1
|
Park J, Park S, Evelina G, Kim S, Jin YS, Chi WJ, Kim IJ, Kim SR. Metabolic Engineering of Komagataella phaffii for Xylose Utilization from Cellulosic Biomass. Molecules 2024; 29:5695. [PMID: 39683854 DOI: 10.3390/molecules29235695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cellulosic biomass hydrolysates are rich in glucose and xylose, but most microorganisms, including Komagataella phaffii, are unable to utilize xylose effectively. To address this limitation, we engineered a K. phaffii strain optimized for xylose metabolism through the xylose oxidoreductase pathway and promoter optimization. A promoter library with varying strengths was used to fine-tune the expression levels of the XYL1, XYL2, and XYL3 genes, resulting in a strain with a strong promoter for XYL2 and weaker promoters for XYL1 and XYL3. This engineered strain exhibited superior growth, achieving 14 g cells/L and a maximal growth rate of 0.4 g cells/L-h in kenaf hydrolysate, outperforming a native strain by 17%. This study is the first to report the introduction of the xylose oxidoreductase pathway into K. phaffii, demonstrating its potential as an industrial platform for producing yeast protein and other products from cellulosic biomass.
Collapse
Affiliation(s)
- Jongbeom Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sujeong Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Grace Evelina
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sunghee Kim
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Won-Jae Chi
- Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - In Jung Kim
- Department of Food Science & Technology, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52825, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Rajak N, Dey T, Sharma Y, Bellad V, Rangarajan PN. Unlocking Nature's Toolbox: glutamate-inducible recombinant protein production from the Komagatella phaffii PEPCK promoter. Microb Cell Fact 2024; 23:66. [PMID: 38402195 PMCID: PMC10893637 DOI: 10.1186/s12934-024-02340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Komagataella phaffii (a.k.a. Pichia pastoris) harbors a glutamate utilization pathway in which synthesis of glutamate dehydrogenase 2 and phosphoenolpyruvate carboxykinase (PEPCK) is induced by glutamate. Glutamate-inducible synthesis of these enzymes is regulated by Rtg1p, a cytosolic, basic helix-loop-helix protein. Here, we report food-grade monosodium glutamate (MSG)-inducible recombinant protein production from K. phaffii PEPCK promoter (PPEPCK) using green fluorescent protein (GFP) and receptor binding domain of SARS-CoV-2 virus (RBD) as model proteins. RESULTS PPEPCK-RBD/GFP expression cassette was integrated at two different sites in the genome to improve recombinant protein yield from PPEPCK. The traditional, methanol-inducible alcohol oxidase 1 promoter (PAOX1) was used as the benchmark. Initial studies carried out with MSG as the inducer resulted in low recombinant protein yield. A new strategy employing MSG/ethanol mixed feeding improved biomass generation as well as recombinant protein yield. Cell density of 100-120 A600 units/ml was achieved after 72 h of induction in shake flask cultivations, resulting in recombinant protein yield from PPEPCK that is comparable or even higher than that from PAOX1. CONCLUSIONS We have designed an induction medium for recombinant protein production from K. phaffii PPEPCK in shake flask cultivations. It consists of 1.0% yeast extract, 2.0% peptone, 0.17% yeast nitrogen base with ammonium sulfate, 100 mM potassium phosphate (pH 6.0), 0.4 mg/L biotin, 2.0% MSG, and 2% ethanol. Substitution of ammonium sulphate with 0.5% urea is optional. Carbon source was replenished every 24 h during 72 h induction period. Under these conditions, GFP and RBD yields from PPEPCK equaled and even surpassed those from PAOX1. Compared to the traditional methanol-inducible expression system, the inducers of glutamate-inducible expression system are non-toxic and their metabolism does not generate toxic metabolites such as formaldehyde and hydrogen peroxide. This study sets the stage for MSG-inducible, industrial scale recombinant protein production from K. phaffii PPEPCK in bioreactors.
Collapse
Affiliation(s)
- Neetu Rajak
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Trishna Dey
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Yash Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Vedanth Bellad
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pundi N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
3
|
Rastädter K, Tramontano A, Wurm DJ, Spadiut O, Quehenberger J. Flow cytometry-based viability staining: an at-line tool for bioprocess monitoring of Sulfolobus acidocaldarius. AMB Express 2022; 12:107. [PMID: 35947320 PMCID: PMC9365904 DOI: 10.1186/s13568-022-01447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Determination of the viability, ratio of dead and live cell populations, of Sulfolobus acidocaldarius is still being done by tedious and material-intensive plating assays that can only provide time-lagged results. Although S. acidocaldarius, an extremophilic Archaeon thriving at 75 °C and pH 3.0, and related species harbor great potential for the exploitation as production hosts and biocatalysts in biotechnological applications, no industrial processes have been established yet. One hindrance is that during development and scaling of industrial bioprocesses timely monitoring of the impact of process parameters on the cultivated organism is crucial—a task that cannot be fulfilled by traditional plating assays. As alternative, flow cytometry (FCM) promises a fast and reliable method for viability assessment via the use of fluorescent dyes. In this study, commercially available fluorescent dyes applicable in S. acidocaldarius were identified. The dyes, fluorescein diacetate and concanavalin A conjugated with rhodamine, were discovered to be suitable for viability determination via FCM. For showing the applicability of the developed at-line tool for bioprocess monitoring, a chemostat cultivation on a defined growth medium at 75 °C, pH 3.0 was conducted. Over the timeframe of 800 h, this developed FCM method was compared to the plating assay by monitoring the change in viability upon controlled pH shifts. Both methods detected an impact on the viability at pH values of 2.0 and 1.5 when compared to pH 3.0. A logarithmic relationship between the viability observed via plating assay and via FCM was observed. Development of a flow cytometry (FCM) method for viability determination of S. acidocaldarius using the fluorescent dyes fluorescein diacetate and concanavalin A conjugated with rhodamine. Applicability of the developed method was shown via viability monitoring during a continuous cultivation with triggered pH shifts. A logarithmic trend was observed between the developed FCM method and the state-of-the-art method, plating assay.
Collapse
Affiliation(s)
- Kerstin Rastädter
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060, Vienna, Austria
| | - Andrea Tramontano
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, 1030, Vienna, Austria
| | | | - Oliver Spadiut
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060, Vienna, Austria
| | - Julian Quehenberger
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060, Vienna, Austria.
| |
Collapse
|
4
|
Sun Y, Wang B, Pei J, Luo Y, Yuan N, Xiao Z, Wu H, Luo C, Wang J, Wei S, Pei Y, Fu S, Wang D. Molecular dynamic and pharmacological studies on protein-engineered hirudin variants of Hirudinaria manillensis and Hirudo medicinalis. Br J Pharmacol 2022; 179:3740-3753. [PMID: 35135035 DOI: 10.1111/bph.15816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Hirudin variants are the most powerful thrombin inhibitors discovered to date, with a lower risk of bleeding than heparin. For anticoagulation, the C-termini of hirudins bind to the exocite I of thrombin. Anticoagulant effects of gene-recombinant hirudin are weaker than natural hirudin for the reason of lacking tyrosine-O-sulfation at C terminus. EXPERIMENTAL APPROACH The integrative pharmacological study applied molecular dynamic, molecular biological, and in vivo and in vitro experiments to elucidate the anticoagulant effects of protein-engineered hirudins. KEY RESULTS Molecular dynamic (MD) analysis showed that modifications of the C-termini of hirudin variant 1 of Hirudo medicinalis (HV1) and hirudin variant 2 of Hirudinaria manillensis (HM2) changed the binding energy of the C-termini to human thrombin. The study indicated Asp61 of HM2 that corresponds to sulfated Tyr63 of HV1 is critical for inhibiting thrombin activities, and the anticoagulant effects of HV1 and HM2 were improved when the amino acid residues adjacent to Asp61 were mutated to Asp, such as the prolongation of the activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) of human blood, and decreased Ki and IC50 values. In the in vivo experiments, mutations at C-termini of HV1 and HM2 significantly changed APTT, PT and TT. CONCLUSION AND IMPLICATIONS The study indicated that the anticoagulant effects of gene-engineered HM2 are stronger than gene-engineered HV1, and HM2-E60D-I62D has the strongest effects and could be an antithrombotic medicine with better therapeutic effects.
Collapse
Affiliation(s)
- Yan Sun
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Baochun Wang
- The First Department of Gastrointestinal Surgery, Hainan General Hospital, Haikou, Hainan, China
| | - Jinli Pei
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China.,Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ying Luo
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Nan Yuan
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Zhengpan Xiao
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Hao Wu
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China.,Central Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Chenghui Luo
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Jiaxuan Wang
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Shuangshuang Wei
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Yechun Pei
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Shengmiao Fu
- Department of Medical Laboratory Science, Hainan General Hospital, Haikou, Hainan, China
| | - Dayong Wang
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China.,Key laboratory of Tropical Biological Resources of the Ministry of Education of China, Hainan University, Haikou, Hainan, China
| |
Collapse
|
5
|
Luo G, Liu J, Bian T, Zhang Z, Li M. The mechanism of N-acetyl-l-cysteine in improving the secretion of porcine follicle-stimulating hormone in Pichia pastoris. Yeast 2021; 38:601-611. [PMID: 34486746 DOI: 10.1002/yea.3668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 06/24/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Our previous study revealed that N-acetyl-l-cysteine (NAC) could enhance the secretion of recombinant proteins by Pichia pastoris, but the corresponding molecular mechanisms are still unclear. In the present study, we explored whether other thiols have a similar action on the secretion of recombinant human serum albumin and porcine follicle-stimulating hormone fusion protein (HSA-pFSHβ), to reveal the mechanism of NAC on HSA-pFSHβ secretion. Transcriptome analysis showed that genes involved in oxidoreductase activity and oxidation-reduction process were upregulated in cells supplemented with NAC. The other three thiol-reducing regents including dimercaptopropanol (DT), thioglycolic acid, and mercaptolactic acid could improve HSA-pFSHβ production in the culture supernatant. Among them, only DT had similar effect as NAC on HSA-pFSHβ secretion and the increase of GSH content. Moreover, 1-20 mM GSH, 1-10 mM cysteine, or 1-20 mM N-acetyl-d-cysteine supplementation could improve the secretion of HSA-pFSHβ. Furthermore, 0.4-3.2 mM ethacrynic acid, rather than 1-16 mM BSO could inhibit the effect of NAC on the production of HSA-pFSHβ. These results indicated that NAC improved the secretion of HSA-pFSHβ by increasing the intracellular GSH content through its thiol activity rather than as a precursor for GSH synthesis. In conclusion, our results demonstrate, for the first time, that the secretion of recombinant HSA-pFSHβ in Pichia pastoris could be improved through thiol-reducing agent supplementation, and the mechanism of the effect NAC has on HSA-pFSHβ secretion is associated with improving the intracellular GSH content.
Collapse
Affiliation(s)
- Gang Luo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Jiying Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Ting Bian
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Muwang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
6
|
Expression of a thermostable β-1,3-glucanase from Trichoderma harzianum in Pichia pastoris and use in oligoglucosides hydrolysis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Targeted Deletion of Los1 Homologue Affects the Production of a Recombinant Model Protein in Pichia pastoris. IRANIAN BIOMEDICAL JOURNAL 2021; 25:255-64. [PMID: 33992037 PMCID: PMC8334395 DOI: 10.52547/ibj.25.4.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: The methylotrophic yeast Pichia pastoris is an appealing production host for a variety of recombinant proteins, including biologics. In this sense, various genetic- and non-genetic-based techniques have been implemented to improve the production efficiency of this expression platform. Los1 (loss of supression) encodes a non-essential nuclear tRNA exporter in Saccharomyces cerevisiae, which its deletion extends RLS. Herein, a los1-deficient strain of P. pastoris was generated and characterized. Methods: A gene disruption cassette was prepared and transformed into an anti-CD22-expressing strain of P. pastoris. A δ los1 mutant was isolated and confirmed. The drug sensitivity of the mutant was also assessed. The growth pattern and the level of anti-CD22 ScFv expression were compared between the parent and mutant strains. Results: The los1 homologue was found to be a non-essential gene in P. pastoris. Furthermore, the susceptibility of los1 deletion strain to protein synthesis inhibitors was altered. This strain showed an approximately 1.85-fold increase in the extracellular level of anti-CD22 scFv (p < 0.05). The maximum concentrations of total proteins secreted by δ los1 and parent strains were 125 mg/L and 68 mg/L, respectively. Conclusion: The presented data suggest that the targeted disruption of los1 homologue in P. pastoris can result in a higher expression level of our target protein. Findings of this study may improve the current strategies used in optimizing the productivity of recombinant P. pastoris strains.
Collapse
|
8
|
Toscanini MA, Maglio DG, Capece P, Posse G, Iovannitti CA, Nusblat AD, Cuestas ML. Histoplasma capsulatum 100-kilodalton antigen: recombinant production, characterization, and evaluation of its possible application in the diagnosis of histoplasmosis. Appl Microbiol Biotechnol 2020; 104:5861-5872. [PMID: 32377899 DOI: 10.1007/s00253-020-10570-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 11/29/2022]
Abstract
The goal of the present work was to develop a novel reagent with potential for histoplasmosis diagnosis. For this purpose, the genetic sequence of the 100 kDa protein of Histoplasma capsulatum (Hcp100) was cloned and expressed as a secretory protein in Pichia pastoris. After optimizing the culture conditions and purifying by immobilized metal ion affinity chromatography, the highest yield of Hcp100 reached approximately 1.3 mg/l with > 90% purity in shake flasks using basal salt medium supplemented with casamino acids after 72 h of methanol induction. To investigate its potential for diagnosis, its detection in urine samples using specific polyclonal antibodies as reagent was evaluated by dot blot in 6 patients with progressive disseminated histoplasmosis (PDH), of whom all had AIDS. Antigen was detected in urine from all 6 (100%) PDH patients. Urine samples from a pool of 20 healthy individuals did not react with the anti-Hcp100 antibodies. The dot blot assay performed in this study provides preliminary data of a simple technology that can be performed in medical institutions with limited resources to facilitate the rapid diagnosis of histoplasmosis, particularly the disseminated forms. Hence, use of these assays may provide a rapid diagnostic tool of PDH in endemic areas for histoplasmosis where PDH-related mortality is high, hastening treatment and improving patient survival. Finally, this novel antigen and its specific antibodies may provide an alternative diagnostic reagent to the largely unknown and poorly characterized polysaccharide antigens (HPA, galactomannan, histoplasmin) frequently used in the diagnostic tests. KEY POINTS: Few antigens are used as laboratory tools for the immunodiagnosis of histoplasmosis. P. pastoris was an excellent system for recombinant Hcp100 expression. Maximum expression levels of rHcp100 were achieved in BSM with 1% casamino acids. Dot blot assays with anti-rHcp100 antisera can be successfully used for diagnosing PHD.
Collapse
Affiliation(s)
- María A Toscanini
- Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel González Maglio
- Facultad de Farmacia y Bioquímica. Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Capece
- Laboratorio de Micología. Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Gladys Posse
- Laboratorio de Micología. Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Cristina A Iovannitti
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina
| | - Alejandro D Nusblat
- Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María L Cuestas
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Zavec D, Gasser B, Mattanovich D. Characterization of methanol utilization negative Pichia pastoris for secreted protein production: New cultivation strategies for current and future applications. Biotechnol Bioeng 2020; 117:1394-1405. [PMID: 32034758 PMCID: PMC7187134 DOI: 10.1002/bit.27303] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022]
Abstract
The methanol utilization (Mut) phenotype in the yeast Pichia pastoris (syn. Komagataella spp.) is defined by the deletion of the genes AOX1 and AOX2. The Mut- phenotype cannot grow on methanol as a single carbon source. We assessed the Mut- phenotype for secreted recombinant protein production. The methanol inducible AOX1 promoter (PAOX1 ) was active in the Mut- phenotype and showed adequate eGFP fluorescence levels and protein yields (YP/X ) in small-scale screenings. Different bioreactor cultivation scenarios with methanol excess concentrations were tested using PAOX1 HSA and PAOX1 vHH expression constructs. Scenario B comprising a glucose-methanol phase and a 72-hr-long methanol only phase was the best performing, producing 531 mg/L HSA and 1631 mg/L vHH. 61% of the HSA was produced in the methanol only phase where no biomass growth was observed, representing a special case of growth independent production. By using the Mut- phenotype, the oxygen demand, heat output, and specific methanol uptake (qmethanol ) in the methanol phase were reduced by more than 80% compared with the MutS phenotype. The highlighted improved process parameters coupled with growth independent protein production are overlooked benefits of the Mut- strain for current and future applications in the field of recombinant protein production.
Collapse
Affiliation(s)
- Domen Zavec
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- CD‐Laboratory for Growth‐Decoupled Protein Production in Yeast, Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Brigitte Gasser
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- CD‐Laboratory for Growth‐Decoupled Protein Production in Yeast, Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Diethard Mattanovich
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- CD‐Laboratory for Growth‐Decoupled Protein Production in Yeast, Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
10
|
Burgard J, Grünwald-Gruber C, Altmann F, Zanghellini J, Valli M, Mattanovich D, Gasser B. The secretome of Pichia pastoris in fed-batch cultivations is largely independent of the carbon source but changes quantitatively over cultivation time. Microb Biotechnol 2019; 13:479-494. [PMID: 31692260 PMCID: PMC7017826 DOI: 10.1111/1751-7915.13499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/07/2019] [Indexed: 01/20/2023] Open
Abstract
The quantitative changes of the secretome of recombinant Pichia pastoris (Komagataella phaffii) CBS7435 over the time-course of methanol- or glucose-limited fed-batch cultures were investigated by LC-ESI-MS/MS to define the carbon source-specific secretomes under controlled bioreactor conditions. In both set-ups, no indication for elevated cell lysis was found. The quantitative data revealed that intact and viable P. pastoris cells secrete only a low number of endogenous proteins (in total 51), even during high cell density cultivation. Interestingly, no marked differences in the functional composition of the P. pastoris secretome between methanol- and glucose-grown cultures were observed with only few proteins being specifically affected by the carbon source. The 'core secretome' of 22 proteins present in all analysed carbon sources (glycerol, glucose and methanol) consists mainly of cell wall proteins. The quantitative analysis additionally revealed that most secretome proteins were already present after the batch phase, and depletion rather than accumulation occurred during the fed-batch processes. Among the changes over cultivation time, the depletion of both the extracellularly detected chaperones and the only two identified proteases (Pep4 and Yps1-1) during the methanol- or glucose-feed phase appear as most prominent.
Collapse
Affiliation(s)
- Jonas Burgard
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria.,Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Friedrich Altmann
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria.,Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jürgen Zanghellini
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Biotech University of Applied Sciences, Tulln, Austria
| | - Minoska Valli
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
11
|
Li T, Ma J, Xu Z, Wang S, Wang N, Shao S, Yang W, Huang L, Liu Y. Transcriptomic Analysis of the Influence of Methanol Assimilation on the Gene Expression in the Recombinant Pichia pastoris Producing Hirudin Variant 3. Genes (Basel) 2019; 10:genes10080606. [PMID: 31409011 PMCID: PMC6722669 DOI: 10.3390/genes10080606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Hirudin and its variants, as strong inhibitors against thrombin, are present in the saliva of leeches and are recognized as potent anticoagulants. However, their yield is far from the clinical requirement up to now. In this study, the production of hirudin variant 3 (HV3) was successfully realized by cultivating the recombinant Pichia pastoris GS115/pPIC9K-hv3 under the regulation of the promoter of AOX1 encoding alcohol oxidase (AOX). The antithrombin activity in the fermentation broth reached the maximum value of 5000 ATU/mL. To explore an effective strategy for improving HV3 production in the future, we investigated the influence of methanol assimilation on the general gene expression in this recombinant by transcriptomic study. The results showed that methanol was partially oxidized into CO2, and the rest was converted into glycerone-P which subsequently entered into central carbon metabolism, energy metabolism, and amino acid biosynthesis. However, the later metabolic processes were almost all down-regulated. Therefore, we propose that the up-regulated central carbon metabolism, energy, and amino acid metabolism should be beneficial for methanol assimilation, which would accordingly improve the production of HV3.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- College of Basic Science, Tianjin Agricultural University, Tianjin 300384, China
| | - Jieying Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zehua Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuang Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shulin Shao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Yang
- College of Basic Science, Tianjin Agricultural University, Tianjin 300384, China
| | - Lin Huang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
12
|
Limeres MJ, Gomez ER, Noseda DG, Cerrudo CS, Ghiringhelli PD, Nusblat AD, Cuestas ML. Impact of hepatitis B virus genotype F on in vitro diagnosis: detection efficiency of HBsAg from Amerindian subgenotypes F1b and F4. Arch Virol 2019; 164:2297-2307. [PMID: 31267215 DOI: 10.1007/s00705-019-04332-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
The influence of the high genetic variability of hepatitis B virus (HBV) on the sensitivity of serological assays has received little attention so far. A major source of variability is related to viral genotypes and subgenotypes. Their possible influence on diagnosis and prophylaxis is poorly known and has mostly been evaluated for genotypes A, B, C and D. Robust data showing the detection efficiency of HBsAg from genotype F is lacking. This study examined the effect of virus-like particles containing HBsAg from genotypes A and F (particularly, F1b and F4) produced in Pichia pastoris in relation to the anti-HBs antibodies used in the immunoassays for in vitro diagnosis and compared it with that exerted by the G145R S-escape mutant. The results showed that HBsAg detection rates for subgenotypes F1b and F4 differed significantly from those obtained for genotype A and that subgenotype F1b had a major impact on the sensitivity of the immunoassays tested. Prediction of the tertiary structure of subgenotypes F1b and F4 revealed changes inside and outside the major hydrophilic region (aa 101-160) of the HBsAg compared to genotype A and the G145R variant. A phosphorylation site (target for protein kinase C) produced by the G145R substitution might prevent recognition by anti-HBs antibodies. In conclusion, the use of different genotypes or variants for diagnosis could improve the rate of detection of HBV infection. The incorporation of a genotype-F-derived HBsAg vaccine in areas where this genotype is endemic should be evaluated, since this might also affect vaccination efficacy.
Collapse
Affiliation(s)
- María J Limeres
- CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Evangelina R Gomez
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - Diego G Noseda
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina S Cerrudo
- Departamento de Ciencia y Tecnología, Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos (LIGBCM-AVI), Instituto de Microbiología Básica y Aplicada (IMBA), Universidad Nacional de Quilmes, Bernal, Provincia de Buenos Aires, Argentina
| | - Pablo D Ghiringhelli
- Departamento de Ciencia y Tecnología, Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos (LIGBCM-AVI), Instituto de Microbiología Básica y Aplicada (IMBA), Universidad Nacional de Quilmes, Bernal, Provincia de Buenos Aires, Argentina
| | - Alejandro D Nusblat
- Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María L Cuestas
- CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Liu WC, Inwood S, Gong T, Sharma A, Yu LY, Zhu P. Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit Rev Biotechnol 2019; 39:258-271. [DOI: 10.1080/07388551.2018.1554620] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wan-Cang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Biotechnology, Beijing, P. R. China
| | - Sarah Inwood
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ashish Sharma
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
| | - Li-Yan Yu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Biotechnology, Beijing, P. R. China
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
14
|
Transcriptome and metabolome analyses reveal global behaviour of a genetically engineered methanol-independent Pichia pastoris strain. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Chang CH, Hsiung HA, Hong KL, Huang CT. Enhancing the efficiency of the Pichia pastoris AOX1 promoter via the synthetic positive feedback circuit of transcription factor Mxr1. BMC Biotechnol 2018; 18:81. [PMID: 30587177 PMCID: PMC6307218 DOI: 10.1186/s12896-018-0492-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/17/2018] [Indexed: 11/10/2022] Open
Abstract
Background The methanol-regulated AOX1 promoter (PAOX1) is the most widely used promoter in the production of recombinant proteins in the methylotrophic yeast Pichia pastoris. However, as the tight regulation and methanol dependence of PAOX1 restricts its application, it is necessary to develop a flexible induction system to avoid the problems of methanol without losing the advantages of PAOX1. The availability of synthetic biology tools enables researchers to reprogram the cellular behaviour of P. pastoris to achieve this goal. Results The characteristics of PAOX1 are highly related to the expression profile of methanol expression regulator 1 (Mxr1). In this study, we applied a biologically inspired strategy to reprogram regulatory networks in P. pastoris. A reprogrammed P. pastoris was constructed by inserting a synthetic positive feedback circuit of Mxr1 driven by a weak AOX2 promoter (PAOX2). This novel approach enhanced PAOX1 efficiency by providing extra Mxr1 and generated switchable Mxr1 expression to allow PAOX1 to be induced under glycerol starvation or carbon-free conditions. Additionally, the inhibitory effect of glycerol on PAOX1 was retained because the synthetic circuit was not activated in response to glycerol. Using green fluorescent protein as a demonstration, this reprogrammed P. pastoris strain displayed stronger fluorescence intensity than non-reprogrammed cells under both methanol induction and glycerol starvation. Moreover, with single-chain variable fragment (scFv) as the model protein, increases in extracellular scFv productivity of 98 and 269% were observed in Mxr1-reprogrammed cells under methanol induction and glycerol starvation, respectively, compared to productivity in non-reprogrammed cells under methanol induction. Conclusions We successfully demonstrate that the synthetic positive feedback circuit of Mxr1 enhances recombinant protein production efficiency in P. pastoris and create a methanol-free induction system to eliminate the potential risks of methanol. Electronic supplementary material The online version of this article (10.1186/s12896-018-0492-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ching-Hsiang Chang
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Hao-An Hsiung
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Kai-Lin Hong
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ching-Tsan Huang
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
16
|
Abstract
Hirudin was discovered as an active anticoagulant in leech extracts almost 60 years ago. Since their initial discovery, hirudin and its variants have been produced with various anti-thrombotic, cancer cell inhibition, diabetic cataract treatment and anti-fatigue activities. Some hirudin variants have been approved for clinical use and released into the marketplace. Recent progress has seen made in relation to hirudin variants expressed in several well-established microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and others, with high levels of activity and yield. This review summarizes the current progress on hirudin production using microbial producers, and considers the outlook for future development.
Collapse
Affiliation(s)
- Jianguo Zhang
- a Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering , University of Shanghai for Science and Technology , Shanghai , China
| | - Nana Lan
- a Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering , University of Shanghai for Science and Technology , Shanghai , China
| |
Collapse
|
17
|
Azadi S, Sadjady SK, Mortazavi SA, Naghdi N, Mahboubi A, Solaimanian R. Bioprocess and downstream optimization of recombinant human growth hormone in Pichia pastoris. Res Pharm Sci 2018; 13:222-238. [PMID: 29853932 PMCID: PMC5921403 DOI: 10.4103/1735-5362.228953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The methylotrophic yeast Pichia pastoris is a well-established expression host, which is often used in the production of protein pharmaceuticals. This work aimed to evaluate the effect of various concentrations of ascorbic acid in mixed feeding strategy with sorbitol/methanol on productivity of recombinant human growth hormone (r-hGH). The relevant concentration of ascorbic acid (5, 10, or 20 mmol) and 50 g/L sorbitol were added in batch-wise mode to the medium at the beginning of induction phase. The rate of methanol addition was increased stepwise during the first 12 h of production and then kept constant. Total protein and r-hGH concentrations were analyzed and the results compared with sorbitol/methanol feeding using one-way analysis of variance. Moreover, an effective clarification process using activated carbon was developed to remove process contaminants like pigments and endotoxins. Finally, a three-step chromatographic process was applied to purify the product. According to the obtained results, addition of 10 mmol ascorbic acid to sorbitol/methanol co-feeding could significantly increase cell biomass (1.7 fold), total protein (1.14 fold), and r-hGH concentration (1.43 fold). One percent activated carbon could significantly decrease pigments and endotoxins without any significant changes in r-hGH assay. The result of the study concluded that ascorbic acid in combination with sorbitol could effectively enhance the productivity of r-hGH. This study also demonstrated that activated carbon clarification is a simple method for efficient removal of endotoxin and pigment in production of recombinant protein in the yeast expression system.
Collapse
Affiliation(s)
- Saeed Azadi
- Pharmaceutical sciences research center, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | | | | | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, I.R. Iran
| | - Arash Mahboubi
- Food Safety Research Center, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Roya Solaimanian
- Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, I.R. Iran
| |
Collapse
|
18
|
Ren LJ, Sun XM, Ji XJ, Chen SL, Guo DS, Huang H. Enhancement of docosahexaenoic acid synthesis by manipulation of antioxidant capacity and prevention of oxidative damage in Schizochytrium sp. BIORESOURCE TECHNOLOGY 2017; 223:141-148. [PMID: 27788427 DOI: 10.1016/j.biortech.2016.10.040] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 05/09/2023]
Abstract
Oxygen-mediated cell damage is an important issue in aerobic fermentation. In order to counteract these problems, effect of ascorbic acid on cell growth and docosahexaenoic acid (DHA) production was investigated in Schizochytrium sp. Addition of 9g/L ascorbic acid resulted in 16.16% and 30.44% improvement in cell dry weight (CDW) and DHA yield, respectively. Moreover, the total antioxidant capacity (T-AOC) of cells decreased from 2.17 at 12h to 0 at 60h and did not recover, while ascorbic acid addition could extend the time of arrival zero with the reduced intracellular ROS. However, ROS levels still increased after 72h. Therefore, to further solve the problem of high ROS levels and low T-AOC of cells after 72h, a two-point addition strategy was proposed. With this strategy, DHA yield was further increased to 38.26g/L. This work innovatively investigated the feasibility of manipulating Schizochytrium sp. cultivation through ROS level and T-AOC.
Collapse
Affiliation(s)
- Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Man Sun
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Sheng-Lan Chen
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Dong-Sheng Guo
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
19
|
Shen W, Xue Y, Liu Y, Kong C, Wang X, Huang M, Cai M, Zhou X, Zhang Y, Zhou M. A novel methanol-free Pichia pastoris system for recombinant protein expression. Microb Cell Fact 2016; 15:178. [PMID: 27769297 PMCID: PMC5073731 DOI: 10.1186/s12934-016-0578-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/13/2016] [Indexed: 11/15/2022] Open
Abstract
Background As one of the most popular expression systems, recombinant protein expression in Pichia pastoris relies on the AOX1 promoter (PAOX1) which is strongly induced by methanol. However, the toxic and inflammatory nature of methanol restricts its application, especially in edible and medical products. Therefore, constructing a novel methanol-free system becomes necessary. The kinases involved in PAOX1 activation or repression by different carbon sources may be promising targets. Results We identified two kinase mutants: Δgut1 and Δdak, both of which showed strong alcohol oxidase activity under non-methanol carbon sources. Based on these two kinases, we constructed two methanol-free expression systems: Δgut1-HpGCY1-glycerol (PAOX1 induced by glycerol) and Δdak-DHA (PAOX1 induced by DHA). By comparing their GFP expression efficiencies, the latter one showed better potential. To further test the Δdak-DHA system, three more recombinant proteins were expressed as examples. We found that the expression ability of our novel methanol-free Δdak-DHA system was generally better than the constitutive GAP promoter, and reached 50–60 % of the traditional methanol induced system. Conclusions We successfully constructed a novel methanol-free expression system Δdak-DHA. This modified expression platform preserved the favorable regulatable nature of PAOX1, providing a potential alternative to the traditional system. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0578-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ying Xue
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yiqi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chuixing Kong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiaolong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mengmeng Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
20
|
Zhan C, Wang S, Sun Y, Dai X, Liu X, Harvey L, McNeil B, Yang Y, Bai Z. ThePichia pastoristransmembrane protein GT1 is a glycerol transporter and relieves the repression of glycerol on AOX1 expression. FEMS Yeast Res 2016; 16:fow033. [DOI: 10.1093/femsyr/fow033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 12/23/2022] Open
|
21
|
Domeradzka NE, Werten MWT, de Vries R, de Wolf FA. Production in Pichia pastoris of protein-based polymers with small heterodimer-forming blocks. Biotechnol Bioeng 2015; 113:953-60. [PMID: 26479855 DOI: 10.1002/bit.25861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/27/2015] [Accepted: 10/12/2015] [Indexed: 11/11/2022]
Abstract
Some combinations of leucine zipper peptides are capable of forming α-helical heterodimeric coiled coils with very high affinity. These can be used as physical cross-linkers in the design of protein-based polymers that form supramolecular structures, for example hydrogels, upon mixing solutions containing the complementary blocks. Such two-component physical networks are of interest for many applications in biomedicine, pharmaceutics, and diagnostics. This article describes the efficient secretory production of A and B type leucine zipper peptides fused to protein-based polymers in Pichia pastoris. By adjusting the fermentation conditions, we were able to significantly reduce undesirable proteolytic degradation. The formation of A-B heterodimers in mixtures of the purified products was confirmed by size exclusion chromatography. Our results demonstrate that protein-based polymers incorporating functional heterodimer-forming blocks can be produced with P. pastoris in sufficient quantities for use in future supramolecular self-assembly studies and in various applications.
Collapse
Affiliation(s)
- Natalia E Domeradzka
- Wageningen UR Food & Biobased Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.,Physical Chemistry and Soft Matter, Wageningen University and Research Centre, Dreijenplein 6, 6703 HB, Wageningen, The Netherlands
| | - Marc W T Werten
- Wageningen UR Food & Biobased Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research Centre, Dreijenplein 6, 6703 HB, Wageningen, The Netherlands
| | - Frits A de Wolf
- Wageningen UR Food & Biobased Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| |
Collapse
|
22
|
Duan H, Wang H, Ma B, Jiang P, Tu P, Ni Z, Li X, Li M, Ma X, Wang B, Wu R, Li M. Codon optimization and expression of irisin in Pichia pastoris GS115. Int J Biol Macromol 2015; 79:21-6. [DOI: 10.1016/j.ijbiomac.2015.04.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 04/03/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022]
|
23
|
An alkaline pH control strategy for methionine adenosyltransferase production in Pichia pastoris fermentation. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-014-0046-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
High-Level Extracellular Production of Glucose Oxidase by Recombinant Pichia Pastoris Using a Combined Strategy. Appl Biochem Biotechnol 2014; 175:1429-47. [DOI: 10.1007/s12010-014-1387-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
|
25
|
Noseda DG, Blasco M, Recúpero M, Galvagno MÁ. Bioprocess and downstream optimization of recombinant bovine chymosin B in Pichia (Komagataella) pastoris under methanol-inducible AOXI promoter. Protein Expr Purif 2014; 104:85-91. [PMID: 25278015 DOI: 10.1016/j.pep.2014.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 11/29/2022]
Abstract
A clone of the methylotrophic yeast Pichia pastoris strain GS115 transformed with the bovine prochymosin B gene was used to optimize the production and downstream of recombinant bovine chymosin expressed under the methanol-inducible AOXI promoter. Cell growth and recombinant chymosin production were analyzed in flask cultures containing basal salts medium with biodiesel-byproduct glycerol as the carbon source, obtaining values of biomass level and milk-clotting activity similar to those achieved with analytical glycerol. The effect of biomass level at the beginning of methanol-induction phase on cell growth and chymosin expression was evaluated, determining that a high concentration of cells at the start of such period generated an increase in the production of chymosin. The impact of the specific growth rate on chymosin expression was studied throughout the induction stage by methanol exponential feeding fermentations in a lab-scale stirred bioreactor, achieving the highest production of heterologous chymosin with a constant specific growth rate of 0.01h(-1). By gel filtration chromatography performed at a semi-preparative scale, recombinant chymosin was purified from exponential fed-batch fermentation cultures, obtaining a specific milk-clotting activity of 6400IMCU/mg of chymosin and a purity level of 95%. The effect of temperature and pH on milk-clotting activity was analyzed, establishing that the optimal temperature and pH values for the purified recombinant chymosin are 37°C and 5.5, respectively. This study reported the features of a sustainable bioprocess for the production of recombinant bovine chymosin in P. pastoris by fermentation in stirred-tank bioreactors using biodiesel-derived glycerol as a low-cost carbon source.
Collapse
Affiliation(s)
- Diego Gabriel Noseda
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, 1650, Buenos Aires, Argentina.
| | - Martín Blasco
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, 1650, Buenos Aires, Argentina
| | - Matías Recúpero
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, 1650, Buenos Aires, Argentina
| | - Miguel Ángel Galvagno
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, 1650, Buenos Aires, Argentina; Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Buenos Aires, Pabellón de Industrias, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| |
Collapse
|
26
|
Cloning, expression and optimized production in a bioreactor of bovine chymosin B in Pichia (Komagataella) pastoris under AOX1 promoter. Protein Expr Purif 2013; 92:235-44. [PMID: 24141135 DOI: 10.1016/j.pep.2013.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/24/2013] [Accepted: 08/26/2013] [Indexed: 11/21/2022]
Abstract
The codon sequence optimized bovine prochymosin B gene was cloned under the control of the alcohol oxidase 1 promoter (AOX1) in the vector pPIC9K and integrated into the genome of the methylotrophic yeast Pichia (Komagataella) pastoris (P. pastoris) strain GS115. A transformant clone that showed resistance to over 4 mg G418/ml and displayed the highest milk-clotting activity was selected. Cell growth and recombinant bovine chymosin production were optimized in flask cultures during methanol induction phase achieving the highest coagulant activity with low pH values, a temperature of 25°C and with the addition of sorbitol and ascorbic acid at the beginning of this period. The scaling up of the fermentation process to lab-scale stirred bioreactor using optimized conditions, allowed to reach 240 g DCW/L of biomass level and 96 IMCU/ml of milk-clotting activity. The enzyme activity corresponded to 53 mg/L of recombinant bovine chymosin production after 120 h of methanol induction. Western blot analysis of the culture supernatant showed that recombinant chymosin did not suffer degradation during the protein production phase. By a procedure that included high performance gel filtration chromatography and 3 kDa fast ultrafiltration, the recombinant bovine chymosin was purified and concentrated from fermentation cultures, generating a specific activity of 800 IMCU/Total Abs(280 nm) and a total activity recovery of 56%. This study indicated that P. pastoris is a suitable expression system for bioreactor based fed-batch fermentation process for the efficient production of recombinant bovine chymosin under methanol-inducible AOX1 promoter.
Collapse
|
27
|
Kim S, Warburton S, Boldogh I, Svensson C, Pon L, d'Anjou M, Stadheim TA, Choi BK. Regulation of alcohol oxidase 1 (AOX1) promoter and peroxisome biogenesis in different fermentation processes in Pichia pastoris. J Biotechnol 2013; 166:174-81. [PMID: 23735484 DOI: 10.1016/j.jbiotec.2013.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/09/2013] [Accepted: 05/17/2013] [Indexed: 11/28/2022]
Abstract
Production of recombinant proteins is affected by process conditions, where transcriptional regulation of Pichia pastoris alcohol oxidase 1 (PpAOX1) promoter has been a key factor to influence expression levels of proteins of interest. Here, we demonstrate that the AOX1 promoter and peroxisome biogenesis are regulated based on different process conditions. Two types of GFP-fusion proteins, Ub-R-GFP (short-lived GFP in the cytosol) and GFP-SKL (peroxisomal targeting GFP), were successfully used to characterize the time-course of the AOX1 promoter and peroxisome biogenesis, respectively. The activity of the AOX1 promoter and peroxisome biogenesis was highly subjected to different fermentation process conditions - methanol-limited condition at normoxy (ML), switched feeding of carbon sources (e.g., glucose and methanol) under carbon-limited condition at normoxy (SML), and oxygen-limited (OL) condition. The AOX1 promoter was most active under the ML, but less active under the OL. Peroxisome biogenesis showed a high dependency on methanol consumption. In addition, the proliferation of peroxisomes was inhibited in a medium containing glucose and stimulated in the methanol phase under a carbon-limited fed-batch culture condition. The specific productivity of a monoclonal antibody (qp) under the AOX1 promoter was higher at 86h of induction in the ML than in the OL (0.026 vs 0.020mgg(-1)h(-1)). However, the oxygen-limited condition was a robust process suitable for longer induction (180h) due to high cell fitness. Our study suggests that the maximal production of a recombinant protein is highly dependent on methanol consumption rate that is affected by the availability of methanol and oxygen molecules.
Collapse
Affiliation(s)
- Sehoon Kim
- GlycoFi, Biologics Discovery, Merck & Co., Inc, 16 Cavendish Ct., Lebanon, NH 03766, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, Abasolo I, Giuliani M, Jäntti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S, Tutino ML, Villaverde A. Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 2012; 31:140-53. [PMID: 22985698 DOI: 10.1016/j.biotechadv.2012.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
Both conventional and innovative biomedical approaches require cost-effective protein drugs with high therapeutic potency, improved bioavailability, biocompatibility, stability and pharmacokinetics. The growing longevity of the human population, the increasing incidence and prevalence of age-related diseases and the better comprehension of genetic-linked disorders prompt to develop natural and engineered drugs addressed to fulfill emerging therapeutic demands. Conventional microbial systems have been for long time exploited to produce biotherapeutics, competing with animal cells due to easier operation and lower process costs. However, both biological platforms exhibit important drawbacks (mainly associated to intracellular retention of the product, lack of post-translational modifications and conformational stresses), that cannot be overcome through further strain optimization merely due to physiological constraints. The metabolic diversity among microorganisms offers a spectrum of unconventional hosts, that, being able to bypass some of these weaknesses, are under progressive incorporation into production pipelines. In this review we describe the main biological traits and potentials of emerging bacterial, yeast, fungal and microalgae systems, by comparing selected leading species with well established conventional organisms with a long run in protein drug production.
Collapse
|
29
|
Potvin G, Ahmad A, Zhang Z. Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: A review. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2010.07.017] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Use of a mixture of glucose and methanol as substrates for the production of recombinant trypsinogen in continuous cultures with Pichia pastoris Mut+. J Biotechnol 2012; 157:180-8. [DOI: 10.1016/j.jbiotec.2011.10.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 10/10/2011] [Accepted: 10/27/2011] [Indexed: 11/19/2022]
|
31
|
Fossati T, Solinas N, Porro D, Branduardi P. L-ascorbic acid producing yeasts learn from plants how to recycle it. Metab Eng 2011; 13:177-85. [PMID: 21199681 DOI: 10.1016/j.ymben.2010.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/10/2010] [Accepted: 12/28/2010] [Indexed: 11/26/2022]
Abstract
Microorganisms employed in industrial fermentation processes are often subjected to a variety of stresses that negatively affect growth, production and productivity. Therefore, stress robustness is an important property for their application. Reactive Oxygen Species (ROS) accumulation is a common denominator to a lot of these stress factors. Ascorbic acid (L-AA) acts as ROS scavenger, thus potentially protecting cells from harmful oxidative products. We have previously reported the development of Saccharomyces cerevisiae strains able to produce L-AA. This was obtained by expressing the known plant pathway genes and by complementing the missing step with an animal activity. Here, we show that L-AA accumulation inside yeast cells can be improved by expressing the complete biosynthetic plant pathway and, even further, by recycling its oxidation products. These new strains can be seen in a double perspective of exploitation: as novel organisms for vitamin C production and as novel cell factories for industrial processes.
Collapse
Affiliation(s)
- Tiziana Fossati
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Milano, Italy.
| | | | | | | |
Collapse
|
32
|
Zhu T, Guo M, Zhuang Y, Chu J, Zhang S. Understanding the effect of foreign gene dosage on the physiology of Pichia pastoris by transcriptional analysis of key genes. Appl Microbiol Biotechnol 2010; 89:1127-35. [PMID: 20981418 DOI: 10.1007/s00253-010-2944-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/08/2010] [Accepted: 10/09/2010] [Indexed: 12/11/2022]
Abstract
Increased copy number of foreign gene can result in the alteration of normal metabolism in Pichia pastoris. To better understand the effect of foreign gene dosage on the cellular physiology of P. pastoris cells, comparative transcriptional analysis was performed among three P. pastoris strains carrying 0, 6, and 18 copies of porcine insulin precursor (PIP) expression cassettes, respectively. mRNA levels of 13 selected genes involved in methanol metabolic pathway, central metabolic pathway, protein folding, and oxidative stress were determined by real-time PCR. Results showed that enhanced PIP copy number resulted in an increase in PIP mRNA and also in folding stress on the yeast cells' endoplasmic reticulum. The metabolism of 6-copy P. pastoris strain was not significantly changed as compared to 0-copy strain (control). In contrast, physiology of 18-copy strain was remarkably affected, characterized by the upregulation of antioxidative genes and readjusted expression level of methanol metabolic pathway genes. These data suggested that high copy P. pastoris strain might be suffering from protein folding-related oxidative stress and insufficient supply of carbon and energy sources.
Collapse
Affiliation(s)
- Taicheng Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 329, 130 Meilong Rd, Shanghai 200237, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
Zhang P, Zhang W, Zhou X, Bai P, Cregg JM, Zhang Y. Catabolite repression of Aox in Pichia pastoris is dependent on hexose transporter PpHxt1 and pexophagy. Appl Environ Microbiol 2010; 76:6108-18. [PMID: 20656869 PMCID: PMC2937511 DOI: 10.1128/aem.00607-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 07/14/2010] [Indexed: 11/20/2022] Open
Abstract
In this work, the identification and characterization of two hexose transporter homologs in the methylotrophic yeast Pichia pastoris, P. pastoris Hxt1 (PpHxt1) and PpHxt2, are described. When expressed in a Saccharomyces cerevisiae hxt-null mutant strain that is unable to take up monosaccharides, either protein restored growth on glucose or fructose. Both PpHXT genes are transcriptionally regulated by glucose. Transcript levels of PpHXT1 are induced by high levels of glucose, whereas transcript levels of PpHXT2 are relatively lower and are fully induced by low levels of glucose. In addition, PpHxt2 plays an important role in glycolysis-dependent fermentative growth, since PpHxt2 is essential for growth on glucose or fructose when respiration is inhibited. Notably, we firstly found that the deletion of PpHXT1, but not PpHXT2, leads to the induced expression of the alcohol oxidase I gene (AOX1) in response to glucose or fructose. We also elucidated that a sharp dropping of the sugar-induced expression level of Aox at a later growth phase is caused mainly by pexophagy, a degradation pathway in methylotrophic yeast. The sugar-inducible AOX1 promoter in an Deltahxt1 strain may be promising as a host for the expression of heterologous proteins. The functional analysis of these two hexose transporters is the first step in elucidating the mechanisms of sugar metabolism and catabolite repression in P. pastoris.
Collapse
Affiliation(s)
- Ping Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China, Keck Graduate Institute of Applied Life Sciences, 535 Watson Drive, Claremont, California 91711
| | - Wenwen Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China, Keck Graduate Institute of Applied Life Sciences, 535 Watson Drive, Claremont, California 91711
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China, Keck Graduate Institute of Applied Life Sciences, 535 Watson Drive, Claremont, California 91711
| | - Peng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China, Keck Graduate Institute of Applied Life Sciences, 535 Watson Drive, Claremont, California 91711
| | - James M. Cregg
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China, Keck Graduate Institute of Applied Life Sciences, 535 Watson Drive, Claremont, California 91711
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China, Keck Graduate Institute of Applied Life Sciences, 535 Watson Drive, Claremont, California 91711
| |
Collapse
|
34
|
Combined use of fluorescent dyes and flow cytometry to quantify the physiological state of Pichia pastoris during the production of heterologous proteins in high-cell-density fed-batch cultures. Appl Environ Microbiol 2010; 76:4486-96. [PMID: 20472737 DOI: 10.1128/aem.02475-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Matching both the construction of a recombinant strain and the process design with the characteristics of the target protein has the potential to significantly enhance bioprocess performance, robustness, and reproducibility. The factors affecting the physiological state of recombinant Pichia pastoris Mut(+) (methanol utilization-positive) strains and their cell membranes were quantified at the individual cell level using a combination of staining with fluorescent dyes and flow cytometric enumeration. Cell vitalities were found to range from 5 to 95% under various process conditions in high-cell-density fed-batch cultures, with strains producing either porcine trypsinogen or horseradish peroxidase extracellularly. Impaired cell vitality was observed to be the combined effect of production of recombinant protein, low pH, and high cell density. Vitality improved when any one of these stress factors was excluded. At a pH value of 4, which is commonly applied to counter proteolysis, recombinant strains exhibited severe physiological stress, whereas strains without heterologous genes were not affected. Physiologically compromised cells were also found to be increasingly sensitive to methanol when it accumulated in the culture broth. The magnitude of the response varied when different reporters were combined with either the native AOX1 promoter or its d6* variant, which differ in both strength and regulation. Finally, the quantitative assessment of the physiology of individual cells enables the implementation of innovative concepts in bioprocess development. Such concepts are in contrast to the frequently used paradigm, which always assumes a uniform cell population, because differentiation between the individual cells is not possible with methods commonly used.
Collapse
|
35
|
Idiris A, Tohda H, Kumagai H, Takegawa K. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 2010; 86:403-17. [DOI: 10.1007/s00253-010-2447-0] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/07/2010] [Accepted: 01/09/2010] [Indexed: 01/08/2023]
|
36
|
Xuan Y, Zhou X, Zhang W, Zhang X, Song Z, Zhang Y. An upstream activation sequence controls the expression of AOX1 gene in Pichia pastoris. FEMS Yeast Res 2009; 9:1271-82. [PMID: 19788557 DOI: 10.1111/j.1567-1364.2009.00571.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alcohol oxidase I gene (AOX1) promoter (P(AOX1)) is a key promoter in the methylotrophic yeast Pichia pastoris. To identify the cis-acting element in the AOX1 promoter, we constructed expression plasmids in which the green fluorescent protein (GFP) gene coding region was fused to a series of internal deletion mutants of the AOX1 promoter. By analyzing the expression and transcription level of GFP by each plasmid, we identified a positive cis-element, Region D, which is located between positions -638 and -510 of the AOX1 promoter. This region contains an invert repeat-like sequence GTGGGGTCAAATAGTTTCATGTTCCCCAA that is similar to the upstream activation sequence 1 (UAS1) of alcohol dehydrogenase II gene (ADH2) in Saccharomyces cerevisiae. The inverted repeat sequence in the UAS1 is known to contain the binding site for alcohol dehydrogenase II synthesis regulator (Adr1p). When three tandem copies of Region D were inserted into the Region D-deleted AOX1 promoter, the expression of GFP at the protein level and the mRNA level increased to 157% and 135% of the wild type, respectively. An electrophoretic mobility shift assay indicated that Region D could form a DNA-protein complex with cell extracts under methanol-induced and glucose/methanol-repressed conditions. These data suggest that Region D may function as a cis-acting regulatory element in the AOX1 promoter to positively regulate the expression of AOX1.
Collapse
Affiliation(s)
- Yaoji Xuan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | | | | | | | | | | |
Collapse
|
37
|
Wang Y, Xuan Y, Zhang P, Jiang X, Ni Z, Tong L, Zhou X, Lin L, Ding J, Zhang Y. Targeting expression of the catalytic domain of the kinase insert domain receptor (KDR) in the peroxisomes ofPichia pastoris. FEMS Yeast Res 2009; 9:732-41. [DOI: 10.1111/j.1567-1364.2009.00521.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
38
|
SOD1, a new Kluyveromyces lactis helper gene for heterologous protein secretion. Appl Environ Microbiol 2008; 74:7130-7. [PMID: 18836000 DOI: 10.1128/aem.00955-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bottlenecks in protein expression and secretion often limit the development of industrial processes. By manipulating chaperone and foldase levels, improvements in yeast secretion were found for a number of proteins. Recently, sustained endoplasmic reticulum stress, occurring due to recombinant protein production, was reported to cause oxidative stress in yeast. Saccharomyces cerevisiae cells are able to trigger an adaptive response to oxidative-stress conditions, resulting in the upregulation of both primary and secondary antioxidant defenses. SOD1 encodes for a superoxide dismutase that catalyzes the dismutation of superoxide anions (O(2)(-)) into oxygen and hydrogen peroxide. It is a Cu(2+)/Zn(2+) metalloenzyme and represents an important antioxidant defense in nearly all aerobic and aerotolerant organisms. We found that overexpression of the Kluyveromyces lactis SOD1 (KlSOD1) gene was able to increase the production of two different heterologous proteins, human serum albumin (HSA) and glucoamylase from Arxula adeninivorans. In addition, KlSOD1 overexpression led to a significant decrease in the amount of reactive oxygen species (ROS) that originated during protein production. The yield of HSA also increased when K. lactis cells were grown in the presence of the antioxidant agent ascorbic acid and decreased when cells were challenged with menadione, a ROS generator compound. Moreover, we observed that, in high-osmolarity medium, cells overexpressing KlSOD1 showed higher growth rates than control cells. Our results thus further support the notion that the production of some heterologous proteins may be improved by manipulating genes involved in general stress responses.
Collapse
|
39
|
A simple structured model for recombinant IDShr protein production in Pichia pastoris. Biotechnol Lett 2008; 30:1727-34. [DOI: 10.1007/s10529-008-9750-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 04/29/2008] [Accepted: 05/02/2008] [Indexed: 12/22/2022]
|
40
|
Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodríguez-Carmona E, Baumann K, Giuliani M, Parrilli E, Branduardi P, Lang C, Porro D, Ferrer P, Tutino ML, Mattanovich D, Villaverde A. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact 2008; 7:11. [PMID: 18394160 PMCID: PMC2322954 DOI: 10.1186/1475-2859-7-11] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 04/04/2008] [Indexed: 11/17/2022] Open
Abstract
Different species of microorganisms including yeasts, filamentous fungi and bacteria have been used in the past 25 years for the controlled production of foreign proteins of scientific, pharmacological or industrial interest. A major obstacle for protein production processes and a limit to overall success has been the abundance of misfolded polypeptides, which fail to reach their native conformation. The presence of misfolded or folding-reluctant protein species causes considerable stress in host cells. The characterization of such adverse conditions and the elicited cell responses have permitted to better understand the physiology and molecular biology of conformational stress. Therefore, microbial cell factories for recombinant protein production are depicted here as a source of knowledge that has considerably helped to picture the extremely rich landscape of in vivo protein folding, and the main cellular players of this complex process are described for the most important cell factories used for biotechnological purposes.
Collapse
Affiliation(s)
- Brigitte Gasser
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Vienna, Austria
| | | | - Ursula Rinas
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Martin Dragosits
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Vienna, Austria
| | - Escarlata Rodríguez-Carmona
- Autonomous University of Barcelona, Institute for Biotechnology and Biomedicine, Department of Genetics and Microbiology, and CIBER-BBN Network in Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| | - Kristin Baumann
- Autonomous University of Barcelona, Department of Chemical Engineering, Barcelona, Spain
| | - Maria Giuliani
- University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | - Ermenegilda Parrilli
- University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | - Paola Branduardi
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Milan, Italy
| | - Christine Lang
- Technical University Berlin, Faculty III, Institute for Microbiology and Genetics, Berlin, Germany
| | - Danilo Porro
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Milan, Italy
| | - Pau Ferrer
- Autonomous University of Barcelona, Department of Chemical Engineering, Barcelona, Spain
| | - Maria Luisa Tutino
- University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | - Diethard Mattanovich
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Vienna, Austria
| | - Antonio Villaverde
- Autonomous University of Barcelona, Institute for Biotechnology and Biomedicine, Department of Genetics and Microbiology, and CIBER-BBN Network in Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| |
Collapse
|
41
|
Branduardi P, Smeraldi C, Porro D. Metabolically engineered yeasts: 'potential' industrial applications. J Mol Microbiol Biotechnol 2008; 15:31-40. [PMID: 18349548 DOI: 10.1159/000111990] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Industrial biotechnology and metabolic engineering can offer an innovative approach to solving energy and pollution problems. The potential industrial applications of yeast are reviewed here.
Collapse
Affiliation(s)
- Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | |
Collapse
|
42
|
Improving intracellular production of recombinant protein in Pichia pastoris using an optimized preinduction glycerol-feeding scheme. Appl Microbiol Biotechnol 2008; 78:257-64. [PMID: 18183387 DOI: 10.1007/s00253-007-1315-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/02/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
High-cell-density production of recombinant growth hormone of Lateolabrax japonicus (rljGH) expressed intracellularly in Pichia pastoris was investigated. In the regular strategy of induction at a cell density of 160 g l(-1), short duration of intracellular rljGH accumulation (17 h) resulted in a low final cell density of 226 g l(-1). Thus, a novel strategy of induction at a cell density of 320 g l(-1) was investigated. In this strategy, the preinduction glycerol-feeding scheme had a significant effect on the post-induction production. Constant glycerol feeding led to a decrease of the specific rljGH production and specific production rate because of low preinduction specific growth rate. This decrease was avoided by exponential glycerol feeding to maintain a preinduction specific growth rate of 0.16 h(-1). The results from exponential glycerol feeding indicated that the rljGH production depended on the preinduction specific growth rate. Moreover, mixed feeding of methanol and glycerol during induction improved the specific production rate to 0.07 mg g(-1) h(-1) from 0.043 mg g(-1) h(-1). Consequently, both high cell density (428 g l(-1)) and high rljGH production could be achieved by the novel strategy: growing the cells at the specific growth rate of 0.16 h(-1) to the cell density of 320 g l(-1) and inducing the expression by mixed feeding.
Collapse
|
43
|
Ni Z, Zhou X, Sun X, Wang Y, Zhang Y. Decrease of hirudin degradation by deleting theKEX1 gene in recombinantPichia pastoris. Yeast 2008; 25:1-8. [DOI: 10.1002/yea.1542] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
44
|
Biosynthesis of vitamin C by yeast leads to increased stress resistance. PLoS One 2007; 2:e1092. [PMID: 17971855 PMCID: PMC2034532 DOI: 10.1371/journal.pone.0001092] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 10/09/2007] [Indexed: 01/26/2023] Open
Abstract
Background In industrial large scale bio-reactions micro-organisms are generally exposed to a variety of environmental stresses, which might be detrimental for growth and productivity. Reactive oxygen species (ROS) play a key role among the common stress factors–directly-through incomplete reduction of O2 during respiration, or indirectly-caused by other stressing factors. Vitamin C or L-ascorbic acid acts as a scavenger of ROS, thereby potentially protecting cells from harmful oxidative products. While most eukaryotes synthesize ascorbic acid, yeast cells produce erythro-ascorbic acid instead. The actual importance of this antioxidant substance for the yeast is still a subject of scientific debate. Methodology/Principal Findings We set out to enable Saccharomyces cerevisiae cells to produce ascorbic acid intracellularly to protect the cells from detrimental effects of environmental stresses. We report for the first time the biosynthesis of L-ascorbic acid from D-glucose by metabolically engineered yeast cells. The amount of L-ascorbic acid produced leads to an improved robustness of the recombinant cells when they are subjected to stress conditions as often met during industrial fermentations. Not only resistance against oxidative agents as H2O2 is increased, but also the tolerance to low pH and weak organic acids at low pH is increased. Conclusions/Significance This platform provides a new tool whose commercial applications may have a substantial impact on bio-industrial production of Vitamin C. Furthermore, we propose S. cerevisiae cells endogenously producing vitamin C as a cellular model to study the genesis/protection of ROS as well as genotoxicity.
Collapse
|
45
|
Surribas A, Stahn R, Montesinos JL, Enfors SO, Valero F, Jahic M. Production of a Rhizopus oryzae lipase from Pichia pastoris using alternative operational strategies. J Biotechnol 2007; 130:291-9. [PMID: 17544535 DOI: 10.1016/j.jbiotec.2007.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 04/12/2007] [Accepted: 04/19/2007] [Indexed: 10/23/2022]
Abstract
Different cultivation strategies have been compared for the production of Rhizopus oryzae lipase (ROL) from Pichia pastoris. Several drawbacks have been found using a methanol non-limited fed-batch. On the one hand, oxygen limitation appeared at early cell dry weights and, on the other hand, high cell death was observed. A temperature limited fed-batch has been proposed to solve both problems. However, in our case study a methanol non-limited fed-batch results in better productivities. Finally, a lower salt medium were used to overcome cell death problems and a temperature limited fed-batch was applied thereafter to solve oxygen transfer limitations. This combined strategy has resulted in lower productivities when compared to a methanol non-limited fed-batch. However the culture could be longer prolonged and a 1.3-fold purer final product was obtained mainly due to cell death reduction.
Collapse
Affiliation(s)
- Anna Surribas
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|