1
|
Panagopoulos V, Karabagias IK, Dima A, Boura K, Kanellaki M, Bosnea L, Nigam PSN, Koutinas A. Promotion of lactose isomerization to fructose and lactulose in one batch by immobilized enzymes on bacterial cellulose membranes. Food Chem 2024; 457:140127. [PMID: 38908252 DOI: 10.1016/j.foodchem.2024.140127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
The production of the sugars fructose and lactulose from lactose using the enzymes β-galactosidase and glucose isomerase immobilized on bacterial cellulose (BC) membranes has been investigated. Lactose is hydrolyzed by β-galactosidase at 30 °C to glucose and galactose at a high conversion rate, while at the same temperature, glucose isomerase is not effective in converting the produced glucose to fructose. The rate of the isomerization reaction of glucose to fructose at 70 °C has been studied. Two types of enzyme immobilization were investigated: immobilization in one stage and immobilization in two stages. The results showed that BC membrane increased three-fold the yield and the reaction rate of fructose and lactulose production from lactose. The noteworthy enhancement of BC membranes' impact on the isomerization reaction by immobilized enzymes grants permission for a novel research avenue within the context of white biotechnology development. Additionally, this effect amplifies the role of BC in sustainability and the circular economy.
Collapse
Affiliation(s)
- Vasilis Panagopoulos
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Ioannis K Karabagias
- Department of Food Science & Technology, School of Agricultural Sciences, University of Patras, G. Seferi 2, 30100 Agrinio, Greece
| | - Agapi Dima
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Konstantina Boura
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Maria Kanellaki
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Loulouda Bosnea
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization "DIMITRA", 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece
| | - Poonam Singh Nee Nigam
- School of Biomedical Sciences, University of Ulster at Coleraine, County Londonderry, Coleraine, Northern Ireland, UK
| | - Athanasios Koutinas
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500 Patras, Greece
| |
Collapse
|
2
|
Li K, Guo Y, Sun X, Xi X, Wang L, Ren X, Wang C, Liu X. Whole-cell biocatalysis for ε-poly-l-lysine production by a food-grade recombinant Bacillus subtilis. Enzyme Microb Technol 2024; 179:110467. [PMID: 38852284 DOI: 10.1016/j.enzmictec.2024.110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
ε-Poly-l-lysine (ε-PL), a natural food preservative with various advantages, is primarily produced by Streptomyces. It has attracted considerable attentions for the outstanding antibacterial activity, safety, heat stability, water solubility and other remarkable properties. In this study, a food-grade recombinant Bacillus subtilis was constructed for the biocatalysis of ε-PL. Firstly, the d-alanine racemase gene (alrA) was deleted from the genome of Bacillus subtilis 168 to construct an auxotrophic B. subtilis 168 (alrA-). Based on the shuttle plasmid pMA5, a food-grade plasmid pMA5a was constructed by replacing the genes of kanamycin resistance (Kanr) and ampicillin resistance (Ampr) with alrA and the gene encoding α-peptide of β-galactosidase (lacZα), respectively. Subsequently, codon-optimized ε-PL synthase gene (pls) and P-pls were ligated into pMA5a and transformed in E. coli DH5α and expressed in B. subtilis 168 (alrA-). Finally, the whole-cell biocatalysis conditions for ε-PL production by B. subtilis 168 (alrA-)/pMA5a-pls were optimized, and the optimal conditions were 30°C, pH 4, l-lysine concentration of 0.6 g/L, bacterial concentration of 15 % (w/v) and a catalytic time of 7 h. The ε-PL production reached a maximum of 0.33 ± 0.03 g/L. The product was verified to be ε-PL by HPLC and tricine-SDS-PAGE. The information obtained in this study shows critical reference for the food-grade heterologous expression of ε-PL.
Collapse
Affiliation(s)
- Kunpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yangzi Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xinjie Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiangheng Xi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Li Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xidong Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Chenying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
3
|
Wang B, Lei S, Li Q, Luo Y. Production of lactulose from lactose using a novel cellobiose 2-epimerase from Clostridium disporicum. Enzyme Microb Technol 2024; 179:110466. [PMID: 38889605 DOI: 10.1016/j.enzmictec.2024.110466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
Lactulose is a semisynthetic nondigestive sugar derived from lactose, with wide applications in the food and pharmaceutical industries. Its biological production routes which use cellobiose 2-epimerase (C2E) as the key enzyme have attracted widespread attention. In this study, a set of C2Es from different sources were overexpressed in Escherichia coli to produce lactulose. We obtained a novel and highly efficient C2E from Clostridium disporicum (CDC2E) to synthesize lactulose from lactose. The effects of different heat treatment conditions, reaction pH, reaction temperature, and substrate concentrations were investigated. Under the optimum biotransformation conditions, the final concentration of lactulose was up to 1.45 M (496.3 g/L), with a lactose conversion rate of 72.5 %. This study provides a novel C2E for the biosynthesis of lactulose from low-cost lactose.
Collapse
Affiliation(s)
- Bohua Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, PR China; Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Province, Changde 415000, PR China; Hunan Provincial 3R Food Innovation and Entrepreneurship Education Center for General Universities, Changde 415000, PR China.
| | - Song Lei
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, PR China; Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Province, Changde 415000, PR China; Hunan Provincial 3R Food Innovation and Entrepreneurship Education Center for General Universities, Changde 415000, PR China
| | - Qingqin Li
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, PR China
| | - Yushuang Luo
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, PR China
| |
Collapse
|
4
|
Huerta M, Cornejo F, Illanes A, Vera C, Guerrero C. Enzymatic production of rare sugars with a new mutant of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. BIORESOURCE TECHNOLOGY 2023; 391:129936. [PMID: 39491117 DOI: 10.1016/j.biortech.2023.129936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) can epimerize and isomerize lactose into epilactose and lactulose respectively. Competition between these reactions reactions has prompted the search for new enzymes to drive the reaction in one direction or the other. The isomerization and epimerization capacity of a novel mutant CsCE (CsCE H356N) was evaluated, obtaining a maximum lactulose yield of 64.3 % and a lactulose selectivity of 9.9. A Michaelis-Menten constant of 551.93 mM and a catalytic efficiency of 0,058 s-1 mM-1 were obtained for lactose epimerization. The ability of CsCE H356N to recognize other substrates was evaluated using lactulose, glucose, mannose, fructose, galactose, talose and tagatose as substrates, assessing the reversibility of such reactions. Yields of 14.8 % mannose and 4.8 % of fructose were obtained from glucose, while talose and tagatose yields of 9.2 % and 5.2 % were obtained from galactose respectively. No significant reaction occurred with lactulose, fructose or tagatose as substrates.
Collapse
Affiliation(s)
- Macarena Huerta
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Fabian Cornejo
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
| |
Collapse
|
5
|
Yang W, Zhou J, Gu Q, Harindintwali JD, Yu X, Liu X. Combinatorial Enzymatic Catalysis for Bioproduction of Ginsenoside Compound K. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3385-3397. [PMID: 36780449 DOI: 10.1021/acs.jafc.2c08773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ginsenoside compound K (CK) is an emerging functional food or pharmaceutical product. To date, there are still challenges to exploring effective catalytic enzymes for enzyme-catalyzed manufacturing processes and establishing enzyme-catalyzed processes. Herein, we identified three ginsenoside hydrolases BG07 (glucoamylase), BG19 (β-glucosidase), and BG23 (β-glucosidase) from Aspergillus tubingensis JE0609 by transcriptome analysis and peptide mass fingerprinting. Among them, BG23 was expressed in Komagataella phaffii with a high volumetric activity of 235.73 U mL-1 (pNPG). Enzymatic property studies have shown that BG23 is an acidic (pH adaptation range of 4.5-7.0) and mesophilic (thermostable < 50 °C) enzyme. Moreover, a one-pot combinatorial enzyme-catalyzed strategy based on BG23 and BGA35 (β-galactosidase from Aspergillus oryzae) was established, with a high CK yield of 396.7 mg L-1 h-1. This study explored the ginsenoside hydrolases derived from A. tubingensis at the molecular level and provided a reference for the efficient production of CK.
Collapse
Affiliation(s)
- Wenhua Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Jianli Zhou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550003, Guizhou, China
| | - Qiuya Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Jean Damascene Harindintwali
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| |
Collapse
|
6
|
Wang M, Wang L, Lyu X, Hua X, Goddard JM, Yang R. Lactulose production from lactose isomerization by chemo-catalysts and enzymes: Current status and future perspectives. Biotechnol Adv 2022; 60:108021. [PMID: 35901861 DOI: 10.1016/j.biotechadv.2022.108021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/02/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022]
Abstract
Lactulose, a semisynthetic nondigestive disaccharide with versatile applications in the food and pharmaceutical industries, has received increasing interest due to its significant health-promoting effects. Currently, industrial lactulose production is exclusively carried out by chemical isomerization of lactose via the Lobry de Bruyn-Alberda van Ekenstein (LA) rearrangement, and much work has been directed toward improving the conversion efficiency in terms of lactulose yield and purity by using new chemo-catalysts and integrated catalytic-purification systems. Lactulose can also be produced by an enzymatic route offering a potentially greener alternative to chemo-catalysis with fewer side products. Compared to the controlled trans-galactosylation by β-galactosidase, directed isomerization of lactose with high isomerization efficiency catalyzed by the most efficient lactulose-producing enzyme, cellobiose 2-epimerase (CE), has gained much attention in recent decades. To further facilitate the industrial translation of CE-based lactulose biotransformation, numerous studies have been reported on improving biocatalytic performance through enzyme mediated molecular modification. This review summarizes recent developments in the chemical and enzymatic production of lactulose. Related catalytic mechanisms are also highlighted and described in detail. Emerging techniques that aimed at advancing lactulose production, such as the boronate affinity-based technique and molecular biological techniques, are reviewed. Finally, perspectives on challenges and opportunities in lactulose production and purification are also discussed.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China; College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China; Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Lu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Julie M Goddard
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China.
| |
Collapse
|
7
|
Karim A, Aider M. Production of prebiotic lactulose through isomerisation of lactose as a part of integrated approach through whey and whey permeate complete valorisation: A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Ramírez N, Ubilla C, Campos J, Valencia F, Aburto C, Vera C, Illanes A, Guerrero C. Enzymatic production of lactulose by fed-batch and repeated fed-batch reactor. BIORESOURCE TECHNOLOGY 2021; 341:125769. [PMID: 34416660 DOI: 10.1016/j.biortech.2021.125769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The effects of the most significant operational variables on reactor performance of fed-batch and repeated fed-batch were evaluated in the lactulose production by enzymatic transgalactosylation. Feed flowrate in the fed stage (F) and fructose to lactose molar ratio (Fr/L) were the variables that mostly affected the values of lactulose yield (YLu), lactulose productivity (πLu) and selectivity of transgalactosylation (SLu/TOS). Maximum YLu of 0.21 g lactulose per g lactose was obtained at 50% w/w inlet carbohydrates concentration (IC) of, 50 °C, Fr/L 8, F 1 mL⋅min-1, 200 IU∙gLactose-1 reactor enzyme load and pH 4.5. At these conditions the selectivity was 7.4, productivity was 0.71 gLu∙g-1∙h-1and lactose conversion was 0.66. The operation by repeated fed batch increases the efficiency of use of the biocatalysts (EB) and the accumulated productivity compared to batch and fed batch operation with the same biocatalyst. EB obtained was 4.13 gLu∙mgbiocatalyst protein-1, 10.6 times higher than in fed-batch.
Collapse
Affiliation(s)
- Nicolás Ramírez
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Claudia Ubilla
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Javiera Campos
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Francisca Valencia
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carla Aburto
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
| |
Collapse
|
9
|
de Albuquerque TL, de Sousa M, Gomes E Silva NC, Girão Neto CAC, Gonçalves LRB, Fernandez-Lafuente R, Rocha MVP. β-Galactosidase from Kluyveromyces lactis: Characterization, production, immobilization and applications - A review. Int J Biol Macromol 2021; 191:881-898. [PMID: 34571129 DOI: 10.1016/j.ijbiomac.2021.09.133] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 01/06/2023]
Abstract
A review on the enzyme β-galactosidase from Kluyveromyces lactis is presented, from the perspective of its structure and mechanisms of action, the main catalyzed reactions, the key factors influencing its activity, and selectivity, as well as the main techniques used for improving the biocatalyst functionality. Particular attention was given to the discussion of hydrolysis, transglycosylation, and galactosylation reactions, which are commonly mediated by this enzyme. In addition, the products generated from these processes were highlighted. Finally, biocatalyst improvement techniques are also discussed, such as enzyme immobilization and protein engineering. On these topics, the most recent immobilization strategies are presented, emphasizing processes that not only allow the recovery of the biocatalyst but also deliver enzymes that show better resistance to high temperatures, chemicals, and inhibitors. In addition, genetic engineering techniques to improve the catalytic properties of the β-galactosidases were reported. This review gathers information to allow the development of biocatalysts based on the β-galactosidase enzyme from K. lactis, aiming to improve existing bioprocesses or develop new ones.
Collapse
Affiliation(s)
- Tiago Lima de Albuquerque
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Marylane de Sousa
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Natan Câmara Gomes E Silva
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Carlos Alberto Chaves Girão Neto
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Luciana Rocha Barros Gonçalves
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Roberto Fernandez-Lafuente
- Instituto de Catálisis y Petroleoquímica - CSIC, Campus of excellence UAM-CSIC, Cantoblanco, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Maria Valderez Ponte Rocha
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil.
| |
Collapse
|
10
|
Contreras-Jácquez V, Grajales-Hernández DA, Armendáriz-Ruiz M, Rodríguez-González J, Valenzuela-Soto EM, Asaff-Torres A, Mateos-Díaz JC. In-Cell Crosslinked Enzymes: Improving Bacillus megaterium whole-cell biocatalyst stability for the decarboxylation of ferulic acid. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Chen J, Wei H, Guo Y, Li Q, Wang H, Liu J. Chaperone-mediated protein folding enhanced D-psicose 3-epimerase expression in engineered Bacillus subtilis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Ubilla C, Ramírez N, Valdivia F, Vera C, Illanes A, Guerrero C. Synthesis of Lactulose in Continuous Stirred Tank Reactor With β-Galactosidase of Apergillus oryzae Immobilized in Monofunctional Glyoxyl Agarose Support. Front Bioeng Biotechnol 2020; 8:699. [PMID: 32695768 PMCID: PMC7338315 DOI: 10.3389/fbioe.2020.00699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/04/2020] [Indexed: 01/19/2023] Open
Abstract
Lactulose synthesis from fructose and lactose in continuous stirred tank (CSTR) reactor operation with glyoxyl-agarose immobilized Aspergillus oryzae β-galactosidase is reported for the first time. The effect of operational variables: inlet concentrations of sugar substrates, temperature, feed substrate molar ratio, enzyme loading and feed flow rate was studied on reactor performance. Even though the variation of each one affected to a certain extent lactulose yield (YLactulose), specific productivity (πLactulose) and selectivity of the reaction (lactulose/transgalactosylated oligosaccharides molar ratio) (SLu/TOS), the most significant effects were obtained by varying the inlet concentrations of sugar substrates and the feed substrate molar ratio. Maximum YLactulose of 0.54 g⋅g–1 was obtained at 50°C, pH 4.5, 50% w/w inlet concentrations of sugar substrates, feed flowrate of 12 mL⋅min–1, fructose/lactose molar ratio of 8 and reactor enzyme load of 29.06 IUH⋅mL–1. At such conditions SLu/TOS was 3.7, lactose conversion (XLactose) was 0.39 and total transgalactosylation yield was 0.762 g⋅g–1, meaning that 76% of the reacted lactose corresponded to transgalactosylation and 24% to hydrolysis, which is a definite advantage of this mode of operation. Even though XLactose in CSTR was lower than in other reported modes of operation for lactulose synthesis, transgalactosylation was more favored over hydrolysis which reduced the inhibitory effect of galactose on β-galactosidase.
Collapse
Affiliation(s)
- Claudia Ubilla
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Nicolás Ramírez
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Felipe Valdivia
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| |
Collapse
|
13
|
Schmidt CM, Balinger F, Conrad J, Günther J, Beifuss U, Hinrichs J. Enzymatic generation of lactulose in sweet and acid whey: Optimization of feed composition and structural elucidation of 1-lactulose. Food Chem 2020; 305:125481. [PMID: 31525592 DOI: 10.1016/j.foodchem.2019.125481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 11/26/2022]
Abstract
Prebiotics are rising in interest in commercial scale productions due to increasing health awareness of consumers. Under bio-economic aspects, sweet and acid whey provide a suitable feed medium for the enzymatic generation of prebiotic lactulose. Since whey has a broad variation in composition, the influence of the feed composition on the concentration of generated lactulose was investigated. The influence of lactose and fructose concentration as well as enzymatic activity of two commercially available β-galactosidases were investigated. The results were evaluated via response surface analysis with a quadratic model containing pairwise interaction terms. The optimal feed composition yielding a theoretical maximal amount of lactulose was determined as 1.28 or 0.74 mol/kg fructose and 0.17 or 0.19 mol/kg lactose with an enzymatic activity of 2.0 or 2.8 μkat/kg for acid (pH 4.4) or sweet (pH 6.6) whey. Furthermore, the major reaction product was isolated and subsequently, the structural identity was elucidated and verified via extensive NMR analysis.
Collapse
Affiliation(s)
- Christian M Schmidt
- Institute of Food Science and Biotechnology, Department of Soft Matter Science and Dairy Technology, University of Hohenheim, Garbenstr. 21, 70599 Stuttgart, Germany.
| | - Franziska Balinger
- Institute of Food Science and Biotechnology, Department of Soft Matter Science and Dairy Technology, University of Hohenheim, Garbenstr. 21, 70599 Stuttgart, Germany
| | - Jürgen Conrad
- Institute of Chemistry, Department of Bioorganic Chemistry, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Johannes Günther
- Core Facility Hohenheim, Spectroscopy Unit, University of Hohenheim, Emil-Wolff-Str. 12, 70599 Stuttgart, Germany
| | - Uwe Beifuss
- Institute of Chemistry, Department of Bioorganic Chemistry, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Jörg Hinrichs
- Institute of Food Science and Biotechnology, Department of Soft Matter Science and Dairy Technology, University of Hohenheim, Garbenstr. 21, 70599 Stuttgart, Germany
| |
Collapse
|
14
|
Vera C, Guerrero C, Aburto C, Cordova A, Illanes A. Conventional and non-conventional applications of β-galactosidases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140271. [DOI: 10.1016/j.bbapap.2019.140271] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 02/04/2023]
|
15
|
Improvement in the yield and selectivity of lactulose synthesis with Bacillus circulans β-galactosidase. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Schmidt CM, Nedele AK, Hinrichs J. Enzymatic generation of lactulose in sweet and acid whey: Feasibility study for the scale up towards robust processing. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2019.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Julio-Gonzalez LC, Hernández-Hernández O, Javier Moreno F, Olano A, Corzo N. High-yield purification of commercial lactulose syrup. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Purification and characterization of a novel thermophilic β-galactosidase from Picrophilus torridus of potential industrial application. Extremophiles 2019; 23:783-792. [DOI: 10.1007/s00792-019-01133-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
|
19
|
Guerrero C, Valdivia F, Ubilla C, Ramírez N, Gómez M, Aburto C, Vera C, Illanes A. Continuous enzymatic synthesis of lactulose in packed-bed reactor with immobilized Aspergillus oryzae β-galactosidase. BIORESOURCE TECHNOLOGY 2019; 278:296-302. [PMID: 30708333 DOI: 10.1016/j.biortech.2018.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Lactulose synthesis from fructose and lactose in continuous packed-bed reactor operation with glyoxyl-agarose immobilized Aspergillus oryzae β-galactosidase is reported for the first time. Alternative strategies to conventional batch synthesis have been scarcely explored for lactulose synthesis. The effect of flow rate, substrates ratio and biocatalyst-inert packing material mass ratio (MB/MIM) were studied on reactor performance. Increase in any of these variables produced an increase in lactulose yield (YLu) being higher than obtained in batch synthesis at comparable conditions. Maximum YLu of 0.6 g·g-1 was obtained at 50 °C, pH 4.5, 50% w/w total sugars, 15 mL·min-1, fructose/lactose molar ratio of 12 and MB/MIM of 1/8 g·g-1; at such conditions yield of transgalactosylated oligosaccharides (YTOS) was 0.16 g·g-1, selectivity (lactulose/TOS molar ratio) was 5.4 and lactose conversion (XLactose) was 28%. Reactor operation with recycle had no significant effect on yield, producing only some decrease in productivity.
Collapse
Affiliation(s)
- Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
| | - Felipe Valdivia
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Claudia Ubilla
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Nicolás Ramírez
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Matías Gómez
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carla Aburto
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| |
Collapse
|
20
|
Immobilization of β-galactosidase in glutaraldehyde-chitosan and its application to the synthesis of lactulose using cheese whey as feedstock. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Guerrero C, Aburto C, Suárez S, Vera C, Illanes A. Effect of the type of immobilization of β-galactosidase on the yield and selectivity of synthesis of transgalactosylated oligosaccharides. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Nooshkam M, Babazadeh A, Jooyandeh H. Lactulose: Properties, techno-functional food applications, and food grade delivery system. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Zeng J, Hu Y, Jia T, Zhang R, Su T, Sun J, Gao H, Li G, Cao M, Song M. Chemoenzymatic synthesis of sialylated lactuloses and their inhibitory effects on Staphylococcus aureus. PLoS One 2018; 13:e0199334. [PMID: 29924858 PMCID: PMC6010273 DOI: 10.1371/journal.pone.0199334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/05/2018] [Indexed: 11/19/2022] Open
Abstract
Background Sialylated glycoconjugates play important roles in physiological and pathological processes. However, available sialylated oligosaccharides source is limited which is a barrier to study their biological roles. This work reports an efficient approach to produce sialic acid-modified lactuloses and investigates their inhibitory effects on Staphylococcus aureus (S. aureus). Methods A one-pot two-enzyme (OPTE) sialylation system was used to efficiently synthesize sialylated lactuloses. Silica gel flash chromatography column was employed to purify the sialylated products. The purity and identity of the product structures were confirmed with mass spectrometry (MS) and nuclear magnetic resonance (NMR). The inhibitory effect of sialylated lactuloses against S. aureus was evaluated by using microplate assay, fluorescence microscopy, DAPI (4',6-diamidino-2-phenylindole) fluorescence staining and protein leakage quantification. Results Neu5Ac-containing sialylated lactuloses with either α2,3- or α2,6-linkages were efficiently synthesized via an efficient OPTE sialylation system using α-2,3-sialyltransferase or α-2,6-sialyltransferase, respectively. Neu5Ac-α2,3-lactulose and Neu5Ac-α2,6-lactulose significantly inhibited the growth of S. aureus. Fluorescence microscopy and DAPI fluorescence staining indicated that the sialylated lactuloses might disrupt nucleic acid synthesis of S. aureus. Conclusions Neu5Ac-containing sialylated lactuloses had higher antibacterial activity against S. aureus than non-sialylated lactulose. The inhibitory effect of Neu5Ac-α2,3-lactulose was superior to that of Neu5Ac-α2,6-lactulose. The sialylated lactuloses might inhibit S. aureus by causing cell membrane leakage and disrupting nucleic acid synthesis.
Collapse
Affiliation(s)
- Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
- * E-mail:
| | - Yajie Hu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Tian Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Ruiyao Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Tongchao Su
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Junliang Sun
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Guanglei Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Meng Cao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengdi Song
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
24
|
Chen Q, He W, Yan X, Zhang T, Jiang B, Stressler T, Fischer L, Mu W. Construction of an enzymatic route using a food-grade recombinant Bacillus subtilis for the production and purification of epilactose from lactose. J Dairy Sci 2018; 101:1872-1882. [DOI: 10.3168/jds.2017-12936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022]
|
25
|
Letsididi R, Hassanin HA, Koko MY, Zhang T, Jiang B, Mu W. Lactulose production by a thermostable glycoside hydrolase from the hyperthermophilic archaeon Caldivirga maquilingensis IC-167. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:928-937. [PMID: 28703279 DOI: 10.1002/jsfa.8539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Lactulose has various uses in the food and pharmaceutical fields. Thermostable enzymes have many advantages for industrial exploitation, including high substrate solubilities as well as reduced risk of process contamination. RESULTS Enzymatic synthesis of lactulose employing a transgalactosylation reaction by a recombinant thermostable glycoside hydrolase (GH1) from the hyperthermophilic archaeon Caldivirga maquilingensis IC-167 was investigated. The optimal pH for lactulose production was found to be 4.5, while the optimal temperature was 85 °C, before it dropped moderately to 83% at 90 °C. However, the relative activity for lactulose synthesis dropped sharply to 35% at 95 °C. At optimal reaction conditions of 70% (w/w) initial sugar substrates with molar ratio of lactose to fructose of 1:4, 15 U mL-1 enzyme concentration and 85 °C, the time course reaction produced a maximum lactulose concentration of 108 g L-1 at 4 h, corresponding to a lactulose yield of 14% and 27 g L-1 h-1 productivity with 84% lactose conversion. The transgalactosylation reaction for lactulose synthesis was greatly influenced by the ratio of galactose donor to acceptor. CONCLUSION This novel GH1 may be useful for process applications owing to its high activity in very concentrated substrate reaction media and promising thermostability. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rebaone Letsididi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Food Technology Research Centre, Kanye, Botswana
| | - Hinawi Am Hassanin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Marwa Yf Koko
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
26
|
Cardoso BB, Silvério SC, Abrunhosa L, Teixeira JA, Rodrigues LR. β-galactosidase from Aspergillus lacticoffeatus : A promising biocatalyst for the synthesis of novel prebiotics. Int J Food Microbiol 2017. [DOI: 10.1016/j.ijfoodmicro.2017.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Guerrero C, Vera C, Illanes A. Fed-batch operation for the synthesis of lactulose with β-galactosidase of Aspergillus oryzae. BIORESOURCE TECHNOLOGY 2017; 237:126-134. [PMID: 28162924 DOI: 10.1016/j.biortech.2017.01.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
Fed-batch synthesis of lactulose from lactose and fructose with Aspergillus oryzae β-galactosidase was evaluated, obtaining a concentration of 40.4g·L-1, which is 20% higher than obtained in batch, while the concentration of transgalactosylated oligosaccharides (TOS) was reduced by 98%. Therefore, selectivity of lactulose synthesis can be significantly higher by operating in fed-batch mode. The enzyme-limiting substrate mass ratio (E/S) is a critical variable in fed-batch operation. Higher values favor lactose hydrolysis over transgalactosylation, being 400IU/g the limit for proper lactulose synthesis in fed-batch operation. Selectivity of lactulose synthesis increased with E/S being quite high at 800IUH·g-1 or higher. However, this increase was obtained at the expense of lactulose yield. Lactulose synthesis in fed-batch operation was a better option than conventional batch synthesis, since higher product concentration and selectivity of lactulose over TOS synthesis were obtained.
Collapse
Affiliation(s)
- Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
| |
Collapse
|
28
|
Wu L, Xu C, Li S, Liang J, Xu H, Xu Z. Efficient production of lactulose from whey powder by cellobiose 2-epimerase in an enzymatic membrane reactor. BIORESOURCE TECHNOLOGY 2017; 233:305-312. [PMID: 28285222 DOI: 10.1016/j.biortech.2017.02.089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
In this study, the gene encoding cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) was successfully expressed in Bacillus subtilis WB800. After the fermentation medium optimization, the activity of recombinant strain was 4.5-fold higher than the original medium in a 7.5L fermentor. The optimal catalytic pH and temperature of crude CsCE were 7.0 and 80°C, respectively. An enzymatic synthesis of lactulose was developed using cheese-whey lactose as its substrate. The maximum conversion rate of whey powder obtained was 58.5% using 7.5 U/mL CsCE. The enzymatic membrane reactor system exhibited a great operational stability, confirmed with the higher lactose conversion (42.4%) after 10 batches. To our best knowledge, this is the first report of lactulose synthesis in food grade strain, which improve the food safety, and we not only realize the biological production of lactulose, but also make good use of industrial waste, which have positive impact on environment.
Collapse
Affiliation(s)
- Lingtian Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Cen Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Jinfeng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
29
|
You SP, Wang XN, Qi W, Su RX, He ZM. Optimisation of culture conditions and development of a novel fed-batch strategy for high production of β-galactosidase by Kluyveromyces lactis. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sheng-ping You
- Chemical Engineering Research Center; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Xiao-nan Wang
- Chemical Engineering Research Center; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Wei Qi
- Chemical Engineering Research Center; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- State Key Laboratory of Chemical Engineering; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; Tianjin 300072 China
| | - Rong-xin Su
- Chemical Engineering Research Center; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- State Key Laboratory of Chemical Engineering; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; Tianjin 300072 China
| | - Zhi-min He
- Chemical Engineering Research Center; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- State Key Laboratory of Chemical Engineering; Tianjin University; Tianjin 300072 China
| |
Collapse
|
30
|
Xu W, Yu S, Liu Q, Zhang T, Jiang B, Mu W. Enzymatic Production of Melibiose from Raffinose by the Levansucrase from Leuconostoc mesenteroides B-512 FMC. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3910-3918. [PMID: 28453942 DOI: 10.1021/acs.jafc.7b01265] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Melibiose, which is an important reducing disaccharide formed by α-1,6 linkage between galactose and glucose, has been proven to have beneficial applications in both medicine and agriculture. In this study, a characterized levansucrase from Leuconostoc mesenteroides B-512 FMC was further used to study the bioproduction of melibiose from raffinose. The reaction conditions were optimized for melibiose synthesis. The optimal pH, temperature, substrate concentration, ratio of substrates, and units of enzymes were determined as pH 6.0, 45 °C, 210 g/L, 1:1 (210 g/L:210 g/L), and 5 U/mL, respectively. The transfructosylation product of raffinose was determined to be melibiose by FTIR and NMR. A high raffinose concentration was found to strongly favor the production of melibiose. When 210 g/L raffinose and 210 g/L lactose were catalyzed using 5 U/mL purified levansucrase at pH 6.0 and 45 °C, the maximal yield of melibiose was 88 g/L.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Shuhuai Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Qian Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University , Wuxi, Jiangsu 214122, China
| |
Collapse
|
31
|
Ackerman DL, Craft KM, Townsend SD. Infant food applications of complex carbohydrates: Structure, synthesis, and function. Carbohydr Res 2017; 437:16-27. [PMID: 27883906 PMCID: PMC6172010 DOI: 10.1016/j.carres.2016.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 01/05/2023]
Abstract
Professional health bodies such as the World Health Organization (WHO), the American Academy of Pediatrics (AAP), and the U.S. Department of Health and Human Services (HHS) recommend breast milk as the sole source of food during the first year of life. This position recognizes human milk as being uniquely suited for infant nutrition. Nonetheless, most neonates in the West are fed alternatives by 6 months of age. Although inferior to human milk in most aspects, infant formulas are able to promote effective growth and development. However, while breast-fed infants feature a microbiota dominated by bifidobacteria, the bacterial flora of formula-fed infants is usually heterogeneous with comparatively lower levels of bifidobacteria. Thus, the objective of any infant food manufacturer is to prepare a product that results in a formula-fed infant developing a breast-fed infant-like microbiota. The goal of this focused review is to discuss the structure, synthesis, and function of carbohydrate additives that play a role in governing the composition of the infant microbiome and have other health benefits.
Collapse
Affiliation(s)
- Dorothy L Ackerman
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States
| | - Kelly M Craft
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States
| | - Steven D Townsend
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States; Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
32
|
Li W, Yu S, Zhang T, Jiang B, Mu W. Synthesis of raffinose by transfructosylation using recombinant levansucrase from Clostridium arbusti SL206. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:43-49. [PMID: 27417332 DOI: 10.1002/jsfa.7903] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Raffinose, a functional trisaccharide of α-d-galactopyranosyl-(1 → 6)-α-d-glucopyranosyl-(1 → 2)-β-d-fructofuranoside, is a prebiotic that shows promise for use as a food ingredient. RESULTS In this study, the production of raffinose from melibiose and sucrose was studied using whole recombinant Escherichia coli cells harboring the levansucrase from Clostridium arbusti SL206. The reaction conditions were optimized for raffinose synthesis. The optimal pH, temperature and washed cell concentration were pH 6.5 (sodium phosphate buffer, 50 mmol L-1 ), 55 °C and 3% (w/v), respectively. High substrate concentrations, which led to low water activity and thus reduced levansucrase hydrolysis activity, strongly favored the production of raffinose through the fructosyl transfer reaction. Additionally, high concentrations of excess acceptor and donor glycosides favored raffinose production. When 30% (w/v) sucrose and 30% (w/v) melibiose were catalyzed using 3% (w/v) whole cells at pH 6.5 (sodium phosphate buffer, 50 mmol L-1 ) and 55 °C, the highest raffinose yield was 222 g L-1 after a 6 h reaction. The conversion ratio from each substrate to raffinose was 50%. CONCLUSION Raffinose could be effectively produced with melibiose as an acceptor and with sucrose as a fructosyl donor by whole recombinant E. coli cells harboring C. arbusti levansucrase. The yield from E. coli was significantly higher than those of the previously reported Bacillus subtilis levansucrase and fungal α-galactosidases. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenjing Li
- State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shuhuai Yu
- State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
33
|
Liao XY, Zheng QW, Zhou QL, Lin JF, Guo LQ, Yun F. Characterization of recombinant β- galactosidase and its use in enzymatic synthesis of lactulose from lactose and fructose. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Designing of a novel β-galactosidase for production of functional oligosaccharides. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2813-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Shin KC, Sim DH, Seo MJ, Oh DK. Increased Production of Food-Grade d-Tagatose from d-Galactose by Permeabilized and Immobilized Cells of Corynebacterium glutamicum, a GRAS Host, Expressing d-Galactose Isomerase from Geobacillus thermodenitrificans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8146-8153. [PMID: 27734668 DOI: 10.1021/acs.jafc.6b03588] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The generally recognized as safe microorganism Corynebacterium glutamicum expressing Geobacillus thermodenitrificans d-galactose isomerase (d-GaI) was an efficient host for the production of d-tagatose, a functional sweetener. The d-tagatose production at 500 g/L d-galactose by the host was 1.4-fold higher than that by Escherichia coli expressing d-GaI. The d-tagatose-producing activity of permeabilized C. glutamicum (PCG) cells treated with 1% (w/v) Triton X-100 was 2.1-fold higher than that of untreated cells. Permeabilized and immobilized C. glutamicum (PICG) cells in 3% (w/v) alginate showed a 3.1-fold longer half-life at 50 °C and 3.1-fold higher total d-tagatose concentration in repeated batch reactions than PCG cells. PICG cells, which produced 165 g/L d-tagatose after 3 h, with a conversion of 55% (w/w) and a productivity of 55 g/L/h, showed significantly higher d-tagatose productivity than that reported for other cells. Thus, d-tagatose production by PICG cells may be an economical process to produce food-grade d-tagatose.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 05029, South Korea
| | - Dong-Hyun Sim
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 05029, South Korea
| | - Min-Ju Seo
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 05029, South Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 05029, South Korea
| |
Collapse
|
36
|
Recent advances on prebiotic lactulose production. World J Microbiol Biotechnol 2016; 32:154. [DOI: 10.1007/s11274-016-2103-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022]
|
37
|
Silvério SC, Macedo EA, Teixeira JA, Rodrigues LR. Biocatalytic Approaches Using Lactulose: End Product Compared with Substrate. Compr Rev Food Sci Food Saf 2016; 15:878-896. [DOI: 10.1111/1541-4337.12215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/09/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Sara C. Silvério
- CEB-Centre of Biological Engineering; Univ. do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Eugénia A. Macedo
- LSRE-Laboratory of Separation and Reaction Engineering-Associate Laboratory LSRE/LCM, Faculdade de Engenharia; Univ. do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - José A. Teixeira
- CEB-Centre of Biological Engineering; Univ. do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Lígia R. Rodrigues
- CEB-Centre of Biological Engineering; Univ. do Minho; Campus de Gualtar 4710-057 Braga Portugal
| |
Collapse
|
38
|
Development of a continuous membrane reactor process for enzyme-catalyzed lactulose synthesis. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Arreola S, Intanon M, Wongputtisin P, Kosma P, Haltrich D, Nguyen TH. Transferase Activity of Lactobacillal and Bifidobacterial β-Galactosidases with Various Sugars as Galactosyl Acceptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2604-2611. [PMID: 26975338 PMCID: PMC4819807 DOI: 10.1021/acs.jafc.5b06009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
The β-galactosidases from Lactobacillus reuteri L103 (Lreuβgal), Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (Lbulβgal), and Bifidobacterium breve DSM 20281 (Bbreβgal-I and Bbreβgal-II) were investigated in detail with respect to their propensity to transfer galactosyl moieties onto lactose, its hydrolysis products D-glucose and D-galactose, and certain sugar acceptors such as N-acetyl-D-glucosamine (GlcNAc), N-acetyl-D-galactosamine (GalNAc), and L-fucose (Fuc) under defined, initial velocity conditions. The rate constants or partitioning ratios (kNu/kwater) determined for these different acceptors (termed nucleophiles, Nu) were used as a measure for the ability of a certain substance to act as a galactosyl acceptor of these β-galactosidases. When using Lbulβgal or Bbreβgal-II, the galactosyl transfer to GlcNAc was 6 and 10 times higher than that to lactose, respectively. With lactose and GlcNAc used in equimolar substrate concentrations, Lbulβgal and Bbreβgal-II catalyzed the formation of N-acetyl-allolactosamine with the highest yields of 41 and 24%, respectively, as calculated from the initial GlcNAc concentration.
Collapse
Affiliation(s)
- Sheryl
Lozel Arreola
- Food
Biotechnology Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
- Institute
of Chemistry, University of the Philippines
Los Baños, College, Laguna, Philippines
| | - Montira Intanon
- Food
Biotechnology Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
- Department
of Veterinary Bioscience and Veterinary Public Health, Faculty of
Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pairote Wongputtisin
- Food
Biotechnology Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
- Faculty
of Science, Maejo University, Chiang Mai, Thailand
| | - Paul Kosma
- Division
of Organic Chemistry, Department of Chemistry, BOKU − University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Dietmar Haltrich
- Food
Biotechnology Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
| | - Thu-Ha Nguyen
- Food
Biotechnology Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
| |
Collapse
|
40
|
Lo SC, Ramanan RN, Tey BT, Tan WS, Show PL, Ling TC, Ooi CW. A versatile and economical method for the release of recombinant proteins from Escherichia coli by 1-propanol cell disruption. RSC Adv 2016. [DOI: 10.1039/c6ra10550e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Release of enhanced green fluorescent protein from Escherichia coli by 1-propanol cell disruption.
Collapse
Affiliation(s)
- Sewn Cen Lo
- Chemical Engineering Discipline
- School of Engineering and Advanced Engineering Platform
- School of Engineering
- Monash University Malaysia
- 47500 Bandar Sunway
| | - Ramakrishnan Nagasundara Ramanan
- Chemical Engineering Discipline
- School of Engineering and Advanced Engineering Platform
- School of Engineering
- Monash University Malaysia
- 47500 Bandar Sunway
| | - Beng Ti Tey
- Chemical Engineering Discipline
- School of Engineering and Advanced Engineering Platform
- School of Engineering
- Monash University Malaysia
- 47500 Bandar Sunway
| | - Weng Siang Tan
- Department of Microbiology
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM
- Serdang
| | - Pau Loke Show
- Manufacturing and Industrial Processes Division
- Faculty of Engineering
- Centre for Food and Bioproduct Processing
- University of Nottingham Malaysia Campus
- 43500 Semenyih
| | - Tau Chuan Ling
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Chien Wei Ooi
- Chemical Engineering Discipline
- School of Engineering and Advanced Engineering Platform
- School of Engineering
- Monash University Malaysia
- 47500 Bandar Sunway
| |
Collapse
|
41
|
Sequential optimization approach for prebiotic galactooligosaccharides synthesis by Pseudozyma tsukubaensis and Pichia kluyveri. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.04.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Bacterial Cyanuric Acid Hydrolase for Water Treatment. Appl Environ Microbiol 2015; 81:6660-8. [PMID: 26187963 DOI: 10.1128/aem.02175-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/10/2015] [Indexed: 11/20/2022] Open
Abstract
Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation.
Collapse
|
43
|
Forti L, Di Mauro S, Cramarossa MR, Filippucci S, Turchetti B, Buzzini P. Non-Conventional Yeasts Whole Cells as Efficient Biocatalysts for the Production of Flavors and Fragrances. Molecules 2015; 20:10377-98. [PMID: 26053491 PMCID: PMC6272320 DOI: 10.3390/molecules200610377] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 12/25/2022] Open
Abstract
The rising consumer requests for natural flavors and fragrances have generated great interest in the aroma industry to seek new methods to obtain fragrance and flavor compounds naturally. An alternative and attractive route for these compounds is based on bio-transformations. In this review, the application of biocatalysis by Non Conventional Yeasts (NCYs) whole cells for the production of flavor and fragrances is illustrated by a discussion of the production of different class of compounds, namely Aldehydes, Ketones and related compounds, Alcohols, Lactones, Terpenes and Terpenoids, Alkenes, and Phenols.
Collapse
Affiliation(s)
- Luca Forti
- Department of Life Sciences, University of Modena & Reggio Emilia, via G. Campi 103, Modena 41125, Italy.
| | - Simone Di Mauro
- Department of Agricultural, Environmental and Food Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy.
| | - Maria Rita Cramarossa
- Department of Life Sciences, University of Modena & Reggio Emilia, via G. Campi 103, Modena 41125, Italy.
| | - Sara Filippucci
- Department of Agricultural, Environmental and Food Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy.
| | - Benedetta Turchetti
- Department of Agricultural, Environmental and Food Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy.
| | - Pietro Buzzini
- Department of Agricultural, Environmental and Food Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy.
| |
Collapse
|
44
|
Sitanggang AB, Drews A, Kraume M. Influences of operating conditions on continuous lactulose synthesis in an enzymatic membrane reactor system: A basis prior to long-term operation. J Biotechnol 2015; 203:89-96. [DOI: 10.1016/j.jbiotec.2015.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 03/09/2015] [Accepted: 03/18/2015] [Indexed: 01/01/2023]
|
45
|
Wang M, Yang R, Hua X, Shen Q, Zhang W, Zhao W. Lactulose production from lactose by recombinant cellobiose 2-epimerase in permeabilisedEscherichia colicells. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12776] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Food Science and Technology; Jiangnan University; 214122 Wuxi China
- School of Food Science and Technology; Jiangnan University; 214122 Wuxi China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology; Jiangnan University; 214122 Wuxi China
- School of Food Science and Technology; Jiangnan University; 214122 Wuxi China
| | - Xiao Hua
- School of Food Science and Technology; Jiangnan University; 214122 Wuxi China
| | - Qiuyun Shen
- School of Food Science and Technology; Jiangnan University; 214122 Wuxi China
| | - Wenbin Zhang
- School of Food Science and Technology; Jiangnan University; 214122 Wuxi China
| | - Wei Zhao
- School of Food Science and Technology; Jiangnan University; 214122 Wuxi China
| |
Collapse
|
46
|
Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates. Enzyme Microb Technol 2015; 70:9-17. [DOI: 10.1016/j.enzmictec.2014.12.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/27/2014] [Accepted: 12/14/2014] [Indexed: 12/20/2022]
|
47
|
Pawlak-Szukalska A, Wanarska M, Popinigis AT, Kur J. A novel cold-active β-d-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 32cB – Gene cloning, purification and characterization. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Gu J, Yang R, Hua X, Zhang W, Zhao W. Adsorption-based immobilization ofCaldicellulosiruptor saccharolyticuscellobiose 2-epimerase onBacillus subtilisspores. Biotechnol Appl Biochem 2014; 62:237-44. [DOI: 10.1002/bab.1262] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/11/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Junyan Gu
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
- School of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
- School of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
- School of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
| | - Wenbin Zhang
- School of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
| | - Wei Zhao
- School of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
| |
Collapse
|
49
|
Sitanggang AB, Drews A, Kraume M. Continuous synthesis of lactulose in an enzymatic membrane reactor reduces lactulose secondary hydrolysis. BIORESOURCE TECHNOLOGY 2014; 167:108-115. [PMID: 24971952 DOI: 10.1016/j.biortech.2014.05.124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 06/03/2023]
Abstract
Newly developed parallel small-scale enzymatic membrane reactors (EMRs) were used to enhance the synthesis of lactulose using β-galactosidase. Under batch operation, the productivity of lactulose decreased abruptly from 2.72 down to 0.04 mg lactulose/(Uenzymeh) over 35 h of reaction. This was presumably caused by the action of β-galactosidase which performed secondary hydrolysis upon the produced lactulose. The continuous operations of an EMR system led to continuous removal of lactulose in the reactors restricting lactulose degradation caused by secondary hydrolysis. Therefore, continuous lactulose syntheses in the EMRs yielded significantly higher specific productivities under "steady state" conditions. Approximately 0.70 and 0.50 mg lactulose/(U enzyme h) for hydraulic residence times of 5 and 7h were reached, respectively. Continuous lactulose synthesis performed in an EMR system conclusively can circumvent the drawbacks (e.g., secondary hydrolysis) of lactulose synthesis encountered in batch operation. It is, therefore, beneficial in terms of enhanced lactulose productivity and reduced enzyme consumption.
Collapse
Affiliation(s)
- Azis Boing Sitanggang
- Chair of Chemical and Process Engineering, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; Department of Food Science and Technology, Bogor Agricultural University, Raya Darmaga St, Kampus IPB Darmaga, Bogor 16680, West Java, Indonesia.
| | - Anja Drews
- HTW Berlin - University of Applied Science, Engineering II, School of Life Science Engineering, Wilhelminenhofstraße 75A, 12459 Berlin, Germany
| | - Matthias Kraume
- Chair of Chemical and Process Engineering, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| |
Collapse
|
50
|
|