; 123:109785. [PMID: 31874444 DOI: 10.1016/j.biopha.2019.109785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Acupuncture has long been used for asthma treatment but the underlying mechanism remains unclear. Previous study showed that metallothionein-2 (MT-2) was significantly decreased in asthmatic lung tissue. However, the relationship between acupuncture treatment and MT-2 expression during asthma is still unknown, and the detailed effect analysis of MT-2 on phosphorylation in airway smooth muscle cells (ASMCs) is also unclear. METHODS The acupuncture effect on pulmonary resistance (RL) was investigated in a rat model of asthma, and the mRNA and protein levels of MT-2 in lung tissue were detected. Primary ASMCs were isolated and treated with MT-2 recombinant protein to study the MT-2 effects on ASMC relaxation. A Phospho Explorer antibody microarray was applied to detect protein phosphorylation changes associated with MT-2-induced ASMC relaxation. Bioinformatic analysis were performed with PANTHER database, DAVID and STRING. Phosphorylation changes in key proteins were confirmed by Western blot. RESULTS Acupuncture significantly reduced RL at 2-5 min (P < 0.05 vs asthma) in asthmatic rats. Acupuncture continued to increase MT-2 mRNA expression in lung tissue for up to 14 days (P < 0.05 vs asthma). The MT-2 protein expression was significantly decreased in the asthmatic rats (P < 0.05 vs control), while MT-2 protein expression was significantly increased in the asthmatic model group treated with acupuncture (P < 0.05 vs asthma). Primary ASMCs were successfully isolated and recombinant MT-2 protein (100, 200, 400 ng/ml) significantly relaxed ASMCs (P < 0.05 vs control). MT-2 induced phosphorylation changes in 51 proteins. Phosphorylation of 14 proteins were upregulated while 37 proteins were downregulated. PANTHER classification revealed eleven functional groups, and the phosphorylated proteins were identified as transferases (27.8 %), calcium-binding proteins (11.1 %), etc. DAVID functional classification showed that the phosphorylated proteins could be attributed to eight functions, including protein phosphorylation and regulation of GTPase activity. STRING protein-protein interaction network analysis showed that Akt1 was one of the most important hubs for the phosphorylated proteins. The phosphorylation changes of Akt1 and CaMK2β were consistent in both the Phospho Explorer antibody microarray and Western blot. CONCLUSION Acupuncture can significantly ameliorate RL, and the MT-2 mRNA and protein levels in lung tissue are increased during treatment. MT-2 significantly relaxes ASMCs and induces a series of protein phosphorylation. These phosphorylation changes, including Akt1 and CaMK2β, may play important roles in the therapeutic effects of acupuncture on asthma.
Collapse
Affiliation(s)
- Dong-Dong Zhou
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Jun Ran
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China; Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Cong-Cong Li
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Jin Lu
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Qing-Yi Zhao
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Xiao-Yan Liu
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Yu-Dong Xu
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Yu Wang
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Yong-Qing Yang
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
| | - Lei-Miao Yin
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China; Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai, 201203, China.
| |
Collapse
|
27
|
DjRlc is required for the intestinal regeneration in planarian Dugesia japonica. Gene 2018; 677:89-95. [DOI: 10.1016/j.gene.2018.07.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/26/2018] [Accepted: 07/18/2018] [Indexed: 01/15/2023]
|
28
|
Wang L, Geist J, Grogan A, Hu LYR, Kontrogianni-Konstantopoulos A. Thick Filament Protein Network, Functions, and Disease Association. Compr Physiol 2018; 8:631-709. [PMID: 29687901 PMCID: PMC6404781 DOI: 10.1002/cphy.c170023] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
29
|
Pseudophosphorylation of cardiac myosin regulatory light chain: a promising new tool for treatment of cardiomyopathy. Biophys Rev 2017; 9:57-64. [PMID: 28510043 DOI: 10.1007/s12551-017-0248-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022] Open
Abstract
Many genetic mutations in sarcomeric proteins, including the cardiac myosin regulatory light chain (RLC) encoded by the MYL2 gene, have been implicated in familial cardiomyopathies. Yet, the molecular mechanisms by which these mutant proteins regulate cardiac muscle mechanics in health and disease remain poorly understood. Evidence has been accumulating that RLC phosphorylation has an influential role in striated muscle contraction and, in addition to the conventional modulation via Ca2+ binding to troponin C, it can regulate cardiac muscle function. In this review, we focus on RLC mutations that have been reported to cause cardiomyopathy phenotypes via compromised RLC phosphorylation and elaborate on pseudo-phosphorylation rescue mechanisms. This new methodology has been discussed as an emerging exploratory tool to understand the role of phosphorylation as well as a genetic modality to prevent/rescue cardiomyopathy phenotypes. Finally, we summarize structural effects post-phosphorylation, a phenomenon that leads to an ordered shift in the myosin S1 and RLC conformational equilibrium between two distinct states.
Collapse
|