1
|
Ben Miri Y, Benabdallah A, Taoudiat A, Mahdid M, Djenane D, Tacer-Caba Z, Topkaya C, Simal-Gandara J. Potential of essential oils for protection of Couscous against Aspergillus flavus and aflatoxin B1 contamination. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Ahmad MM, Qamar F, Saifi M, Abdin MZ. Natural inhibitors: A sustainable way to combat aflatoxins. Front Microbiol 2022; 13:993834. [PMID: 36569081 PMCID: PMC9773886 DOI: 10.3389/fmicb.2022.993834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022] Open
Abstract
Among a few hundred mycotoxins, aflatoxins had always posed a major threat to the world. Apart from A. flavus, A. parasiticus, and A. nomius of Aspergillus genus, which are most toxin-producing strains, several fungal bodies including Fusarium, Penicillium, and Alternaria that can biosynthesis aflatoxins. Basically, there are four different types of aflatoxins (Aflatoxin B1 (AFB1), Aflatoxin B2 (AFB2), Aflatoxin G1 (AFG1), Aflatoxin G2 (AFG2)) are produced as secondary metabolites. There are certainly other types of aflatoxins found but they are the by-products of these toxins. The fungal agents generally infect the food crops during harvesting, storing, and/or transporting; making a heavy post-harvest as well as economic loss in both developed and developing countries. And while ingesting the crop products, these toxins get into the dietary system causing aflatoxicosis, liver cirrhosis, etc. Therefore, it is imperative to search for certain ways to control the spread of infections and/or production of these toxins which may also not harm the crop harvest. In this review, we are going to discuss some sustainable methods that can effectively control the spread of infection and inhibit the biosynthesis of aflatoxins.
Collapse
Affiliation(s)
- Malik M. Ahmad
- Department of Agriculture, Integral Institute of Agricultural Science and Technology (IIAST), Integral University, Lucknow, India
| | - Firdaus Qamar
- CTPD, Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Monica Saifi
- CTPD, Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Malik Zainul Abdin
- CTPD, Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India,*Correspondence: Malik Zainul Abdin,
| |
Collapse
|
3
|
Martínez-Fraca J, de la Torre-Hernández ME, Meshoulam-Alamilla M, Plasencia J. In Search of Resistance Against Fusarium Ear Rot: Ferulic Acid Contents in Maize Pericarp Are Associated With Antifungal Activity and Inhibition of Fumonisin Production. FRONTIERS IN PLANT SCIENCE 2022; 13:852257. [PMID: 35463425 PMCID: PMC9024315 DOI: 10.3389/fpls.2022.852257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 06/02/2023]
Abstract
Fusarium verticillioides is a fungal pathogen of maize that causes seedling blight, stem rot, and Fusarium ear rot. Fungal infestation of maize kernels and ears affects grain quality from the ensuing mycotoxin buildup. Among the mycotoxins produced by F. verticillioides, fumonisins accumulate to high levels in Fusarium-infected maize kernels, fumonisin B1 (FB1) being the most abundant in naturally infected maize. Achieving resistance to Fusarium ear rot has been challenging, as various environmental factors facilitate fungal infection. Among the maize grain components that contribute to resistance to F. verticillioides infection, the pericarp is the first barrier faced by the fungus and thus plays a key role. Phenolic acids are major constituents of maize pericarp, of which ferulic acid (FA) is the predominant molecular species. In this work, we explored the relationship between FA levels, fungal infection, and FB1 production in 51 maize genotypes and whether the antioxidant activity of FA might play a role. We confirmed that FA is a major component of the seed pericarp, whose levels as bound FA varied between 4.5 and 26.3 mg/g across maize genotypes. We selected two pools of five maize varieties, with contrasting FA contents: low FA (LFA; 6.14 ± 0.40 mg/g) and high FA (HFA; 15.49 ± 1.31 mg/g). In vitro, HFA extracts inhibited fungal growth with effects comparable to FA concentrations in the 0.25-0.50 mM range. We also established a kernel assay to study F. verticillioides colonization and FB1 production in the LFA and HFA genotypes. Fungal colonization was significantly lower in HFA genotypes relative to LFA genotypes, based on ergosterol levels. Moreover, FB1 production was also inhibited in the HFA genotypes. Importantly, the antioxidant activity of maize pericarp extracts was associated with FA contents, with HFA extracts exhibiting a greater antioxidant activity than LFA extracts. Overall, our results highlight the role of FA and its antioxidant activity on resistance to Fusarium ear rot and provide the basis of a phenotypic trait that can be deployed for breeding selection.
Collapse
Affiliation(s)
| | | | | | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, UNAM, Mexico City, Mexico
| |
Collapse
|
4
|
Gómez-Salazar JA, Ruiz-Hernández K, Martínez-Miranda MM, Castro-Ríos K. Postharvest strategies for decontamination of aflatoxins in cereals. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Julián Andrés Gómez-Salazar
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | - Karla Ruiz-Hernández
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | | | - Katherin Castro-Ríos
- Grupo de Cromatografía Y Técnicas Afines, Universidad de Caldas, Manizales, Colombia
- Instituto de Investigación En Microbiología Y Biotecnología Agroindustrial, Universidad Católica de Manizales, Manizales, Colombia
| |
Collapse
|
5
|
Landoni M, Puglisi D, Cassani E, Borlini G, Brunoldi G, Comaschi C, Pilu R. Phlobaphenes modify pericarp thickness in maize and accumulation of the fumonisin mycotoxins. Sci Rep 2020; 10:1417. [PMID: 31996735 PMCID: PMC6989515 DOI: 10.1038/s41598-020-58341-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Phlobaphenes are insoluble phenolic compounds which are accumulated in a limited number of tissues such as seed pericarp and cob glumes, conferring on them a typical red-brown pigmentation. These secondary metabolites, derived from 3-deoxy flavonoids, are thought to have an important role in plants' resistance against various pathogens, e.g. by reducing fungal infection, and also to have beneficial effects on human and animal health due to their high antioxidant power. The aim of this work was to determine the role of phlobaphenes in reducing mycotoxin contamination on maize kernels. We analysed the effect of the P1 (pericarp color 1) gene on phlobaphenes accumulation, pericarp thickness and fumonisins accumulation. Analysing fumonisins accumulation in different genetic backgrounds through three seasons, we found a clear decrease of these toxins through the three years (Wilcoxon test, Z = 2.2, p = 0.0277) in coloured lines compared with the isogenic non-coloured ones. The coloured lines, carrying P1 allele showed an increase of phlobaphenes (about 10-14 fold) with respect to colourless lines. Furthermore there was a correlation between phlobaphenes accumulation and pericarp thickness (R = 0.9318; p = 0.0067). Taken together, these results suggest that the P1 gene plays a central role in regulating phlobaphenes accumulation in maize kernels, and indirectly, also tackles mycotoxins accumulation. The development and cultivation of corn varieties rich in phlobaphenes could be a powerful tool to reduce the loss of both quality and yield due to mycotoxin contamination, increasing the safety and the quality of the maize product.
Collapse
Affiliation(s)
- Michela Landoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Daniel Puglisi
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Elena Cassani
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Giulia Borlini
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Gloria Brunoldi
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Camilla Comaschi
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Roberto Pilu
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy.
| |
Collapse
|
6
|
Nobili C, De Acutis A, Reverberi M, Bello C, Leone GP, Palumbo D, Natella F, Procacci S, Zjalic S, Brunori A. Buckwheat Hull Extracts Inhibit Aspergillus flavus Growth and AFB 1 Biosynthesis. Front Microbiol 2019; 10:1997. [PMID: 31555235 PMCID: PMC6727613 DOI: 10.3389/fmicb.2019.01997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/15/2019] [Indexed: 01/27/2023] Open
Abstract
Fungal contamination poses at risk the whole food production chain - from farm to fork - with potential negative impact on human health. So far, the insurgence of pathogens has been restrained by the use of chemical compounds, whose residues have gradually accumulated determining toxic effects in the environment. Modern innovative techniques imply the use of natural and eco-sustainable bioactive plant molecules as pathogens and pests-control agents. These may be profitably recovered in large amounts at the end of industrial milling processes. This is the case of the non-digestible hull of common buckwheat (Fagopyrum esculentum Moench), a natural source of polyphenols, tocopherols, phytosterols and fatty acids. We extract these compounds from the hull of buckwheat; apply them to Aspergillus flavus - aflatoxin producer - under in vitro conditions, checking their ability to inhibit fungal growth and aflatoxin biosynthesis. Moreover, a solvent free method implying the adoption of supercritical CO2 as solvent was set up to extract lipophilic molecules from the buckwheat’ hulls. Positive results in controlling fungal growth and aflatoxin biosynthesis let infer that the extracts could be further tested also under in vivo conditions.
Collapse
Affiliation(s)
| | | | - Massimo Reverberi
- Department for Environmental and Evolutionary Biology, Sapienza University of Rome, Rome, Italy
| | - Cristiano Bello
- AST Scienze della Nutrizione, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | | | | | - Fausta Natella
- AST Scienze della Nutrizione, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | | | - Slaven Zjalic
- Department of Ecology, Aquaculture and Agriculture, University of Zadar, Zadar, Croatia
| | | |
Collapse
|
7
|
Chaudhari AK, Dwivedy AK, Singh VK, Das S, Singh A, Dubey NK. Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25414-25431. [PMID: 31313235 DOI: 10.1007/s11356-019-05932-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Fungal and mycotoxin contamination of stored food items is of utmost concern throughout the world due to their hazardous effects on mammalian systems. Most of the synthetic chemicals used as preservatives have often been realised to be toxic to humans and also cause adverse environmental effects. In this respect, use of different plant products especially essential oils (EOs) and their bioactive compounds has been recognized as a green strategy and safer alternatives to grey synthetic chemicals in view of their long traditional use. The current nanoencapsulation technology has strengthened the prospective of EOs and their bioactive compounds in food preservation by enhancing their bioactivity and mitigating other problems regarding their large-scale application. Although, the antimicrobial potential of EOs and their bioactive compounds has been reviewed time to time by different food microbiologists, but very less is known about their mode of action. Based on these backgrounds, the present article provides an account on the antifungal and antimycotoxigenic mode of action of EOs as well as their bioactive compounds. In addition, the article also deals with the application of currently used nanoencapsulation approach to improve the stability and efficacy of EOs and their bioactive compounds against mycotoxigenic fungi causing deterioration of stored food items so as to recommend their large-scale application for safe preservation and enhancement of shelf life of food items during storage.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
8
|
Could aflatoxin B1 production by Aspergillus flavus affect the severity of keratitis: an experience in two tertiary health care centers, Egypt. Eur J Clin Microbiol Infect Dis 2019; 38:2021-2027. [PMID: 31332609 DOI: 10.1007/s10096-019-03636-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/10/2019] [Indexed: 11/26/2022]
Abstract
To investigate the expression of AFB1 gene in isolates obtained from corneal scrapping samples from keratitis patients and to correlate the quantity of AFB1 to the severity of keratitis. An observational study was undertaken in Medical Microbiology and Immunology department, Mansoura University, Egypt, over corneal scrapping samples that were cultured aiming to isolate fungal causes of infective keratitis followed by AFB1 gene detection in Aspergillus flavus isolates by nested PCR then quantitation of the toxin by TLC. Out of 843 corneal scrapping samples collected from patients with infective keratitis, positive fungal growth was identified in 277 cases (32.9%). A. flavus was the commonest fungal agent isolated in 93 cases (33.6%). The AFB1 toxin-encoding gene was detected in 63.4% of A. flavus isolates. There was a positive correlation between the quantity of produced AFB1 toxin and the degree of severity of keratitis (P value < 0.0001*). Aspergillus flavus was the most common cause of fungal keratitis, with the AFB1 toxin-encoding gene detected in more than half of the isolates. A significant correlation between the degree of severity of keratitis and the quantity of produced AFB1 toxin was detected. Therefore, exploring presence or absence of AFB1 toxin is important for the clinicians in their diagnostic assessment and selection of proper treatment choices.
Collapse
|
9
|
Ben Miri Y, Djenane D. Antifungal, Anti-aflatoxigenic, Antioxidant Activity and in vivo Efficacy of Essential Oil of the Aerial Parts of Thymus capitatus (L.) Hoffmanns & Link. ACTA ACUST UNITED AC 2018. [DOI: 10.3166/phyto-2018-0032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aspergillus flavus has been reported to be the most common fungus used as food by human beings. This fungus may have the potential to produce aflatoxin B1 (AFB1), which is reported as being the most hepatotoxic, teratogenic, mutagenic, and immunosuppressive to humans and other livestock. Therefore, the objective of this work was to study the chemical profile of Thymus capitatus essential oil (EO) and the inhibition of growth of Aspergillus flavus E73 and AFB1 production by the EO. The antioxidant activity and phytotoxicity were also evaluated. The gas chromatography– mass spectrometry (GC–MS) analysis showed that the major components of Thymus capitatus EO were thymol (25.82%), linalool (23.40%), geraniol (14.22%), pcymen- 3-ol (8.93%), and p-cymene (6.76%). The results showed that the EO could inhibit the growth of Aspergillus flavus E73 in the range of 40.72 to 87.00%. The minimal inhibitory concentration (MIC) of Thymus capitatus EO against Aspergillus flavus E73 was found to be at 1.00 mg/ml. The oil revealed complete inhibition of dry mycelium weight and AFB1 production at 1.00 mg/ml. The EO revealed a broad spectrum of fungitoxicity against some fungi. The antioxidant activity was also assessed where IC50 (when initial concentration is reduced to half) and β- carotene/linoleic acid inhibition percentage of Thymus capitatus EO were 619.16 ± 3.94 μg/ml and 65.55%, respectively, while the total phenolic content was 21.45 μg/mg. The EO showed non-phytotoxicity on two varieties of wheat seeds. These findings demonstrated that EO could be good alternative to protect food.
Collapse
|
10
|
Venturini G, Babazadeh L, Casati P, Pilu R, Salomoni D, Toffolatti SL. Assessing pigmented pericarp of maize kernels as possible source of resistance to fusarium ear rot, Fusarium spp. infection and fumonisin accumulation. Int J Food Microbiol 2016; 227:56-62. [PMID: 27071055 DOI: 10.1016/j.ijfoodmicro.2016.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/03/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
One of the purposes of maize genetic improvement is the research of genotypes resistant to fusarium ear rot (FER) and fumonisin accumulation. Flavonoids in the pericarp of the kernels are considered particularly able to reduce the fumonisin accumulation (FUM). The aim of this field study was to assess the effect of flavonoids, associated with anti-insect protection and Fusarium verticillioides inoculation, on FER symptoms and fumonisin contamination in maize kernels. Two isogenic hybrids, one having pigmentation in the pericarp (P1-rr) and the other without it (P1-wr), were compared. P1-rr showed lower values of FER symptoms and FUM contamination than P1-wr only if the anti-insect protection and the F. verticillioides inoculations were applied in combination. Fusarium spp. kernel infection was not influenced by the presence of flavonoids in the pericarp. Artificial F. verticillioides inoculation was more effective than anti-insect protection in enhancing the inhibition activity of flavonoids toward FUM contamination. The interactions between FUM contamination levels and FER ratings were better modeled in the pigmented hybrid than in the unpigmented one. The variable role that the pigment played in kernel defense against FER and FUM indicates that flavonoids alone may not be completely effective in the resistance of fumonisin contamination in maize.
Collapse
Affiliation(s)
- Giovanni Venturini
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy.
| | - Laleh Babazadeh
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy
| | - Paola Casati
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy
| | - Roberto Pilu
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy
| | - Daiana Salomoni
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy
| | - Silvia L Toffolatti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy
| |
Collapse
|
11
|
Atanasova-Penichon V, Bernillon S, Marchegay G, Lornac A, Pinson-Gadais L, Ponts N, Zehraoui E, Barreau C, Richard-Forget F. Bioguided isolation, characterization, and biotransformation by Fusarium verticillioides of maize kernel compounds that inhibit fumonisin production. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1148-1158. [PMID: 25014591 DOI: 10.1094/mpmi-04-14-0100-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fusarium verticillioides infects maize ears, causing ear rot disease and contamination of grain with fumonisin mycotoxins. This contamination can be reduced by the presence of bioactive compounds in kernels that are able to inhibit fumonisin biosynthesis. To identify such compounds, we used kernels from a maize genotype with moderate susceptibility to F. verticillioides, harvested at the milk-dough stage (i.e., when fumonisin production initiates in planta), and applied a bioguided fractionation approach. Chlorogenic acid was the most abundant compound in the purified active fraction and its contribution to fumonisin inhibitory activity was up to 70%. Moreover, using a set of maize genotypes with different levels of susceptibility, chlorogenic acid was shown to be significantly higher in immature kernels of the moderately susceptible group. Altogether, our data indicate that chlorogenic acid may considerably contribute to either maize resistance to Fusarium ear rot, fumonisin accumulation, or both. We further investigated the mechanisms involved in the inhibition of fumonisin production by chlorogenic acid and one of its hydrolyzed products, caffeic acid, by following their metabolic fate in supplemented F. verticillioides broths. Our data indicate that F. verticillioides was able to biotransform these phenolic compounds and that the resulting products can contribute to their inhibitory activity.
Collapse
|
12
|
Pani G, Scherm B, Azara E, Balmas V, Jahanshiri Z, Carta P, Fabbri D, Dettori MA, Fadda A, Dessì A, Dallocchio R, Migheli Q, Delogu G. Natural and natural-like phenolic inhibitors of type B trichothecene in vitro production by the wheat (Triticum sp.) pathogen Fusarium culmorum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4969-4978. [PMID: 24820850 DOI: 10.1021/jf500647h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fusarium culmorum, a fungal pathogen of small grain cereals, produces 4-deoxynivalenol and its acetylated derivatives that may cause toxicoses on humans or animals consuming contaminated food or feed. Natural and natural-like compounds belonging to phenol and hydroxylated biphenyl structural classes were tested in vitro to determine their activity on vegetative growth and trichothecene biosynthesis by F. culmorum. Most of the compounds tested at 1.5 or 1.0 mM reduced 3-acetyl-4-deoxynivalenol production by over 70% compared to the control, without affecting fungal growth significantly. Furthermore, several compounds retained their ability to inhibit toxin in vitro production at the lowest concentrations of 0.5 and 0.25 mM. Magnolol 27 showed fungicidal activity even at 0.1 mM. No linear correlation was observed between antioxidant properties of the compounds and their ability to inhibit fungal growth and mycotoxigenic capacity. A guaiacyl unit in the structure may play a key role in trichothecene inhibition.
Collapse
Affiliation(s)
- Giovanna Pani
- Dipartimento di Agraria, Sezione di Patologia Vegetale ed Entomologia and Unità di Ricerca Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Sassari , Viale Italia 39, I-07100 Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Montibus M, Pinson-Gadais L, Richard-Forget F, Barreau C, Ponts N. Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi. Crit Rev Microbiol 2013; 41:295-308. [PMID: 24041414 DOI: 10.3109/1040841x.2013.829416] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To survive sudden and potentially lethal changes in their environment, filamentous fungi must sense and respond to a vast array of stresses, including oxidative stresses. The generation of reactive oxygen species, or ROS, is an inevitable aspect of existence under aerobic conditions. In addition, in the case of fungi with pathogenic lifestyles, ROS are produced by the infected hosts and serve as defense weapons via direct toxicity, as well as effectors in fungal cell death mechanisms. Filamentous fungi have thus developed complex and sophisticated responses to evade oxidative killing. Several steps are determinant in these responses, including the activation of transcriptional regulators involved in the control of the antioxidant machinery. Gathering and integrating the most recent advances in knowledge of oxidative stress responses in fungi are the main objectives of this review. Most of the knowledge coming from two models, the yeast Saccharomyces cerevisiae and fungi of the genus Aspergillus, is summarized. Nonetheless, recent information on various other fungi is delivered when available. Finally, special attention is given on the potential link between the functional interaction between oxidative stress and secondary metabolism that has been suggested in recent reports, including the production of mycotoxins.
Collapse
|
14
|
Abstract
It was initially shown that gallic acid, from hydrolysable tannins in the pelliele of walnut kernels, dramatically inhibits biosynthesis of aflatoxin byAspergillus flavus. The mechanism of this inhibition was found to take place upstream from the gene cluster, including the regulatory gene,aflR, involved in aflatoxin biosynthesis. Additional research using other antioxidant phenolics showed similar antiaflatoxigenic activity to gallic acid. Treatment ofA. flavus withtert-butyl hydroperoxide resulted in an almost doubling of aflatoxin biosynthesis compared to untreated samples. Thus, antioxidative response systems are potentially useful molecular targets for control ofA. flavus. A high throughput screening system was developed using yeast,Saccharomyces cerevisiae, as a model fungus. This screening provided an avenue to quickly identify fungal genes that were vulnerable to treatment by phenolic compounds. The assay also provided a means to quickly assess effects of combinations of phenolics and certain fungicides affecting mitochondrial respiration. For example, theS. cerevisiae sod2† mutant was highly sensitive to treatment by certain phenolics and strobilurins/antimycin A, fungicides which inhibit complex III of the mitochondrial respiratory chain. Verification of stress to this system in the target fungus,A. flavus, was shown through complementation analysis, wherein the mitochondrial superoxide dismutase (Mn-SOD) gene (sodA) ofA. flavus in the ortholog mutant,sod2†, ofS. cerevisiae, relieved phenolic-induced stress. Mitochondrial antioxidative stress systems play an important role in fungal response to antifungals. Combined treatment of fungi with phenolics and inhibitors of mitochondrial respiration can effectively suppress growth ofA. flavus in a synergistic fashion.
Collapse
|
15
|
Picot A, Atanasova-Pénichon V, Pons S, Marchegay G, Barreau C, Pinson-Gadais L, Roucolle J, Daveau F, Caron D, Richard-Forget F. Maize kernel antioxidants and their potential involvement in Fusarium ear rot resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3389-3395. [PMID: 23484637 DOI: 10.1021/jf4006033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The potential involvement of antioxidants (α-tocopherol, lutein, zeaxanthin, β-carotene, and ferulic acid) in the resistance of maize varieties to Fusarium ear rot was the focus of this study. These antioxidants were present in all maize kernel stages, indicating that the fumonisin-producing fungi (mainly Fusarium verticillioides and Fusarium proliferatum ) are likely to face them during ear colonization. The effect of these compounds on fumonisin biosynthesis was studied in F. verticillioides liquid cultures. In carotenoid-treated cultures, no inhibitory effect of fumonisin accumulation was observed while a potent inhibitory activity was obtained for sublethal doses of α-tocopherol (0.1 mM) and ferulic acid (1 mM). Using a set of genotypes with moderate to high susceptibility to Fusarium ear rot, ferulic acid was significantly lower in immature kernels of the very susceptible group. Such a relation was nonexistent for tocopherols and carotenoids. Also, ferulic acid in immature kernels ranged from 3 to 8.5 mg/g, i.e., at levels consistent with the in vitro inhibitory concentration. Overall, our data support the fact that ferulic acid may contribute to resistance to Fusarium ear rot and/or fumonisin accumulation.
Collapse
Affiliation(s)
- Adeline Picot
- ARVALIS-Institut du végétal, 6 Chemin de la Côte Vieille, Baziège, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Prakash B, Singh P, Yadav S, Singh S, Dubey N. Safety profile assessment and efficacy of chemically characterized Cinnamomum glaucescens essential oil against storage fungi, insect, aflatoxin secretion and as antioxidant. Food Chem Toxicol 2013; 53:160-7. [DOI: 10.1016/j.fct.2012.11.044] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/24/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
|
17
|
Prakash B, Singh P, Kedia A, Dwivedy AK, Singh A, Dubey NK. Mycoflora and Aflatoxin Analysis of Arachis hypogaea
L. and Assessment of Anethum graveolens
L. Seed and Leaf Essential Oils against Isolated Fungi, Aflatoxin Production and their Antioxidant Activity. J Food Saf 2012. [DOI: 10.1111/jfs.12011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bhanu Prakash
- Laboratory of Herbal Pesticides; Centre of Advanced Study in Botany; Banaras Hindu University; Varanasi 221005 India
| | - Priyanka Singh
- Laboratory of Herbal Pesticides; Centre of Advanced Study in Botany; Banaras Hindu University; Varanasi 221005 India
| | - Akash Kedia
- Laboratory of Herbal Pesticides; Centre of Advanced Study in Botany; Banaras Hindu University; Varanasi 221005 India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides; Centre of Advanced Study in Botany; Banaras Hindu University; Varanasi 221005 India
| | - Anita Singh
- Laboratory of Herbal Pesticides; Centre of Advanced Study in Botany; Banaras Hindu University; Varanasi 221005 India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides; Centre of Advanced Study in Botany; Banaras Hindu University; Varanasi 221005 India
| |
Collapse
|
18
|
Prakash B, Singh P, Kedia A, Dubey N. Assessment of some essential oils as food preservatives based on antifungal, antiaflatoxin, antioxidant activities and in vivo efficacy in food system. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.08.020] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Dzhavakhiya V, Shcherbakova L, Semina Y, Zhemchuzhina N, Campbell B. Chemosensitization of plant pathogenic fungi to agricultural fungicides. Front Microbiol 2012; 3:87. [PMID: 22408641 PMCID: PMC3297821 DOI: 10.3389/fmicb.2012.00087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/21/2012] [Indexed: 11/13/2022] Open
Abstract
A common consequence of using agricultural fungicides is the development of resistance by fungal pathogens, which undermines reliability of fungicidal effectiveness. A potentially new strategy to aid in overcoming or minimizing this problem is enhancement of pathogen sensitivity to fungicides, or “chemosensitization.” Chemosensitization can be accomplished by combining a commercial fungicide with a certain non- or marginally fungicidal substance at levels where, alone, neither compound would be effective. Chemosensitization decreases the probability of the pathogen developing resistance, reduces the toxic impact on the environment by lowering effective dosage levels of toxic fungicides, and improves efficacy of antifungal agents. The present study shows that the antifungal activity of azole and strobilurin fungicides can be significantly enhanced through their co-application with certain natural or synthetic products against several economically important plant pathogenic fungi. Quadris (azoxystrobin) combined with thymol at a non-fungitoxic concentration produced much higher growth inhibition of Bipolaris sorokiniana, Phoma glomerata, Alternaria sp. and Stagonospora nodorum than the fungicide alone. The effect of Dividend (difenoconazole) applied with thymol significantly enhanced antifungal activity against B. sorokiniana and S. nodorum. Folicur (tebuconazole) combined with 4-hydroxybenzaldehyde (4-HBA), 2,3-dihydroxybenzaldehyde or thymol significantly inhibited growth of Alternaria alternata, at a much greater level than the fungicide alone. In addition, co-application of Folicur and 4-HBA resulted in a similar enhancement of antifungal activity against Fusarium culmorum. Lastly, we discovered that metabolites in the culture liquid of Fusarium sambucinum biocontrol isolate FS-94 also had chemosensitizing activity, increasing S. nodorum sensitivity to Folicur and Dividend.
Collapse
Affiliation(s)
- Vitaly Dzhavakhiya
- Laboratory of Molecular Biology, Russian Research Institute of Phytopathology Moscow Region, Russia
| | | | | | | | | |
Collapse
|
20
|
XING YAGE, XU QINGLIIAN, LI XIHONG, CHE ZHENMIN, YUN JUAN. ANTIFUNGAL ACTIVITIES OF CLOVE OIL AGAINST RHIZOPUS NIGRICANS, ASPERGILLUS FLAVUS AND PENICILLIUM CITRINUM IN VITRO AND IN WOUNDED FRUIT TEST. J Food Saf 2011. [DOI: 10.1111/j.1745-4565.2011.00347.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Kolosova A, Stroka J. Substances for reduction of the contamination of feed by mycotoxins: a review. WORLD MYCOTOXIN J 2011. [DOI: 10.3920/wmj2011.1288] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The global occurrence of mycotoxins is considered to be a major risk factor for human and animal health. Contamination of different agricultural commodities with mycotoxins still occurs despite the most strenuous prevention efforts. As a result, mycotoxin contaminated feed can cause serious disorders and diseases in farm animals. A number of approaches, such as physical and chemical detoxification procedures, have been used to counteract mycotoxins. However, only a few of them have practical application. A recent and promising approach to protect animals against the harmful effects of mycotoxin contaminated feed is the use of substances for reduction of the contamination of feed by mycotoxins. These substances, so-called mycotoxin binders (MB), are added to the diet in order to reduce the absorption of mycotoxins from the gastrointestinal tract and their distribution to blood and target organs, thus preventing or reducing mycotoxicosis in livestock. Recently, the use of such substances as technological feed additives has been officially allowed in the European Union. The efficacy of MB appears to depend on the properties of both the binder and the mycotoxin. Depending on their mode of action, these feed additives may act either by binding mycotoxins to their surface (adsorption), or by degrading or transforming them into less toxic metabolites (biotransformation). Biotransformation can be achieved by mycotoxin-degrading enzymes or by microorganisms producing such enzymes. Various inorganic adsorbents, such as hydrated sodium calcium aluminosilicate, zeolites, bentonites, clays, and activated carbons, have been tested and used as MB. An interesting alternative to inorganic adsorbents for the detoxification of mycotoxins is the use of organic binders, such as yeast cell wall components, synthetic polymers (cholestyramine, polyvinylpyrrolidone), humic substances and dietary fibres. This paper gives an overview of the current knowledge and situation in the field of MB. The most important types of MB, mechanism of their action, and their application as a part of general strategy to counteract mycotoxins are described in this review. Recent advances in the use and study of MB, as well as data of their in vitro and in vivo effectiveness are given. Problems, potential, current trends and perspectives associated with the use of MB are discussed as well in the review.
Collapse
Affiliation(s)
- A. Kolosova
- Institute for Reference Materials and Measurements, European Commission, Joint Research Center, Retieseweg 111, 2440 Geel, Belgium
| | - J. Stroka
- Institute for Reference Materials and Measurements, European Commission, Joint Research Center, Retieseweg 111, 2440 Geel, Belgium
| |
Collapse
|
22
|
Picot A, Barreau C, Pinson-Gadais L, Caron D, Lannou C, Richard-Forget F. Factors of theFusarium verticillioides-maize environment modulating fumonisin production. Crit Rev Microbiol 2010; 36:221-31. [DOI: 10.3109/10408411003720209] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Chelikani R, Kim YH, Yoon DY, Kim DS. Enzymatic polymerization of natural anacardic acid and antibiofouling effects of polyanacardic acid coatings. Appl Biochem Biotechnol 2009; 157:263-77. [PMID: 18592408 DOI: 10.1007/s12010-008-8284-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 05/13/2008] [Indexed: 11/30/2022]
Abstract
Anacardic acid, separated from cashew nut shell liquid, is well known for its strong antibiotic and antioxidant activities. Recent findings indicate that phenolic compounds from plant sources have an effect on Gram-negative bacteria biofilm formation. In this work, a polyphenolic coating was prepared from anacardic acid using enzymatic synthesis and tested for its effects on biofilm formation of both Gram-negative and Gram-positive bacteria. Natural anacardic acid was enzymatically polymerized using soybean peroxidase. Hydrogen peroxide and phenothiazine-10-propionic acid were used as an oxidizing agent and redox mediator, respectively. Nuclear magnetic resonance and Fourier transform infrared (FTIR) analyses showed the formation of oxyphenylene and phenylene units through the phenol rings. No linkage through the alkyl chain was observed, which proved a high chemo-selectivity of the enzyme. Aqueous solvents turned out to play an important role in the polymer production yield and molecular weight. With 2-propanol, the highest production yield (61%) of polymer (molecular weight = 3,900) was observed, and with methanol, higher-molecular-weight polymers (5,000) were produced with lower production yields (43%). The resulting polyanacardic acid was cross-linked on a solid surface to form a permanent natural polymer coating. The FTIR analysis indicates that the cross-linking between the polymers took place through the unsaturated alkyl side chains. The polyanacardic acid coating was then tested for its antibiofouling effect against Gram-negative and Gram-positive bacteria and compared with the antibiofouling effects of polycardanol coatings reported in the literature. The polyanacardic acid coating showed more reduction in biofilm formation on its surface than polycardanol coatings in the case of Gram-positive bacteria, while in the case of Gram-negative bacteria, it showed a similar reduction in biofilm formation as polycardanol.
Collapse
Affiliation(s)
- Rahul Chelikani
- Department of Chemical and Environmental Engineering, University of Toledo, Toledo, OH 43606, USA.
| | | | | | | |
Collapse
|
24
|
LeBlanc BW, Boué S, De-Grandi Hoffman G, Deeby T, McCready H, Loeffelmann K. Beta-cyclodextrins as carriers of monoterpenes into the hemolymph of the honey bee (Apis mellifera) for integrated pest management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:8565-8573. [PMID: 18710247 DOI: 10.1021/jf801607c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Varroa mite ( Varroa destructor) is becoming ubiquitous worldwide and is a serious threat to honey bees. The cultivation of certain food crops are at risk. The most noted acaricides against Varroa mites are tau-fluvaninate and coumaphos, but the mites are showing resistance. Since these insecticides are used in the proximity of honey, it is desirable to use natural alternatives. Monoterpenoids such as thymol and carvacrol, that are constituents of oil of thyme and oil of origanum, show promise as acaricides against the Varroa mite ( Varroa destructor), but the delivery of these compounds remains a challenge due to the low water solubility and uncontrolled release into the colony. Beta-cyclodextrin (beta-CD) inclusion complexes of thymol, oil of origanum, and carvacrol were prepared on a preparative scale. Competitive binding was studied by fluorescence spectroscopy by using 6- p-toluidinylnaphthalene-2-sulfonate as a fluorescent probe. The complexes were characterized, and the competitive binding described by (1)H and (13)C NMR spectroscopy chemical shifts. The toxicity of beta-CD and the prepared complexes in enriched sucrose syrup was studied by conducting caged honey bee ( Apis mellifera) feeding trials. After the first and second weeks of feeding, hemolymph and gut tissue samples were acquired from the caged bee study. The levels of thymol and carvacrol were quantified by solid-phase microextraction gas chromatography mass spectroscopy, using an optimized procedure we developed. High (mM) levels of thymol and carvacrol were detected in bee tissues without any imposed toxicity to the bees, in an effort to deter Varroa mites from feeding on honey bee hemolymph.
Collapse
Affiliation(s)
- Blaise W LeBlanc
- Carl Hayden Bee Research Center, USDA ARS, 2000 East Allen Road, Tucson, Arizona 85719, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Kim JH, Campbell BC, Mahoney N, Chan KL, Molyneux RJ, May GS. Enhanced activity of strobilurin and fludioxonil by using berberine and phenolic compounds to target fungal antioxidative stress response. Lett Appl Microbiol 2007; 45:134-41. [PMID: 17651208 DOI: 10.1111/j.1472-765x.2007.02159.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AIMS Identify natural products that effectively target antioxidative signal transduction/stress response systems [i.e., mitogen-activated protein kinase (MAPK) pathway, mitochondrial superoxide dismutase (Mn-SOD)] of fungi. Enhance activity of strobilurin or fludioxonil with discovered compounds. METHODS AND RESULTS Enhancement of antifungal activity of strobilurins, inhibitors of complex III of the mitochondrial respiratory chain, was tested using berberine hemisulfate and different phenolic compounds. The Saccharomyces cerevisiae sod2Delta, a deletion mutant lacking Mn-SOD gene, was highly sensitive to berberine and veratraldehyde. Functional complementation analysis verified these compounds target Mn-SOD. Activity of strobilurin (25-50 micromol l(-1)) was elevated on most aspergilli and Penicillium expansum by co-application with berberine or veratraldehyde (2-4 mmol l(-1)). These compounds also prevented Aspergillus fumigatus MAPK mutants (sakADelta and mpkCDelta) from escaping toxicity of fludioxonil (a phenylpyrrole fungicide potentiated by the MAPK pathway), a typical phenotype of fungal MAPK mutants. CONCLUSIONS Strobilurin activity or prevention of fungal escape from fludioxonil toxicity can be enhanced by co-application of certain alkaloids or phenolics. SIGNIFICANCE AND IMPACT OF THE STUDY Natural products can be used to target cellular stress response systems in fungal pathogens and serve as alternatives/additives to commercial antifungal agents.
Collapse
Affiliation(s)
- J H Kim
- Plant Mycotoxin Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA 94710, USA
| | | | | | | | | | | |
Collapse
|
26
|
Magbanua ZV, De Moraes CM, Brooks TD, Williams WP, Luthe DS. Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:697-706. [PMID: 17555277 DOI: 10.1094/mpmi-20-6-0697] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Plant responses to biotic and abiotic stresses are usually accompanied by the release of reactive oxygen species including hydrogen peroxide. Hydrogen peroxide plays a direct role in defense and is involved in many signal transduction pathways that lead to the proliferation of other defenses. Because catalase helps to maintain reactive oxygen homeostasis during biotic and abiotic stress, its activity was measured in various cob tissues during maize ear development. Catalase activity was determined in immature and mature embryos, pericarp, and rachis tissues of maize lines that are resistant and susceptible to Aspergillus flavus infection. The effect of fungal inoculation on catalase activity was also measured. Over two years of field experimentation, a correlation was observed between resistance and the level of catalase-specific activity in immature embryos, which was significantly higher in resistant lines (P < 0.0001). Furthermore, catalase activity in the resistant lines was significantly higher in immature embryos from inoculated ears (P = 0.0199). No correlation was observed between resistance and catalase activity in other ear tissues. Levels of hydrogen peroxide, the catalase substrate, and salicylic acid in the embryo were also determined. The resistant lines showed lower levels of H2O2 (P < 0.0001) and higher levels of salicylic acid (P < 0.0001) as compared with the susceptible lines. Catalase 3 was sequenced from the aflatoxin-resistant (Mp313E) and susceptible (SC212m) inbreds. The predicted amino acid sequence indicated that there was a 20-aa deletion in the resistant inbred that might affect enzymatic activity. Unlike many plant-pathogen interactions, it appears that lowering H2O2 levels helps to prevent A. flavus infection and subsequent aflatoxin accumulation.
Collapse
Affiliation(s)
- Zenaida V Magbanua
- Department of Plant and Soil Sciences, Box 9555, Mississippi State University, MS 39762, USA
| | | | | | | | | |
Collapse
|
27
|
Aspergillus flavus expressed sequence tags and microarray as tools in understanding aflatoxin biosynthesis. Mycotoxin Res 2006; 22:16-21. [DOI: 10.1007/bf02954552] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|