1
|
Koncz B, Balogh GM, Manczinger M. A journey to your self: The vague definition of immune self and its practical implications. Proc Natl Acad Sci U S A 2024; 121:e2309674121. [PMID: 38722806 PMCID: PMC11161755 DOI: 10.1073/pnas.2309674121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
The identification of immunogenic peptides has become essential in an increasing number of fields in immunology, ranging from tumor immunotherapy to vaccine development. The nature of the adaptive immune response is shaped by the similarity between foreign and self-protein sequences, a concept extensively applied in numerous studies. Can we precisely define the degree of similarity to self? Furthermore, do we accurately define immune self? In the current work, we aim to unravel the conceptual and mechanistic vagueness hindering the assessment of self-similarity. Accordingly, we demonstrate the remarkably low consistency among commonly employed measures and highlight potential avenues for future research.
Collapse
Affiliation(s)
- Balázs Koncz
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Hungarian Research Network (HUN-REN) Biological Research Centre, Szeged6726, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre (HCEMM-BRC) Systems Immunology Research Group, Szeged6726, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged6720, Hungary
| | - Gergő Mihály Balogh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Hungarian Research Network (HUN-REN) Biological Research Centre, Szeged6726, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre (HCEMM-BRC) Systems Immunology Research Group, Szeged6726, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged6720, Hungary
| | - Máté Manczinger
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Hungarian Research Network (HUN-REN) Biological Research Centre, Szeged6726, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre (HCEMM-BRC) Systems Immunology Research Group, Szeged6726, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged6720, Hungary
| |
Collapse
|
2
|
Inholz K, Bader U, Mundt S, Basler M. The Significant Role of PA28αβ in CD8 + T Cell-Mediated Graft Rejection Contrasts with Its Negligible Impact on the Generation of MHC-I Ligands. Int J Mol Sci 2024; 25:5649. [PMID: 38891837 PMCID: PMC11172216 DOI: 10.3390/ijms25115649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The proteasome generates the majority of peptides presented on MHC class I molecules. The cleavage pattern of the proteasome has been shown to be changed via the proteasome activator (PA)28 alpha beta (PA28αβ). In particular, several immunogenic peptides have been reported to be PA28αβ-dependent. In contrast, we did not observe a major impact of PA28αβ on the generation of different major histocompatibility complex (MHC) classI ligands. PA28αβ-knockout mice infected with the lymphocytic choriomeningitis virus (LCMV) or vaccinia virus showed a normal cluster of differentiation (CD) 8 response and viral clearance. However, we observed that the adoptive transfer of wild-type cells into PA28αβ-knockout mice led to graft rejection, but not vice versa. Depletion experiments showed that the observed rejection was mediated by CD8+ cytotoxic T cells. These data indicate that PA28αβ might be involved in the development of the CD8+ T cell repertoire in the thymus. Taken together, our data suggest that PA28αβ is a crucial factor determining T cell selection and, therefore, impacts graft acceptance.
Collapse
Affiliation(s)
- Katharina Inholz
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland;
- Division of Immunology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Ulrika Bader
- Division of Immunology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Basler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland;
- Division of Immunology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
3
|
Dafun AS, Živković D, Leon-Icaza SA, Möller S, Froment C, Bonnet D, de Jesus AA, Alric L, Quaranta-Nicaise M, Ferrand A, Cougoule C, Meunier E, Burlet-Schiltz O, Ebstein F, Goldbach-Mansky R, Krüger E, Bousquet MP, Marcoux J. Establishing 20S Proteasome Genetic, Translational and Post-Translational Status from Precious Biological and Patient Samples with Top-Down MS. Cells 2023; 12:cells12060844. [PMID: 36980185 PMCID: PMC10047880 DOI: 10.3390/cells12060844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
The mammalian 20S catalytic core of the proteasome is made of 14 different subunits (α1-7 and β1-7) but exists as different subtypes depending on the cell type. In immune cells, for instance, constitutive catalytic proteasome subunits can be replaced by the so-called immuno-catalytic subunits, giving rise to the immunoproteasome. Proteasome activity is also altered by post-translational modifications (PTMs) and by genetic variants. Immunochemical methods are commonly used to investigate these PTMs whereby protein-tagging is necessary to monitor their effect on 20S assembly. Here, we present a new miniaturized workflow combining top-down and bottom-up mass spectrometry of immunopurified 20S proteasomes that analyze the proteasome assembly status as well as the full proteoform footprint, revealing PTMs, mutations, single nucleotide polymorphisms (SNPs) and induction of immune-subunits in different biological samples, including organoids, biopsies and B-lymphoblastoid cell lines derived from patients with proteasome-associated autoinflammatory syndromes (PRAAS). We emphasize the benefits of using top-down mass spectrometry in preserving the endogenous conformation of protein modifications, while enabling a rapid turnaround (1 h run) and ensuring high sensitivity (1–2 pmol) and demonstrate its capacity to semi-quantify constitutive and immune proteasome subunits.
Collapse
Affiliation(s)
- Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Dušan Živković
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Stephen Adonai Leon-Icaza
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Sophie Möller
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Delphine Bonnet
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Université de Toulouse III—Paul Sabatier (UPS), 31300 Toulouse, France
- Internal Medicine Department of Digestive Disease, Rangueil Hospital, Université de Toulouse III—Paul Sabatier (UPS), 31400 Toulouse, France
| | - Adriana Almeida de Jesus
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laurent Alric
- Internal Medicine Department of Digestive Disease, Rangueil Hospital, Université de Toulouse III—Paul Sabatier (UPS), 31400 Toulouse, France
| | - Muriel Quaranta-Nicaise
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Université de Toulouse III—Paul Sabatier (UPS), 31300 Toulouse, France
| | - Audrey Ferrand
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Université de Toulouse III—Paul Sabatier (UPS), 31300 Toulouse, France
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Etienne Meunier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (M.-P.B.); (J.M.)
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (M.-P.B.); (J.M.)
| |
Collapse
|
4
|
Dermatologic Manifestations of Noninflammasome-Mediated Autoinflammatory Diseases. JID INNOVATIONS 2023; 3:100176. [PMID: 36876221 PMCID: PMC9982332 DOI: 10.1016/j.xjidi.2022.100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Autoinflammatory diseases (AIDs) arise from disturbances that alter interactions of immune cells and tissues. They give rise to prominent (auto)inflammation in the absence of aberrant autoantibodies and/or autoreactive T cells. AIDs that are predominantly caused by changes in the inflammasome pathways, such as the NLRP3- or pyrin-associated inflammasome, have gained substantial attention over the last years. However, AIDs resulting primarily from other changes in the defense system of the innate immune system are less well-studied. These noninflammasome-mediated AIDs relate to, for example, disturbance in the TNF or IFN signaling pathways or aberrations in genes affecting the IL-1RA. The spectrum of clinical signs and symptoms of these conditions is vast. Thus, recognizing early cutaneous signs constitutes an important step in differential diagnoses for dermatologists and other physicians. This review provides an overview of the pathogenesis, clinical presentation, and available treatment options highlighting dermatologic aspects of noninflammasome-mediated AIDs.
Collapse
Key Words
- AID, autoinflammatory disease
- ANCA, antineutrophil cytoplasmic antibody
- AOSD, adult-onset Still disease
- BASDAI, Bath Ankylosing Spondylitis Activity Index
- CANDLE, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature
- CAPS, cryopyrin-associated periodic syndrome
- CRD, cysteine-rich domain
- DIRA, deficiency of IL-1RA
- DITRA, deficiency of IL-36RA
- ER, endoplasmic reticulum
- ESR, erythrocyte sedimentation rate
- FMF, familial Mediterranean fever
- M-CSF, macrophage colony-stimulating factor
- MAS, macrophage activation syndrome
- NET, neutrophil extracellular trap
- NOS, nitrous oxide
- NSAID, nonsteroidal anti-inflammatory drug
- NUD, neutrophilic urticarial dermatosis
- PFAPA, periodic fever, aphthous stomatitis, pharyngitis, and adenitis
- PKR, protein kinase R
- PRAAS, proteosome-associated autoinflammatory disease
- SAPHO, synovitis, acne, pustulosis, hyperostosis, osteitis syndrome
- SAVI, STING-associated vasculopathy with onset in infancy
- STAT, signal transducer and activator of transcription
- SchS, Schnitzler syndrome
- TNFR, TNF receptor
- TRAPS, TNF receptor‒associated autoinflammatory disease
- Th17, T helper 17
- VAS, Visual Analog Scale
- sTNFR, soluble TNF receptor
Collapse
|
5
|
Menegatti J, Nakel J, Stepanov YK, Caban KM, Ludwig N, Nord R, Pfitzner T, Yazdani M, Vilimova M, Kehl T, Lenhof HP, Philipp SE, Meese E, Fröhlich T, Grässer FA, Hart M. Changes of Protein Expression after CRISPR/Cas9 Knockout of miRNA-142 in Cell Lines Derived from Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14205031. [PMID: 36291816 PMCID: PMC9600116 DOI: 10.3390/cancers14205031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary The gene of the human tumor suppressive microRNA-142 (miR-142) carries mutations in about 20% of cases of diffuse large B-cell lymphoma (DLBCL). Because microRNAs post-transcriptionally regulate the protein expression of their cognate messenger RNA (mRNAs) targets, we determined the effect of miR-142 knockout on protein expression in two cell lines derived from DLBCL. We found a significant up-regulation of 52 proteins but also a down-regulation of 41 proteins upon miR-142 deletion. Knockout of a miRNA may be used to identify novel targets, and seed-sequence mutants of a miRNA unable to bind to their targets can be used to confirm potential novel targets. With this approach, we identify AKT1S1, CCNB1, LIMA1 and TFRC as novel targets of miR-142. As miR-142 is highly present in the miRNA processing RISC complexes, the deletion of this miRNA might result in its replacement by other miRNAs, thus introducing an additional layer of complexity regarding gene regulation. Abstract Background: As microRNA-142 (miR-142) is the only human microRNA gene where mutations have consistently been found in about 20% of all cases of diffuse large B-cell lymphoma (DLBCL), we wanted to determine the impact of miR-142 inactivation on protein expression of DLBCL cell lines. Methods: miR-142 was deleted by CRISPR/Cas9 knockout in cell lines from DLBCL. Results: By proteome analyses, miR-142 knockout resulted in a consistent up-regulation of 52 but also down-regulation of 41 proteins in GC-DLBCL lines BJAB and SUDHL4. Various mitochondrial ribosomal proteins were up-regulated in line with their pro-tumorigenic properties, while proteins necessary for MHC-I presentation were down-regulated in accordance with the finding that miR-142 knockout mice have a defective immune response. CFL2, CLIC4, STAU1, and TWF1 are known targets of miR-142, and we could additionally confirm AKT1S1, CCNB1, LIMA1, and TFRC as new targets of miR-142-3p or -5p. Conclusions: Seed-sequence mutants of miR-142 confirmed potential targets and novel targets of miRNAs can be identified in miRNA knockout cell lines. Due to the complex contribution of miRNAs within cellular regulatory networks, in particular when miRNAs highly present in RISC complexes are replaced by other miRNAs, primary effects on gene expression may be covered by secondary layers of regulation.
Collapse
Affiliation(s)
- Jennifer Menegatti
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Jacqueline Nakel
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Youli K. Stepanov
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Karolina M. Caban
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Ruth Nord
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Thomas Pfitzner
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Maryam Yazdani
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Monika Vilimova
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Tim Kehl
- Center for Bioinformatics, Saarland University, 66041 Saarbrücken, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland University, 66041 Saarbrücken, Germany
| | - Stephan E. Philipp
- Experimental and Clinical Pharmacology and Toxicology, Saarland University Medical School, 66421 Homburg, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Friedrich A. Grässer
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
- Correspondence: (F.A.G.); (M.H.)
| | - Martin Hart
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
- Correspondence: (F.A.G.); (M.H.)
| |
Collapse
|
6
|
Matsuda-Lennikov M, Ohigashi I, Takahama Y. Tissue-specific proteasomes in generation of MHC class I peptides and CD8 + T cells. Curr Opin Immunol 2022; 77:102217. [PMID: 35689940 PMCID: PMC9339533 DOI: 10.1016/j.coi.2022.102217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/21/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Thymoproteasomes and immunoproteasomes are two types of tissue-specific proteasomes, which contribute to the production of major histocompatibility complex (MHC) class I (MHC-I)-associated peptides that are important for the development and function of CD8+ cytotoxic T cells. Thymoproteasomes are specifically expressed by cortical thymic epithelial cells and are important for MHC-I-dependent positive selection of developing thymocytes, whereas immunoproteasomes are abundant in many other cells, including hematopoietic cells and medullary thymic epithelial cells. Here we summarize the role of these two tissue-specific proteasomes, focusing on their functions in the development of CD8+ T cells in the thymus.
Collapse
Affiliation(s)
- Mami Matsuda-Lennikov
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda 20892, USA
| | - Izumi Ohigashi
- Institute for Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda 20892, USA.
| |
Collapse
|
7
|
Devi SS, Kardam V, Dubey KD, Dwivedi M. Deciphering the immunogenic T-cell epitopes from spike protein of SARS-CoV-2 concerning the diverse population of India. J Biomol Struct Dyn 2022; 41:2713-2732. [PMID: 35132938 DOI: 10.1080/07391102.2022.2037462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Scientists are rigorously looking for an efficient vaccine against the current pandemic due to the SARS-CoV-2 virus. The reverse vaccinology approach may provide us with significant therapeutic leads in this direction and further determination of T-cell/B-cell response to antigen. In the present study, we conducted a population coverage analysis referring to the diverse Indian population. From the Immune epitope database (IEDB), HLA- distribution analysis was performed to find the most promiscuous T-cell epitope out of In silico determined epitope of Spike protein from SARS-CoV-2. Epitopes were selected based on their binding affinity with the maximum number of HLA alleles belonging to the highest population coverage rate values for the chosen geographical area in India. 404 cleavage sites within the 1288 amino acids sequence of spike glycoprotein were determined by NetChop proteasomal cleavage prediction suggesting the presence of adequate sites in the protein sequence for cleaving into appropriate epitopes. For population coverage analysis, 179 selected epitopes present the projected population coverage up to 97.45% with 56.16 average hit and 15.07 pc90. 54 epitopes are found with the highest coverage among the Indian population and highly conserved within the given spike RBD domain sequence. Among all the predicted epitopes, 9-mer TRFASVYAW and RFDNPVLPF along with 12-mer LLAGTITSGWTF and VSQPFLMDLEGK epitopes are observed as the best due to their decent docking score and best binding affinity to corresponding HLA alleles during MD simulations. Outcomes from this study could be critical to design a vaccine against SARS-CoV-2 for a different set of populations within the country.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Vandana Kardam
- Department of Chemistry, Shiv Nadar University, Greater Noida, India
| | | | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
8
|
Shevyrev D, Tereshchenko V, Kozlov V, Sennikov S. Phylogeny, Structure, Functions, and Role of AIRE in the Formation of T-Cell Subsets. Cells 2022; 11:194. [PMID: 35053310 PMCID: PMC8773594 DOI: 10.3390/cells11020194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
It is well known that the most important feature of adaptive immunity is the specificity that provides highly precise recognition of the self, altered-self, and non-self. Due to the high specificity of antigen recognition, the adaptive immune system participates in the maintenance of genetic homeostasis, supports multicellularity, and protects an organism from different pathogens at a qualitatively different level than innate immunity. This seemingly simple property is based on millions of years of evolution that led to the formation of diversification mechanisms of antigen-recognizing receptors and later to the emergence of a system of presentation of the self and non-self antigens. The latter could have a crucial significance because the presentation of nearly complete diversity of auto-antigens in the thymus allows for the "calibration" of the forming repertoires of T-cells for the recognition of self, altered-self, and non-self antigens that are presented on the periphery. The central role in this process belongs to promiscuous gene expression by the thymic epithelial cells that express nearly the whole spectrum of proteins encoded in the genome, meanwhile maintaining their cellular identity. This complex mechanism requires strict control that is executed by several transcription factors. One of the most important of them is AIRE. This noncanonical transcription factor not only regulates the processes of differentiation and expression of peripheral tissue-specific antigens in the thymic medullar epithelial cells but also controls intercellular interactions in the thymus. Besides, it participates in an increase in the diversity and transfer of presented antigens and thus influences the formation of repertoires of maturing thymocytes. Due to these complex effects, AIRE is also called a transcriptional regulator. In this review, we briefly described the history of AIRE discovery, its structure, functions, and role in the formation of antigen-recognizing receptor repertoires, along with other transcription factors. We focused on the phylogenetic prerequisites for the development of modern adaptive immunity and emphasized the importance of the antigen presentation system.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Research Institute for Fundamental and Clinical Immunology (RIFCI), 630099 Novosibirsk, Russia; (V.T.); (V.K.); (S.S.)
| | | | | | | |
Collapse
|
9
|
Chattopadhyay M, Jenkins EC, Lechuga-Vieco AV, Nie K, Fiel MI, Rialdi A, Guccione E, Enriquez JA, Sia D, Lujambio A, Germain D. The portrait of liver cancer is shaped by mitochondrial genetics. Cell Rep 2022; 38:110254. [DOI: 10.1016/j.celrep.2021.110254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/07/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
|
10
|
The Function of Immunoproteasomes-An Immunologists' Perspective. Cells 2021; 10:cells10123360. [PMID: 34943869 PMCID: PMC8699091 DOI: 10.3390/cells10123360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
Proteasomes are responsible for intracellular proteolysis and play an important role in cellular protein homeostasis. Cells of the immune system assemble a specialized form of proteasomes, known as immunoproteasomes, in which the constitutive catalytic sites are replaced for cytokine-inducible homologues. While immunoproteasomes may fulfill all standard proteasome’ functions, they seem specially adapted for a role in MHC class I antigen processing and CD8+ T-cell activation. In this way, they may contribute to CD8+ T-cell-mediated control of intracellular infections, but also to the immunopathogenesis of autoimmune diseases. Starting at the discovery of its catalytic subunits in the genome, here, we review the observations shaping our current understanding of immunoproteasome function, and the consequential novel opportunities for immune intervention.
Collapse
|
11
|
Tundo GR, Sbardella D, Oddone F, Kudriaeva AA, Lacal PM, Belogurov AA, Graziani G, Marini S. At the Cutting Edge against Cancer: A Perspective on Immunoproteasome and Immune Checkpoints Modulation as a Potential Therapeutic Intervention. Cancers (Basel) 2021; 13:4852. [PMID: 34638337 PMCID: PMC8507813 DOI: 10.3390/cancers13194852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.
Collapse
Affiliation(s)
| | | | | | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
| | - Pedro M. Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
- Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Grazia Graziani
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
12
|
Holosteans contextualize the role of the teleost genome duplication in promoting the rise of evolutionary novelties in the ray-finned fish innate immune system. Immunogenetics 2021; 73:479-497. [PMID: 34510270 DOI: 10.1007/s00251-021-01225-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/06/2021] [Indexed: 01/16/2023]
Abstract
Over 99% of ray-finned fishes (Actinopterygii) are teleosts, a clade that comprises half of all living vertebrate species that have diversified across virtually all fresh and saltwater ecosystems. This ecological breadth raises the question of how the immunogenetic diversity required to persist under heterogeneous pathogen pressures evolved. The teleost genome duplication (TGD) has been hypothesized as the evolutionary event that provided the substrate for rapid genomic evolution and innovation. However, studies of putative teleost-specific innate immune receptors have been largely limited to comparisons either among teleosts or between teleosts and distantly related vertebrate clades such as tetrapods. Here we describe and characterize the receptor diversity of two clustered innate immune gene families in the teleost sister lineage: Holostei (bowfin and gars). Using genomic and transcriptomic data, we provide a detailed investigation of the phylogenetic history and conserved synteny of gene clusters encoding diverse immunoglobulin domain-containing proteins (DICPs) and novel immune-type receptors (NITRs). These data demonstrate an ancient linkage of DICPs to the major histocompatibility complex (MHC) and reveal an evolutionary origin of NITR variable-joining (VJ) exons that predate the TGD by at least 50 million years. Further characterizing the receptor diversity of Holostean DICPs and NITRs illuminates a sequence diversity that rivals the diversity of these innate immune receptor families in many teleosts. Taken together, our findings provide important historical context for the evolution of these gene families that challenge prevailing expectations concerning the consequences of the TGD during actinopterygiian evolution.
Collapse
|
13
|
Apavaloaei A, Laverdure JP, Perreault C. PSMB11 regulates gene expression in cortical thymic epithelial cells. Cell Rep 2021; 36:109546. [PMID: 34496243 DOI: 10.1016/j.celrep.2021.109546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/30/2020] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The PSMB11 proteasomal subunit, expressed only in cortical thymic epithelial cells (cTECs), is essential for the development of functional CD8+ T cells. An attractive yet unproven theory holds that PSMB11 generates unique major histocompatibility complex class I (MHC I)-associated peptides required for positive selection. We recently reported that PSMB11 regulates the expression of hundreds of genes in cTECs, mainly by differential proteolysis of transcription factors. Thereby, PSMB11 maintains the distinctness of cTECs relative to medullary TECs (mTECs) and promotes cortex-to-medulla migration of developing thymocytes. These conclusions have been challenged by Ohigashi and colleagues, who suggest that their data show that PSMB11 uniquely controls antigen presentation without affecting cTEC biology. Here, we perform a comprehensive reanalysis of transcriptomic and proteomic data from the Ohigashi lab and confirm our original conclusions. This Matters Arising paper is in response to Ohigashi et al. (2019), published in Cell Reports. See also the response by Ohigashi and Takahama (2021), published in this issue of Cell Reports.
Collapse
Affiliation(s)
- Anca Apavaloaei
- Institute for Research in Immunology and Cancer, Montreal, QC H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | | | - Claude Perreault
- Institute for Research in Immunology and Cancer, Montreal, QC H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
14
|
Palomar G, Dudek K, Migalska M, Arntzen JW, Ficetola GF, Jelić D, Jockusch E, Martínez-Solano I, Matsunami M, Shaffer HB, Vörös J, Waldman B, Wielstra B, Babik W. Coevolution between MHC class I and Antigen Processing Genes in salamanders. Mol Biol Evol 2021; 38:5092-5106. [PMID: 34375431 PMCID: PMC8557411 DOI: 10.1093/molbev/msab237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteins encoded by antigen-processing genes (APGs) provide major histocompatibility complex (MHC) class I (MHC-I) with antigenic peptides. In mammals, polymorphic multigenic MHC-I family is served by monomorphic APGs, whereas in certain nonmammalian species both MHC-I and APGs are polymorphic and coevolve within stable haplotypes. Coevolution was suggested as an ancestral gnathostome feature, presumably enabling only a single highly expressed classical MHC-I gene. In this view coevolution, while optimizing some aspects of adaptive immunity, would also limit its flexibility by preventing the expansion of classical MHC-I into a multigene family. However, some nonmammalian taxa, such as salamanders, have multiple highly expressed MHC-I genes, suggesting either that coevolution is relaxed or that it does not prevent the establishment of multigene MHC-I. To distinguish between these two alternatives, we use salamanders (30 species from 16 genera representing six families) to test, within a comparative framework, a major prediction of the coevolution hypothesis: the positive correlation between MHC-I and APG diversity. We found that MHC-I diversity explained both within-individual and species-wide diversity of two APGs, TAP1 and TAP2, supporting their coevolution with MHC-I, whereas no consistent effect was detected for the other three APGs (PSMB8, PSMB9, and TAPBP). Our results imply that although coevolution occurs in salamanders, it does not preclude the expansion of the MHC-I gene family. Contrary to the previous suggestions, nonmammalian vertebrates thus may be able to accommodate diverse selection pressures with flexibility granted by rapid expansion or contraction of the MHC-I family, while retaining the benefits of coevolution between MHC-I and TAPs.
Collapse
Affiliation(s)
- G Palomar
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - K Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - M Migalska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - J W Arntzen
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA leiden, Leiden, The Netherlands.,Institute of Biology Leiden, Leiden University, 2300 RA Leiden, The Netherlands
| | - G F Ficetola
- Department of Environmental Sciences and Policy, University of Milano, Italy.,Laboratoire d'Ecologie Alpine (LECA), CNRS, Université Grenoble Alpes and Université Savoie Mont Blanc, Grenoble, France
| | - D Jelić
- Croatian Institute for Biodiversity, Zagreb, Croatia
| | - E Jockusch
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT USA
| | - I Martínez-Solano
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - M Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - H B Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - J Vörös
- Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary
| | - B Waldman
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA.,School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - B Wielstra
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA leiden, Leiden, The Netherlands.,Institute of Biology Leiden, Leiden University, 2300 RA Leiden, The Netherlands
| | - W Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
Mandujano-Tinoco EA, Sultan E, Ottolenghi A, Gershoni-Yahalom O, Rosental B. Evolution of Cellular Immunity Effector Cells; Perspective on Cytotoxic and Phagocytic Cellular Lineages. Cells 2021; 10:1853. [PMID: 34440622 PMCID: PMC8394812 DOI: 10.3390/cells10081853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
The immune system has evolved to protect organisms from infections caused by bacteria, viruses, and parasitic pathogens. In addition, it provides regenerative capacities, tissue maintenance, and self/non-self recognition of foreign tissues. Phagocytosis and cytotoxicity are two prominent cellular immune activities positioned at the base of immune effector function in mammals. Although these immune mechanisms have diversified into a wide heterogeneous repertoire of effector cells, it appears that they share some common cellular and molecular features in all animals, but also some interesting convergent mechanisms. In this review, we will explore the current knowledge about the evolution of phagocytic and cytotoxic immune lineages against pathogens, in the clearance of damaged cells, for regeneration, for histocompatibility recognition, and in killing virally infected cells. To this end, we give different immune examples of multicellular organism models, ranging from the roots of bilateral organisms to chordate invertebrates, comparing to vertebrates' lineages. In this review, we compare cellular lineage homologies at the cellular and molecular levels. We aim to highlight and discuss the diverse function plasticity within the evolved immune effector cells, and even suggest the costs and benefits that it may imply for organisms with the meaning of greater defense against pathogens but less ability to regenerate damaged tissues and organs.
Collapse
Affiliation(s)
- Edna Ayerim Mandujano-Tinoco
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, and Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (E.S.); (A.O.); (O.G.-Y.)
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada Mexico-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, Mexico City 14389, Mexico
| | - Eliya Sultan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, and Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (E.S.); (A.O.); (O.G.-Y.)
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, and Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (E.S.); (A.O.); (O.G.-Y.)
| | - Orly Gershoni-Yahalom
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, and Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (E.S.); (A.O.); (O.G.-Y.)
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, and Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (E.S.); (A.O.); (O.G.-Y.)
| |
Collapse
|
16
|
Gramlich OW, Godwin CR, Wadkins D, Elwood BW, Kuehn MH. Early Functional Impairment in Experimental Glaucoma Is Accompanied by Disruption of the GABAergic System and Inceptive Neuroinflammation. Int J Mol Sci 2021; 22:7581. [PMID: 34299211 PMCID: PMC8306430 DOI: 10.3390/ijms22147581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide, and increased intraocular pressure (IOP) is a major risk factor. We aimed to determine if early functional and molecular differences in the glaucomatous retina manifest before significant retinal ganglion cell (RGC) loss is apparent. Adenoviral vectors expressing a pathogenic form of myocilin (Ad5.MYOC) were used to induce IOP elevation in C57BL/6 mice. IOP and pattern electroretinograms (pERG) were recorded, and retinas were prepared for RNA sequencing, immunohistochemistry, or to determine RGC loss. Ocular injection of Ad5.MYOC leads to reliable IOP elevation, resulting in significant loss of RGC after nine weeks. A significant decrease in the pERG amplitude was evident in eyes three weeks after IOP elevation. Retinal gene expression analysis revealed increased expression for 291 genes related to complement cascade, inflammation, and antigen presentation in hypertensive eyes. Decreased expression was found for 378 genes associated with the γ-aminobutyric acid (GABA)ergic and glutamatergic systems and axon guidance. These data suggest that early functional changes in RGC might be due to reduced GABAA receptor signaling and neuroinflammation that precedes RGC loss in this glaucoma model. These initial changes may offer new targets for early detection of glaucoma and the development of new interventions.
Collapse
Affiliation(s)
- Oliver W. Gramlich
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
- Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA 52242, USA
| | - Cheyanne R. Godwin
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
| | - David Wadkins
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
| | - Benjamin W. Elwood
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
| | - Markus H. Kuehn
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
| |
Collapse
|
17
|
Kasahara M. Role of immunoproteasomes and thymoproteasomes in health and disease. Pathol Int 2021; 71:371-382. [PMID: 33657242 DOI: 10.1111/pin.13088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
The proteasome is a multisubunit protease that degrades intracellular proteins into small peptides. Besides playing a pivotal role in many cellular processes indispensable for survival, it is involved in the production of peptides presented by major histocompatibility complex class I molecules. In addition to the standard proteasome shared in all eukaryotes, jawed vertebrates have two specialized forms of proteasome known as immunoproteasomes and thymoproteasomes. The immunoproteasome, which contains cytokine-inducible catalytic subunits with distinct cleavage specificities, produces peptides presented by class I molecules more efficiently than the standard proteasome. The thymoproteasome, which contains a unique catalytic subunit β5t, is a tissue-specific proteasome expressed exclusively in cortical thymic epithelial cells. It plays a critical role in CD8+ cytotoxic T cell development via positive selection. This review provides a brief overview on the structure and function of these specialized forms of proteasome and their involvement in human disease.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
18
|
Palomar G, Dudek K, Wielstra B, Jockusch EL, Vinkler M, Arntzen JW, Ficetola GF, Matsunami M, Waldman B, Těšický M, Zieliński P, Babik W. Molecular Evolution of Antigen-Processing Genes in Salamanders: Do They Coevolve with MHC Class I Genes? Genome Biol Evol 2021; 13:6121093. [PMID: 33501944 PMCID: PMC7883663 DOI: 10.1093/gbe/evaa259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Proteins encoded by antigen-processing genes (APGs) prepare antigens for presentation by the major histocompatibility complex class I (MHC I) molecules. Coevolution between APGs and MHC I genes has been proposed as the ancestral gnathostome condition. The hypothesis predicts a single highly expressed MHC I gene and tight linkage between APGs and MHC I. In addition, APGs should evolve under positive selection, a consequence of the adaptive evolution in MHC I. The presence of multiple highly expressed MHC I genes in some teleosts, birds, and urodeles appears incompatible with the coevolution hypothesis. Here, we use urodele amphibians to test two key expectations derived from the coevolution hypothesis: 1) the linkage between APGs and MHC I was studied in Lissotriton newts and 2) the evidence for adaptive evolution in APGs was assessed using 42 urodele species comprising 21 genera from seven families. We demonstrated that five APGs (PSMB8, PSMB9, TAP1, TAP2, and TAPBP) are tightly linked (<0.5 cM) to MHC I. Although all APGs showed some codons under episodic positive selection, we did not find a pervasive signal of positive selection expected under the coevolution hypothesis. Gene duplications, putative gene losses, and divergent allelic lineages detected in some APGs demonstrate considerable evolutionary dynamics of APGs in salamanders. Overall, our results indicate that if coevolution between APGs and MHC I occurred in urodeles, it would be more complex than envisaged in the original formulation of the hypothesis.
Collapse
Affiliation(s)
- Gemma Palomar
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Ben Wielstra
- Institute of Biology Leiden, Leiden University, The Netherlands.,Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Elizabeth L Jockusch
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan W Arntzen
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Gentile F Ficetola
- Department of Environmental Sciences and Policy, University of Milano, Italy.,Laboratoire d'Ecologie Alpine (LECA), CNRS, Université Grenoble Alpes and Université Savoie Mont Blanc, Grenoble, France
| | - Masatoshi Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - Bruce Waldman
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA.,School of Biological Sciences, Seoul National University, South Korea
| | - Martin Těšický
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Piotr Zieliński
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
19
|
Bikorimana JP, El-Hachem N, El-Kadiry AEH, Abusarah J, Salame N, Shammaa R, Rafei M. Thymoproteasome-Expressing Mesenchymal Stromal Cells Confer Protective Anti-Tumor Immunity via Cross-Priming of Endogenous Dendritic Cells. Front Immunol 2021; 11:596303. [PMID: 33542714 PMCID: PMC7853649 DOI: 10.3389/fimmu.2020.596303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/14/2020] [Indexed: 12/01/2022] Open
Abstract
Proteasomes are complex macromolecular structures existing in various forms to regulate a myriad of cellular processes. Besides degrading unwanted or misfolded proteins (proteostasis), distinct immune functions were ascribed for the immunoproteasome and thymoproteasome (TPr) complexes. For instance, antigen degradation during ongoing immune responses mainly relies on immunoproteasome activity, whereas intrathymic CD8 T-cell development requires peptide generation by the TPr complex. Despite these substantial differences, the functional contribution of the TPr to peripheral T-cell immunity remains ill-defined. We herein explored whether the use of mesenchymal stromal cells (MSCs) engineered to exhibit altered proteasomal activity through de novo expression of the TPr complex can be exploited as a novel anti-cancer vaccine capable of triggering potent CD8 T-cell activation. Phenotypic and molecular characterization of MSC-TPr revealed a substantial decrease in MHCI (H2-Kb and H2-Dd) expression along with elevated secretion of various chemokines (CCL2, CCL9, CXCL1, LIX, and CX3CL1). In parallel, transcriptomic analysis pinpointed the limited ability of MSC-TPr to present endogenous antigens, which is consistent with their low expression levels of the peptide-loading proteins TAP, CALR, and PDAI3. Nevertheless, MSC-TPr cross-presented peptides derived from captured soluble proteins. When tested for their protective capacity, MSC-TPr triggered modest anti-tumoral responses despite efficient generation of effector memory CD4 and CD8 T cells. In contrast, clodronate administration prior to vaccination dramatically enhanced the MSC-TPr-induced anti-tumoral immunity clearly highlighting a refractory role mediated by phagocytic cells. Thus, our data elute to a DC cross-priming-dependant pathway in mediating the therapeutic effect of MSC-TPr.
Collapse
Affiliation(s)
- Jean-Pierre Bikorimana
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Nehme El-Hachem
- Centre Hospitalier Universitaire (CHU) Ste-Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Genomics Institute of Precision Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Jamilah Abusarah
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Natasha Salame
- Department of Biomedical Sciences, Université de Montréal, Montreal, QC, Canada
| | - Riam Shammaa
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada.,Canadian Centers for Regenerative Therapy, Toronto, ON, Canada.,Intellistem Technologies Inc., Toronto, ON, Canada
| | - Moutih Rafei
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
20
|
Khilji MS, Verstappen D, Dahlby T, Burstein Prause MC, Pihl C, Bresson SE, Bryde TH, Keller Andersen PA, Klindt K, Zivkovic D, Bousquet-Dubouch MP, Tyrberg B, Mandrup-Poulsen T, Marzec MT. The intermediate proteasome is constitutively expressed in pancreatic beta cells and upregulated by stimulatory, low concentrations of interleukin 1 β. PLoS One 2020; 15:e0222432. [PMID: 32053590 PMCID: PMC7018053 DOI: 10.1371/journal.pone.0222432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
A central and still open question regarding the pathogenesis of autoimmune diseases, such as type 1 diabetes, concerns the processes that underlie the generation of MHC-presented autoantigenic epitopes that become targets of autoimmune attack. Proteasomal degradation is a key step in processing of proteins for MHC class I presentation. Different types of proteasomes can be expressed in cells dictating the repertoire of peptides presented by the MHC class I complex. Of particular interest for type 1 diabetes is the proteasomal configuration of pancreatic β cells, as this might facilitate autoantigen presentation by β cells and thereby their T-cell mediated destruction. Here we investigated whether so-called inducible subunits of the proteasome are constitutively expressed in β cells, regulated by inflammatory signals and participate in the formation of active intermediate or immuno-proteasomes. We show that inducible proteasomal subunits are constitutively expressed in human and rodent islets and an insulin-secreting cell-line. Moreover, the β5i subunit is incorporated into active intermediate proteasomes that are bound to 19S or 11S regulatory particles. Finally, inducible subunit expression along with increase in total proteasome activities are further upregulated by low concentrations of IL-1β stimulating proinsulin biosynthesis. These findings suggest that the β cell proteasomal repertoire is more diverse than assumed previously and may be highly responsive to a local inflammatory islet environment.
Collapse
Affiliation(s)
- Muhammad Saad Khilji
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Danielle Verstappen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Radboud Universiteit, Nijmegen, Netherlands
| | - Tina Dahlby
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Celina Pihl
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Emilie Bresson
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tenna Holgersen Bryde
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Phillip Alexander Keller Andersen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Klindt
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dusan Zivkovic
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Marie-Pierre Bousquet-Dubouch
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Björn Tyrberg
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Mandrup-Poulsen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michal Tomasz Marzec
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
21
|
Biology, evolution, and history of antigen processing and presentation: Immunogenetics special issue 2019. Immunogenetics 2019; 71:137-139. [PMID: 30706092 DOI: 10.1007/s00251-019-01107-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|