1
|
Dos Santos BRC, Dos Santos LKC, Ferreira JM, Dos Santos ACM, Sortica VA, de Souza Figueiredo EVM. Toll-like receptors polymorphisms and COVID-19: a systematic review. Mol Cell Biochem 2024:10.1007/s11010-024-05137-3. [PMID: 39520513 DOI: 10.1007/s11010-024-05137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024]
Abstract
COVID-19 is a disease caused by SARS-CoV-2. It became a health problem affecting the lives of millions of people. Toll-like receptors are responsible for recognizing viral particles and activating the innate immune system. The genetic factors associated with COVID-19 remain unclear. Thus, this study aims to assess the association between the polymorphism in Toll-like receptors and susceptibility to COVID-19. We searched the electronic databases (Science Direct, PUBMED, Web of Science, and Scopus) for studies assessing the association between Toll-like receptor polymorphisms and susceptibility to COVID-19. The quality of the studies was assessed using the Q-Genie tool. Thirteen studies were included in this systematic review. The studies analyzed polymorphisms in TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9. We used SNP2TFBS bioinformatic analysis to identify the variants influencing transcription factor binding sites. The Ensembl Genome Browser was used to assess the allele and genotype frequencies in different populations. The bioinformatic analysis revealed that the variant rs5743836 of TLR9 affects the transcription factor binding sites NFKB1 and RELA. The genotype frequency of the variants rs3775291, rs3853839, rs3764880 were higher in East Asian population compared to the other populations. The frequency of the rs3775290 variant was higher in East and South Asian populations. The rs179008 variant was higher in the European population, and the rs5743836 was higher in the African population. Toll-like receptors play an important role in COVID-19 susceptibility. Further studies in different populations are necessary to elucidate the role of Toll-like receptors polymorphisms in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Barbara Rayssa Correia Dos Santos
- Laboratory of Molecular Biology and Gene Expression, Federal University of Alagoas, Arapiraca, Brazil
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil
| | | | - Jean Moises Ferreira
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Cidade Universitaria, Recife, Pernambuco, Brazil
| | | | | | - Elaine Virginia Martins de Souza Figueiredo
- Laboratory of Molecular Biology and Gene Expression, Federal University of Alagoas, Arapiraca, Brazil.
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil.
- Federal University of Alagoas (UFAL), Campus Arapiraca AL 115, Km 65, Bom Sucesso, Arapiraca, Alagoas, 57300-970, Brazil.
| |
Collapse
|
2
|
Schorey JS, Vecchio J, McManus WR, Ongalo J, Webber K. Activation of host nucleic acid sensors by Mycobacterium: good for us or good for them? Crit Rev Microbiol 2024; 50:224-240. [PMID: 38153209 PMCID: PMC10985831 DOI: 10.1080/1040841x.2023.2294904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
Although the importance of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) sensors in controlling viral infection is well established, their role in promoting an effective immune response to pathogens other than viruses is less clear. This is particularly true for infections with mycobacteria, as studies point to both protective and detrimental roles for activation of nucleic acid sensors in controlling a mycobacterial infection. Some of the contradiction likely stems from the use of different model systems and different mycobacterial species/strains as well as from which nucleic acid sensors were studied and what downstream effectors were evaluated. In this review, we will describe the different nucleic acid sensors that have been studied in the context of mycobacterial infections, and how the different studies compare. We conclude with a section on how nucleic acid sensor agonists have been used therapeutically and what further information is needed to enhance their potential as therapeutic agents.
Collapse
Affiliation(s)
- Jeffery S. Schorey
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Joseph Vecchio
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - William R. McManus
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Joshua Ongalo
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Kylie Webber
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
3
|
Mhmoud NA. Association of Toll-like Receptors 1, 2, 4, 6, 8, 9 and 10 Genes Polymorphisms and Susceptibility to Pulmonary Tuberculosis in Sudanese Patients. Immunotargets Ther 2023; 12:47-75. [PMID: 37051380 PMCID: PMC10085002 DOI: 10.2147/itt.s404915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Background Genetic factors are important contributors to the development of a wide range of complex disease. Polymorphisms in genes encoding for toll-like receptors (TLRs) usually influence the efficiency of the immune response to infection and are associated with disease susceptibility and progression. Therefore, we aim to describe the first association between TLR1, TLR2, TLR4 TLR6, TLR8, TLR9 and TLR10 genes polymorphisms and susceptibility to pulmonary tuberculosis (PTB) in Sudanese patients. Methodology Here we performed a case study which included 160 tuberculosis patients and 220 healthy matched controls from Sudan. In the study population, we evaluated the possible association between 86 markers in TLR1, TLR2, TLR4 TLR6, TLR8, TLR9 and TLR10 genes polymorphisms and susceptibility to PTB disease in Sudanese population using polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Results From our results it appeared that in the PTB population the TLR1 (rs5743557, rs4833095, rs5743596), TLR2 (rs5743704, rs5743708, rs3804099), TLR4 (rs4986790, rs4986791), TLR6 (rs5743810), TLR8 (rs3764879, rs3764880), TLR9 (rs352165, rs352167, rs187084) and TLR10 (rs4129009) were significantly more often encountered (p<0.0001) than in the control population and were associated with PTB in the Sudanese population. For the other polymorphisms tested, no association with PTB was found in the population tested. Conclusion The work describes novel mutations in TLR1, TLR2, TLR4, TLR6, TLR8, TLR9 and TLR10 genes and their association with PTB infection in Sudanese population. These results will enhance our ability to determine the risk of developing the disease by targeting specific TLR pathways to reduce the severity of the disease. Future studies are needed in a larger sample to replicate our findings and understand the mechanism of association of TLR polymorphism in PTB.
Collapse
Affiliation(s)
- Najwa A Mhmoud
- Faculty of Medical Laboratory Sciences, Department of Medical Microbiology and Immunology, University of Khartoum, Khartoum, Sudan
- Correspondence: Najwa A Mhmoud, Faculty of Medical Laboratory Sciences, Department of Medical Microbiology and Immunology University of Khartoum, P.O. Box 102, Khartoum, Sudan, Fax +249-83-383590, Email
| |
Collapse
|
4
|
Zhang C, Yang Z, Luo P, Li T, Wang S, Sun F, Gong P, Mei B. Association of TLR4 and TLR9 gene polymorphisms with cervical HR-HPV infection status in Chinese Han population. BMC Infect Dis 2023; 23:152. [PMID: 36915050 PMCID: PMC10012518 DOI: 10.1186/s12879-023-08116-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/23/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) may be involved in the natural history of human papillomavirus (HPV) infection. In our study, we aimed to investigate the association of TLR4 (rs10116253, rs1927911, rs10759931) and TLR9 (rs187084, rs352140) gene polymorphisms with cervical persistent high-risk HPV (HR-HPV) infection, as well as multiple HR-HPV infections. METHODS A total of 269 study subjects were enrolled and grouped by retrospectively analyzing the HR-HPV testing results and other clinical data of 2647 gynecological outpatients from Jingzhou Hospital Affiliated to Yangtze University. We conducted a case-control study to compare the role of TLR4/TLR9 gene polymorphisms between HR-HPV transient and persistent infections, as well as between HR-HPV single and multiple infections. HR-HPV genotypes were detected using Real-time polymerase chain reaction (RT-PCR). PCR-restriction fragment length polymorphism (PCR-RFLP) was used to determine TLR4 and TLR9 gene polymorphisms. Analyses of the different outcome variables (HR-HPV infection status and time for HR-HPV clearance) with respect to TLR4/TLR9 polymorphisms were carried out. Logistic regression analysis was used to determine the association of TLR4/TLR9 genotypes and alleles with HR-HPV infection status. The Kaplan-Meier method with the log-rank test was used to analyze the relationship between TLR4/TLR9 genotypes and the time for HR-HPV clearance. RESULTS The mutant genotypes of TLR9 rs187084 and rs352140 were associated with persistent (rs187084: CT and CT+CC; rs352140: CT and CT+TT) and multiple (rs187084: CT and CT+CC; rs352140: CT+TT) (all P < 0.05) HR-HPV infection. However, no association was found between TLR4 polymorphisms and HR-HPV infection status. Kaplan-Meier time to HR-HPV clearance analysis demonstrated that women carrying rs187084 and rs352140 mutant genotypes take longer duration to clear HR-HPV infection compared with wild-type genotype carriers (P1 = 0.012; P2 = 0.031). CONCLUSION Our results suggested that TLR9 polymorphisms, but not TLR4, were associated with cervical persistent and multiple HR-HPV infections, which could be useful as a potential predictor of HR-HPV infection status.
Collapse
Affiliation(s)
- Chunlin Zhang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China
| | - Zhiping Yang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China
| | - Ping Luo
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China
| | - Ting Li
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China
| | - Sutong Wang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China
| | - Fenglan Sun
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China
| | - Ping Gong
- Department of Pathology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China
| | - Bing Mei
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China.
| |
Collapse
|
5
|
Jha A, Nath N, Kumari A, Kumari N, Panda AK, Mishra R. Polymorphisms and haplotypes of TLR-4/9 associated with bacterial infection, gingival inflammation/recession and oral cancer. Pathol Res Pract 2023; 241:154284. [PMID: 36563560 DOI: 10.1016/j.prp.2022.154284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The expression and SNPs of innate immunity genes TLR-4/9 for bacterial infection, gingival inflammation/gingival recession (GIGR), and oral squamous cell carcinoma (OSCC) are largely unknown. PATIENTS AND METHOD 235 specimens (120 OSCC cases, among which 85 cases with either Porphyromonas gingivalis, Fusobacterium nucleatum or Treponema denticola infection and GIGR) and 115 healthy controls were used to know the expression and polymorphisms (TLR-4: N1:rs10759931, N2:rs11536889, N3:rs1927911, N4:rs4986790; TLR-9: N5:rs5743836, N6:rs352140, N7:rs187084 and N8:rs352139) of TLR-4/9 by western blot, RT-PCR, and allele-specific (AS)-PCR followed by sequencing. RESULTS Increased TLR-4/9 mRNA/protein expression, bacterial infection (BI) and GIGR were associated with OSCC incidence. One of the three BI and GIGR was observed in 70.83% of OSCC cases, whereas all the HC used were free from any of these three BI/GIGR. The N3: CT-genotype (Odds Ratio hereafter as O.R.=1.811, p = 0.0338), TT-genotype (O.R.=3.094, p = 0.0124), 'T'-allele (O.R.=1.821, p = 0.003), N4: AG-genotype (O.R.=2.015, p = 0.0222) and 'G'-allele (O.R.=1.86, p = 0.018) of TLR-4 as well as the N5: CC-genotype (O.R.=3.939, p = 0.0017), 'C'-allele (O.R.=1.839, p = 0.0042), N6: AA-genotype (O.R.=2.195, p = 0.0234), 'A'-allele (O.R.=1.569, p = 0.0163), N7: TC-genotype (O.R.=2.083, p = 0.0136), CC-genotype (O.R.=2.984, p = 0.003) and 'C'-allele (O.R.=1.885, p = 0.0008) of TLR-9 were associated with increased OSCC risk. Similarly, the N2:'C'-allele (O.R.=1.615, p = 0.0382), N3: TT-genotype (O.R.=2.829, p = 0.0336), 'T'-allele (O.R.=1.742, p = 0.0115), N4: AG-genotype (O.R.=2.221, p = 0.0147) and 'G'-allele (O.R.=1.890, p = 0.0238) of TLR-4 as well as the N5: CC-genotype (O.R.=2.830, p = 0.031), N6: AA-genotype (O.R.=2.6, p = 0.0122) and 'A'-allele (O.R.=1.746, p = 0.0064), N7:CC-genotype (O.R.2.706, p = 0.0111) and 'C'-allele (O.R. 1.774, p = 0.0055) of TLR-9 were correlated with GIGR and BI. TLR-4 (N1-N2-N3-N4: A-C-T-A (O.R.=2.1, p = 0.0069) and TLR-9 (N5-N6-N7-N8: T-A-C-A (O.R.=2.019, p = 0.0263); C-A-C-A (O.R.=6.0, p = 0.0084); C-A-C-G (O.R.=4.957, p = 0.0452) haplotypes were linked with OSCC vulnerability, while the TLR-4 (N1-N2-N3-N4: G-C-C-A (O.R.=0.5752, p = 0.0131) and TLR-9 (N5-N6-N7-N8: T-G-T-A (O.R.=0.5438, p = 0.0314); T-G-T-G (O.R.=0.5241, p = 0.036) haplotypes offered protection. CONCLUSION TLR-4/9 expression, polymorphisms, and BI-induced GIGR could increase OSCC risk. This may be used in pathogenesis and oral cancer prediction.
Collapse
Affiliation(s)
- Arpita Jha
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| | - Nidhi Nath
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| | - Anjali Kumari
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| | - Nidhi Kumari
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| | - Aditya K Panda
- P.G. Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India.
| | - Rajakishore Mishra
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| |
Collapse
|
6
|
Wujcicka WI, Kacerovsky M, Krygier A, Krekora M, Kaczmarek P, Grzesiak M. Association of Single Nucleotide Polymorphisms from Angiogenesis-Related Genes, ANGPT2, TLR2 and TLR9, with Spontaneous Preterm Labor. Curr Issues Mol Biol 2022; 44:2939-2955. [PMID: 35877427 PMCID: PMC9322696 DOI: 10.3390/cimb44070203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/07/2022] Open
Abstract
In this study, we hypothesized that the changes localized at angiopoietin-2 (ANGPT2), granulocyte-macrophage colony-stimulating factor (CSF2), fms-related tyrosine kinase 1 (FLT1) and toll-like receptor (TLR) 2, TLR6 and TLR9 genes were associated with spontaneous preterm labor (PTL), as well as with possible genetic alterations on PTL-related coagulation. This case-control genetic association study aimed to identify single nucleotide polymorphisms (SNPs) for the aforementioned genes, which are correlated with genetic risk or protection against PTL in Polish women. The study was conducted in 320 patients treated between 2016 and 2020, including 160 women with PTL and 160 term controls in labor. We found that ANGPT2 rs3020221 AA homozygotes were significantly less common in PTL cases than in controls, especially after adjusting for activated partial thromboplastin time (APTT) and platelet (PLT) parameters. TC heterozygotes for TLR2 rs3804099 were associated with PTL after correcting for anemia, vaginal bleeding, and history of threatened miscarriage or PTL. TC and CC genotypes in TLR9 rs187084 were significantly less common in women with PTL, compared to the controls, after adjusting for bleeding and gestational diabetes. For the first time, it was shown that three polymorphisms-ANGPT2 rs3020221, TLR2 rs3804099 and TLR9 rs187084 -were significantly associated with PTL, adjusted by pregnancy development influencing factors.
Collapse
Affiliation(s)
- Wioletta Izabela Wujcicka
- Scientific Laboratory of the Center of Medical Laboratory Diagnostics and Screening, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland
- Correspondence: or ; Tel.: +48-42-271-15-20; Fax: +48-42-271-15-10
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Adrian Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Michał Krekora
- Department of Obstetrics and Gynecology, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland;
- Department of Gynecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland;
| | - Piotr Kaczmarek
- Department of Gynecology, Reproduction and Fetal Therapy, and Diagnostics and Treatment of Infertility, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland;
| | - Mariusz Grzesiak
- Department of Gynecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland;
- Department of Perinatology, Obstetrics and Gynecology, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland
| |
Collapse
|
7
|
Moura ELD, Santos IFD, Freitas PPD, Silva DMD, Santos ACMD, Lira Neto AB, Silva ACPE, Barbosa NR, Nascimento CA, Balliano TL, Fraga CADC, Farias KFD, Figueiredo EVMDS. Polymorphisms in Toll-like receptors genes changes the host’s immune response and is associated with cervical cancer. Immunobiology 2022; 227:152187. [DOI: 10.1016/j.imbio.2022.152187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/03/2022] [Accepted: 02/03/2022] [Indexed: 11/05/2022]
|
8
|
Yudin NS, Yurchenko AA, Larkin DM. [Signatures of selection and candidate genes for adaptation to extreme environmental factors in the genomes of Turano-Mongolian cattle breeds]. Vavilovskii Zhurnal Genet Selektsii 2021; 25:190-201. [PMID: 34901717 PMCID: PMC8627871 DOI: 10.18699/vj21.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022] Open
Abstract
Changes in the environment force populations of organisms to adapt to new conditions, either through phenotypic plasticity or through genetic or epigenetic changes. Signatures of selection, such as specific changes in the frequency of alleles and haplotypes, as well as the reduction or increase in genetic diversity, help to identify changes in the cattle genome in response to natural and artificial selection, as well as loci and genetic variants directly affecting adaptive and economically important traits. Advances in genetics and biotechnology enable a rapid transfer of unique genetic variants that have originated in local cattle breeds in the process of adaptation to local environments into the genomes of cosmopolitan high-performance breeds, in order to preserve their outstanding performance in new environments. It is also possible to use genomic selection approach to increase the frequency of already present adaptive alleles in cosmopolitan breeds. The review examines recent work on the origin and evolution of Turano-Mongolian cattle breeds, adaptation of Turano-Mongolian cattle to extreme environments, and summarizes available information on potential candidate genes for climate adaptation of Turano-Mongolian breeds, including cold resistance genes, immune response genes, and high-altitude adaptation genes. The authors conclude that the current literature data do not provide preference to one of the two possible scenarios of Turano-Mongolian breed origins: as a result of the domestication of a wild aurochs at East Asia or as a result of the migration of taurine proto-population from the Middle East. Turano-Mongolian breeds show a high degree of adaptation to extreme climatic conditions (cold, heat, lack of oxygen in the highlands) and parasites (mosquitoes, ticks, bacterial and viral infections). As a result of high-density genotyping and sequencing of genomes and transcriptomes, prospective candidate genes and genetic variants involved in adaptation to environmental factors have recently been identified.
Collapse
Affiliation(s)
- N S Yudin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Yurchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D M Larkin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia The Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
9
|
Naing C, Wong ST, Aung HH. Toll-like receptor 9 and 4 gene polymorphisms in susceptibility and severity of malaria: a meta-analysis of genetic association studies. Malar J 2021; 20:302. [PMID: 34217314 PMCID: PMC8255014 DOI: 10.1186/s12936-021-03836-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/27/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Malaria is still a major public health problem in sub-Saharan Africa and South-east Asia. The clinical presentations of malaria infection vary from a mild febrile illness to life-threatening severe malaria. Toll like receptors (TLRs) are postulated to be involved in the innate immune responses to malaria. Individual studies showed inconclusive findings. This study aimed to assess the role of TLR4 (D299G, T399I) and TLR9 (T1237C, T1486C) in severity or susceptibility of malaria by meta-analysis of data from eligible studies. METHODS Relevant case-control studies that assessed the association between TLR 4/9 and malaria either in susceptibility or progression were searched in health-related electronic databases. Quality of included studies was evaluated with Newcastle-Ottawa scale. Pooled analyses for specific genetic polymorphisms were done under five genetic models. Stratified analysis was done by age and geographical region (Asian countries vs non-Asian countries). RESULTS Eleven studies (2716 cases and 2376 controls) from nine endemic countries were identified. Five studies (45.4%) obtained high score in quality assessment. Overall, a significant association between TLR9 (T1486C) and severity of malaria is observed in allele model (OR: 1.26, 95% CI: 1.08-1.48, I2 = 0%) or homozygous model (OR: 1.55, 95% CI: 1.08-2.28, I2 = 0%). For TLR9 (T1237C), a significant association with severity of malaria is observed in in heterozygous model (OR:1.89, 95% CI: 1.11-3.22, I2 = 75%). On stratifications, TLR9 (T1486C) is only significantly associated with a subgroup of children of non-Asian countries under allele model (OR: 1.25, 95% CI: 1.02-1.38), while 1237 is with a subgroup of adults from Asian countries under heterozygous model (OR: 2.0, 95% CI: 1.09-3.64, I2 = 39%). Regarding the susceptibility to malaria, TLR9 (T1237C) is significantly associated only with the children group under recessive model (OR: 2.21, 95% CI: 1.06-4.57, I2=85%) and homozygous model (OR: 1.49, 95% CI: 1.09-2.0, I2 = 0%). For TLR4 (D299G, T399I), none is significantly associated with either severity of malaria or susceptibility to malaria under any genetic models. CONCLUSIONS The findings suggest that TLR 9 (T1486C and T1237C) seems to influence the progression of malaria, under certain genetic models and in specific age group of people from specific geographical region. TLR 9 (T1237C) also plays a role in susceptibility to malaria under certain genetic models and only with children of non-Asian countries. To substantiate these, future well designed studies with larger samples across endemic countries are needed.
Collapse
Affiliation(s)
- Cho Naing
- Institute for Research, Development and Innovation (IRDI), International Medical University, 5700, Kuala Lumpur, Malaysia. .,Faculty of Tropical Heath and Medicine, James Cook University, Queensland, Australia.
| | - Siew Tung Wong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Htar Htar Aung
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Mandal A, Kumar M, Kumar A, Sen A, Das P, Das S. TLR4 and TLR9 polymorphism: Probable role in susceptibility among the population of Bihar for Indian visceral leishmaniasis. Innate Immun 2021; 27:493-500. [PMID: 33910419 PMCID: PMC8504264 DOI: 10.1177/1753425920965658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genetic variations in the host TLRs genes play an important role in susceptibility and/or resistance to visceral leishmaniasis by altering the host-pathogen interaction. In this study, we investigated the association between polymorphisms of TLR4 (Asp299Gly, Thr399Ile) and TLR-9 (T-1237C), with susceptibility to visceral leishmaniasis. A bi-directional PCR amplification of specific alleles technique was used to characterize the distribution of TLR4 (Asp299Gly and Thr399Ile) and TLR9 (T-1237C) polymorphisms. A total of 60 samples were randomly selected from confirmed visceral leishmaniasis patients and 24 endemic healthy volunteers. The samples were genotyped and allele frequencies were determined. We observed that TLR4 Asp299Gly and Thr399Ile genotypes were more frequent in visceral leishmaniasis patients (10% and 15% respectively) compared to controls (4.2% and 8.3% respectively). However, the differences were not significant in TLR4 Asp299Gly and Thr399Ile alleles and genotypes. In the case of TLR9, we observed the frequency of T1237C genotype was higher in visceral leishmaniasis patients (43.3%) than in healthy controls (33.3%). Statistically significant differences were observed in TLR9 T1237C alleles and genotypes. We concluded that TLR9 T1237C, but not TLR4, gene polymorphisms can be regarded as contributors to visceral leishmaniasis susceptibility among the Indian population of Bihar state.
Collapse
Affiliation(s)
- Abhishek Mandal
- Department of Molecular Biology, Indian Council of Medical Research-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Manish Kumar
- Department of Molecular Biology, Indian Council of Medical Research-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Ashish Kumar
- Department of Biochemistry, Indian Council of Medical Research-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Abhik Sen
- Department of Molecular Biology, Indian Council of Medical Research-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pradeep Das
- Department of Molecular Biology, Indian Council of Medical Research-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
11
|
Patrick KL, Watson RO. Mitochondria: Powering the Innate Immune Response to Mycobacterium tuberculosis Infection. Infect Immun 2021; 89:e00687-20. [PMID: 33558322 PMCID: PMC8090963 DOI: 10.1128/iai.00687-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Within the last decade, we have learned that damaged mitochondria activate many of the same innate immune pathways that evolved to sense and respond to intracellular pathogens. These shared responses include cytosolic nucleic acid sensing and type I interferon (IFN) expression, inflammasome activation that leads to pyroptosis, and selective autophagy (called mitophagy when mitochondria are the cargo). Because mitochondria were once bacteria, parallels between how cells respond to mitochondrial and bacterial ligands are not altogether surprising. However, the potential for cross talk or synergy between bacterium- and mitochondrion-driven innate immune responses during infection remains poorly understood. This interplay is particularly striking, and intriguing, in the context of infection with the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb). Multiple studies point to a role for Mtb infection and/or specific Mtb virulence factors in disrupting the mitochondrial network in macrophages, leading to metabolic changes and triggering potent innate immune responses. Research from our laboratories and others argues that mutations in mitochondrial genes can exacerbate mycobacterial disease severity by hyperactivating innate responses or activating them at the wrong time. Indeed, growing evidence supports a model whereby different mitochondrial defects or mutations alter Mtb infection outcomes in distinct ways. By synthesizing the current literature in this minireview, we hope to gain insight into the molecular mechanisms driving, and consequences of, mitochondrion-dependent immune polarization so that we might better predict tuberculosis patient outcomes and develop host-directed therapeutics designed to correct these imbalances.
Collapse
Affiliation(s)
- Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, Texas, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, Texas, USA
| |
Collapse
|
12
|
Bezemer GFG, Garssen J. TLR9 and COVID-19: A Multidisciplinary Theory of a Multifaceted Therapeutic Target. Front Pharmacol 2021; 11:601685. [PMID: 33519463 PMCID: PMC7844586 DOI: 10.3389/fphar.2020.601685] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
By mapping the clinical pathophysiology of the novel coronavirus disease 2019 (COVID-19) against insights from virology, immunology, genomics, epidemiology and pharmacology, it is here proposed that the pathogen recognition receptor called toll like receptor 9 (TLR9) might have a pivotal role in the pathogenesis of COVID-19. Severe Acute Respiratory Syndrome Coronavirus 2, is causing the greatest global social and economic disruption since world war II. Lack of a vaccine, lack of successful treatment and limitations of the healthcare workforce and resources needed to safeguard patients with severe COVID-19 on the edge of life, demands radical preventive measures. It is urgently needed to identify biomarkers and drug candidates so that vulnerable individuals can be recognized early and severe multi-organ complications can be prevented or dampened. The TLR9 COVID-19 hypothesis describes a mechanism of action that could explain a wide spectrum of manifestations observed in patients with severe COVID-19. The introduced hypothesis proposes biomarkers for identification of vulnerable individuals and positions TLR9 as a promising multifaceted intervention target for prevention and/or treatment of COVID-19. TLR9 agonists might have value as prophylactic vaccine adjuvants and therapeutic immune stimulators at the early onset of disease. Additionally, in this current manuscript it is proposed for the first time that TLR9 could be considered as a target of "inhibition" aimed to dampen hyperinflammation and thrombotic complications in vulnerable patients that are at risk of developing late stages of COVID-19. The readily availability of TLR9 modulating drug candidates that have reached clinical testing for other disorders could favor a fast track development scenario, an important advantage under the current high unmet medical need circumstances regarding COVID-19.
Collapse
Affiliation(s)
- Gillina F. G. Bezemer
- Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Impact Station, Hilversum, Netherlands
| | - Johan Garssen
- Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Department of Immunology, Nutricia Research BV, Utrecht, Netherlands
| |
Collapse
|
13
|
Innate Immune Pattern Recognition Receptors of Mycobacterium tuberculosis: Nature and Consequences for Pathogenesis of Tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:179-215. [PMID: 34661896 DOI: 10.1007/978-3-030-67452-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Innate immunity against Mycobacterium tuberculosis is a critical early response to prevent the establishment of the infection. Despite recent advances in understanding the host-pathogen dialogue in the early stages of tuberculosis (TB), much has yet to be learnt. The nature and consequences of this dialogue ultimately determine the path of infection: namely, either early clearance of M. tuberculosis, or establishment of M. tuberculosis infection leading to active TB disease and/or latent TB infection. On the frontline in innate immunity are pattern recognition receptors (PRRs), with soluble factors (e.g. collectins and complement) and cell surface factors (e.g. Toll-like receptors and other C-type lectin receptors (Dectin 1/2, Nod-like receptors, DC-SIGN, Mincle, mannose receptor, and MCL) that play a central role in recognising M. tuberculosis and facilitating its clearance. However, in a 'double-edged sword' scenario, these factors can also be involved in enhancement of pathogenesis as well. Furthermore, innate immunity is also a critical bridge in establishing the subsequent adaptive immune response, which is also responsible for granuloma formation that cordons off M. tuberculosis infection, establishing latency and acting as a reservoir for bacterial persistence and dissemination of future disease. This chapter discusses the current understanding of pattern recognition of M. tuberculosis by innate immunity and the role this plays in the pathogenesis and protection against TB.
Collapse
|
14
|
TLR9 Rs352140 polymorphism contributes to a decreased risk of bacterial meningitis: evidence from a meta-analysis. Epidemiol Infect 2020; 148:e294. [PMID: 33143777 PMCID: PMC7770465 DOI: 10.1017/s0950268820002666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Some studies have suggested that the Toll-like receptor 9 polymorphism (TLR9 rs352140) is closely related to the risk of bacterial meningitis (BM), but this is subject to controversy. This study set out to estimate whether the TLR9 rs352140 polymorphism confers an increased risk of BM. Relevant literature databases were searched including PubMed, Embase, the Cochrane Library and China National Knowledge Infrastructure (CNKI) up to August 2020. Seven case-control studies from four publications were enrolled in the present meta-analysis. Odds ratios (OR) and confidence intervals (95% CI) were calculated to estimate associations between BM risk and the target polymorphism. Significant associations identified were allele contrast (A vs. G: OR 0.66, 95% CI 0.59–0.75, P = 0.000), homozygote comparison (AA vs. AG/GG: OR 0.62, 95% CI 0.49–0.78, P = 0.000), heterozygote comparison (A vs. G: OR 0.74, 95% CI 0.61–0.91, P = 0.005), recessive genetic model (AA vs. AG/GG: OR 0.78, 95% CI 0.65–0.93, P = 0.006) and dominant genetic model (AA vs. AG/GG: OR 0.70, 95% CI 0.57–0.85, P = 0.000). The findings indicate that, in contrast to some studies, the TLR9 rs352140 polymorphism is associated with a decreased risk for BM.
Collapse
|
15
|
Gene Polymorphisms of TLR4 and TLR9 and Haemophilus influenzae Meningitis in Angolan Children. Genes (Basel) 2020; 11:genes11091099. [PMID: 32967147 PMCID: PMC7564843 DOI: 10.3390/genes11091099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
Bacterial meningitis (BM) is a severe disease caused by various bacterial pathogens. Toll-like receptors (TLRs) protect humans from invading pathogens. In this study, we determined whether single nucleotide polymorphisms (SNPs) of TLR4 and TLR9 are associated with susceptibility to and outcome of BM in Angolan children. Samples were taken from 241 patients and 265 age-matched ethnic controls. The SNPs TLR4 rs4986790 (896A > G) and TLR9 rs187084 (−1486T > C) were determined by high-resolution melting analysis (HRMA). The frequency of variant genotypes in TLR4 was significantly higher in patients with Haemophilus influenzae meningitis than controls (odds ratio (OR), 2.5; 95% confidence interval (CI), 1.2–5.4; p = 0.021), whereas the frequency of variant genotypes in TLR9 was significantly lower in patients with H. influenzae meningitis than controls (OR, 0.4; 95% CI, 0.2–0.9; p = 0.036). No such differences were found with other causative pathogens, such as Streptococcus pneumoniae and Neisseria meningitidis. At the time of discharge, patients with meningitis caused by Gram-negative bacteria who were carriers of variant TLR4 genotypes had a higher risk of ataxia (OR, 12.91; 95% CI, 1.52–109.80; p = 0.019) and other neurological sequelae (OR, 11.85; 95% CI, 1.07–131.49; p = 0.044) than those with the wild-type TLR4 genotype. Our study suggests an association between H. influenzae meningitis and genetic variation between TLR4 and TLR9 in Angolan children.
Collapse
|
16
|
Troy A, Esparza-Gonzalez SC, Bartek A, Creissen E, Izzo L, Izzo AA. Pulmonary mucosal immunity mediated through CpG provides adequate protection against pulmonary Mycobacterium tuberculosis infection in the mouse model. A role for type I interferon. Tuberculosis (Edinb) 2020; 123:101949. [PMID: 32741537 DOI: 10.1016/j.tube.2020.101949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022]
Abstract
Toll-Like Receptor (TLR) 9 stimulation is required for induction of potent immune responses against pathogen invasion. The use of unmethylated CpG as adjuvants in vaccines provides an excellent means of stimulating adaptive immunity. Our data demonstrate that CpG-C provided prolonged immune responses in the mouse model of tuberculosis when formulated with liposomes and the Mycobacterium tuberculosis antigen ESAT-6. A reduction in the mycobacterial burden was best achieved when administered as an intranasal vaccine and was dependent on type I interferon (IFN). There was a significant difference between CpG-C inoculated wild type and IFN-αR1-/- mice, indicating that type I IFN plays a role in the immune response following CpG-C inoculation. Further analysis showed that early NK cell presence was not an absolute requirement, although elevated IFN-γ levels were detected in the lungs of mice within 48 h. The reduction in mycobacterial burden was MyD88-independent as CpG-C inoculated MyD88-/- mice showed comparable mycobacterial burdens to wild type mice with no detriment due to the lack of MyD88. Together our data show that pulmonary stimulation of TLR9 bearing antigen presenting cells resulted in the induction of protective immunity against M. tuberculosis infection that was dependent on type I IFN signaling.
Collapse
Affiliation(s)
- Amber Troy
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| | - Sandra C Esparza-Gonzalez
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| | - Alicia Bartek
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| | - Elizabeth Creissen
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| | - Linda Izzo
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| | - Angelo A Izzo
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA.
| |
Collapse
|
17
|
Pattnaik B, Sryma PB, Mittal S, Agrawal A, Guleria R, Madan K. MicroRNAs in pulmonary sarcoidosis: A systematic review. Respir Investig 2020; 58:232-238. [PMID: 32305227 DOI: 10.1016/j.resinv.2020.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 01/05/2023]
Abstract
Sarcoidosis is a multisystemic granulomatous disorder of unknown etiology. Diagnosis of sarcoidosis is made by correlating clinical and radiological features along with the histopathological demonstration of non-necrotizing granulomas in tissue samples. Diagnosis is often challenging as the clinical profile may mimic other granulomatous disorders, including infections, inflammatory diseases, and lymphoid malignancies. Differentiation from tuberculosis is especially crucial in endemic regions where exclusion of mediastinal tuberculosis is necessary before any immunosuppressant treatment can be initiated for symptomatic sarcoidosis. Identification of biomarkers, which can aid in diagnosis as well as prognosis, can be helpful in clinical decision making. MicroRNAs are small non-coding regulatory RNAs that serve as post-transcriptional regulators of gene expression and have been studied as emerging biomarkers in many other respiratory diseases, including lung cancer, asthma, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In the context of sarcoidosis, miRNA expression has been studied in the lungs, lymph nodes, bronchoalveolar lavage fluid, and peripheral blood mononuclear cells. A comprehensive search of the PubMed database was performed by two authors independently, and relevant studies were retrieved for review. This systematic review summarizes the current information on miRNAs in sarcoidosis, the biological mechanisms involved in CD4+ T-helper 1 and macrophage polarization, and the use of exhaled breath condensate as an alternative, noninvasive and potential source of miRNAs.
Collapse
Affiliation(s)
- Bijay Pattnaik
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - P B Sryma
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Saurabh Mittal
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anurag Agrawal
- Centre of Excellence in Asthma and Lung Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Karan Madan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
18
|
Functional Polymorphisms and Gene Expression of TLR9 Gene as Protective Factors for Nasopharyngeal Carcinoma Severity and Progression. J Immunol Res 2019; 2019:2826563. [PMID: 31886298 PMCID: PMC6899320 DOI: 10.1155/2019/2826563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/06/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a disease that is closely associated with EBV infection. Toll-like receptor 9 is an important factor mediating the interaction between EBV and the host immune response. Any genetic (single nucleotide polymorphisms, SNPs) or expression variation in TLR9 gene may modify the ability of the receptor to respond correctly to viral infection as in NPC. This study is aimed at evaluating the effect of TLR9 functional polymorphisms (TLR9-1486 T/C and TLR9-1237 T/C) and TLR9 mRNA expression in NPC severity and progression at diagnosis and after treatment. This study included 322 patients with NPC. RFLP-PCR and real-time PCR were used to assess, respectively, the genotypes and the mRNA expression of TLR9 gene. The genotyping analysis showed that the presence of mutated allele -1237C (TLR9-1237 TC+CC) was associated with large tumor size (p = 0.017; OR (CI 95%) = 1.888 (1.11-3.19)) at diagnosis. After treatment, the -1237C allele was associated with a better chance of complete remission (p = 0.031, OR (CI 95%) = 0.486 (0.25-0.95)), a lower risk of distant metastasis (p = 0.028, OR (CI 95%) = 0.435 (0.18-1.02)), and a lower risk of death by NPC (p = 0.003, OR (CI 95%) = 0.20 (0.06-0.67)). Kaplan-Meier analysis showed that patients with -1237CC and -1237TC genotypes had a better overall survival (OVS) (p < 0.01) and distant metastasis-free survival (DMFS) (p < 0.05). A multivariate analysis revealed that TLR9-1237 T/C polymorphism was an independent prognostic factor in OVS (p = 0.02; HR = 0.244) and DMFS (p = 0.048; HR = 0.388). The transcriptomic analysis showed that the mRNA expression was reduced in patients with larger tumor size (T4) (p = 0.013) and advanced clinical stage (SIII-SIV) (p = 0.037). The TLR9 mRNA expression was inversely correlated with tumor size (p = 0.014; r = −0.314) at diagnosis. Our results indicated for the first time that the functional -1237 T/C polymorphism and mRNA expression of TLR9 gene may be considered as protective factors for NPC severity and progression.
Collapse
|
19
|
Vanpouille-Box C, Hoffmann JA, Galluzzi L. Pharmacological modulation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov 2019; 18:845-867. [PMID: 31554927 DOI: 10.1038/s41573-019-0043-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Nucleic acid sensors, primarily TLR and RLR family members, as well as cGAS-STING signalling, play a critical role in the preservation of cellular and organismal homeostasis. Accordingly, deregulated nucleic acid sensing contributes to the origin of a diverse range of disorders, including infectious diseases, as well as cardiovascular, autoimmune and neoplastic conditions. Accumulating evidence indicates that normalizing aberrant nucleic acid sensing can mediate robust therapeutic effects. However, targeting nucleic acid sensors with pharmacological agents, such as STING agonists, presents multiple obstacles, including drug-, target-, disease- and host-related issues. Here, we discuss preclinical and clinical data supporting the potential of this therapeutic paradigm and highlight key limitations and possible strategies to overcome them.
Collapse
Affiliation(s)
- Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Jules A Hoffmann
- University of Strasbourg Institute for Advanced Studies, Strasbourg, France.,CNRS UPR 9022, Institute for Molecular and Cellular Biology, Strasbourg, France.,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA. .,Université Paris Descartes, Paris, France.
| |
Collapse
|
20
|
Wang B, Wang Y, Wang L, He X, He Y, Bai M, Zhu L, Zheng J, Yuan D, Jin T. The role of FOXO3 polymorphisms in susceptibility to tuberculosis in a Chinese population. Mol Genet Genomic Med 2019; 7:e770. [PMID: 31241240 PMCID: PMC6687658 DOI: 10.1002/mgg3.770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/27/2019] [Accepted: 05/08/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is a significant worldwide health problem, and is caused by Mycobacteria tuberculosis. Recent studies have suggested that FOXO3 plays vital roles in the risk of immune-related infectious diseases such as TB. METHODS AND RESULTS The present study aimed to evaluate FOXO3 genetic variants and TB risk. We recruited 510 TB patients and 508 healthy controls in this study. All subjects were genotyped with the Agena MassARRAY platform. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using logistic regression adjusted for age and gender. Our result revealed that rs3800229 T/G and rs4946935 G/A genotypes significantly increased the risk of TB (OR = 1.34, 95% CI = 1.04-1.74, p = 0.026; OR = 1.34, 95% CI = 1.03-1.73, p = 0.029, respectively). In stratified analysis according to gender and age, we observed that rs3800229 T/G and rs4946935 G/A genotypes were associated with an increase the risk of TB among males and age ≤41 years, respectively (OR = 1.47, 95% CI = 1.06-2.04, p = 0.022 and OR = 1.45, 95% CI = 1.05-2.02, p = 0.025). CONCLUSIONS Our study showed that rs3800229 and rs4946935 in FOXO3 were associated with a risk of TB in the Chinese population.
Collapse
Affiliation(s)
- Bo Wang
- Department of the 4th Internal MedicineXi’an Chest HospitalXi’anShaanxiChina
| | - Yuhe Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- Department of Clinical LaboratoryAffiliated Hospital of Xizang Minzu UniversityXianyangShaanxiChina
| | - Li Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of Basic Medical SciencesXizang Minzu UniversityXianyangShaanxiChina
| | - Xue He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of Basic Medical SciencesXizang Minzu UniversityXianyangShaanxiChina
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of Basic Medical SciencesXizang Minzu UniversityXianyangShaanxiChina
| | - Mei Bai
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of Basic Medical SciencesXizang Minzu UniversityXianyangShaanxiChina
| | - Linhao Zhu
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of Basic Medical SciencesXizang Minzu UniversityXianyangShaanxiChina
| | - Jianwen Zheng
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- Department of NeurologyAffiliated hospital of Xizang Minzu UniversityXianyangShaanxiChina
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of Basic Medical SciencesXizang Minzu UniversityXianyangShaanxiChina
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of Basic Medical SciencesXizang Minzu UniversityXianyangShaanxiChina
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University)Ministry of EducationXi’anShaanxiChina
| |
Collapse
|
21
|
Mukherjee S, Huda S, Sinha Babu SP. Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scand J Immunol 2019; 90:e12771. [PMID: 31054156 DOI: 10.1111/sji.12771] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Immunopolymorphism is considered as an important aspect behind the resistance or susceptibility of the host to an infectious disease. Over the years, researchers have explored many genetic factors for their role in immune surveillance against infectious diseases. Polymorphic characters in the gene encoding Toll-like receptors (TLRs) play profound roles in inducing differential immune responses by the host against parasitic infections. Protein(s) encoded by TLR gene(s) are immensely important due to their ability of recognizing different types of pathogen associated molecular patterns (PAMPs). This study reviews the polymorphic residues present in the nucleotide or in the amino acid sequence of TLRs and their influence on alteration of inflammatory signalling pathways promoting either susceptibility or resistance to major infectious diseases, including tuberculosis, leishmaniasis, malaria and filariasis. Population-based studies exploring TLR polymorphisms in humans are primarily emphasized to discuss the association of the polymorphic residues with the occurrence and epidemiology of the mentioned infectious diseases. Principal polymorphic residues in TLRs influencing immunity to infection are mostly single nucleotide polymorphisms (SNPs). I602S (TLR1), R677W (TLR2), P554S (TLR3), D299G (TLR4), F616L (TLR5), S249P (TLR6), Q11L (TLR7), M1V (TLR8), G1174A (TLR9) and G1031T (TLR10) are presented as the major influential SNPs in shaping immunity to pathogenic infections. The contribution of these SNPs in the structure-function relationship of TLRs is yet not clear. Therefore, molecular studies on such polymorphisms can improve our understanding on the genetic basis of the immune response and pave the way for therapeutic intervention in a more feasible way.
Collapse
Affiliation(s)
| | - Sahel Huda
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan, India
| | - Santi P Sinha Babu
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan, India
| |
Collapse
|
22
|
Cervantes JL, Oak E, Garcia J, Liu H, Lorenzini PA, Batra D, Chhabra A, Salazar JC, Roca X. Vitamin D modulates human macrophage response to Mycobacterium tuberculosis DNA. Tuberculosis (Edinb) 2019; 116S:S131-S137. [PMID: 31085128 PMCID: PMC6626683 DOI: 10.1016/j.tube.2019.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a facultative intracellular pathogen that infects macrophages where it avoids elimination by interfering with host defense mechanisms, including phago-lysosome fusion. Endosomal Toll-like receptors (TLRs) generate Type I Interferons (IFNs), which are associated with active tuberculosis (TB). We aimed to explore if DNA from different Mtb lineages lead to differences in the inflammatory response of human monocytic/macrophage cells. THP-1 cells which express two inducible reporter constructs for interferons (IFNs) as well as for NF-κB, were stimulated via endosomal delivery of Mtb DNA as a nanocomplex with PEI. DNA from different Mtb phylogenetic lineages elicited differential inflammatory responses in human macrophages. An initial relatively weak IRF-mediated response to DNA from HN878 and H37Rv increased if the cells were pre-treated with Vitamin D (Vit D) for 72 h. RNAseq of THP-1 under different transformation conditions showed that pre-treatment with Vit D upregulated several TLR9 variants, as well as genes involved in inflammatory immune response to infection, immune cell activation, Type I IFN regulation, and regulation of inflammation. Vit D appears to be important in increasing low IRF responses to DNA from certain lineages of Mtb. Variations in the IRF-mediated response to DNA derived from different Mtb genotypes are potentially important in the pathogenesis of tuberculosis since Type I IFN responses are associated with active disease. The role of Vit D in these responses could also translate into future therapeutic approaches.
Collapse
Affiliation(s)
- Jorge L Cervantes
- Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, TX, USA.
| | - Esther Oak
- University of New England, College of Dental Medicine, Portland, ME, USA
| | - John Garcia
- University of Connecticut Health, School of Public Health, Farmington, CT, USA
| | - Hongfei Liu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Paolo A Lorenzini
- School of Biological Sciences, Nanyang Technological University, Singapore; Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Deepika Batra
- Stem Cell Institute, Amity University Haryana, Manesar, Gurugram, Haryana, India
| | - Arvind Chhabra
- Stem Cell Institute, Amity University Haryana, Manesar, Gurugram, Haryana, India
| | - Juan C Salazar
- University of Connecticut Health, Department of Pediatrics, Farmington, CT, USA; Connecticut Children's Medical Center, Hartford, CT, USA
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
23
|
Jin C, Wu X, Dong C, Li F, Fan L, Xiong S, Dong Y. EspR promotes mycobacteria survival in macrophages by inhibiting MyD88 mediated inflammation and apoptosis. Tuberculosis (Edinb) 2019; 116:22-31. [PMID: 31153514 DOI: 10.1016/j.tube.2019.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/18/2019] [Accepted: 03/30/2019] [Indexed: 12/22/2022]
Abstract
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb), leading to about a million deaths each year. EspR is a DNA binding protein of Mtb which regulates expression of multiple genes and the activity of ESX-1 secretion system of the bacteria, with itself being secreted out as a substrate of ESX-1. We explored the function of secreted EspR in host cells by overexpressing the protein in murine macrophage cell line RAW264.7, infecting the cells with BCG which does not secrete EspR, and evaluating the antimicrobial responses of the cells. We found that EspR resulted in an increased intracellular bacteria load in macrophages. This is due to its inhibition on BCG induced expression of inflammatory cytokines and inducible nitric oxide synthase (iNOS), as well as host cell apoptosis. Mechanism study showed that EspR directly interacted with adaptor protein myeloid differentiation factor 88 (MyD88), suppressed MyD88 dependent Toll-like receptor (TLR) and IL-1R signal activation, thus reduced inflammatory responses and apoptosis in macrophages and promoted mycobacteria survival.
Collapse
Affiliation(s)
- Chunyan Jin
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Postal address: 199 Renai Road, SIP, Suzhou, Jiangsu, China.
| | - Xiaoyu Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Postal address: 199 Renai Road, SIP, Suzhou, Jiangsu, China.
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Postal address: 199 Renai Road, SIP, Suzhou, Jiangsu, China.
| | - Fengge Li
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Postal address: 199 Renai Road, SIP, Suzhou, Jiangsu, China.
| | - Lingbo Fan
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Postal address: 199 Renai Road, SIP, Suzhou, Jiangsu, China.
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Postal address: 199 Renai Road, SIP, Suzhou, Jiangsu, China.
| | - Yuanshu Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Postal address: 199 Renai Road, SIP, Suzhou, Jiangsu, China.
| |
Collapse
|
24
|
Joshi A, Punke EB, Mehmetoglu-Gurbuz T, Peralta DP, Garg H. TLR9 polymorphism correlates with immune activation, CD4 decline and plasma IP10 levels in HIV patients. BMC Infect Dis 2019; 19:56. [PMID: 30651082 PMCID: PMC6335820 DOI: 10.1186/s12879-019-3697-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/09/2019] [Indexed: 12/31/2022] Open
Abstract
Background The mechanism behind HIV mediated immune activation remains debated, although the role of virus replication in this process is increasingly evident. Toll like Receptor 9 (TLR9) has been implicated in HIV mediated immune activation via sensing of viral CpG DNA. Polymorphisms in the TLR9 gene and promoter region including TLR9 1635A/G and 1486C/T have been found to be associated with multiple infectious diseases and cancers. Methods In the current study, we looked at the correlation of TLR9 polymorphisms 1635A/G and 1486C/T with key hallmarks of HIV disease in a cohort of 50 HIV infected patients. We analyzed CD4 counts, T cell immune activation characterized by upregulation of CD38 and HLA-DR and upregulation of plasma biomarkers of inflammation like LPS, sCD14, IL-6 and IP10 in the HIV patient cohort and compared it to healthy controls. Results We found that TLR9 1635AA genotype was associated with lower CD4 counts and significantly higher immune activation in both CD4+ and CD8+ T cells. Analysis of HIV associated plasma biomarkers including LPS, sCD14, IL-6 and IP10 revealed a strong correlation between IP10 and immune activation. Interestingly, IP10 levels were also found to be higher in HIV patients with the 1635AA genotype. Furthermore, the TLR9 1486C/T polymorphism that is in linkage disequilibrium with 1635A/G was weakly associated with lower CD4 counts, higher CD8 immune activation and higher IP10 levels. Conclusions As TLR9 stimulation is known to induce IP10 production by dendritic cells, our findings provide new insights into HIV mediated immune activation and CD4 loss. TLR9 stimulation by viral CpG DNA may be important to HIV immunopathogenesis and the TLR9 polymorphisms 1635A/G and 1486C/T may be associated with disease progression.
Collapse
Affiliation(s)
- Anjali Joshi
- Department of Biomedical Sciences, Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center, 5001 El Paso Dr, El Paso, TX, 79905, USA
| | - Erin B Punke
- Department of Biomedical Sciences, Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center, 5001 El Paso Dr, El Paso, TX, 79905, USA
| | - Tugba Mehmetoglu-Gurbuz
- Department of Biomedical Sciences, Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center, 5001 El Paso Dr, El Paso, TX, 79905, USA
| | - Diego P Peralta
- Division of Infectious Diseases, Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Himanshu Garg
- Department of Biomedical Sciences, Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center, 5001 El Paso Dr, El Paso, TX, 79905, USA.
| |
Collapse
|
25
|
The Associations between Toll-Like Receptor 9 Gene Polymorphisms and Cervical Cancer Susceptibility. Mediators Inflamm 2018; 2018:9127146. [PMID: 30147445 PMCID: PMC6083594 DOI: 10.1155/2018/9127146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022] Open
Abstract
This meta-analysis systematically reviews the association between Toll-like receptor 9 polymorphisms and the risk of cervical cancer. Case-control studies focused on the association were collected from the PubMed, Web of Science, Cochrane Library, Embase, MEDLINE, CNKI, VIP, and Wanfang databases from inception to July 2017. We screened the studies and assessed the methodological quality of the included studies and extracted data. A meta-analysis was performed using RevMan 5.3 and Stata 12.0 software. Pooled odds ratios and 95% confidence intervals were employed to evaluate the strength of the associations between Toll-like receptor 9 polymorphisms and cervical cancer risk. A total of 9 studies comprising 3331 cervical cancer patients and 4109 healthy controls met the inclusion criteria. Of these, 8 studies contained information about G2848A (rs352140) and 4 studies contained information about −1486T/C (rs187084). Our results revealed that the associations between rs187084 and cervical cancer risk in the dominant model (p = 0.002) and heterozygous model (p = 0.002) were significant, with 1.30- and 1.32-fold increases in susceptibility, respectively, compared to that in the wild-type model. However, rs352140 was not related to cervical cancer regardless of whether the subgroup analysis was conducted (p > 0.05). In conclusion, there is a significant correlation between rs187084 and cervical cancer risk with the minor C allele increasing the risk of occurrence of cervical cancer. However, rs352140 is not associated with the occurrence of cervical cancer.
Collapse
|
26
|
Mittal M, Biswas SK, Singh V, Arela N, Katoch VM, Das R, Yadav VS, Bajaj B, Mohanty KK. Association of Toll like receptor 2 and 9 gene variants with pulmonary tuberculosis: exploration in a northern Indian population. Mol Biol Rep 2018; 45:469-476. [PMID: 29675696 DOI: 10.1007/s11033-018-4182-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/02/2018] [Indexed: 12/25/2022]
Abstract
Tuberculosis (TB) is a disease of global importance. There is an increasing recognition of the role of Toll like receptors, important pattern recognition receptors of host immune system, in determining the susceptibility or resistance to TB in various populations. In an attempt to examine the importance of Toll like receptors in immune response to Mycobacterium tuberculosis infection, we explored two variants each of TLR2 and TLR9 in a population residing in Uttar Pradesh, India. Genotyping was performed to detect -196 to -174 del polymorphism and G2258A SNP (Arg753Gln, rs5743708) in TLR2 gene and -T1237C (rs5743836) and G2848A (rs352140) SNP in TLR9 gene in patients with pulmonary TB and healthy controls. The A allele of G2848A SNP in TLR9 gene was found with a marginally higher frequency among TB patients as compared to healthy controls, suggesting that A allele at position 2848 of TLR9 gene may be associated with susceptibility to TB in North Indian population [p = 0.05, Mantel-Haenszel OR = 1.34, 95% CI (1.0-1.82)].
Collapse
Affiliation(s)
- Mayank Mittal
- Immunology Division, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, 282004, India
| | - Sanjay Kumar Biswas
- Immunology Division, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, 282004, India
| | - Vandana Singh
- Immunology Division, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, 282004, India
| | - Nidhi Arela
- Immunology Division, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, 282004, India
| | - Vishwa Mohan Katoch
- Molecular Biology Division, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, 282004, India
- Public Health Research, Rajasthan University of Health Sciences, Sector 18, Kumbha Marg, Pratap Nagar, Jaipur, Rajasthan, 302033, India
| | - Ram Das
- Molecular Biology Division, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, 282004, India
- National Institute of Malaria Research, Sector 8, Dwarka, Delhi, 110077, India
| | - Virendra Singh Yadav
- Biostatistics & Epidemiology Unit, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, 282004, India
| | - Bharat Bajaj
- State TB Demonstration and Training Centre, Agra, 282005, India
| | - Keshar Kunja Mohanty
- Immunology Division, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, 282004, India.
| |
Collapse
|
27
|
Loots AK, Cardoso-Vermaak E, Venter EH, Mitchell E, Kotzé A, Dalton DL. The role of toll-like receptor polymorphisms in susceptibility to canine distemper virus. Mamm Biol 2018. [DOI: 10.1016/j.mambio.2017.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Irizarry KJL, Downs E, Bryden R, Clark J, Griggs L, Kopulos R, Boettger CM, Carr TJ, Keeler CL, Collisson E, Drechsler Y. RNA sequencing demonstrates large-scale temporal dysregulation of gene expression in stimulated macrophages derived from MHC-defined chicken haplotypes. PLoS One 2017; 12:e0179391. [PMID: 28846708 PMCID: PMC5573159 DOI: 10.1371/journal.pone.0179391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/29/2017] [Indexed: 11/18/2022] Open
Abstract
Discovering genetic biomarkers associated with disease resistance and enhanced immunity is critical to developing advanced strategies for controlling viral and bacterial infections in different species. Macrophages, important cells of innate immunity, are directly involved in cellular interactions with pathogens, the release of cytokines activating other immune cells and antigen presentation to cells of the adaptive immune response. IFNγ is a potent activator of macrophages and increased production has been associated with disease resistance in several species. This study characterizes the molecular basis for dramatically different nitric oxide production and immune function between the B2 and the B19 haplotype chicken macrophages.A large-scale RNA sequencing approach was employed to sequence the RNA of purified macrophages from each haplotype group (B2 vs. B19) during differentiation and after stimulation. Our results demonstrate that a large number of genes exhibit divergent expression between B2 and B19 haplotype cells both prior and after stimulation. These differences in gene expression appear to be regulated by complex epigenetic mechanisms that need further investigation.
Collapse
Affiliation(s)
- Kristopher J. L. Irizarry
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
- The Applied Genomics Center, Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (KI); (YD)
| | - Eileen Downs
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Randall Bryden
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Jory Clark
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Lisa Griggs
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Renee Kopulos
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Cynthia M. Boettger
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Thomas J. Carr
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Calvin L. Keeler
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Ellen Collisson
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (KI); (YD)
| |
Collapse
|
29
|
Gębura K, Świerkot J, Wysoczańska B, Korman L, Nowak B, Wiland P, Bogunia-Kubik K. Polymorphisms within Genes Involved in Regulation of the NF-κB Pathway in Patients with Rheumatoid Arthritis. Int J Mol Sci 2017; 18:E1432. [PMID: 28677621 PMCID: PMC5535923 DOI: 10.3390/ijms18071432] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
Genes involved in regulation of the nuclear factor-κB (NF-κB)-pathway are suggested to play a role in pathogenesis of rheumatoid arthritis (RA). In the present study, genetic polymorphisms of TLR2, TLR4, TLR9 and NF-κB1 genes were investigated to assess their associations with RA susceptibility, progression and response to anti-TNF-α therapy. A group of 110 RA patients and 126 healthy individuals were genotyped for TLR2 (rs111200466), TLR4 (rs4986790, rs4986791), TLR9 (rs5743836, rs187084) and NF-κB1 (rs28362491) alleles. The presence of the TLR9 -1486 T variant (p < 0.0001) and its homozygosity (p < 0.0001) were found to be associated with disease susceptibility. The TLR9 -1237 C allele was associated with predisposition to RA in females only (p = 0.005). Moreover, the TLR4 rs4986791 G (rs4986790 T) alleles were more frequently detected among patients with the stage IV disease (p = 0.045), and were associated with more effective response to anti-TNF-α therapy (p = 0.012). More efficient response to anti-TNF-α treatment was also observed in patients with del within the NF-κB1 gene (p = 0.047), while for the TLR9 -1486 T homozygotes, the treatment was ineffective (p = 0.018). TLR polymorphisms affect disease susceptibility and response to therapy with TNF-α inhibitors in RA patients of Caucasian origin.
Collapse
Affiliation(s)
- Katarzyna Gębura
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Jerzy Świerkot
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 50-556 Wrocław, Poland.
| | - Barbara Wysoczańska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Lucyna Korman
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 50-556 Wrocław, Poland.
| | - Beata Nowak
- Department of Pharmacology, Wroclaw Medical University, 50-556 Wrocław, Poland.
- Department of Rheumatology and Internal Medicine, Wroclaw University Hospital, 50-556 Wrocław, Poland.
| | - Piotr Wiland
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 50-556 Wrocław, Poland.
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wrocław, Poland.
| |
Collapse
|
30
|
Inoue N, Katsumata Y, Watanabe M, Ishido N, Manabe Y, Watanabe A, Masutani R, Hidaka Y, Iwatani Y. Polymorphisms and expression of toll-like receptors in autoimmune thyroid diseases. Autoimmunity 2016; 50:182-191. [DOI: 10.1080/08916934.2016.1261835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Naoya Inoue
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan and
- Laboratory for Clinical Investigation, Osaka University Hospital, Osaka, Japan
| | - Yuka Katsumata
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan and
| | - Mikio Watanabe
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan and
| | - Naoko Ishido
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan and
| | - Yu Manabe
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan and
| | - Ayano Watanabe
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan and
| | - Ryota Masutani
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan and
| | - Yoh Hidaka
- Laboratory for Clinical Investigation, Osaka University Hospital, Osaka, Japan
| | - Yoshinori Iwatani
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan and
| |
Collapse
|
31
|
Abstract
ABSTRACT
Familial risk of tuberculosis (TB) has been recognized for centuries. Largely through studies of mono- and dizygotic twin concordance rates, studies of families with Mendelian susceptibility to mycobacterial disease, and candidate gene studies performed in the 20th century, it was recognized that susceptibility to TB disease has a substantial host genetic component. Limitations in candidate gene studies and early linkage studies made the robust identification of specific loci associated with disease challenging, and few loci have been convincingly associated across multiple populations. Genome-wide and transcriptome-wide association studies, based on microarray (commonly known as genechip) technologies, conducted in the past decade have helped shed some light on pathogenesis but only a handful of new pathways have been identified. This apparent paradox, of high heritability but few replicable associations, has spurred a new wave of collaborative global studies. This review aims to comprehensively review the heritability of TB, critically review the host genetic and transcriptomic correlates of disease, and highlight current studies and future prospects in the study of host genomics in TB. An implicit goal of elucidating host genetic correlates of susceptibility to
Mycobacterium tuberculosis
infection or TB disease is to identify pathophysiological features amenable to translation to new preventive, diagnostic, or therapeutic interventions. The translation of genomic insights into new clinical tools is therefore also discussed.
Collapse
|
32
|
Nuolivirta K, Törmänen S, Teräsjärvi J, Vuononvirta J, Koponen P, Korppi M, Helminen M, Peltola V, He Q. Post-bronchiolitis wheezing is associated with toll-like receptor 9 rs187084 gene polymorphism. Sci Rep 2016; 6:31165. [PMID: 27498757 PMCID: PMC4976338 DOI: 10.1038/srep31165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/15/2016] [Indexed: 11/29/2022] Open
Abstract
Innate immunity receptors play a critical role in host defence, as well as in allergy and asthma. The aim of this exploratory study was to evaluate whether there are associations between TLR7 rs179008, TLR8 rs2407992, TLR9 rs187084 or TLR10 rs4129009 polymorphisms and viral findings, clinical characteristics or subsequent wheezing in infants with bronchiolitis. In all, 135 full-term infants were hospitalized for bronchiolitis at age less than 6 months: 129 of them were followed-up until the age of 1.5 years. The outcome measures were repeated wheezing, use of inhaled corticosteroids, atopic dermatitis during the first 1.5 years of life and total serum immunoglobulin E (IgE). There were no significant associations between the genotypes or allele frequencies of TLR7 rs179008, TLR8 rs2407992, TLR9 rs187084 or TLR10 rs4129009 polymorphisms and clinical characteristics or the severity of bronchiolitis during hospitalization. During follow-up, repeated wheezing was more common in children with TLR9 rs187084 variant genotype CC (30.5%) than in children with TLR9 wild-type genotype TT (12.2%) (p = 0.02, aOR 2.73, 95% CI 1.02–7.29). The TLR10 rs4129009 minor allele G was associated with elevated total serum IgE. TLR9 rs187084 gene polymorphism may be associated with post-bronchiolitis wheezing, and TLR10 rs4129009 gene polymorphism may be associated with atopy.
Collapse
Affiliation(s)
- Kirsi Nuolivirta
- Department of Pediatrics, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Sari Törmänen
- Center for Child Health Research, Tampere University and University Hospital, Tampere, Finland
| | - Johanna Teräsjärvi
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Juho Vuononvirta
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Petri Koponen
- Center for Child Health Research, Tampere University and University Hospital, Tampere, Finland
| | - Matti Korppi
- Center for Child Health Research, Tampere University and University Hospital, Tampere, Finland
| | - Merja Helminen
- Center for Child Health Research, Tampere University and University Hospital, Tampere, Finland
| | - Ville Peltola
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and Child and Youth Research Institute, University of Turku, Turku, Finland
| | - Qiushui He
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland.,Department of Medical Microbiology, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Ma Y, Han F, Liang J, Yang J, Shi J, Xue J, Yang L, Li Y, Luo M, Wang Y, Wei J, Liu X. A species-specific activation of Toll-like receptor signaling in bovine and sheep bronchial epithelial cells triggered by Mycobacterial infections. Mol Immunol 2016; 71:23-33. [DOI: 10.1016/j.molimm.2016.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 01/29/2023]
|
34
|
Ingle H, Kumar S, Raut AA, Mishra A, Kulkarni DD, Kameyama T, Takaoka A, Akira S, Kumar H. The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication. Sci Signal 2015; 8:ra126. [PMID: 26645583 DOI: 10.1126/scisignal.aab3183] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that are responsible for dynamic changes in gene expression, and some regulate innate antiviral responses. Retinoic acid-inducible gene I (RIG-I) is a cytosolic sensor of viral RNA; RIG-I activation induces an antiviral immune response. We found that miR-485 of the host was produced in response to viral infection and targeted RIG-I mRNA for degradation, which led to suppression of the antiviral response and enhanced viral replication. Thus, inhibition of the expression of mir-485 markedly reduced the replication of Newcastle disease virus (NDV) and the H5N1 strain of influenza virus in mammalian cells. Unexpectedly, miR-485 also bound to the H5N1 gene PB1 (which encodes an RNA polymerase required for viral replication) in a sequence-specific manner, thereby inhibiting replication of the H5N1 virus. Furthermore, miR-485 exhibited bispecificity, targeting RIG-I in cells with a low abundance of H5N1 virus and targeting PB1 in cells with increased amounts of the H5N1 virus. These findings highlight the dual role of miR-485 in preventing spurious activation of antiviral signaling and restricting influenza virus infection.
Collapse
Affiliation(s)
- Harshad Ingle
- Laboratory of Immunology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Sushil Kumar
- Laboratory of Immunology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Ashwin Ashok Raut
- Pathogenomics Lab, OIE Reference Lab for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Anamika Mishra
- Pathogenomics Lab, OIE Reference Lab for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Diwakar Dattatraya Kulkarni
- Pathogenomics Lab, OIE Reference Lab for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Takeshi Kameyama
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| | - Himanshu Kumar
- Laboratory of Immunology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India. Laboratory of Host Defense, WPI Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
35
|
The microbiome at the pulmonary alveolar niche and its role in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2015; 95:651-658. [PMID: 26455529 DOI: 10.1016/j.tube.2015.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/08/2015] [Accepted: 07/13/2015] [Indexed: 01/14/2023]
Abstract
Advances in next generation sequencing (NGS) technology have provided the tools to comprehensively and accurately characterize the microbial community in the respiratory tract in health and disease. The presence of commensal and pathogenic bacteria has been found to have important effects on the lung immune system. Until relatively recently, the lung has received less attention compared to other body sites in terms of microbiome characterization, and its study carries special technological difficulties related to obtaining reliable samples as compared to other body niches. Additionally, the complexity of the alveolar immune system, and its interactions with the lung microbiome, are only just beginning to be understood. Amidst this complexity sits Mycobacterium tuberculosis (Mtb), one of humanity's oldest nemeses and a significant public health concern, with millions of individuals infected with Mtb worldwide. The intricate interactions between Mtb, the lung microbiome, and the alveolar immune system are beginning to be understood, and it is increasingly apparent that improved treatment of Mtb will only come through deep understanding of the interplay between these three forces. In this review, we summarize our current understanding of the lung microbiome, alveolar immunity, and the interaction of each with Mtb.
Collapse
|
36
|
Zhao L, Liu K, Kong X, Tao Z, Wang Y, Liu Y. Association of polymorphisms in Toll-like receptors 4 and 9 with risk of pulmonary tuberculosis: a meta-analysis. Med Sci Monit 2015; 21:1097-106. [PMID: 25889916 PMCID: PMC4412087 DOI: 10.12659/msm.893755] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Findings regarding the association of the single-nucleotide polymorphisms (SNPs) rs4986790 and rs4986791 in Toll-like receptor 4 and rs187084, rs574386, and rs352139 in Toll-like receptor 9 (TLR9) with pulmonary tuberculosis (PTB) susceptibility are inconsistent. We conducted a meta-analysis to systematically summarize and clarify the association between these SNPs and PTB susceptibility. MATERIAL AND METHODS A systematic literature search for relevant studies up to December, 2014 was performed in PubMed, EMBASE, Web of Science, Chinese National Knowledge Infrastructure (CNKI), and Wanfang databases. Information was gathered from each eligible study. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were used to pool the effect size. RESULTS Finally, a total of 16 case-control studies on these polymorphisms were enrolled in this meta-analysis. The meta-analysis results suggest there was no association between these polymorphisms and PTB risk PTB risk in all the genetic models overall. However, for TLR4 rs4986791, a significant increased PTB risk was found in Africans, and for TLR9 rs352139 a significant increased PTB risk was found in Asians after subgroup analysis by ethnicity, although the enrolled studies were limited. CONCLUSIONS There was no association between the polymorphisms in TLR4 and 9 and PTB risk overall, but TLR4 rs4986791 and TLR9 rs352139 might be associated with increased PTB risk in Africans and Asians, respectively. Additional well-designed, larger-scale epidemiological studies are needed to validate our results.
Collapse
Affiliation(s)
- Lianli Zhao
- Department of Human Resource, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Kehun Liu
- Department of Medical Examination Center, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Xiangjun Kong
- Central Laboratory, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Zhenxia Tao
- Central Laboratory, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Yanxia Wang
- Central Laboratory, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Ying Liu
- Central Laboratory, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| |
Collapse
|
37
|
Graustein AD, Horne DJ, Arentz M, Bang ND, Chau TTH, Thwaites GE, Caws M, Thuong NTT, Dunstan SJ, Hawn TR. TLR9 gene region polymorphisms and susceptibility to tuberculosis in Vietnam. Tuberculosis (Edinb) 2015; 95:190-6. [PMID: 25616954 PMCID: PMC4573533 DOI: 10.1016/j.tube.2014.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/16/2014] [Accepted: 12/28/2014] [Indexed: 01/13/2023]
Abstract
Humans exposed to Mycobacterium tuberculosis (Mtb) show variation in susceptibility to infection and differences in tuberculosis (TB) disease outcome. Toll-like receptor 9 (TLR9) is a pattern recognition receptor that mediates recognition of Mtb and modulates Mtb-specific T-cell responses. Using a case-population design, we evaluated whether single nucleotide polymorphisms (SNPs) in the TLR9 gene region are associated with susceptibility to pulmonary or meningeal TB as well as neurologic presentation and mortality in the meningeal TB group. In a discovery cohort (n = 352 cases, 382 controls), three SNPs were associated with TB (all forms, p < 0.05) while three additional SNPs neared significance (0.05 < p < 0.1). When these six SNPs were evaluated in a validation cohort (n = 339 cases, 367 controls), one was significant (rs352142) while another neared significance (rs352143). When the cohorts were combined, rs352142 was most strongly associated with meningeal tuberculosis (dominant model; p = 0.0002, OR 2.36, CI 1.43-3.87) while rs352143 was associated with pulmonary tuberculosis (recessive model; p = 0.006, OR 5.3, CI 1.26-31.13). None of the SNPs were associated with mortality. This is the first demonstration of an association between a TLR9 gene region SNP and tuberculous meningitis. In addition, this extends previous findings that support associations of TLR9 SNPs with pulmonary tuberculosis.
Collapse
Affiliation(s)
| | - D J Horne
- Univ. of Washington, Seattle, WA, USA
| | - M Arentz
- Univ. of Washington, Seattle, WA, USA
| | - N D Bang
- Pham Ngoc Thach Hospital for Tuberculosis & Lung Disease, HCMC, Viet Nam
| | - T T H Chau
- Hospital for Tropical Diseases, HCMC, Viet Nam
| | - G E Thwaites
- Oxford Univ. Clinical Research Unit, Hospital for Tropical Diseases, HCMC, Viet Nam; Nuffield Dept. of Clinical Medicine, Centre for Tropical Medicine, Oxford Univ., UK
| | - M Caws
- Oxford Univ. Clinical Research Unit, Hospital for Tropical Diseases, HCMC, Viet Nam; Liverpool School of Tropical Medicine, Pembroke Place, UK
| | - N T T Thuong
- Oxford Univ. Clinical Research Unit, Hospital for Tropical Diseases, HCMC, Viet Nam; Nuffield Dept. of Clinical Medicine, Centre for Tropical Medicine, Oxford Univ., UK
| | - S J Dunstan
- Oxford Univ. Clinical Research Unit, Hospital for Tropical Diseases, HCMC, Viet Nam; Nuffield Dept. of Clinical Medicine, Centre for Tropical Medicine, Oxford Univ., UK; The Nossal Institute for Global Health, The University of Melbourne, Australia
| | - T R Hawn
- Univ. of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Cui J, Cheng Y, Belov K. Diversity in the Toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 2015; 67:195-201. [PMID: 25563844 DOI: 10.1007/s00251-014-0823-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/08/2014] [Indexed: 01/08/2023]
Abstract
The Tasmanian devil is an endangered marsupial species that has survived several historical bottlenecks and now has low genetic diversity. Here we characterize the Toll-like receptor (TLR) genes and their diversity in the Tasmanian devil. TLRs are a key innate immune gene family found in all animals. Ten TLR genes were identified in the Tasmanian devil genome. Unusually low levels of diversity were found in 25 devils from across Tasmania. We found two alleles at TLR2, TLR3 and TLR6. The other seven genes were monomorphic. The insurance population, which safeguards the species from extinction, has successfully managed to capture all of these TLR alleles, but concerns remain for the long-term survival of this species.
Collapse
Affiliation(s)
- Jian Cui
- Faculty of Veterinary Science, University of Sydney, Rm 303, RMC Gunn Building B19, Sydney, NSW, 2006, Australia
| | | | | |
Collapse
|