1
|
Sun M, Fu L, Chen T, Dong N. Extracellular production of antifungal peptides from oxidative endotoxin-free E. coli and application. Appl Microbiol Biotechnol 2024; 108:56. [PMID: 38175241 DOI: 10.1007/s00253-023-12888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
Antifungal peptides (AFPs) can be used as novel preservatives, but achieving large-scale production and application remains a long-term challenge. In this study, we developed a hybrid peptide MD (metchnikowin-drosomycin fusion) secreted into Escherichia coli supernatant, demonstrating strong inhibitory activity against Aspergillus flavus and Botrytis cinerea. The fusion tag did not impact its activity. Moreover, an endotoxin-free and oxidative leaky strain was developed by knocking out the trxB, gor, and lpp genes of endotoxin-free E. coli ClearColi-BL21(DE3). This strain facilitates the proper folding of multi-disulfide bond proteins and promotes the extracellular production of recombinant bioactive AFP MD, achieving efficient production of endotoxin-free MD. In addition, temperature control replaces chemical inducers to further reduce production costs and circumvent the toxicity of inducers. This extracellularly produced MD exhibited favorable effectiveness in inhibiting fruit mold growth, and its safety was preliminarily established by gavage testing in mice, suggesting that it can be developed into a green and sustainable fruit fungicide. In conclusion, this study provides novel approaches and systematic concepts for producing extracellularly active proteins or peptides with industrial significance. KEY POINTS: • First report of extracellular production of bioactive antifungal peptide in Escherichia coli. • The hybrid antifungal peptide MD showed strong inhibitory activity against Aspergillus flavus and Botrytis cinerea, and the activity was not affected by the fusion tag. • Endotoxin-free oxidative Escherichia coli suitable for the expression of multi-disulfide bond proteins was constructed.
Collapse
Affiliation(s)
- Mengning Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Linglong Fu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100193, People's Republic of China
| | - Na Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
2
|
Jain PM, Nellikka A, Kammara R. Understanding bacteriocin heterologous expression: A review. Int J Biol Macromol 2024; 277:133916. [PMID: 39033897 DOI: 10.1016/j.ijbiomac.2024.133916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Bacteriocins are a diverse group of ribosomally synthesised antimicrobial peptides/proteins that play an important role in self-defence. They are widely used as bio-preservatives and effective substitutes for disease eradication. They can be used in conjunction with or as an alternative to antibiotics to minimize the risk of resistance development. There are remarkably few reports indicating resistance to bacteriocins. Although there are many research reports that emphasise heterologous expression of bacteriocin, there are no convincing reports on the significant role that intrinsic and extrinsic factors play in overexpression. A coordinated and cooperative expression system works in concert with multiple genetic elements encoding native proteins, immunoproteins, exporters, transporters and enzymes involved in the post-translational modification of bacteriocins. The simplest way could be to utilise the existing E. coli expression system, which is conventional, widely used for heterologous expression and has been further extended for bacteriocin expression. In this article, we will review the intrinsic and extrinsic factors, advantages, disadvantages and major problems associated with bacteriocin overexpression in E. coli. Finally, we recommend the most effective strategies as well as numerous bacteriocin expression systems from E. coli, Lactococcus, Kluveromyces lactis, Saccharomyces cerevisiae and Pichia pastoris for their suitability for successful overexpression.
Collapse
Affiliation(s)
- Priyanshi M Jain
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India
| | - Anagha Nellikka
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India
| | - Rajagopal Kammara
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India.
| |
Collapse
|
3
|
Jiang R, Yuan S, Zhou Y, Wei Y, Li F, Wang M, Chen B, Yu H. Strategies to overcome the challenges of low or no expression of heterologous proteins in Escherichia coli. Biotechnol Adv 2024; 75:108417. [PMID: 39038691 DOI: 10.1016/j.biotechadv.2024.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Protein expression is a critical process in diverse biological systems. For Escherichia coli, a widely employed microbial host in industrial catalysis and healthcare, researchers often face significant challenges in constructing recombinant expression systems. To maximize the potential of E. coli expression systems, it is essential to address problems regarding the low or absent production of certain target proteins. This article presents viable solutions to the main factors posing challenges to heterologous protein expression in E. coli, which includes protein toxicity, the intrinsic influence of gene sequences, and mRNA structure. These strategies include specialized approaches for managing toxic protein expression, addressing issues related to mRNA structure and codon bias, advanced codon optimization methodologies that consider multiple factors, and emerging optimization techniques facilitated by big data and machine learning.
Collapse
Affiliation(s)
- Ruizhao Jiang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Shuting Yuan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Yilong Zhou
- Tanwei College, Tsinghua University, Beijing 100084, China
| | - Yuwen Wei
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Fulong Li
- Beijing Evolyzer Co.,Ltd., 100176, China
| | | | - Bo Chen
- Beijing Evolyzer Co.,Ltd., 100176, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Ogura Y, Hashino Y, Nakamura A. Direct Screening of PET Hydrolase Activity in Culture Medium Based on Turbidity Reduction. ACS OMEGA 2024; 9:34151-34160. [PMID: 39130604 PMCID: PMC11307985 DOI: 10.1021/acsomega.4c05488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
The development of an efficient screening method for the activity of PET-degrading enzymes represents a significant technological advance in the field of enzyme research, with the potential to facilitate the advancement of enzymes for PET recycling. By examining the stable conditions of PET suspension and enzyme production conditions, we developed a method to quantify PET-degrading enzyme activity in E. coli culture medium using turbidity reduction as an indicator. High PET concentration or ionic strength caused aggregation of PET, and the best condition for activity detection was 0.5 mg mL-1 PET in 50 mM sodium phosphate pH 7.0. Preculture of E. coli increased the purity of enzyme secreted in medium. To evaluate the screening method, 720 colonies of the PET2-7M-H229X-F233X mutant library were analyzed and three candidates of high-activity mutants were obtained. The thermostability of the mutants could also be easily measured by measuring the residual activity after heat treatment. The H229T-F233M mutant showed 3.4 times higher degradation rate against PET film than the template enzyme at the initial time. The molecular dynamics simulation implied that the F233M mutation makes space for making an α helix and that the H229T mutation resolved the steric hindrance with Trp199. These mutations were speculated to change the angle of the Trp199 side chain of PET2 to an angle similar to that of the Trp185 of IsPETase, making it suitable for PET binding to the active center. Screening of activity using PET suspensions is compatible with robotic automation and is expected to be useful for validating computationally predicted mutations.
Collapse
Affiliation(s)
- Yui Ogura
- Department
of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yoshihito Hashino
- Department
of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Akihiko Nakamura
- Department
of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research
Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Shizuoka
Institute for the Study of Marine Biology and Chemistry, Shizuoka, Shizuoka 422-8529, Japan
- Institute
for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaijicho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
5
|
Watthanasakphuban N, Ninchan B, Pinmanee P, Rattanaporn K, Keawsompong S. In Silico Analysis and Development of the Secretory Expression of D-Psicose-3-Epimerase in Escherichia coli. Microorganisms 2024; 12:1574. [PMID: 39203416 PMCID: PMC11356227 DOI: 10.3390/microorganisms12081574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
D-psicose-3-epimerase (DPEase), a key enzyme for D-psicose production, has been successfully expressed in Escherichia coli with high yield. However, intracellular expression results in high downstream processing costs and greater risk of lipopolysaccharide (LPS) contamination during cell disruption. The secretory expression of DPEase could minimize the number of purification steps and prevent LPS contamination, but achieving the secretion expression of DPEase in E. coli is challenging and has not been reported due to certain limitations. This study addresses these challenges by enhancing the secretion of DPEase in E. coli through computational predictions and structural analyses. Signal peptide prediction identified PelB as the most effective signal peptide for DPEase localization and enhanced solubility. Supplementary strategies included the addition of 0.1% (v/v) Triton X-100 to promote protein secretion, resulting in higher extracellular DPEase (0.5 unit/mL). Low-temperature expression (20 °C) mitigated the formation of inclusion bodies, thus enhancing DPEase solubility. Our findings highlight the pivotal role of signal peptide selection in modulating DPEase solubility and activity, offering valuable insights for protein expression and secretion studies, especially for rare sugar production. Ongoing exploration of alternative signal peptides and refinement of secretion strategies promise further enhancement in enzyme secretion efficiency and process safety, paving the way for broader applications in biotechnology.
Collapse
Affiliation(s)
- Nisit Watthanasakphuban
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Boontiwa Ninchan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Phitsanu Pinmanee
- Enzyme Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand;
| | - Kittipong Rattanaporn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Suttipun Keawsompong
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| |
Collapse
|
6
|
Rutter JW, Dekker L, Clare C, Slendebroek ZF, Owen KA, McDonald JAK, Nair SP, Fedorec AJH, Barnes CP. A bacteriocin expression platform for targeting pathogenic bacterial species. Nat Commun 2024; 15:6332. [PMID: 39068147 PMCID: PMC11283563 DOI: 10.1038/s41467-024-50591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Bacteriocins are antimicrobial peptides that are naturally produced by many bacteria. They hold great potential in the fight against antibiotic resistant bacteria, including ESKAPE pathogens. Engineered live biotherapeutic products (eLBPs) that secrete bacteriocins can be created to deliver targeted bacteriocin production. Here we develop a modular bacteriocin secretion platform that can be used to express and secrete multiple bacteriocins from non-pathogenic Escherichia coli host strains. As a proof of concept we create Enterocin A (EntA) and Enterocin B (EntB) secreting strains that show strong antimicrobial activity against Enterococcus faecalis and Enterococcus faecium in vitro, and characterise this activity in both solid culture and liquid co-culture. We then develop a Lotka-Volterra model that can be used to capture the interactions of these competitor strains. We show that simultaneous exposure to EntA and EntB can delay Enterococcus growth. Our system has the potential to be used as an eLBP to secrete additional bacteriocins for the targeted killing of pathogenic bacteria.
Collapse
Affiliation(s)
- Jack W Rutter
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Linda Dekker
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Chania Clare
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Zoe F Slendebroek
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Kimberley A Owen
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Julie A K McDonald
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| | - Sean P Nair
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | - Alex J H Fedorec
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London, UK.
| |
Collapse
|
7
|
McConnell SA, Casadevall A. Immunoglobulin constant regions provide stabilization to the paratope and enforce epitope specificity. J Biol Chem 2024; 300:107397. [PMID: 38763332 PMCID: PMC11215335 DOI: 10.1016/j.jbc.2024.107397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
Constant domains in antibody molecules at the level of the Fab (CH1 and CL) have long been considered to be simple scaffolding elements that physically separate the paratope-defining variable (V) region from the effector function-mediating constant (C) regions. However, due to recent findings that C domains of different isotypes can modulate the fine specificity encoded in the V region, elucidating the role of C domains in shaping the paratope and influencing specificity is a critical area of interest. To dissect the relative contributions of each C domain to this phenomenon, we generated antibody fragments with different C regions omitted, using a set of antibodies targeting capsular polysaccharides from the fungal pathogen, Cryptococcus neoformans. Antigen specificity mapping and functional activity measurements revealed that V region-only antibody fragments exhibited poly-specificity to antigenic variants and extended to recognition of self-antigens, while measurable hydrolytic activity of the capsule was greatly attenuated. To better understand the mechanistic origins of the remarkable loss of specificity that accompanies the removal of C domains from identical paratopes, we performed molecular dynamics simulations which revealed increased paratope plasticity in the scFv relative to the corresponding Fab. Together, our results provide insight into how the remarkable specificity of immunoglobulins is governed and maintained at the level of the Fab through the enforcement of structural restrictions on the paratope by CH1 domains.
Collapse
Affiliation(s)
- Scott A McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
| |
Collapse
|
8
|
Oda K, Wlodawer A. Development of Enzyme-Based Approaches for Recycling PET on an Industrial Scale. Biochemistry 2024. [PMID: 38285602 DOI: 10.1021/acs.biochem.3c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Pollution by plastics such as polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyurethane (PUR), polyamide (PA), polystyrene (PS), and poly(ethylene terephthalate) (PET) is now gaining worldwide attention as a critical environmental issue, closely linked to climate change. Among them, PET is particularly prone to hydrolysis, breaking down into its constituents, ethylene glycol (EG) and terephthalate (TPA). Biorecycling or bioupcycling stands out as one of the most promising methods for addressing PET pollution. For dealing with pollution by the macrosize PET, a French company Carbios has developed a pilot-scale plant for biorecycling waste PET beverage bottles into new bottles using derivatives of thermophilic leaf compost cutinase (LCC). However, this system still provides significant challenges in its practical implementation. For the micro- or nanosize PET pollution that poses significant human health risks, including cancer, no industrial-scale approach has been established so far, despite the need to develop such technologies. In this Perspective, we explore the enhancement of the low activity and thermostability of the enzyme PETase to match that of LCC, along with the potential application of microbes and enzymes for the treatment of waste PET as microplastics. Additionally, we discuss the shortcomings of the current biorecycling protocols from a life cycle assessment perspective, covering aspects such as the diversity of PET-hydrolyzing enzymes in nature, the catalytic mechanism for crystallized PET, and more. We also provide an overview of the Ideonella sakaiensis system, highlighting its ability to operate and grow at moderate temperatures, in contrast to high-temperature processes.
Collapse
Affiliation(s)
- Kohei Oda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
9
|
Zhou T, Wu J, Tang H, Liu D, Jeon BH, Jin W, Wang Y, Zheng Y, Khan A, Han H, Li X. Enhancing tumor-specific recognition of programmable synthetic bacterial consortium for precision therapy of colorectal cancer. NPJ Biofilms Microbiomes 2024; 10:6. [PMID: 38245564 PMCID: PMC10799920 DOI: 10.1038/s41522-024-00479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Probiotics hold promise as a potential therapy for colorectal cancer (CRC), but encounter obstacles related to tumor specificity, drug penetration, and dosage adjustability. In this study, genetic circuits based on the E. coli Nissle 1917 (EcN) chassis were developed to sense indicators of tumor microenvironment and control the expression of therapeutic payloads. Integration of XOR gate amplify gene switch into EcN biosensors resulted in a 1.8-2.3-fold increase in signal output, as confirmed by mathematical model fitting. Co-culturing programmable EcNs with CRC cells demonstrated a significant reduction in cellular viability ranging from 30% to 50%. This approach was further validated in a mouse subcutaneous tumor model, revealing 47%-52% inhibition of tumor growth upon administration of therapeutic strains. Additionally, in a mouse tumorigenesis model induced by AOM and DSS, the use of synthetic bacterial consortium (SynCon) equipped with multiple sensing modules led to approximately 1.2-fold increased colon length and 2.4-fold decreased polyp count. Gut microbiota analysis suggested that SynCon maintained the abundance of butyrate-producing bacteria Lactobacillaceae NK4A136, whereas reducing the level of gut inflammation-related bacteria Bacteroides. Taken together, engineered EcNs confer the advantage of specific recognition of CRC, while SynCon serves to augment the synergistic effect of this approach.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Haibo Tang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Korea
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | | | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
10
|
Hashemzaei M, Ghoshoon MB, Jamshidi M, Moradbeygi F, Hashemzehi A. A Review on Romiplostim Mechanism of Action and the Expressive Approach in E. coli. Recent Pat Biotechnol 2024; 18:95-109. [PMID: 38282441 DOI: 10.2174/1872208317666230503094451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 01/30/2024]
Abstract
Immune thrombocytopenic purpura (ITP) is an autoimmune disorder determined by immune-mediated platelet demolition and reduction of platelet production. Romiplostim is a new thrombopoiesis motivating peptibody that binds and stimulates the human thrombopoietin receptor the patent of which was registered in 2008. It is used to treat thrombocytopenia in patients with chronic immune thrombocytopenic purpura. Romiplostim is a 60 kDa peptibody designed to inhibit cross-reacting immune responses. It consists of four high-affinity TPO-receptor binding domains for the Mpl receptor and one human IgG1 Fc domain. Escherichia coli is a good host for the fabrication of recombinant proteins such as romiplostim. The expression of a gene intended in E. coli is dependent on many factors such as a protein's inherent ability to fold, mRNA's secondary structure, its solubility, its toxicity preferential codon use, and its need for post-translational modification (PTM). This review focuses on the structure, function, mechanism of action, and expressive approach to romiplostim in E. coli.
Collapse
Affiliation(s)
- Masoud Hashemzaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehrnaz Jamshidi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moradbeygi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Hashemzehi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Taheri-Anganeh M, Nezafat N, Gharibi S, Khatami SH, Vahedi F, Shabaninejad Z, Asadi M, Savardashtaki A, Movahedpour A, Ghasemi H. Designing a Secretory form of RTX-A as an Anticancer Toxin: An In Silico Approach. Recent Pat Biotechnol 2024; 18:332-343. [PMID: 38817010 DOI: 10.2174/0118722083267796231210060150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/29/2023] [Accepted: 11/17/2023] [Indexed: 06/01/2024]
Abstract
BACKGROUND Cancer is a leading cause of death and a significant public health issue worldwide. Standard treatment methods such as chemotherapy, radiotherapy, and surgery are only sometimes effective. Therefore, new therapeutic approaches are needed for cancer treatment. Sea anemone actinoporins are pore-forming toxins (PFTs) with membranolytic activities. RTX-A is a type of PFT that interacts with membrane phospholipids, resulting in pore formation. The synthesis of recombinant proteins in a secretory form has several advantages, including protein solubility and easy purification. In this study, we aimed to discover suitable signal peptides for producing RTX-A in Bacillus subtilis in a secretory form. METHODS Signal peptides were selected from the Signal Peptide Web Server. The probability and secretion pathways of the selected signal peptides were evaluated using the SignalP server. ProtParam and Protein-sol were used to predict the physico-chemical properties and solubility. AlgPred was used to predict the allergenicity of RTX-A linked to suitable signal peptides. Non-allergenic, stable, and soluble signal peptides fused to proteins were chosen, and their secondary and tertiary structures were predicted using GOR IV and I-TASSER, respectively. The PROCHECK server performed the validation of 3D structures. RESULTS According to bioinformatics analysis, the fusion forms of OSMY_ECOLI and MALE_ECOLI linked to RTX-A were identified as suitable signal peptides. The final proteins with signal peptides were stable, soluble, and non-allergenic for the human body. Moreover, they had appropriate secondary and tertiary structures. CONCLUSION The signal above peptides appears ideal for rationalizing secretory and soluble RTX-A. Therefore, the signal peptides found in this study should be further investigated through experimental researches and patents.
Collapse
Affiliation(s)
- Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saba Gharibi
- School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Melbourne, Australia
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Vahedi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
12
|
Zhou N, Gu T, Xu Y, Liu Y, Peng L. Challenges and progress of neurodrug: bioactivities, production and delivery strategies of nerve growth factor protein. J Biol Eng 2023; 17:75. [PMID: 38049878 PMCID: PMC10696794 DOI: 10.1186/s13036-023-00392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
Nerve growth factor (NGF) is a vital cytokine that plays a crucial role in the development and regeneration of the nervous system. It has been extensively studied for its potential therapeutic applications in various neural diseases. However, as a protein drug, limited natural source seriously hinders its translation and clinical applications. Conventional extraction of NGF from mouse submandibular glands has a very high cost and potentially induces immunogenicity; total synthesis and semi-synthesis methods are alternatives, but have difficulty in obtaining correct protein structure; gene engineering of plant cells is thought to be non-immunogenic, bioactive and economical. Meanwhile, large molecular weight, high polarity, and negative electrical charge make it difficult for NGF to cross the blood brain barrier to reach therapeutic targets. Current delivery strategies mainly depend on the adenovirus and cell biodelivery, but the safety and efficacy remain to be improved. New materials are widely investigated for the controllable, safe and precise delivery of NGF. This review illustrates physiological and therapeutic effects of NGF for various diseases. Moreover, new progress in production and delivery technologies for NGF are summarized. Bottlenecks encountered in the development of NGF as therapeutics are also discussed with the countermeasures proposed.
Collapse
Affiliation(s)
- Nan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, PR China
| | - TingWei Gu
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yuda Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, PR China
| | - LiHua Peng
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, PR China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China.
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, PR China.
| |
Collapse
|
13
|
Liu C, Mesman R, Pol A, Angius F, Op den Camp HJM. Identification and characterisation of a major outer membrane protein from Methylacidiphilum fumariolicum SolV. Antonie Van Leeuwenhoek 2023; 116:1227-1245. [PMID: 37737555 PMCID: PMC10542722 DOI: 10.1007/s10482-023-01879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
The outer membrane (OM) protects Gram-negative bacteria against a hostile environment. The proteins embedded in the OM fulfil a number of tasks that are crucial to the bacterial cell. In this study, we identified and characterised a major outer membrane protein (WP_009059494) from Methylacidiphilum fumariolicum SolV. PRED-TMBB and AlphaFold2 predicted this protein to form a porin with a β-barrel structure consisting of ten antiparallel β-sheets and with a small amphipathic N-terminal α-helix in the periplasm. We purified soluble recombinant protein WP_009059494 from E. coli using Tris-HCl buffer with SDS. Antibodies were raised against two peptides in the two large extracellular loops of protein WP_009059494 and immunogold localisation showed this protein to be mainly present in the OM of strain SolV. In addition, this protein is tightly associated with the OM, and is resistant to extraction. Only a small amount can be isolated from the cell envelope using harsh conditions (SDS and boiling). Despite this resistance to extraction, WP_009059494 most likely is an outer membrane protein. A regular lattice could not be detected by negative staining TEM of strain SolV and isolated protein WP_009059494. Considering the specific ecological niche of strain SolV living in a geothermal environment with low pH and high temperatures, this major protein WP_009059494 may act as barrier to resist the extreme conditions found in its natural environment. In addition, we found an absence of the BamB, BamC and BamE proteins of the canonical BAM complex, in Methylacidiphilum and Methylacidimicrobium species. This suggests that these bacteria use a simple BAM complex for folding and transport of OM proteins.
Collapse
Affiliation(s)
- Changqing Liu
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Rob Mesman
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Arjan Pol
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Federica Angius
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Lee HM, Thai TD, Lim W, Ren J, Na D. Functional small peptides for enhanced protein delivery, solubility, and secretion in microbial biotechnology. J Biotechnol 2023; 375:40-48. [PMID: 37652168 DOI: 10.1016/j.jbiotec.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
In microbial biotechnology, there is a constant demand for functional peptides to give new functionality to engineered proteins to address problems such as direct delivery of functional proteins into bacterial cells, enhanced protein solubility during the expression of recombinant proteins, and efficient protein secretion from bacteria. To tackle these critical issues, we selected three types of functional small peptides: cell-penetrating peptides (CPPs) enable the delivery of diverse cargoes into bacterial cytoplasm for a variety of purposes, protein-solubilizing peptide tags demonstrate remarkable efficiency in solubilizing recombinant proteins without folding interference, and signal peptides play a key role in enabling the secretion of recombinant proteins from bacterial cells. In this review, we introduced these three functional small peptides that offer effective solutions to address emerging problems in microbial biotechnology. Additionally, we summarized various engineering efforts aimed at enhancing the activity and performance of these peptides, thereby providing valuable insights into their potential for further applications.
Collapse
Affiliation(s)
- Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, the Republic of Korea
| | - Thi Duc Thai
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, the Republic of Korea
| | - Wonseop Lim
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, the Republic of Korea
| | - Jun Ren
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, the Republic of Korea.
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, the Republic of Korea.
| |
Collapse
|
15
|
Zelenovic N, Filipovic L, Popovic M. Recent Developments in Bioprocessing of Recombinant Antibody Fragments. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1191-1204. [PMID: 37770388 DOI: 10.1134/s0006297923090018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023]
Abstract
Biotechnological and biomedical applications of antibodies have been on a steady rise since the 1980s. As unique and highly specific bioreagents, monoclonal antibodies (mAbs) have been widely exploited and approved as therapeutic agents. However, the use of mAbs has limitations for therapeutic applications. Antibody fragments (AbFs) with preserved antigen-binding sites have a significant potential to overcome the disadvantages of conventional mAbs, such as heterogeneous tissue distribution after systemic administration, especially in solid tumors, and Fc-mediated bystander activation of the immune system. AbFs possess better biodistribution coefficient due to lower molecular weight. They preserve the functional features of mAbs, such as antigen specificity and binding, while at the same time, ensuring much better tissue penetration. An additional benefit of AbFs is the possibility of their production in bacterial and yeast cells due to the small size, more robust structure, and lack of posttranslational modifications. In this review, we described current approaches to the AbF production with recent examples of AbF synthesis in bacterial and yeast expression systems and methods for the production optimization.
Collapse
Affiliation(s)
- Nevena Zelenovic
- Center for Chemistry, Institute for Chemistry, Technology, and Metallurgy, National Institute of Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
| | - Lidija Filipovic
- Innovative Centre, Faculty of Chemistry, University of Belgrade, Belgrade, 11000, Serbia
| | - Milica Popovic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Belgrade, 11000, Serbia.
| |
Collapse
|
16
|
Alassiri M, Lai JY, Ch'ng ACW, Choong YS, Alanazi A, Lim TS. Subtractive panning for the isolation of monoclonal PEPITEM peptide antibody by phage display. Sci Rep 2023; 13:13627. [PMID: 37604859 PMCID: PMC10442400 DOI: 10.1038/s41598-023-40630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Antibody phage display is a key tool for the development of monoclonal antibodies against various targets. However, the development of anti-peptide antibodies is a challenging process due to the small size of peptides for binding. This makes anchoring of peptides a preferred approach for panning experiments. A common approach is by using streptavidin as the anchor protein to present biotinylated peptides for panning. Here, we propose the use of recombinant expression of the target peptide and an immunogenic protein as a fusion for panning. The peptide inhibitor of trans-endothelial migration (PEPITEM) peptide sequence was fused to the Mycobacterium tuberculosis (Mtb) α-crystalline (AC) as an anchor protein. The panning process was carried out by subtractive selection of the antibody library against the AC protein first, followed by binding to the library to PEPITEM fused AC (PEPI-AC). A unique monoclonal scFv antibodies with good specificity were identified. In conclusion, the use of an alternative anchor protein to present the peptide sequence coupled with subtractive panning allows for the identification of unique monoclonal antibodies against a peptide target.
Collapse
Affiliation(s)
- Mohammed Alassiri
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia.
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia.
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), Ministry of the National Guard - Health Affairs, Riyadh, Kingdom of Saudi Arabia.
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Asma Alanazi
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
17
|
Tumas S, Meldgaard TS, Vaaben TH, Suarez Hernandez S, Rasmussen AT, Vazquez-Uribe R, Hadrup SR, Sommer MOA. Engineered E. coli Nissle 1917 for delivery of bioactive IL-2 for cancer immunotherapy. Sci Rep 2023; 13:12506. [PMID: 37532747 PMCID: PMC10397246 DOI: 10.1038/s41598-023-39365-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
In this study we performed a step-wise optimization of biologically active IL-2 for delivery using E. coli Nissle 1917. Engineering of the strain was coupled with an in vitro cell assay to measure the biological activity of microbially produced IL-2 (mi-IL2). Next, we assessed the immune modulatory potential of mi-IL2 using a 3D tumor spheroid model demonstrating a strong effect on immune cell activation. Finally, we evaluated the anticancer properties of the engineered strain in a murine CT26 tumor model. The engineered strain was injected intravenously and selectively colonized tumors. The treatment was well-tolerated, and tumors of treated mice showed a modest reduction in tumor growth rate, as well as significantly elevated levels of IL-2 in the tumor. This work demonstrates a workflow for researchers interested in engineering E. coli Nissle for a new class of microbial therapy against cancer.
Collapse
Affiliation(s)
- Sarunas Tumas
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | | | - Troels Holger Vaaben
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
18
|
Cloning, Expression, and Purification of the Human Synthetic Survivin Protein in Escherichia coli Using Response Surface Methodology (RSM). Mol Biotechnol 2023; 65:326-336. [PMID: 34564769 DOI: 10.1007/s12033-021-00399-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
Survivin is one of the novel members of the apoptosis inhibitor protein family in humans. The main activity of the Survivin protein is to suppress caspases activity resulting in negative regulation of apoptosis. Survivin protein can be a potential target for the treatment of cancers between cancerous and normal cells. In the present research, the synthetic Survivin gene with PelB secretion signal peptide was cloned into a prokaryotic expression vector pET21a. The recombinant plasmid pET21a-PelB-Surv was expressed in Escherichia coli (E.coli) BL21, and the relative molecular mass of expressed protein was calculated 34,000 g/mol, approximately. The recombinant protein was purified through chromatography column and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Response surface methodology (RSM) was used to design 20 experiments for optimization of IPTG concentration, post-induction period, and cell density of induction (OD600). The optimum levels of the selected parameters were successfully determined to be 0.28 mM for IPTG concentration, 10 h for post-induction period, and 3.40768 for cell density (OD600). These findings resulted in 4.14-fold increases in the Survivin production rate of optimum expression conditions (93.6363 mg/ml).
Collapse
|
19
|
Naderi M, Ghaderi R, Khezri J, Karkhane A, Bambai B. Crucial role of non-hydrophobic residues in H-region signal peptide on secretory production of l-asparaginase II in Escherichia coli. Biochem Biophys Res Commun 2022; 636:105-111. [DOI: 10.1016/j.bbrc.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/02/2022]
|
20
|
Hashemzaei M, Nezafat N, Ghoshoon MB, Negahdaripour M. In-silico selection of appropriate signal peptides for romiplostim secretory production in Escherichia coli. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
21
|
Abstract
With increasing evidence that microbes colonize tumors, synthetic biology tools are being leveraged to repurpose bacteria as tumor-specific delivery systems. These engineered systems can modulate the tumor microenvironment using a combination of their inherent immunogenicity and local payload production. Here, we review genetic circuits that enhance spatial and temporal control of therapeutic bacteria to improve their safety and efficacy. We describe the engineering of interactions among bacteria, tumor cells, and immune cells, and the progression from bacteria as single agents toward their rational combination with other modalities. Together, these efforts are building toward an emerging concept of engineering interactions between programmable medicines using synthetic biology.
Collapse
Affiliation(s)
- Candice R. Gurbatri
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Nicholas Arpaia
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA
- Data Science Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
22
|
Strategies for efficient extracellular secretion of recombinant cyclomaltodextrinase by Escherichia coli. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Yang H, Wang H, Wang F, Zhang K, Qu J, Guan J, Shen W, Cao Y, Xia Y, Chen X. Efficient extracellular production of recombinant proteins in E. coli via enhancing expression of dacA on the genome. J Ind Microbiol Biotechnol 2022; 49:kuac016. [PMID: 35648451 PMCID: PMC9338883 DOI: 10.1093/jimb/kuac016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/21/2022] [Indexed: 11/14/2022]
Abstract
D, D-carboxypeptidase DacA plays an important role in the synthesis and stabilization of Escherichia coli cell wall peptidoglycan. The production level of extracellular recombinant proteins in E. coli can be enhanced by high D, D-carboxypeptidase activity. Construction of expression systems under optimal promoters is one of the main strategies to realize high protein production in E. coli. In this study, the promoter PdacA-3 from DacA on the genome of E. coli BL21 (DE3) was verified to be efficient for recombinant green fluorescent protein using the plasmid mutant pET28a-PdacA with PdacA-3. Meanwhile, the promoter PdacA-3 was engineered to increase the production level of proteins via inserting one or two Shine-Dalgarno (SD) sequences between the promoter PdacA-3 and the target genes. The expression level of dacA on the genome was increased by the improved transcription of the engineered promoters (especially after inserting one additional SD sequence). The engineered promoters increased cell membrane permeabilities to significantly enhance the secretion production of extracellular recombinant proteins in E. coli. Among them, the extracellular recombinant amylase activities in E. coli BL21::1SD-pET28a-amyK and E. coli BL21::2SD-pET28a-amyK were increased by 2.0- and 1.6-fold that of the control (E. coli BL21-pET28a-amyK), respectively. Promoter engineering also affected the morphology and growth of the E. coli mutants. It was indicated that the engineered promoters enhanced the expression of dacA on the genome to disturb the synthesis and structural stability of cell wall peptidoglycans.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haokun Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fuxiang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kunjie Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinfeng Qu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianmin Guan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Cao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
24
|
Zafar A, Hamid A, Peng L, Wang Y, Aftab MN. Enzymatic hydrolysis of lignocellulosic biomass using a novel, thermotolerant recombinant xylosidase enzyme from Clostridium clariflavum: a potential addition for biofuel industry. RSC Adv 2022; 12:14917-14931. [PMID: 35702232 PMCID: PMC9115876 DOI: 10.1039/d2ra00304j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
The present study describes the cloning, expression, purification and characterization of the xylosidase gene (1650 bp) from a thermophilic bacterium Clostridium clariflavum into E. coli BL21 (DE3) using the expression vector pET-21a(+) for utilization in biofuel production. The recombinant xylosidase enzyme was purified to homogeneity by heat treatment and immobilized metal ion affinity chromatography. SDS-PAGE determined that the molecular weight of purified xylosidase was 60 kDa. This purified recombinant xylosidase showed its maximum activity at a temperature of 37 °C and pH 6.0. The purified recombinant xylosidase enzyme remains stable up to 90 °C for 4 h and retained 54.6% relative activity as compared to the control. The presence of metal ions such as Ca2+ and Mg2+ showed a positive impact on xylosidase enzyme activity whereas Cu2+ and Hg2+ inhibit its activity. Organic solvents did not considerably affect the stability of the purified xylosidase enzyme while DMSO and SDS cause the inhibition of enzyme activity. Pretreatment experiments were run in triplicate for 72 h at 30 °C using 10% NaOH. Saccharification experiment was performed by using 1% substrate (pretreated plant biomass) in citrate phosphate buffer of pH 6.5 loaded with 150 U mL−1 of purified recombinant xylosidase enzyme along with ampicillin (10 μg mL−1). Subsequent incubation was carried out at 50 °C and 100 rpm in a shaking incubator for 24 h. Saccharification potential of the recombinant xylosidase enzyme was calculated against both pretreated and untreated sugarcane bagasse and wheat straw as 9.63% and 8.91% respectively. All these characteristics of the recombinant thermotolerant xylosidase enzyme recommended it as a potential candidate for biofuel industry. The present study describes the cloning, expression, purification and characterization of a xylosidase gene from Clostridium clariflavum into E. coli BL21 (DE3) using the expression vector pET-21a(+) for utilization in biofuel production.![]()
Collapse
Affiliation(s)
- Asma Zafar
- Faculty of Life Sciences, University of Central Punjab Lahore Pakistan
| | - Attia Hamid
- Institute of Industrial Biotechnology, Government College University Lahore 54000 Pakistan +92 99213341 +92 3444704190
| | - Liangcai Peng
- Biomass and Bioenergy Research Center, Huazhong Agriculture University Wuhan China
| | - Yanting Wang
- Biomass and Bioenergy Research Center, Huazhong Agriculture University Wuhan China
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University Lahore 54000 Pakistan +92 99213341 +92 3444704190
| |
Collapse
|
25
|
Rao D, Wang L, Huo R, Su L, Guo Z, Yang W, Wei B, Tao X, Chen S, Wu J. Trehalose promotes high-level heterologous expression of 4,6-α-glucanotransferase GtfR2 in Escherichia coli and mechanistic analysis. Int J Biol Macromol 2022; 210:315-323. [DOI: 10.1016/j.ijbiomac.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/05/2022]
|
26
|
Li M, Wang Z, Zhou M, Zhang C, Zhi K, Liu S, Sun X, Wang Z, Liu J, Liu D. Continuous Production of Human Epidermal Growth Factor Using Escherichia coli Biofilm. Front Microbiol 2022; 13:855059. [PMID: 35495696 PMCID: PMC9039743 DOI: 10.3389/fmicb.2022.855059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing demand for recombinant proteins necessitates efficient protein production processes. In this study, a continuous process for human epidermal growth factor (hEGF) secretion by Escherichia coli was developed by taking advantage of biofilm formation. Genes bcsB, fimH, and csgAcsgB that have proved to facilitate biofilm formation and some genes moaE, yceA, ychJ, and gshB potentially involved in biofilm formation were examined for their effects on hEGF secretion as well as biofilm formation. Finally, biofilm-based fermentation processes were established, which demonstrated the feasibility of continuous production of hEGF with improved efficiency. The best result was obtained from ychJ-disruption that showed a 28% increase in hEGF secretion over the BL21(DE3) wild strain, from 24 to 32 mg/L. Overexpression of bcsB also showed great potential in continuous immobilized fermentation. Overall, the biofilm engineering here represents an effective strategy to improve hEGF production and can be adapted to produce more recombinant proteins in future.
Collapse
Affiliation(s)
- Mengting Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenyu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Miao Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Chong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Kaiqi Zhi
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| | - Shuli Liu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| | - Xiujuan Sun
- Institute of Industrial Biotechnology, Jiangsu Industrial Technology Research Institute (JITRI), Nanjing, China
| | - Zhi Wang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| | - Jinle Liu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| | - Dong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
- Institute of Industrial Biotechnology, Jiangsu Industrial Technology Research Institute (JITRI), Nanjing, China
| |
Collapse
|
27
|
Pang C, Liu S, Zhang G, Zhou J, Du G, Li J. Enhancing extracellular production of lipoxygenase in Escherichia coli by signal peptides and autolysis system. Microb Cell Fact 2022; 21:42. [PMID: 35305645 PMCID: PMC8933919 DOI: 10.1186/s12934-022-01772-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Background Lipoxygenase (LOX) is a non-heme iron containing dioxygenase that is widely used to improve food quality and produce active drug intermediates and biodiesel. Escherichia coli is one of the most widely used host microorganisms for recombinant protein expression; however, its weak extracellular secretion ability precludes its effective production of recombinant proteins into the extracellular environment. To facilitate subsequent characterization and application of LOX, improving its secretion efficiency from E. coli is a major challenge that needs to be solved. Results Several strategies were adopted to improve the extracellular secretion of LOX based on the signal peptides and cell wall permeability of E. coli. Here, we studied the effect of signal peptides on LOX secretion, which increased the secretory capacity for LOX marginally. Although surfactants could increase the permeability of the cell membrane to promote LOX secretion, the extracellular LOX yield could not meet the requirements of industrialization production. Subsequently, an autolysis system was constructed in E. coli based on the bacteriophage lysis gene ΦX174-E to enhance the production of extracellular proteins. Thus, the extracellular production of LOX was achieved and the content of inclusion bodies in the cell was reduced by optimizing cell lysis conditions. The extracellular LOX yield reached 368 ± 1.4 U mL−1 in a 5-L bioreactor under optimized lysis conditions that is, an induction time and temperature, and arabinose concentration of 5 h, 25 °C, and 0.6 mM, respectively. Conclusions In this study, the different signal peptides and cell autolysis system were developed and characterized for extracellular LOX production in E. coli. Finally, the cell autolysis system presented a slight advantage on extracellular LOX yield, which also provides reference for other protein extracellular production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01772-x.
Collapse
|
28
|
Kumar A, Sharma P, Arun A, Meena LS. Development of peptide vaccine candidate using highly antigenic PE-PGRS family proteins to stimulate the host immune response against Mycobacterium tuberculosis H 37Rv: an immuno-informatics approach. J Biomol Struct Dyn 2022; 41:3382-3404. [PMID: 35293852 DOI: 10.1080/07391102.2022.2048079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tuberculosis (TB) is a fast spreading; transmissible disease caused by the Mycobacterium tuberculosis (M. tuberculosis). M. tuberculosis has a high death rate in its endemic regions due to a lack of appropriate treatment and preventative measures. We have used a vaccinomics strategy to create an effective multi-epitope vaccine against M. tuberculosis. The antigenic proteins with the highest antigenicity were utilised to predict cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes. CTL and HTL epitopes were covered in 99.97% of the population. Seven epitopes each of CTL, HTL, and LBL were ultimately selected and utilised to develop a multi-epitope vaccine. A vaccine design was developed by combining these epitopes with suitable linkers and LprG adjuvant. The vaccine chimera was revealed to be highly immunogenic, non-allergenic, and non-toxic. To ensure a better expression within the Escherichia coli K12 (E. coli K12) host system, codon adaptation and in silico cloning were accomplished. Following that, various validation studies were conducted, including molecular docking, molecular dynamics simulation, and immunological simulation, all of which indicated that the designed vaccine would be stable in the biological environment and effective against M. tuberculosis infection. The immune simulation revealed higher levels of T-cell and B-cell activity, which corresponded to the actual immune response. Exposure simulations were repeated several times, resulting in increased clonal selection and faster antigen clearance. These results suggest that, if proposed vaccine chimera would test both in-vitro and in-vivo, it could be a viable treatment and preventive strategy for TB.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajit Kumar
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Sharma
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Akanksha Arun
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Laxman S Meena
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
29
|
Chao S, Liu Y, Ding N, Lin Y, Wang Q, Tan J, Li W, Zheng Y, Hu X, Li J. Highly Expressed Soluble Recombinant Anti-GFP VHHs in Escherichia coli via Optimized Signal Peptides, Strains, and Inducers. Front Mol Biosci 2022; 9:848829. [PMID: 35359590 PMCID: PMC8960375 DOI: 10.3389/fmolb.2022.848829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Antigen-binding variable domains of the H chain of heavy-chain antibodies (VHHs), also known as nanobodies (Nbs), are of great interest in imaging technique, disease prevention, diagnosis, and therapy. High-level expression of soluble Nbs is very important for its industrial production. In this study, we optimized the expression system of anti-green fluorescent protein (GFP) VHHs with three different signal peptides (SPs), outer-membrane protein A (OmpA), pectate lyase B (PelB), and L-asparaginase II SP (L-AsPsII), in different Escherichia coli strains via isopropyl β-D-thiogalactoside (IPTG) induction and auto-induction, respectively. The solubility of recombinant anti-GFP VHHs with PelB or OmpA was significantly enhanced to the same extent by IPTG induction and auto-induction in BL21 (DE3) E. coli strain and the maximum yield of target protein reached approximately 0.4 mg/l in a shake flask. The binding activity of recombinant anti-GFP VHHs was also confirmed to be retained by native-polyacrylamide gel electrophoresis (PAGE). These results suggest that SPs like OmpA and PelB could efficiently improve the recombinant anti-GFP VHH solubility without changing its bioactivity, providing a novel strategy to optimize the E. coli expression system of soluble VHHs, and lay the foundation for the industrial production of soluble recombinant anti-GFP VHHs and the research of other VHHs in the future.
Collapse
Affiliation(s)
- Shuangying Chao
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| | - Yuhang Liu
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| | - Ning Ding
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| | - Yue Lin
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| | - Qian Wang
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| | - Junwen Tan
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| | - Wei Li
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| | - Yang Zheng
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
- *Correspondence: Yang Zheng, ; Xuejun Hu, ; Junming Li,
| | - Xuejun Hu
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
- *Correspondence: Yang Zheng, ; Xuejun Hu, ; Junming Li,
| | - Junming Li
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, China
- *Correspondence: Yang Zheng, ; Xuejun Hu, ; Junming Li,
| |
Collapse
|
30
|
Abdali Z, Renner-Rao M, Chow A, Cai A, Harrington MJ, Dorval Courchesne NM. Extracellular Secretion and Simple Purification of Bacterial Collagen from Escherichia coli. Biomacromolecules 2022; 23:1557-1568. [PMID: 35258298 DOI: 10.1021/acs.biomac.1c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because of structural similarities with type-I animal collagen, recombinant bacterial collagen-like proteins have been progressively used as a source of collagen for biomaterial applications. However, the intracellular expression combined with current costly and time-consuming chromatography methods for purification makes the large-scale production of recombinant bacterial collagen challenging. Here, we report the use of an adapted secretion pathway, used natively byEscherichia colito secrete curli fibers, for extracellular secretion of the bacterial collagen. We confirmed that a considerable fraction of expressed collagen (∼70%) is being secreted freely into the extracellular medium, with an initial purity of ∼50% in the crude culture supernatant. To simplify the purification of extracellular collagen, we avoided cell lysis and used cross-flow filtration or acid precipitation to concentrate the voluminous supernatant and separate the collagen from impurities. We confirmed that the secreted collagen forms triple helical structures, using Sirius Red staining and circular dichroism. We also detected collagen biomarkers via Raman spectroscopy, further supporting that the recombinant collagen forms a stable triple helical conformation. We further studied the effect of the isolation methods on the morphology and secondary structure, concluding that the final collagen structure is process-dependent. Overall, we show that the curli secretion system can be adapted for extracellular secretion of the bacterial collagen, eliminating the need for cell lysis, which simplifies the collagen isolation process and enables a simple cost-effective method with potential for scale-up.
Collapse
Affiliation(s)
- Zahra Abdali
- Department of Chemical Engineering, McGill University, Montreal H3A 0C5, Quebec, Canada
| | - Max Renner-Rao
- Department of Chemistry, McGill University, Montreal H3A 0C5, Quebec, Canada
| | - Amy Chow
- Department of Chemical Engineering, McGill University, Montreal H3A 0C5, Quebec, Canada
| | - Anqi Cai
- Department of Chemical Engineering, McGill University, Montreal H3A 0C5, Quebec, Canada
| | | | | |
Collapse
|
31
|
G6P-capturing molecules in the periplasm of Escherichia coli accelerate the shikimate pathway. Metab Eng 2022; 72:68-81. [DOI: 10.1016/j.ymben.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022]
|
32
|
Enespa, Chandra P, Singh DP. Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Crit Rev Food Sci Nutr 2022; 63:6653-6686. [PMID: 35179093 DOI: 10.1080/10408398.2022.2038076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microbial lipase is looking for better attention with the fast growth of enzyme proficiency and other benefits like easy, cost-effective, and reliable manufacturing. Immobilized enzymes can be used repetitively and are incapable to catalyze the reactions in the system continuously. Hydrophobic supports are utilized to immobilize enzymes when the ionic strength is low. This approach allows for the immobilization, purification, stability, and hyperactivation of lipases in a single step. The diffusion of the substrate is more advantageous on hydrophobic supports than on hydrophilic supports in the carrier. These approaches are critical to the immobilization performance of the enzyme. For enzyme immobilization, synthesis provides a higher pH value as well as greater heat stability. Using a mixture of immobilization methods, the binding force between enzymes and the support rises, reducing enzyme leakage. Lipase adsorption produces interfacial activation when it is immobilized on hydrophobic support. As a result, in the immobilization process, this procedure is primarily used for a variety of industrial applications. Microbial sources, immobilization techniques, and industrial applications in the fields of food, flavor, detergent, paper and pulp, pharmaceuticals, biodiesel, derivatives of esters and amino groups, agrochemicals, biosensor applications, cosmetics, perfumery, and bioremediation are all discussed in this review.
Collapse
Affiliation(s)
- Enespa
- School for Agriculture, Sri Mahesh Prasad Post Graduate College, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prem Chandra
- Food Microbiology & Toxicology Laboratory, Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
33
|
Stødkilde K, Nielsen JT, Petersen SV, Paetzold B, Brüggemann H, Mulder FAA, Andersen CBF. Solution Structure of the Cutibacterium acnes-Specific Protein RoxP and Insights Into Its Antioxidant Activity. Front Cell Infect Microbiol 2022; 12:803004. [PMID: 35223541 PMCID: PMC8873378 DOI: 10.3389/fcimb.2022.803004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Cutibacterium acnes is a predominant bacterium on human skin and is generally regarded as commensal. Recently, the abundantly secreted protein produced by C. acnes, RoxP, was shown to alleviate radical-induced cell damage, presumably via antioxidant activity, which could potentially be harnessed to fortify skin barrier function. The aim of this study was to determine the structure of RoxP and elucidate the mechanisms behind its antioxidative effect. Here, we present the solution structure of RoxP revealing a compact immunoglobulin-like domain containing a long flexible loop which, in concert with the core domain, forms a positively charged groove that could function as a binding site for cofactors or substrates. Although RoxP shares structural features with cell-adhesion proteins, we show that it does not appear to be responsible for adhesion of C. acnes bacteria to human keratinocytes. We identify two tyrosine-containing stretches located in the flexible loop of RoxP, which appear to be responsible for the antioxidant activity of RoxP.
Collapse
Affiliation(s)
| | | | | | | | | | - Frans A A Mulder
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
34
|
Matsunaga R, Tsumoto K. Addition of arginine hydrochloride and proline to the culture medium enhances recombinant protein expression in Brevibacillus choshinensis: The case of RBD of SARS-CoV-2 spike protein and its antibody. Protein Expr Purif 2022; 194:106075. [PMID: 35231586 PMCID: PMC8881763 DOI: 10.1016/j.pep.2022.106075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Ryo Matsunaga
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
35
|
Lee H, Shin DJ, Han K, Chin Y, Park JP, Park K, Choi C, Park B, Kim S, Kim S. Simultaneous production of 2′‐fucosyllactose and difucosyllactose by engineered
Escherichia coli
with high secretion efficiency. Biotechnol J 2022; 17:e2100629. [DOI: 10.1002/biot.202100629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hyun‐Jae Lee
- Department of Food Science and Biotechnology Chung‐Ang University Anseong, Gyeonggi Seoul Republic of Korea
| | - Dong Joo Shin
- Department of Agricultural Biotechnology Seoul National University Seoul Republic of Korea
| | - Kanghee Han
- Department of Food Science and Biotechnology Chung‐Ang University Anseong, Gyeonggi Seoul Republic of Korea
| | - Young‐Wook Chin
- Research Group of Traditional Food Korea Food Research Institute Wanju Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Biotechnology Chung‐Ang University Anseong, Gyeonggi Seoul Republic of Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology Chung‐Ang University Anseong‐si Seoul Gyeonggi‐do Republic of Korea
| | - Chang‐Hyung Choi
- Division of Cosmetic Science and Technology Daegu Haany University 1 Haanydaero, Gyeongsan‐si Gyeongsangbuk‐do Republic of Korea
| | - Bo‐Ram Park
- Department of Agro‐food Resources National Institute of Agricultural Sciences Rural Development Administration Wanju Republic of Korea
| | - Soo‐Jung Kim
- Department of Integrative Food Bioscience and Biotechnology Chonnam National University Gwangju Republic of Korea
| | - Sun‐Ki Kim
- Department of Food Science and Biotechnology Chung‐Ang University Anseong, Gyeonggi Seoul Republic of Korea
| |
Collapse
|
36
|
Microbial cell surface engineering for high-level synthesis of bio-products. Biotechnol Adv 2022; 55:107912. [PMID: 35041862 DOI: 10.1016/j.biotechadv.2022.107912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 02/08/2023]
Abstract
Microbial cell surface layers, which mainly include the cell membrane, cell wall, periplasmic space, outer membrane, capsules, S-layers, pili, and flagella, control material exchange between the cell and the extracellular environment, and have great impact on production titers and yields of various bio-products synthesized by microbes. Recent research work has made exciting achievements in metabolic engineering using microbial cell surface components as novel regulation targets without direct modifications of the metabolic pathways of the desired products. This review article will summarize the accomplishments obtained in this emerging field, and will describe various engineering strategies that have been adopted in bacteria and yeasts for the enhancement of mass transfer across the cell surface, improvement of protein expression and folding, modulation of cell size and shape, and re-direction of cellular resources, all of which contribute to the construction of more efficient microbial cell factories toward the synthesis of a variety of bio-products. The existing problems and possible future directions will also be discussed.
Collapse
|
37
|
Zhang P, Gong JS, Qin J, Li H, Hou HJ, Zhang XM, Xu ZH, Shi JS. Phospholipids (PLs) know-how: exploring and exploiting phospholipase D for its industrial dissemination. Crit Rev Biotechnol 2021; 41:1257-1278. [PMID: 33985392 DOI: 10.1080/07388551.2021.1921690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 12/26/2020] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
Owing to their numerous nutritional and bioactive functions, phospholipids (PLs), which are major components of biological membranes in all living organisms, have been widely applied as nutraceuticals, food supplements, and cosmetic ingredients. To date, PLs are extracted solely from soybean or egg yolk, despite the diverse market demands and high cost, owing to a tedious and inefficient manufacturing process. A microbial-based manufacturing process, specifically phospholipase D (PLD)-based biocatalysis and biotransformation process for PLs, has the potential to address several challenges associated with the soybean- or egg yolk-based supply chain. However, poor enzyme properties and inefficient microbial expression systems for PLD limit their wide industrial dissemination. Therefore, sourcing new enzyme variants with improved properties and developing advanced PLD expression systems are important. In the present review, we systematically summarize recent achievements and trends in the discovery, their structural properties, catalytic mechanisms, expression strategies for enhancing PLD production, and its multiple applications in the context of PLs. This review is expected to assist researchers to understand current advances in this field and provide insights for further molecular engineering efforts toward PLD-mediated bioprocessing.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Hai-Juan Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Xiao-Mei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
38
|
Extracellular production of an anti-HER2 single-chain variable antibody fragment in Escherichia coli. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Taw MN, Li M, Kim D, Rocco MA, Waraho-Zhmayev D, DeLisa MP. Engineering a Supersecreting Strain of Escherichia coli by Directed Coevolution of the Multiprotein Tat Translocation Machinery. ACS Synth Biol 2021; 10:2947-2958. [PMID: 34757717 DOI: 10.1021/acssynbio.1c00183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli remains one of the preferred hosts for biotechnological protein production due to its robust growth in culture and ease of genetic manipulation. It is often desirable to export recombinant proteins into the periplasmic space for reasons related to proper disulfide bond formation, prevention of aggregation and proteolytic degradation, and ease of purification. One such system for expressing heterologous secreted proteins is the twin-arginine translocation (Tat) pathway, which has the unique advantage of delivering correctly folded proteins into the periplasm. However, transit times for proteins through the Tat translocase, comprised of the TatABC proteins, are much longer than for passage through the SecYEG pore, the translocase associated with the more widely utilized Sec pathway. To date, a high protein flux through the Tat pathway has yet to be demonstrated. To address this shortcoming, we employed a directed coevolution strategy to isolate mutant Tat translocases for their ability to deliver higher quantities of heterologous proteins into the periplasm. Three supersecreting translocases were selected that each exported a panel of recombinant proteins at levels that were significantly greater than those observed for wild-type TatABC or SecYEG translocases. Interestingly, all three of the evolved Tat translocases exhibited quality control suppression, suggesting that increased translocation flux was gained by relaxation of substrate proofreading. Overall, our discovery of more efficient translocase variants paves the way for the use of the Tat system as a powerful complement to the Sec pathway for secreted production of both commodity and high value-added proteins.
Collapse
Affiliation(s)
- May N. Taw
- Department of Microbiology, Cornell University, Ithaca, New York 14853, United States
| | - Mingji Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Daniel Kim
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Mark A. Rocco
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Dujduan Waraho-Zhmayev
- Biological Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Matthew P. DeLisa
- Department of Microbiology, Cornell University, Ithaca, New York 14853, United States
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Cornell Institute of Biotechnology, Cornell University, 130 Biotechnology Building, Ithaca, New York 14853, United States
| |
Collapse
|
40
|
Bakkes PJ, Lenz P, Müller C, Bida A, Dohmen-Olma D, Knapp A, Oldiges M, Jaeger KE, Freudl R. Biosensor-Based Optimization of Cutinase Secretion by Corynebacterium glutamicum. Front Microbiol 2021; 12:750150. [PMID: 34777299 PMCID: PMC8581548 DOI: 10.3389/fmicb.2021.750150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The industrial microbe Corynebacterium glutamicum is gaining substantial importance as a platform host for recombinant protein secretion. We recently developed a fluorescence-based (eYFP) C. glutamicum reporter strain for the quantification of Sec-dependent protein secretion by monitoring the secretion-related stress response and now demonstrate its applicability in optimizing the secretion of the heterologous enzyme cutinase from Fusarium solani pisi. To drive secretion, either the poor-performing PelSP or the potent NprESP Sec signal peptide from Bacillus subtilis was used. To enable easy detection and quantification of the secreted cutinase we implemented the split green fluorescent protein (GFP) assay, which relies on the GFP11-tag fused to the C-terminus of the cutinase, which can complement a truncated GFP thereby reconstituting its fluorescence. The reporter strain was transformed with different mutant libraries created by error-prone PCR, which covered the region of the signal peptide and the N-terminus of the cutinase. Fluorescence-activated cell sorting (FACS) was performed to isolate cells that show increased fluorescence in response to increased protein secretion stress. Five PelSP variants were identified that showed a 4- to 6-fold increase in the amount and activity of the secreted cutinase (up to 4,100 U/L), whereas two improved NprESP variants were identified that showed a ∼35% increase in secretion, achieving ∼5,500 U/L. Most of the isolated variants carried mutations in the h-region of the signal peptide that increased its overall hydrophobicity. Using site-directed mutagenesis it was shown that the combined mutations F11I and P16S within the hydrophobic core of the PelSP are sufficient to boost cutinase secretion in batch cultivations to the same level as achieved by the NprESP. Screening of a PelSP mutant library in addition resulted in the identification of a cutinase variant with an increased specific activity, which was attributed to the mutation A85V located within the substrate-binding region. Taken together the biosensor-based optimization approach resulted in a substantial improvement of cutinase secretion by C. glutamicum, and therefore represents a valuable tool that can be applied to any secretory protein of interest.
Collapse
Affiliation(s)
- Patrick J. Bakkes
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Patrick Lenz
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Carolin Müller
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Astrid Bida
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Doris Dohmen-Olma
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Marco Oldiges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Roland Freudl
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
41
|
Lee HJ, Kang TG, Kim YW, Lee HS, Kim SK. Functional expression and extracellular secretion of Clostridium thermocellum Cel48S cellulase in Escherichia coli via the signal recognition particle-dependent translocation pathway. Enzyme Microb Technol 2021; 151:109918. [PMID: 34649693 DOI: 10.1016/j.enzmictec.2021.109918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022]
Abstract
As the only glycoside hydrolase family 48 member in Clostridium thermocellum, the exoglucanase Cel48S plays a crucial role in the extremely high activity of the cellulosome against crystalline cellulose. Although the importance of Cel48S in the hydrolysis of crystalline cellulose has been widely accepted, an efficient production system has not yet been established because Cel48S is usually expressed in Escherichia coli within inactive inclusion bodies. For unstable proteins like Cel48S, translocation across the inner membrane can be more advantageous than cytoplasmic production due to the presence of folding modulators in the periplasm and the absence of cytoplasmic proteases. In this study, we evaluated whether the production of Cel48S in the periplasmic space of E. coli could enhance its functional expression. To do so, we attached the PelB signal peptide, which mediates post-translational secretion, to the N-terminal end of Cel48S (P-Cel48S). The PelB signal peptide allowed catalytically active Cel48S to be successfully produced in the culture medium. In addition, we investigated the role of an alternative co-translational pathway on the extracellular production of Cel48S, finding that co-translational secretion yielded a specific activity of recombinant Cel48S of 135.1 ± 10.0 U/mg cell in the culture medium, which was 2.2 times higher than that associated with P-Cel48S expression. Therefore, we believe that our approach has potential applications for the cost-effective conversion of lignocellulosic biomass and the industrial production of other unstable proteins.
Collapse
Affiliation(s)
- Hyun-Jae Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Tae-Gu Kang
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Young-Woo Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea.
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea.
| |
Collapse
|
42
|
Vakili O, Khatami SH, Maleksabet A, Movahedpour A, Fana SE, Sadegh R, Salmanzadeh AH, Razeghifam H, Nourdideh S, Tehrani SS, Taheri-Anganeh M. Finding Appropriate Signal Peptides for Secretory Production of Recombinant Glucarpidase: An In SilicoMethod. Recent Pat Biotechnol 2021; 15:302-315. [PMID: 34547999 DOI: 10.2174/1872208315666210921095420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Methotrexate (MTX) is a general chemotherapeutic agent utilized to treat a variety of malignancies, woefully, its high doses can cause nephrotoxicity and subsequent defect in the process of MTX excretion. The recombinant form of glucarpidase is produced by engineered E. coli and is a confirmed choice to overcoming this problem. OBJECTIVE In the present study, in silico analyses were performed to select suitable SPs for the secretion of recombinant glucarpidase in E. coli. METHODS The signal peptide website and UniProt database were employed to collect the SPs and protein sequences. In the next step, SignalP-5.0 helped us to predict the SPs and the position of cleavage sites. Moreover, physicochemical properties and solubility were evaluated using Prot- Param and Protein-sol online software, and finally, ProtCompB was used to predict the final subcellular localization. RESULTS Luckily, all SPs could form soluble fusion proteins. At last, it was found that PPB and TIBA could translocate the glucarpidase into the extracellular compartment. CONCLUSION This study showed that there are only 2 applicable SPs for the extracellular translocation of glucarpidase. Although the findings were remarkable with high degrees of accuracy and precision based on the utilization of bioinformatics analyses, additional experimental assessments are required to confirm and validate it. Recent patents revealed several inventions related to the clinical aspects of vaccine peptides against human disorders.
Collapse
Affiliation(s)
- Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Amir Maleksabet
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
43
|
Xia Y, Cheng Q, Mu W, Hu X, Sun Z, Qiu Y, Liu X, Wang Z. Research Advances of d-allulose: An Overview of Physiological Functions, Enzymatic Biotransformation Technologies, and Production Processes. Foods 2021; 10:2186. [PMID: 34574296 PMCID: PMC8467252 DOI: 10.3390/foods10092186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 02/02/2023] Open
Abstract
d-allulose has a significant application value as a sugar substitute, not only as a food ingredient and dietary supplement, but also with various physiological functions, such as improving insulin resistance, anti-obesity, and regulating glucolipid metabolism. Over the decades, the physiological functions of d-allulose and the corresponding mechanisms have been studied deeply, and this product has been applied to various foods to enhance food quality and prolong shelf life. In recent years, biotransformation technologies for the production of d-allulose using enzymatic approaches have gained more attention. However, there are few comprehensive reviews on this topic. This review focuses on the recent research advances of d-allulose, including (1) the physiological functions of d-allulose; (2) the major enzyme families used for the biotransformation of d-allulose and their microbial origins; (3) phylogenetic and structural characterization of d-allulose 3-epimerases, and the directed evolution methods for the enzymes; (4) heterologous expression of d-allulose ketose 3-epimerases and biotransformation techniques for d-allulose; and (5) production processes for biotransformation of d-allulose based on the characterized enzymes. Furthermore, the future trends on biosynthesis and applications of d-allulose in food and health industries are discussed and evaluated in this review.
Collapse
Affiliation(s)
- Yu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qianqian Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing 100833, China;
| | - Zhen Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Yangyu Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Ximing Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
44
|
Meng Q, Tian X, Jiang B, Zhou L, Chen J, Zhang T. Characterization and enhanced extracellular overexpression of a new salt-activated alginate lyase. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5154-5162. [PMID: 33608926 DOI: 10.1002/jsfa.11161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Alginate lyases (EC 4.4.2.3/4.4.2.11) have been applied to produce alginate oligosaccharides, which have physiological advantages such as prebiotic and antidiabetic effects, and are of benefit in the food and pharmaceutical industries. Extracellular production of recombinant proteins in Escherichia coli presents advantages including simplified downstream processing and high productivity; however, the presence of certain signal peptides does not always ensure successful secretion, which make the extracellular production of alginate lyase in E. coli rarely reported but of great significance. RESULTS A PL7 family alginate lyase, Aly01, with its native signal peptide from Vibrio natriegens SK42.001, was identified, characterized, and extracellularly expressed in E. coli. The enzyme specifically released trisaccharide from alginate and was strictly NaCl activated. Green fluorescent protein (GFP) was fused with the Aly01 signal peptide and successfully secreted in E. coli to expand the feasibility of using this signal peptide to produce other heterologous proteins extracellularly. Through a synergistic strategy of utilizing Terrific Broth (TB) medium supplemented with 120 mmol L-1 glycine and 10 mmol L-1 calcium, the lag phase of protein secretion was reduced to 3 h from 12 h; meanwhile calcium remedied glycine-related cell growth impairment, leading to further enhancement of overall enzyme productivity, reaching a maximum of 4.55 U mL-1 . CONCLUSION A new salt-activated alginate lyase, Aly01, was identified and characterized. E. coli employed its signal peptide and extracellularly expressed both Aly01 and a GFP, which indicated the signal peptide of Aly01 could be a powerful tool for extracellular production of other heterologous proteins in E. coli. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qing Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xinyu Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Licheng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
45
|
Kavousipour S, Mohammadi S, Eftekhar E, Barazesh M, Morowvat MH. In Silico Investigation of Signal Peptide Sequences to Enhance Secretion of CD44 Nanobodies Expressed in Escherichia coli. Curr Pharm Biotechnol 2021; 22:1192-1205. [PMID: 33045964 DOI: 10.2174/1389201021666201012162904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/01/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The selection of a suitable signal peptide that can direct recombinant proteins from the cytoplasm to the extracellular space is an important criterion affecting the production of recombinant proteins in Escherichia coli, a widely used host. Nanobodies are currently attracting the attention of scientists as antibody alternatives due to their specific properties and feasibility of production in E. coli. OBJECTIVE CD44 nanobodies constitute a potent therapeutic agent that can block CD44/HA interaction in cancer and inflammatory diseases. This molecule may also function as a drug against cancer cells and has been produced previously in E. coli without a signal peptide sequence. The goal of this project was to find a suitable signal peptide to direct CD44 nanobody extracellular secretion in E. coli that will potentially lead to optimization of experimental methods and facilitate downstream steps such as purification. METHODS We analyzed 40 E. coli derived signal peptides retrieved from the Signal Peptide database and selected the best candidate signal peptides according to relevant criteria including signal peptide probability, stability, and physicochemical features, which were evaluated using signalP software version 4.1 and the ProtParam tool, respectively. RESULTS In this in silico study, suitable candidate signal peptide(s) for CD44 nanobody secretory expression were identified. CSGA, TRBC, YTFQ, NIKA, and DGAL were selected as appropriate signal peptides with acceptable D-scores, and appropriate physicochemical and structural properties. Following further analysis, TRBC was selected as the best signal peptide to direct CD44 nanobody expression to the extracellular space of E. coli. CONCLUSION The selected signal peptide, TRBC is the most suitable to promote high-level secretory production of CD44 nanobodies in E. coli and potentially will be useful for scaling up CD44 nanobody production in experimental research as well as in other CD44 nanobody applications. However, experimental work is needed to confirm the data.
Collapse
Affiliation(s)
- Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Shiva Mohammadi
- Department of Biotechnology, School of Advanced Medical Science and Technologies, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Mohammad H Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran P.O. Box 71468-64685, Shiraz, Iran
| |
Collapse
|
46
|
Xu Z, Zhang R, Wang T, Kong J. The N-terminus of Lactobacillus amylovorus feruloyl esterase plays an important role in its secretion by Lactobacillus plantarum and Escherichia coli. Microb Cell Fact 2021; 20:152. [PMID: 34344368 PMCID: PMC8335865 DOI: 10.1186/s12934-021-01645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Feruloyl esterase is a multifunctional esterase with potential industrial applications. In the present study, we found the Lactobacillus amylovorus feruloyl esterase (FaeLam) could be secreted by L. plantarum and Escherichia coli. However, no signal peptide was detected in this protein as predicted by SignalP-5.0. Therefore, experiments were carried out to propose an explanation for the extracellular release of FaeLam. Results Here, we identified that the FaeLam could be secreted to the culture medium of L. plantarum CGMCC6888 and E. coli DH5α, respectively. To exclude the possibility that FaeLam secretion was caused by its hydrolytic activity on the cell membrane, the inactive FaeLamS106A was constructed and it could still be secreted out of L. plantarum and E. coli cells. Furthermore, the truncated version of the FaeLam without the N-terminal residues was constructed and demonstrated the importance of the 20 amino acids of N-terminus (N20) on FaeLam secretion. In addition, fusion of heterologous proteins with N20 or FaeLam could carry the target protein out of the cells. These results indicated the N-terminus of FaeLam played the key role in the export process. Conclusions We proved the N-terminus of L. amylovorus FaeLam plays an important role in its secretion by L. plantarum and E. coli. To our best knowledge, this is the first reported protein which can be secreted out of the cells of both Gram-positive and Gram-negative bacteria. Furthermore, the results of this study may provide a new method for protein secretion in L. plantarum and E. coli through fusion the target protein to N20 of FaeLam. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01645-9.
Collapse
Affiliation(s)
- Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, No.3501, Daxue Road, Jinan, 250353, People's Republic of China.,School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China
| | - Rongling Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao, 266237, Shandong, People's Republic of China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, No.3501, Daxue Road, Jinan, 250353, People's Republic of China. .,School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China.
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
47
|
Meng Q, Zhou L, Hassanin HA, Jiang B, Liu Y, Chen J, Zhang T. A new role of family 32 carbohydrate binding module in alginate lyase from Vibrio natriegens SK42.001 in altering its catalytic activity, thermostability and product distribution. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Kang TG, Hong SH, Jeon GB, Yang YH, Kim SK. Perturbation of the peptidoglycan network and utilization of the signal recognition particle-dependent pathway enhances the extracellular production of a truncational mutant of CelA in Escherichia coli. J Ind Microbiol Biotechnol 2021; 48:6270891. [PMID: 33956122 PMCID: PMC9113427 DOI: 10.1093/jimb/kuab032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
Caldicellulosiruptor bescii is the most thermophilic, cellulolytic bacterium known and has the native ability to utilize unpretreated plant biomass. Cellulase A (CelA) is the most abundant enzyme in the exoproteome of C. bescii and is primarily responsible for its cellulolytic ability. CelA contains a family 9 glycoside hydrolase and a family 48 glycoside hydrolase connected by linker regions and three carbohydrate-binding domains. A truncated version of the enzyme (TM1) containing only the endoglucanase domain is thermostable and actively degrades crystalline cellulose. A catalytically active TM1 was successfully produced via the attachment of the PelB signal peptide (P-TM1), which mediates post-translational secretion via the SecB-dependent translocation pathway. We sought to enhance the extracellular secretion of TM1 using an alternative pathway, the signal recognition particle (SRP)-dependent translocation pathway. The co-translational extracellular secretion of TM1 via the SRP pathway (D-TM1) resulted in a specific activity that was 4.9 times higher than that associated with P-TM1 overexpression. In batch fermentations, the recombinant Escherichia coli overexpressing D-TM1 produced 1.86 ± 0.06 U/ml of TM1 in the culture medium, showing a specific activity of 1.25 ± 0.05 U/mg cell, 2.7- and 3.7-fold higher than the corresponding values of the strain overexpressing P-TM1. We suggest that the TM1 secretion system developed in this study can be applied to enhance the capacity of E. coli as a microbial cell factory for the extracellular secretion of this as well as a variety proteins important for commercial production.
Collapse
Affiliation(s)
- Tae-Gu Kang
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Seok-Hyun Hong
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Gi-Beom Jeon
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.,Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| |
Collapse
|
49
|
Zheng J, Bratulic S, Lischer HEL, Wagner A. Mistranslation can promote the exploration of alternative evolutionary trajectories in enzyme evolution. J Evol Biol 2021; 34:1302-1315. [PMID: 34145657 PMCID: PMC8457080 DOI: 10.1111/jeb.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/19/2021] [Accepted: 06/16/2021] [Indexed: 12/01/2022]
Abstract
Darwinian evolution preferentially follows mutational pathways whose individual steps increase fitness. Alternative pathways with mutational steps that do not increase fitness are less accessible. Here, we show that mistranslation, the erroneous incorporation of amino acids into nascent proteins, can increase the accessibility of such alternative pathways and, ultimately, of high fitness genotypes. We subject populations of the beta‐lactamase TEM‐1 to directed evolution in Escherichia coli under both low‐ and high‐mistranslation rates, selecting for high activity on the antibiotic cefotaxime. Under low mistranslation rates, different evolving TEM‐1 populations ascend the same high cefotaxime‐resistance peak, which requires three canonical DNA mutations. In contrast, under high mistranslation rates they ascend three different high cefotaxime‐resistance genotypes, which leads to higher genotypic diversity among populations. We experimentally reconstruct the adaptive DNA mutations and the potential evolutionary paths to these high cefotaxime‐resistance genotypes. This reconstruction shows that some of the DNA mutations do not change fitness under low mistranslation, but cause a significant increase in fitness under high‐mistranslation, which helps increase the accessibility of different high cefotaxime‐resistance genotypes. In addition, these mutations form a network of pairwise epistatic interactions that leads to mutually exclusive evolutionary trajectories towards different high cefotaxime‐resistance genotypes. Our observations demonstrate that protein mistranslation and the phenotypic mutations it causes can alter the evolutionary exploration of fitness landscapes and reduce the predictability of evolution.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
| | | | - Heidi E L Lischer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland.,The Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
50
|
Flores-Santos JC, Moguel IS, Monteiro G, Pessoa A, Vitolo M. Improvement in extracellular secretion of recombinant L-asparaginase II by Escherichia coli BL21 (DE3) using glycine and n-dodecane. Braz J Microbiol 2021; 52:1247-1255. [PMID: 34100260 DOI: 10.1007/s42770-021-00534-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/18/2021] [Indexed: 11/28/2022] Open
Abstract
L-asparaginase II (ASNase) is the biopharmaceutical of choice for the treatment of acute lymphoblastic leukaemia. In this study, E. coli BL21 (DE3) transformed with the pET15b + asnB vector which expresses recombinant ASNase was used as a source to obtain this enzyme. The ideal conditions to produce ASNase would be a high level of secretion into the extracellular medium, which depends not only on the application of molecular biology techniques but also on the development of a strategy to modify cell permeability such as the addition of substances to the culture medium that stimulate destabilisation of structural components of the cell. Thus, the growth of E. coli BL21 (DE3) in modified Luria-Bertani broth, supplemented with 0.8% (w/v) glycine and 6% (v/v) n-dodecane, increased the total yield of ASNase by about 50% (15,108 IU L-1) and resulted in a 16-fold increase in extracellular enzymatic productivity (484 IU L-1 h-1), compared to production using the same medium without addition of these substances. Most of the enzyme (89%) was secreted into the culture medium 24 h after the induction step. This proposed approach presents a simple strategy to increase extracellular production of ASNase in E. coli.
Collapse
Affiliation(s)
- Juan Carlos Flores-Santos
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, Bloco 16, São Paulo, SP, CEP, 580, Brazil
| | - Ignacio S Moguel
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, Bloco 16, São Paulo, SP, CEP, 580, Brazil
| | - Gisele Monteiro
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, Bloco 16, São Paulo, SP, CEP, 580, Brazil.
| | - Adalberto Pessoa
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, Bloco 16, São Paulo, SP, CEP, 580, Brazil
| | - Michele Vitolo
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, Bloco 16, São Paulo, SP, CEP, 580, Brazil
| |
Collapse
|