1
|
Li W, Gao W, Yan S, Yang L, Zhu Q, Chu H. Gut Microbiota as Emerging Players in the Development of Alcohol-Related Liver Disease. Biomedicines 2024; 13:74. [PMID: 39857657 PMCID: PMC11761646 DOI: 10.3390/biomedicines13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The global incidence and mortality rates of alcohol-related liver disease are on the rise, reflecting a growing health concern worldwide. Alcohol-related liver disease develops due to a complex interplay of multiple reasons, including oxidative stress generated during the metabolism of ethanol, immune response activated by immunogenic substances, and subsequent inflammatory processes. Recent research highlights the gut microbiota's significant role in the progression of alcohol-related liver disease. In patients with alcohol-related liver disease, the relative abundance of pathogenic bacteria, including Enterococcus faecalis, increases and is positively correlated with the level of severity exhibited by alcohol-related liver disease. Supplement probiotics like Lactobacillus, as well as Bifidobacterium, have been found to alleviate alcohol-related liver disease. The gut microbiota is speculated to trigger specific signaling pathways, influence metabolite profiles, and modulate immune responses in the gut and liver. This research aimed to investigate the role of gut microorganisms in the onset and advancement of alcohol-related liver disease, as well as to uncover the underlying mechanisms by which the gut microbiota may contribute to its development. This review outlines current treatments for reversing gut dysbiosis, including probiotics, fecal microbiota transplantation, and targeted phage therapy. Particularly, targeted therapy will be a vital aspect of future alcohol-related liver disease treatment. It is to be hoped that this article will prove beneficial for the treatment of alcohol-related liver disease.
Collapse
Affiliation(s)
- Wei Li
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China;
| | - Wenkang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Shengqi Yan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Qingjing Zhu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China;
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| |
Collapse
|
2
|
Lu N, Wei M, Yang X, Li Y, Sun H, Yan Q, Zhang H, He J, Ma J, Xia M, Zhang C. Growth-coupled production of L-isoleucine in Escherichia coli via metabolic engineering. Metab Eng 2024; 86:181-193. [PMID: 39413988 DOI: 10.1016/j.ymben.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
L-isoleucine, an essential amino acid, is widely used in the pharmaceutical and food industries. However, the current production efficiency is insufficient to meet the increasing demands. In this study, we aimed to develop an efficient L-isoleucine-producing strain of Escherichia coli. First, accumulation of L-isoleucine was achieved by employing feedback-resistant enzymes. Next, a growth-coupled L-isoleucine synthetic pathway was established by introducing the metA-metB-based α-ketobutyrate-generating bypass, which significantly increased L-isoleucine production to 7.4 g/L. Upon employing an activity-improved cystathionine γ-synthase mutant obtained from adaptive laboratory evolution, L-isoleucine production further increased to 8.5 g/L. Subsequently, the redox flux was improved by bypassing the NADPH-dependent aspartate aminotransferase pathway and employing the NADH-dependent pathway and transhydrogenase. Finally, L-isoleucine efflux was enhanced by modifying the transport system. After fed-batch fermentation for 48 h, the resultant strain, ISO-12, reached an L-isoleucine production titer of 51.5 g/L and yield of 0.29 g/g glucose. The strains developed in this study achieved a higher L-isoleucine production efficiency than those reported previously. These strategies will aid in the development of cell factories that produce L-isoleucine and related products.
Collapse
Affiliation(s)
- Nan Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Minhua Wei
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xuejing Yang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yingzi Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hao Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qianyu Yan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haibin Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jilong He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jie Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Chenglin Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
3
|
Reifenberg P, Zimmer A. Branched-chain amino acids: physico-chemical properties, industrial synthesis and role in signaling, metabolism and energy production. Amino Acids 2024; 56:51. [PMID: 39198298 PMCID: PMC11358235 DOI: 10.1007/s00726-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Branched-chain amino acids (BCAAs)-leucine (Leu), isoleucine (Ile), and valine (Val)-are essential nutrients with significant roles in protein synthesis, metabolic regulation, and energy production. This review paper offers a detailed examination of the physico-chemical properties of BCAAs, their industrial synthesis, and their critical functions in various biological processes. The unique isomerism of BCAAs is presented, focusing on analytical challenges in their separation and quantification as well as their solubility characteristics, which are crucial for formulation and purification applications. The industrial synthesis of BCAAs, particularly using bacterial strains like Corynebacterium glutamicum, is explored, alongside methods such as genetic engineering aimed at enhancing production, detailing the enzymatic processes and specific precursors. The dietary uptake, distribution, and catabolism of BCAAs are reviewed as fundamental components of their physiological functions. Ultimately, their multifaceted impact on signaling pathways, immune function, and disease progression is discussed, providing insights into their profound influence on muscle protein synthesis and metabolic health. This comprehensive analysis serves as a resource for understanding both the basic and complex roles of BCAAs in biological systems and their industrial application.
Collapse
Affiliation(s)
- Philipp Reifenberg
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich‑Weiss‑Strasse 4, 64287, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
4
|
Wang L, Guo Y, Shen Y, Yang K, Cai X, Zhang B, Liu Z, Zheng Y. Microbial production of sulfur-containing amino acids using metabolically engineered Escherichia coli. Biotechnol Adv 2024; 73:108353. [PMID: 38593935 DOI: 10.1016/j.biotechadv.2024.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
L-Cysteine and L-methionine, as the only two sulfur-containing amino acids among the canonical 20 amino acids, possess distinct characteristics and find wide-ranging industrial applications. The use of different organisms for fermentative production of L-cysteine and L-methionine is gaining increasing attention, with Escherichia coli being extensively studied as the preferred strain. This preference is due to its ability to grow rapidly in cost-effective media, its robustness for industrial processes, the well-characterized metabolism, and the availability of molecular tools for genetic engineering. This review focuses on the genetic and molecular mechanisms involved in the production of these sulfur-containing amino acids in E. coli. Additionally, we systematically summarize the metabolic engineering strategies employed to enhance their production, including the identification of new targets, modulation of metabolic fluxes, modification of transport systems, dynamic regulation strategies, and optimization of fermentation conditions. The strategies and design principles discussed in this review hold the potential to facilitate the development of strain and process engineering for direct fermentation of sulfur-containing amino acids.
Collapse
Affiliation(s)
- Lijuan Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yingying Guo
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yizhou Shen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Kun Yang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| |
Collapse
|
5
|
Yin L, Zhou Y, Ding N, Fang Y. Recent Advances in Metabolic Engineering for the Biosynthesis of Phosphoenol Pyruvate-Oxaloacetate-Pyruvate-Derived Amino Acids. Molecules 2024; 29:2893. [PMID: 38930958 PMCID: PMC11206799 DOI: 10.3390/molecules29122893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The phosphoenol pyruvate-oxaloacetate-pyruvate-derived amino acids (POP-AAs) comprise native intermediates in cellular metabolism, within which the phosphoenol pyruvate-oxaloacetate-pyruvate (POP) node is the switch point among the major metabolic pathways existing in most living organisms. POP-AAs have widespread applications in the nutrition, food, and pharmaceutical industries. These amino acids have been predominantly produced in Escherichia coli and Corynebacterium glutamicum through microbial fermentation. With the rapid increase in market requirements, along with the global food shortage situation, the industrial production capacity of these two bacteria has encountered two bottlenecks: low product conversion efficiency and high cost of raw materials. Aiming to push forward the update and upgrade of engineered strains with higher yield and productivity, this paper presents a comprehensive summarization of the fundamental strategy of metabolic engineering techniques around phosphoenol pyruvate-oxaloacetate-pyruvate node for POP-AA production, including L-tryptophan, L-tyrosine, L-phenylalanine, L-valine, L-lysine, L-threonine, and L-isoleucine. Novel heterologous routes and regulation methods regarding the carbon flux redistribution in the POP node and the formation of amino acids should be taken into consideration to improve POP-AA production to approach maximum theoretical values. Furthermore, an outlook for future strategies of low-cost feedstock and energy utilization for developing amino acid overproducers is proposed.
Collapse
Affiliation(s)
- Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanan Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Nana Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yu Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
6
|
Wang L, Yao J, Tu T, Yao B, Zhang J. Heterotrophic and autotrophic production of L-isoleucine and L-valine by engineered Cupriavidus necator H16. BIORESOURCE TECHNOLOGY 2024; 398:130538. [PMID: 38452952 DOI: 10.1016/j.biortech.2024.130538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Advancement in commodity chemical production from carbon dioxide (CO2) offers a promising path towards sustainable development goal. Cupriavidus necator is an ideal host to convert CO2 into high-value chemicals, thereby achieving this target. Here, C. necator was engineered for heterotrophic and autotrophic production of L-isoleucine and L-valine. Citramalate synthase was introduced to simplify isoleucine synthesis pathway. Blocking poly-hydroxybutyrate biosynthesis resulted in significant accumulation of isoleucine and valine. Besides, strategies like key enzymes screening and overexpressing, reducing power balancing and feedback inhibition removing were applied in strain modification. Finally, the maximum isoleucine and valine titers of the best isoleucine-producing and valine-producing strains reached 857 and 972 mg/L, respectively, in fed-batch fermentation using glucose as substrate, and 105 and 319 mg/L, respectively, in autotrophic fermentation using CO2 as substrate. This study provides a feasible solution for developing C. necator as a microbial factory to produce amino acids from CO2.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
7
|
Hao Y, Pan X, You J, Li G, Xu M, Rao Z. Microbial production of branched chain amino acids: Advances and perspectives. BIORESOURCE TECHNOLOGY 2024; 397:130502. [PMID: 38417463 DOI: 10.1016/j.biortech.2024.130502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Branched-chain amino acids (BCAAs) such as L-valine, L-leucine, and L-isoleucine are widely used in food and feed. To comply with sustainable development goals, commercial production of BCAAs has been completely replaced with microbial fermentation. However, the efficient production of BCAAs by microorganisms remains a serious challenge due to their staggered metabolic networks and cell growth. To overcome these difficulties, systemic metabolic engineering has emerged as an effective and feasible strategy for the biosynthesis of BCAA. This review firstly summarizes the research advances in the microbial synthesis of BCAAs and representative engineering strategies. Second, systematic methods, such as high-throughput screening, adaptive laboratory evolution, and omics analysis, can be used to analyses the synthesis of BCAAs at the whole-cell level and further improve the titer of target chemicals. Finally, new tools and engineering strategies that may increase the production output and development direction of the microbial production of BCAAs are discussed.
Collapse
Affiliation(s)
- Yanan Hao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guomin Li
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Wang C, Peng Y, Zhang Y, Xu J, Jiang S, Wang L, Yin Y. The biological functions and metabolic pathways of valine in swine. J Anim Sci Biotechnol 2023; 14:135. [PMID: 37805513 PMCID: PMC10559503 DOI: 10.1186/s40104-023-00927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/03/2023] [Indexed: 10/09/2023] Open
Abstract
Valine is an essential amino acid and a type of branched-chain amino acid. Due to the involvement of branched-chain amino acids in various metabolic pathways, there has been a surge of interests in valine nutrition and its role in animal physiology. In pigs, the interactions between valine and other branched-chain amino acids or aromatic amino acids are complex. In this review, we delve into the interaction mechanism, metabolic pathways, and biological functions of valine. Appropriate valine supplementation not only enhances growth and reproductive performances, but also modulates gut microbiota and immune functions. Based on past observations and interpretations, we provide recommended feed levels of valine for weaned piglets, growing pigs, gilts, lactating sows, barrows and entire males. The summarized valine nutrient requirements for pigs at different stages offer valuable insights for future research and practical applications in animal husbandry.
Collapse
Affiliation(s)
- Chuni Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yao Peng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yiru Zhang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Juan Xu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Sheng Jiang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Leli Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
9
|
Hao Y, Pan X, Li G, You J, Zhang H, Yan S, Xu M, Rao Z. Construction of a plasmid-free L-leucine overproducing Escherichia coli strain through reprogramming of the metabolic flux. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:145. [PMID: 37775757 PMCID: PMC10541719 DOI: 10.1186/s13068-023-02397-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND L-Leucine is a high-value amino acid with promising applications in the medicine and feed industries. However, the complex metabolic network and intracellular redox imbalance in fermentative microbes limit their efficient biosynthesis of L-leucine. RESULTS In this study, we applied rational metabolic engineering and a dynamic regulation strategy to construct a plasmid-free, non-auxotrophic Escherichia coli strain that overproduces L-leucine. First, the L-leucine biosynthesis pathway was strengthened through multi-step rational metabolic engineering. Then, a cooperative cofactor utilization strategy was designed to ensure redox balance for L-leucine production. Finally, to further improve the L-leucine yield, a toggle switch for dynamically controlling sucAB expression was applied to accurately regulate the tricarboxylic acid cycle and the carbon flux toward L-leucine biosynthesis. Strain LEU27 produced up to 55 g/L of L-leucine, with a yield of 0.23 g/g glucose. CONCLUSIONS The combination of strategies can be applied to the development of microbial platforms that produce L-leucine and its derivatives.
Collapse
Affiliation(s)
- Yanan Hao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Guomin Li
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Hengwei Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Sihan Yan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China.
| |
Collapse
|
10
|
McCann JR, Rawls JF. Essential Amino Acid Metabolites as Chemical Mediators of Host-Microbe Interaction in the Gut. Annu Rev Microbiol 2023; 77:479-497. [PMID: 37339735 PMCID: PMC11188676 DOI: 10.1146/annurev-micro-032421-111819] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Amino acids are indispensable substrates for protein synthesis in all organisms and incorporated into diverse aspects of metabolic physiology and signaling. However, animals lack the ability to synthesize several of them and must acquire these essential amino acids from their diet or perhaps their associated microbial communities. The essential amino acids therefore occupy a unique position in the health of animals and their relationships with microbes. Here we review recent work connecting microbial production and metabolism of essential amino acids to host biology, and the reciprocal impacts of host metabolism of essential amino acids on their associated microbes. We focus on the roles of the branched-chain amino acids (valine, leucine, and isoleucine) and tryptophan on host-microbe communication in the intestine of humans and other vertebrates. We then conclude by highlighting research questions surrounding the less-understood aspects of microbial essential amino acid synthesis in animal hosts.
Collapse
Affiliation(s)
- Jessica R McCann
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA; ,
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA; ,
| |
Collapse
|
11
|
Hao Z, Yao J, Zhao X, Liu R, Chang B, Shao H. Preliminary observational study of metabonomics in patients with early and late-onset type 2 diabetes mellitus based on UPLC-Q-TOF/MS. Sci Rep 2023; 13:14579. [PMID: 37666906 PMCID: PMC10477211 DOI: 10.1038/s41598-023-41883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
Non-targeted metabonomic techniques were used to explore changes in metabolic profiles of patients with early onset and late onset T2DM. Newly diagnosed early onset T2DM (EarT2DM) and late onset T2DM (LatT2DM) patients were recruited, and the matched age, sex, and low-risk population of diabetes mellitus were selected as the control group. 117 adults were recruited in the study, including 21 in EarT2DM group with 25 in corresponding control group (heaCG1), and 48 in LatT2DM group with 23 in corresponding control group (heaCG2). There were 15 relatively distinctive metabolic variants in EarT2DM group and 10 distinctive metabolic variants in LatT2DM group. The same changing pathways mainly involved protein, aminoacyl-tRNA biosynthesis, fatty acid biosynthesis, taurine metabolism, arginine biosynthesis, lysosome and mTOR signaling pathway. The independent disturbed pathways in EarT2DM included branched chain amino acids, alanine, aspartate and glutamate metabolism. The independent disturbed pathways in LatT2DM involved linoleic acid metabolism, biosynthesis of unsaturated fatty acids, arginine, proline metabolism and FoxO signaling pathway. T2DM patients at different diagnosed ages may have different metabolite profiles. These metabolic differences need to be further verified.
Collapse
Affiliation(s)
- Zhaohu Hao
- Metabolic Disease Management Center of Endocrinology Department, Tianjin 4th Central Hospital, The 4th Center Clinical College of Tianjin Medical University, No.1 Zhongshan Road, Tianjin, 300140, China
| | - Junxin Yao
- Metabolic Disease Management Center of Endocrinology Department, Tianjin 4th Central Hospital, The 4th Center Clinical College of Tianjin Medical University, No.1 Zhongshan Road, Tianjin, 300140, China
| | - Xiaoying Zhao
- Metabolic Disease Management Center of Endocrinology Department, Tianjin 4th Central Hospital, The 4th Center Clinical College of Tianjin Medical University, No.1 Zhongshan Road, Tianjin, 300140, China
| | - Ran Liu
- Metabolic Disease Management Center of Endocrinology Department, Tianjin 4th Central Hospital, The 4th Center Clinical College of Tianjin Medical University, No.1 Zhongshan Road, Tianjin, 300140, China
| | - Baocheng Chang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China.
| | - Hailin Shao
- Metabolic Disease Management Center of Endocrinology Department, Tianjin 4th Central Hospital, The 4th Center Clinical College of Tianjin Medical University, No.1 Zhongshan Road, Tianjin, 300140, China.
| |
Collapse
|
12
|
Ding X, Yang W, Du X, Chen N, Xu Q, Wei M, Zhang C. High-level and -yield production of L-leucine in engineered Escherichia coli by multistep metabolic engineering. Metab Eng 2023; 78:128-136. [PMID: 37286072 DOI: 10.1016/j.ymben.2023.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/19/2023] [Accepted: 06/04/2023] [Indexed: 06/09/2023]
Abstract
L-leucine is an essential amino acid widely used in food and pharmaceutical industries. However, the relatively low production efficiency limits its large-scale application. In this study, we rationally developed an efficient L-leucine-producing Escherichia coli strain. Initially, the L-leucine synthesis pathway was enhanced by overexpressing feedback-resistant 2-isopropylmalate synthase and acetohydroxy acid synthase both derived from Corynebacterium glutamicum, along with two other native enzymes. Next, the pyruvate and acetyl-CoA pools were enriched by deleting competitive pathways, employing the nonoxidative glycolysis pathway, and dynamically modulating the citrate synthase activity, which significantly promoted the L-leucine production and yield to 40.69 g/L and 0.30 g/g glucose, respectively. Then, the redox flux was improved by substituting the native NADPH-dependent acetohydroxy acid isomeroreductase, branched chain amino acid transaminase, and glutamate dehydrogenase with their NADH-dependent equivalents. Finally, L-leucine efflux was accelerated by precise overexpression of the exporter and deletion of the transporter. Under fed-batch conditions, the final strain LXH-21 produced 63.29 g/L of L-leucine, with a yield and productivity of 0.37 g/g glucose and 2.64 g/(L h), respectively. To our knowledge, this study achieved the highest production efficiency of L-leucine to date. The strategies presented here will be useful for engineering E. coli strains for producing L-leucine and related products on an industrial scale.
Collapse
Affiliation(s)
- Xiaohu Ding
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenjun Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiaobin Du
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ning Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qingyang Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Minhua Wei
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Chenglin Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
13
|
Wang S, Lu L, Song T, Xu X, Yu J, Liu T. Optimization of Cordyceps sinensis fermentation Marsdenia tenacissima process and the differences of metabolites before and after fermentation. Heliyon 2022; 8:e12586. [PMID: 36636205 PMCID: PMC9830164 DOI: 10.1016/j.heliyon.2022.e12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/28/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
In this paper, we explored the interaction of factors which influenced the Cordyceps sinensis fermentation Marsdenia tenacissima (Roxb.) Wight et Arn, a Dai (a national minority of China) medicine, and the optimal fermentation conditions. The differences of C. sinensis metabolites in normal state (CN) and products of two-way liquid fermentation of C. sinensis and Marsdenia tenacissima (CM) and Marsdenia tenacissima (MT). The interactive effect of factors was analyzed and the best conditions are obtained through the box-behnken design (BBD) in response surface methodology (RSM). All metabolites were determined by ultra high performance liquid chromatography quadrupole time of flight mass spectrometer (UHPLC-Q-TOF-MS), analyzed and identified by metabonomics technology. Results showed that the optimum fermentation conditions were the concentration of raw medicinal materials is 160 g/L, the fermentation time is 6 days, the inoculation volume is 9.5%, the rotating speed is 170 rpm. 197 metabolites were identified in both positive ion and negative ion. 119 metabolites were significantly different between CN and CM. 43 metabolites were significantly different between CM and MT. Differential metabolic pathways were enriched. In conclusion, this paper optimizes the bidirectional fermentation process of M. tenacissima and C. sinensis through response surface methodology, and analyzes the changes of components from the level of metabonomics, so as to provide reference for exploring medicinal fungi fermentation of traditional Chinese medicine.
Collapse
Affiliation(s)
- Siqi Wang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Lin Lu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Tianyuan Song
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Xinxin Xu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Jie Yu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China,Corresponding author.
| |
Collapse
|
14
|
Sheremetieva M, Anufriev K, Khlebodarova T, Kolchanov N, Yanenko A. Rational metabolic engineering of Corynebacterium glutamicum to create a producer of L-valine. Vavilovskii Zhurnal Genet Selektsii 2022; 26:743-757. [PMID: 36694718 PMCID: PMC9834717 DOI: 10.18699/vjgb-22-90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/06/2023] Open
Abstract
L-Valine is one of the nine amino acids that cannot be synthesized de novo by higher organisms and must come from food. This amino acid not only serves as a building block for proteins, but also regulates protein and energy metabolism and participates in neurotransmission. L-Valine is used in the food and pharmaceutical industries, medicine and cosmetics, but primarily as an animal feed additive. Adding L-valine to feed, alone or mixed with other essential amino acids, allows for feeds with lower crude protein content, increases the quality and quantity of pig meat and broiler chicken meat, as well as improves reproductive functions of farm animals. Despite the fact that the market for L-valine is constantly growing, this amino acid is not yet produced in our country. In modern conditions, the creation of strains-producers and organization of L-valine production are especially relevant for Russia. One of the basic microorganisms most commonly used for the creation of amino acid producers, along with Escherichia coli, is the soil bacterium Corynebacterium glutamicum. This review is devoted to the analysis of the main strategies for the development of L- valine producers based on C. glutamicum. Various aspects of L-valine biosynthesis in C. glutamicum are reviewed: process biochemistry, stoichiometry and regulation, enzymes and their corresponding genes, export and import systems, and the relationship of L-valine biosynthesis with central cell metabolism. Key genetic elements for the creation of C. glutamicum-based strains-producers are identified. The use of metabolic engineering to enhance L-valine biosynthesis reactions and to reduce the formation of byproducts is described. The prospects for improving strains in terms of their productivity and technological characteristics are shown. The information presented in the review can be used in the production of producers of other amino acids with a branched side chain, namely L-leucine and L-isoleucine, as well as D-pantothenate.
Collapse
Affiliation(s)
| | - K.E. Anufriev
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, Moscow, Russia
| | - T.M. Khlebodarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaKurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - N.A. Kolchanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaKurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - A.S. Yanenko
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, Moscow, Russia
| |
Collapse
|
15
|
Golubyatnikov V, Akinshin A, Ayupova N, Minushkina L. Stratifications and foliations in phase portraits of gene network models. Vavilovskii Zhurnal Genet Selektsii 2022; 26:758-764. [PMID: 36694713 PMCID: PMC9837163 DOI: 10.18699/vjgb-22-91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/06/2023] Open
Abstract
Periodic processes of gene network functioning are described with good precision by periodic trajectories (limit cycles) of multidimensional systems of kinetic-type differential equations. In the literature, such systems are often called dynamical, they are composed according to schemes of positive and negative feedback between components of these networks. The variables in these equations describe concentrations of these components as functions of time. In the preparation of numerical experiments with such mathematical models, it is useful to start with studies of qualitative behavior of ensembles of trajectories of the corresponding dynamical systems, in particular, to estimate the highest likelihood domain of the initial data, to solve inverse problems of parameter identification, to list the equilibrium points and their characteristics, to localize cycles in the phase portraits, to construct stratification of the phase portraits to subdomains with different qualities of trajectory behavior, etc. Such an à priori geometric analysis of the dynamical systems is quite analogous to the basic section "Investigation of functions and plot of their graphs" of Calculus, where the methods of qualitative studies of shapes of curves determined by equations are exposed. In the present paper, we construct ensembles of trajectories in phase portraits of some dynamical systems. These ensembles are 2-dimensional surfaces invariant with respect to shifts along the trajectories. This is analogous to classical construction in analytic mechanics, i. e. the level surfaces of motion integrals (energy, kinetic moment, etc.). Such surfaces compose foliations in phase portraits of dynamical systems of Hamiltonian mechanics. In contrast with this classical mechanical case, the foliations considered in this paper have singularities: all their leaves have a non-empty intersection, they contain limit cycles on their boundaries. Description of the phase portraits of these systems at the level of their stratifications, and that of ensembles of trajectories allows one to construct more realistic gene network models on the basis of methods of statistical physics and the theory of stochastic differential equations.
Collapse
Affiliation(s)
- V.P. Golubyatnikov
- Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaNovosibirsk State University, Novosibirsk, Russia
| | - A.A. Akinshin
- Huawei Russian Research Institute, St. Petersburg, Russia
| | - N.B. Ayupova
- Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaNovosibirsk State University, Novosibirsk, Russia
| | | |
Collapse
|
16
|
Bayaraa T, Gaete J, Sutiono S, Kurz J, Lonhienne T, Harmer JR, Bernhardt PV, Sieber V, Guddat L, Schenk G. Dihydroxy‐Acid Dehydratases From Pathogenic Bacteria: Emerging Drug Targets to Combat Antibiotic Resistance. Chemistry 2022; 28:e202200927. [PMID: 35535733 PMCID: PMC9543379 DOI: 10.1002/chem.202200927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 11/30/2022]
Abstract
There is an urgent global need for the development of novel therapeutics to combat the rise of various antibiotic‐resistant superbugs. Enzymes of the branched‐chain amino acid (BCAA) biosynthesis pathway are an attractive target for novel anti‐microbial drug development. Dihydroxy‐acid dehydratase (DHAD) is the third enzyme in the BCAA biosynthesis pathway. It relies on an Fe−S cluster for catalytic activity and has recently also gained attention as a catalyst in cell‐free enzyme cascades. Two types of Fe−S clusters have been identified in DHADs, i.e. [2Fe−2S] and [4Fe−4S], with the latter being more prone to degradation in the presence of oxygen. Here, we characterise two DHADs from bacterial human pathogens, Staphylococcus aureus and Campylobacter jejuni (SaDHAD and CjDHAD). Purified SaDHAD and CjDHAD are virtually inactive, but activity could be reversibly reconstituted in vitro (up to ∼19,000‐fold increase with kcat as high as ∼6.7 s−1). Inductively‐coupled plasma‐optical emission spectroscopy (ICP‐OES) measurements are consistent with the presence of [4Fe−4S] clusters in both enzymes. N‐isopropyloxalyl hydroxamate (IpOHA) and aspterric acid are both potent inhibitors for both SaDHAD (Ki=7.8 and 51.6 μM, respectively) and CjDHAD (Ki=32.9 and 35.1 μM, respectively). These compounds thus present suitable starting points for the development of novel anti‐microbial chemotherapeutics.
Collapse
Affiliation(s)
- Tenuun Bayaraa
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Jose Gaete
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Samuel Sutiono
- Chair of Chemistry of Biogenic resources Campus Straubing for Biotechnology and Sustainability Technical University of Munich Schulgasse 16 94315 Straubing Germany
| | - Julia Kurz
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Thierry Lonhienne
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Jeffrey R. Harmer
- Centre for Advanced Imaging The University of Queensland Brisbane 4072 Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Volker Sieber
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
- Chair of Chemistry of Biogenic resources Campus Straubing for Biotechnology and Sustainability Technical University of Munich Schulgasse 16 94315 Straubing Germany
| | - Luke Guddat
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
- Sustainable Minerals Institute The University of Queensland Brisbane 4072 Australia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
17
|
Hartmann FSF, Udugama IA, Seibold GM, Sugiyama H, Gernaey KV. Digital models in biotechnology: Towards multi-scale integration and implementation. Biotechnol Adv 2022; 60:108015. [PMID: 35781047 DOI: 10.1016/j.biotechadv.2022.108015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 12/28/2022]
Abstract
Industrial biotechnology encompasses a large area of multi-scale and multi-disciplinary research activities. With the recent megatrend of digitalization sweeping across all industries, there is an increased focus in the biotechnology industry on developing, integrating and applying digital models to improve all aspects of industrial biotechnology. Given the rapid development of this field, we systematically classify the state-of-art modelling concepts applied at different scales in industrial biotechnology and critically discuss their current usage, advantages and limitations. Further, we critically analyzed current strategies to couple cell models with computational fluid dynamics to study the performance of industrial microorganisms in large-scale bioprocesses, which is of crucial importance for the bio-based production industries. One of the most challenging aspects in this context is gathering intracellular data under industrially relevant conditions. Towards comprehensive models, we discuss how different scale-down concepts combined with appropriate analytical tools can capture intracellular states of single cells. We finally illustrated how the efforts could be used to develop digitals models suitable for both cell factory design and process optimization at industrial scales in the future.
Collapse
Affiliation(s)
- Fabian S F Hartmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Isuru A Udugama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark.
| | - Gerd M Seibold
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Hirokazu Sugiyama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Krist V Gernaey
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
18
|
Wei M, Li G, Xie H, Yang W, Xu H, Han S, Wang J, Meng Y, Xu Q, Li Y, Chen N, Zhang C. Sustainable production of 4-hydroxyisoleucine with minimised carbon loss by simultaneously utilising glucose and xylose in engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2022; 354:127196. [PMID: 35460845 DOI: 10.1016/j.biortech.2022.127196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
4-Hydroxyisoleucine is a promising drug for diabetes therapy; however, microbial production of 4-hydroxyisoleucine is not economically efficient because of the carbon loss in the form of CO2. This study aims to achieve de novo synthesis of 4-hydroxyisoleucine with minimised carbon loss in engineered Escherichia coli. Initially, an L-isoleucine-producing strain, ILE-5, was established, and the 4-hydroxyisoleucine synthesis pathway was introduced. The flux toward α-ketoglutarate was enhanced by reinforcing the anaplerotic pathway and disrupting competitive pathways. Subsequently, the metabolic flux for 4-hydroxyisoleucine synthesis was redistributed by dynamically modulating the α-ketoglutarate dehydrogenase complex activity, achieving a 4-hydroxyisoleucine production of 16.53 g/L. Finally, carbon loss was minimised by employing the Weimberg pathway, resulting in a 24.5% decrease in sugar consumption and a 31.6% yield increase. The 4-hydroxyisoleucine production by strain IEOH-11 reached 29.16 g/L in a 5-L fermenter. The 4-hydroxyisoleucine yield (0.29 mol/mol sugar) and productivity (0.91 g/(L⋅h)) were higher than those previously reported.
Collapse
Affiliation(s)
- Minhua Wei
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guirong Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haixiao Xie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenjun Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haoran Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shibao Han
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junzhe Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Meng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingyang Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjun Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenglin Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
19
|
Wang Q, Gu J, Shu L, Jiang W, Mojovic L, Knezevic-Jugovic Z, Shi J, Baganz F, Lye GJ, Xiang W, Hao J. Blocking the 2,3-butanediol synthesis pathway of Klebsiella pneumoniae resulted in L-valine production. World J Microbiol Biotechnol 2022; 38:81. [PMID: 35348886 DOI: 10.1007/s11274-022-03266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Klebsiella pneumoniae is a 2,3-butanediol producing bacterium. Nevertheless, a design and construction of L-valine production strain was studied in this paper. The first step of 2,3-butanediol synthesis and branched-chain amino acid synthesis pathways share the same step of α-acetolactate synthesis from pyruvate. However, the two pathways are existing in parallel and do not interfere with each other in the wild-type strain. A knockout of budA blocked the 2,3-butanediol synthesis pathway and resulted in the L-valine production. The budA coded an α-acetolactate decarboxylase and catalyzed the acetoin formation from α-acetolactate. Furthermore, blocking the lactic acid synthesis by knocking out of ldhA, which is encoding a lactate dehydrogenase, improved the L-valine synthesis. 2-Ketoisovalerate is the precursor of L-valine, it is also an intermediate of the isobutanol synthesis pathway, while indole-3-pyruvate decarboxylase (ipdC) is responsible for isobutyraldehyde formation from 2-ketoisovalerate. Production of L-valine has been improved by knocking out of ipdC. On the other side, the ilvE, encoding a transaminase B, reversibly transfers one amino group from glutamate to α-ketoisovalerate. Overexpression of ilvE exhibited a distinct improvement of L-valine production. The brnQ encodes a branched-chain amino acid transporter, and L-valine production was further improved by disrupting brnQ. It is also revealed that weak acidic and aerobic conditions favor L-valine production. Based on these findings, L-valine production by metabolically engineered K. pneumonia was examined. In fed-batch fermentation, 22.4 g/L of L-valine was produced by the engineered K. pneumoniae ΔbudA-ΔldhA-ΔipdC-ΔbrnQ-ilvE after 55 h of cultivation, with a substrate conversion ratio of 0.27 mol/mol glucose.
Collapse
Affiliation(s)
- Qinghui Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China.,Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China
| | - Jinjie Gu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China
| | - Lin Shu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China
| | - Weiyan Jiang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China
| | - Ljiljana Mojovic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK
| | - Gary J Lye
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China.
| | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China. .,Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK.
| |
Collapse
|
20
|
The Escherichia coli Amino Acid Uptake Protein CycA: Regulation of Its Synthesis and Practical Application in l-Isoleucine Production. Microorganisms 2022; 10:microorganisms10030647. [PMID: 35336222 PMCID: PMC8948829 DOI: 10.3390/microorganisms10030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Amino acid transport systems perform important physiological functions; their role should certainly be considered in microbial production of amino acids. Typically, in the context of metabolic engineering, efforts are focused on the search for and application of specific amino acid efflux pumps. However, in addition, importers can also be used to improve the industrial process as a whole. In this study, the protein CycA, which is known for uptake of nonpolar amino acids, was characterized from the viewpoint of regulating its expression and range of substrates. We prepared a cycA-overexpressing strain and found that it exhibited high sensitivity to branched-chain amino acids and their structural analogues, with relatively increased consumption of these amino acids, suggesting that they are imported by CycA. The expression of cycA was found to be dependent on the extracellular concentrations of substrate amino acids. The role of some transcription factors in cycA expression, including of Lrp and Crp, was studied using a reporter gene construct. Evidence for the direct binding of Crp to the cycA regulatory region was obtained using a gel-retardation assay. The enhanced import of named amino acids due to cycA overexpression in the l-isoleucine-producing strain resulted in a significant reduction in the generation of undesirable impurities. This work demonstrates the importance of uptake systems with respect to their application in metabolic engineering.
Collapse
|
21
|
Biosensor for branched-chain amino acid metabolism in yeast and applications in isobutanol and isopentanol production. Nat Commun 2022; 13:270. [PMID: 35022416 PMCID: PMC8755756 DOI: 10.1038/s41467-021-27852-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Branched-chain amino acid (BCAA) metabolism fulfills numerous physiological roles and can be harnessed to produce valuable chemicals. However, the lack of eukaryotic biosensors specific for BCAA-derived products has limited the ability to develop high-throughput screens for strain engineering and metabolic studies. Here, we harness the transcriptional regulator Leu3p from Saccharomyces cerevisiae to develop a genetically encoded biosensor for BCAA metabolism. In one configuration, we use the biosensor to monitor yeast production of isobutanol, an alcohol derived from valine degradation. Small modifications allow us to redeploy Leu3p in another biosensor configuration that monitors production of the leucine-derived alcohol, isopentanol. These biosensor configurations are effective at isolating high-producing strains and identifying enzymes with enhanced activity from screens for branched-chain higher alcohol (BCHA) biosynthesis in mitochondria as well as cytosol. Furthermore, this biosensor has the potential to assist in metabolic studies involving BCAA pathways, and offers a blueprint to develop biosensors for other products derived from BCAA metabolism. There are a lack of eukaryotic biosensors specific for branched-chain amino acid (BCAA)-derived products. Here the authors report a genetically encoded biosensor for BCAA metabolism based on the Leu3p transcriptional regulator; they use this to monitor yeast production of isobutanol and isopentanol.
Collapse
|
22
|
Anti-obesity natural products and gut microbiota. Food Res Int 2022; 151:110819. [PMID: 34980371 DOI: 10.1016/j.foodres.2021.110819] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/15/2021] [Accepted: 11/21/2021] [Indexed: 12/18/2022]
Abstract
The link between gut microbiota and obesity or other metabolic syndromes is growing increasingly clear. Natural products are appreciated for their beneficial health effects in humans. Increasing investigations demonstrated that the anti-obesity bioactivities of many natural products are gut microbiota dependent. In this review, we summarized the current knowledge on anti-obesity natural products acting through gut microbiota according to their chemical structures and signaling metabolites. Manipulation of the gut microbiota by natural products may serve as a potential therapeutic strategy to prevent obesity.
Collapse
|
23
|
Yu S, Zheng B, Chen Z, Huo YX. Metabolic engineering of Corynebacterium glutamicum for producing branched chain amino acids. Microb Cell Fact 2021; 20:230. [PMID: 34952576 PMCID: PMC8709942 DOI: 10.1186/s12934-021-01721-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Branched chain amino acids (BCAAs) are widely applied in the food, pharmaceutical, and animal feed industries. Traditional chemical synthetic and enzymatic BCAAs production in vitro has been hampered by expensive raw materials, harsh reaction conditions, and environmental pollution. Microbial metabolic engineering has attracted considerable attention as an alternative method for BCAAs biosynthesis because it is environmentally friendly and delivers high yield. Main text Corynebacterium glutamicum (C. glutamicum) possesses clear genetic background and mature gene manipulation toolbox, and has been utilized as industrial host for producing BCAAs. Acetohydroxy acid synthase (AHAS) is a crucial enzyme in the BCAAs biosynthetic pathway of C. glutamicum, but feedback inhibition is a disadvantage. We therefore reviewed AHAS modifications that relieve feedback inhibition and then investigated the importance of AHAS modifications in regulating production ratios of three BCAAs. We have comprehensively summarized and discussed metabolic engineering strategies to promote BCAAs synthesis in C. glutamicum and offer solutions to the barriers associated with BCAAs biosynthesis. We also considered the future applications of strains that could produce abundant amounts of BCAAs. Conclusions Branched chain amino acids have been synthesized by engineering the metabolism of C. glutamicum. Future investigations should focus on the feedback inhibition and/or transcription attenuation mechanisms of crucial enzymes. Enzymes with substrate specificity should be developed and applied to the production of individual BCAAs. The strategies used to construct strains producing BCAAs provide guidance for the biosynthesis of other high value-added compounds.
Collapse
Affiliation(s)
- Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Bo Zheng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| |
Collapse
|
24
|
Shimizu K, Matsuoka Y. Feedback regulation and coordination of the main metabolism for bacterial growth and metabolic engineering for amino acid fermentation. Biotechnol Adv 2021; 55:107887. [PMID: 34921951 DOI: 10.1016/j.biotechadv.2021.107887] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Living organisms such as bacteria are often exposed to continuous changes in the nutrient availability in nature. Therefore, bacteria must constantly monitor the environmental condition, and adjust the metabolism quickly adapting to the change in the growth condition. For this, bacteria must orchestrate (coordinate and integrate) the complex and dynamically changing information on the environmental condition. In particular, the central carbon metabolism (CCM), monomer synthesis, and macromolecular synthesis must be coordinately regulated for the efficient growth. It is a grand challenge in bioscience, biotechnology, and synthetic biology to understand how living organisms coordinate the metabolic regulation systems. Here, we consider the integrated sensing of carbon sources by the phosphotransferase system (PTS), and the feed-forward/feedback regulation systems incorporated in the CCM in relation to the pool sizes of flux-sensing metabolites and αketoacids. We also consider the metabolic regulation of amino acid biosynthesis (as well as purine and pyrimidine biosyntheses) paying attention to the feedback control systems consisting of (fast) enzyme level regulation with (slow) transcriptional regulation. The metabolic engineering for the efficient amino acid production by bacteria such as Escherichia coli and Corynebacterium glutamicum is also discussed (in relation to the regulation mechanisms). The amino acid synthesis is important for determining the rate of ribosome biosynthesis. Thus, the growth rate control (growth law) is further discussed on the relationship between (p)ppGpp level and the ribosomal protein synthesis.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Department of Fisheries Distribution and Management, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan
| |
Collapse
|
25
|
Wang Y, Xu J, Jin Z, Xia X, Zhang W. Improvement of acetyl-CoA supply and glucose utilization increases l-leucine production in Corynebacterium glutamicum. Biotechnol J 2021; 17:e2100349. [PMID: 34870372 DOI: 10.1002/biot.202100349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND l-Leucine is one of important essential amino acids with multiple industrial applications, whose market requirements cannot be met because of the lower productivity. MAIN METHODS AND MAJOR RESULTS In this study, a strain of Corynebacterium glutamicum with high l-leucine yield was constructed to enhance its acetyl-CoA supply and glucose utilization. One copy of leuA under the control of a strong promoter was incorporated into the C. glutamicum genome. Then, acetyl-CoA supply was increased by the integration of a terminator in front of gltA and by the heterogeneous overexpression of acetyl-CoA synthetase (Acs) and deacetylase (CobB) derived from Escherichia coli. Next, the transcriptional regulator SugR was deleted to enhance glucose uptake via a phosphotransferase-mediated route. In fed-batch fermentation performed in a 5-L reactor, l-leucine production of 40.11±0.73 g/L was achieved under the optimized conditions, with the l-leucine yield and productivity of 0.25 g/g glucose and 0.59 g/L/h, respectively. CONCLUSIONS AND IMPLICATIONS These results represent a significant improvement in the l-leucine titer of C. glutamicum, indicating that the process possesses highly potential for industrial application. These strategies can be also expanded to enable the production of other value-added biochemicals derived from the intermediates of central carbon metabolism. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yingyu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, WuXi, 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, 214122, China
| | - Jianzhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, WuXi, 214122, China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, 214122, China
| | - Weiguo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, 214122, China
| |
Collapse
|
26
|
Piacentino D, Grant-Beurmann S, Vizioli C, Li X, Moore CF, Ruiz-Rodado V, Lee MR, Joseph PV, Fraser CM, Weerts EM, Leggio L. Gut microbiome and metabolome in a non-human primate model of chronic excessive alcohol drinking. Transl Psychiatry 2021; 11:609. [PMID: 34853299 PMCID: PMC8636625 DOI: 10.1038/s41398-021-01728-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023] Open
Abstract
A relationship between the gut microbiome and alcohol use disorder has been suggested. Excessive alcohol use produces changes in the fecal microbiome and metabolome in both rodents and humans. Yet, these changes can be observed only in a subgroup of the studied populations, and reversal does not always occur after abstinence. We aimed to analyze fecal microbial composition and function in a translationally relevant baboon model of chronic heavy drinking that also meets binge criteria (drinking too much, too fast, and too often), i.e., alcohol ~1 g/kg and blood alcohol levels (BALs) ≥ 0.08 g/dL in a 2-hour period, daily, for years. We compared three groups of male baboons (Papio anubis): L = Long-term alcohol drinking group (12.1 years); S = Short-term alcohol drinking group (2.7 years); and C = Control group, drinking a non-alcoholic reinforcer (Tang®) (8.2 years). Fecal collection took place during 3 days of Drinking (D), followed by a short period (3 days) of Abstinence (A). Fecal microbial alpha- and beta-diversity were significantly lower in L vs. S and C (p's < 0.05). Members of the commensal families Lachnospiraceae and Prevotellaceae showed a relative decrease, whereas the opportunistic pathogen Streptococcus genus showed a relative increase in L vs. S and C (p's < 0.05). Microbiota-related metabolites of aromatic amino acids, tricarboxylic acid cycle, and pentose increased in L vs. S and C (FDR-corrected p < 0.01), with the latter two suggesting high energy metabolism and enhanced glycolysis in the gut lumen in response to alcohol. Consistent with the long-term alcohol exposure, mucosal damage and oxidative stress markers (N-acetylated amino acids, 2-hydroxybutyrate, and metabolites of the methionine cycle) increased in L vs. S and C (FDR-corrected p < 0.01). Overall, S showed few differences vs. C, possibly due to the long-term, chronic alcohol exposure needed to alter the normal gut microbiota. In the three groups, the fecal microbiome barely differed between conditions D and A, whereas the metabolome shifted in the transition from condition D to A. In conclusion, changes in the fecal microbiome and metabolome occur after significant long-term excessive drinking and are only partially affected by acute forced abstinence from alcohol. These results provide novel information on the relationship between the fecal microbiome and metabolome in a controlled experimental setting and using a unique non-human primate model of chronic excessive alcohol drinking.
Collapse
Affiliation(s)
- Daria Piacentino
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224 USA ,grid.94365.3d0000 0001 2297 5165Center on Compulsive Behaviors, National Institutes of Health, 10 Center Dr, Bethesda, MD 20892 USA
| | - Silvia Grant-Beurmann
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Carlotta Vizioli
- grid.420085.b0000 0004 0481 4802Sensory Science and Metabolism Unit, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute of Nursing Research Division of Intramural Research, 10 Center Dr, Bethesda, MD 20892 USA
| | - Xiaobai Li
- grid.94365.3d0000 0001 2297 5165Biostatistics and Clinical Epidemiology Services, National Institutes of Health, Bethesda, MD USA
| | - Catherine F. Moore
- grid.21107.350000 0001 2171 9311Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Nathan Shock Drive, Baltimore, MD 21224 USA
| | - Victor Ruiz-Rodado
- grid.94365.3d0000 0001 2297 5165Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Dr, Bethesda, MD 20892 USA
| | - Mary R. Lee
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224 USA
| | - Paule V. Joseph
- grid.420085.b0000 0004 0481 4802Sensory Science and Metabolism Unit, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute of Nursing Research Division of Intramural Research, 10 Center Dr, Bethesda, MD 20892 USA
| | - Claire M. Fraser
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Elise M. Weerts
- grid.21107.350000 0001 2171 9311Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Nathan Shock Drive, Baltimore, MD 21224 USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA. .,Center on Compulsive Behaviors, National Institutes of Health, 10 Center Dr, Bethesda, MD, 20892, USA. .,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA. .,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University School of Public Health, 121 South Main Street, Providence, RI, USA. .,Division of Addiction Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA. .,Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20007, USA.
| |
Collapse
|
27
|
Zhang G, Ren X, Liang X, Wang Y, Feng D, Zhang Y, Xian M, Zou H. Improving the Microbial Production of Amino Acids: From Conventional Approaches to Recent Trends. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0390-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Li B, Zhang B, Wang P, Cai X, Tang YQ, Jin JY, Liang JX, Liu ZQ, Zheng YG. Targeting metabolic driving and minimization of by-products synthesis for high-yield production of D-pantothenate in Escherichia coli. Biotechnol J 2021; 17:e2100431. [PMID: 34705325 DOI: 10.1002/biot.202100431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND d-Pantothenate (DPA) is an important functional chemical that has been widely applied in healthcare, cosmetics, animal food, and feed industries. METHODS AND RESULTS In this study, a high-yield DPA-producing strain was constructed by metabolic engineering strategies with targeting metabolic driving and by-products minimization. The metabolic driving force of push and pull was firstly obtained to improve the production of DPA via enrichment of precursor pool and synthetic pathway, accumulating 4.29 g L-1 DPA in shake flask fermentation. To eliminate the metabolic pressure on DPA production, an amino throttling system was proposed and successfully attenuated the synthesis of four competitive amino acids by a single-step regulation of gdhA. Further minimization of acetate was carried out by pta deletion, and utilization of β-alanine was improved via enhancing its uptake system with producing 5.78 g L-1 DPA. Finally, the engineered strain produced 66.39 g L-1 DPA with β-alanine addition in fermentor under fed-batch fermentation. CONCLUSION This study paved a foundation for the industrial production of DPA.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Pei Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xue Cai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Qun Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jie-Yi Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jin-Xi Liang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
29
|
Gao H, Tuyishime P, Zhang X, Yang T, Xu M, Rao Z. Engineering of microbial cells for L-valine production: challenges and opportunities. Microb Cell Fact 2021; 20:172. [PMID: 34461907 PMCID: PMC8406616 DOI: 10.1186/s12934-021-01665-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
L-valine is an essential amino acid that has wide and expanding applications with a suspected growing market demand. Its applicability ranges from animal feed additive, ingredient in cosmetic and special nutrients in pharmaceutical and agriculture fields. Currently, fermentation with the aid of model organisms, is a major method for the production of L-valine. However, achieving the optimal production has often been limited because of the metabolic imbalance in recombinant strains. In this review, the constrains in L-valine biosynthesis are discussed first. Then, we summarize the current advances in engineering of microbial cell factories that have been developed to address and overcome major challenges in the L-valine production process. Future prospects for enhancing the current L-valine production strategies are also discussed.
Collapse
Affiliation(s)
- Hui Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Philibert Tuyishime
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
30
|
L-valine production in Corynebacterium glutamicum based on systematic metabolic engineering: progress and prospects. Amino Acids 2021; 53:1301-1312. [PMID: 34401958 DOI: 10.1007/s00726-021-03066-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
L-valine is an essential branched-chain amino acid that cannot be synthesized by the human body and has a wide range of applications in food, medicine and feed. Market demand has stimulated people's interest in the industrial production of L-valine. At present, the mutagenized or engineered Corynebacterium glutamicum is an effective microbial cell factory for producing L-valine. Because the biosynthetic pathway and metabolic network of L-valine are intricate and strictly regulated by a variety of key enzymes and genes, highly targeted metabolic engineering can no longer meet the demand for efficient biosynthesis of L-valine. In recent years, the development of omics technology has promoted the upgrading of traditional metabolic engineering to systematic metabolic engineering. This whole-cell-scale transformation strategy has become a productive method for developing L-valine producing strains. This review provides an overview of the biosynthesis and regulation mechanism of L-valine, and summarizes the current metabolic engineering techniques and strategies for constructing L-valine high-producing strains. Finally, the opinion of constructing a cell factory for efficiently biosynthesizing L-valine was proposed.
Collapse
|
31
|
Luo Z, Yu S, Zeng W, Zhou J. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 2021; 47:107706. [PMID: 33548455 DOI: 10.1016/j.biotechadv.2021.107706] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Keto acids are essential organic acids that are widely applied in pharmaceuticals, cosmetics, food, beverages, and feed additives as well as chemical synthesis. Currently, most keto acids on the market are prepared via chemical synthesis. The biochemical synthesis of keto acids has been discovered with the development of metabolic engineering and applied toward the production of specific keto acids from renewable carbohydrates using different metabolic engineering strategies in microbes. In this review, we provide a systematic summary of the types and applications of keto acids, and then summarize and compare the chemical and biochemical synthesis routes used for the production of typical keto acids, including pyruvic acid, oxaloacetic acid, α-oxobutanoic acid, acetoacetic acid, ketoglutaric acid, levulinic acid, 5-aminolevulinic acid, α-ketoisovaleric acid, α-keto-γ-methylthiobutyric acid, α-ketoisocaproic acid, 2-keto-L-gulonic acid, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid, and phenylpyruvic acid. We also describe the current challenges for the industrial-scale production of keto acids and further strategies used to accelerate the green production of keto acids via biochemical routes.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
32
|
Hao Y, Ma Q, Liu X, Fan X, Men J, Wu H, Jiang S, Tian D, Xiong B, Xie X. High-yield production of L-valine in engineered Escherichia coli by a novel two-stage fermentation. Metab Eng 2020; 62:198-206. [DOI: 10.1016/j.ymben.2020.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 01/27/2023]
|
33
|
Fedorova EN, Varlamova DO, Kivero AD, Guk KD, Ptitsyn LR. Ultra-performance liquid chromatography (UPLC) for the determination of organic acids – The intermediates of branched-chain amino acid biosynthesis in Escherichia coli strains. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1832894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Zou S, Wang Z, Zhao K, Zhang B, Niu K, Liu Z, Zheng Y. High‐level production of
d
‐pantothenic acid from glucose by fed‐batch cultivation of
Escherichia coli. Biotechnol Appl Biochem 2020; 68:1227-1235. [DOI: 10.1002/bab.2044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shu‐Ping Zou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou People's Republic of China
| | - Zhi‐Jian Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou People's Republic of China
| | - Kuo Zhao
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou People's Republic of China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou People's Republic of China
| | - Kun Niu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou People's Republic of China
| | - Zhi‐Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou People's Republic of China
| | - Yu‐Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou People's Republic of China
| |
Collapse
|
35
|
Yang Y, Zhang Z, Lu X, Gu J, Wang Y, Yao Y, Liao X, Shi J, Lye G, Baganz F, Hao J. Production of 2,3-dihydroxyisovalerate by Enterobacter cloacae. Enzyme Microb Technol 2020; 140:109650. [PMID: 32912674 DOI: 10.1016/j.enzmictec.2020.109650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023]
Abstract
2,3-Dihydroxyisovalerate is an intermediate of the valine synthesis pathway. However, neither natural microorganisms nor valine producing engineered strains have been reported yet to produce this chemical. Based on the 2,3-butanediol synthesis pathway, a biological route of 2,3-dihydroxyisovalerate production was developed using a budA and ilvD disrupted Klebsiella pneumoniae strain in our previous research. We hypothesised, that other 2,3-butanediol producing bacteria could be used for 2,3-dihydroxyisovalerate production. Here a budA disrupted Enterobacter cloacae was constructed, and this strain exhibited a high 2,3-dihydroxyisovalerate producing ability. Disruption of ilvD in E. cloacae ΔbudA further increased 2,3-dihydroxyisovalerate level. The disruption of budA, encoding an acetolactate decarboxylase, resulted in the acetolactate synthesized in the 2,3-butanediol synthesis pathway to flow into the valine synthesis pathway. The additional disruption of ilvD, encoding a dihydroxy acid dehydratase, prevented the 2,3-dihydroxyisovalerate to be further metabolized in the valine synthesis pathway. Thus, the disruption of both budA and ilvD in 2,3-butanediol producing strains might be an universal strategy for 2,3-dihydroxyisovalerate accumulation. After optimization of the medium components and culture parameters 31.2 g/L of 2,3-dihydroxyisovalerate was obtained with a productivity of 0.41 g/L h and a substrate conversion ratio of 0.56 mol/mol glucose in a fed-batch fermentation. This approach provides an economic way for 2,3-dihydroxyisovalerate production.
Collapse
Affiliation(s)
- Yang Yang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China; School of Life Science, Shanghai University, Shanghai 200444, PR China
| | - Zhongxi Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China; School of Life Science, Shanghai University, Shanghai 200444, PR China
| | - Xiyang Lu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China
| | - Jinjie Gu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yike Wang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China; School of Life Science, Shanghai University, Shanghai 200444, PR China
| | - Yao Yao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xianyan Liao
- School of Life Science, Shanghai University, Shanghai 200444, PR China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, PR China
| | - Gary Lye
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK.
| | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China; Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK.
| |
Collapse
|
36
|
Wang YY, Shi K, Chen P, Zhang F, Xu JZ, Zhang WG. Rational modification of the carbon metabolism of Corynebacterium glutamicum to enhance l-leucine production. ACTA ACUST UNITED AC 2020; 47:485-495. [DOI: 10.1007/s10295-020-02282-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/18/2020] [Indexed: 12/26/2022]
Abstract
Abstract
l-Leucine is an essential amino acid that has wide and expanding applications in the industry. It is currently fast-growing market demand that provides a powerful impetus to further increase its bioconversion productivity and production stability. In this study, we rationally engineered the metabolic flux from pyruvate to l-leucine synthesis in Corynebacterium glutamicum to enhance both pyruvate availability and l-leucine synthesis. First, the pyc (encoding pyruvate carboxylase) and avtA (encoding alanine-valine aminotransferase) genes were deleted to weaken the metabolic flux of the tricarboxylic acid cycle and reduce the competitive consumption of pyruvate. Next, the transcriptional level of the alaT gene (encoding alanine aminotransferase) was down regulated by inserting a terminator to balance l-leucine production and cell growth. Subsequently, the genes involved in l-leucine biosynthesis were overexpressed by replacing the native promoters PleuA and PilvBNC of the leuA gene and ilvBNC operon, respectively, with the promoter Ptuf of eftu (encoding elongation factor Tu) and using a shuttle expression vector. The resulting strain WL-14 produced 28.47 ± 0.36 g/L l-leucine in shake flask fermentation.
Collapse
Affiliation(s)
- Ying-Yu Wang
- grid.258151.a 0000 0001 0708 1323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 1800# Lihu Road 214122 WuXi People’s Republic of China
| | - Ke Shi
- grid.258151.a 0000 0001 0708 1323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 1800# Lihu Road 214122 WuXi People’s Republic of China
- Wuxi COFCO Engineering and Technology Co., Ltd 186# Huihe Road 214035 WuXi People’s Republic of China
| | - Peidong Chen
- Wuxi COFCO Engineering and Technology Co., Ltd 186# Huihe Road 214035 WuXi People’s Republic of China
| | - Feng Zhang
- grid.258151.a 0000 0001 0708 1323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 1800# Lihu Road 214122 WuXi People’s Republic of China
| | - Jian-Zhong Xu
- grid.258151.a 0000 0001 0708 1323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 1800# Lihu Road 214122 WuXi People’s Republic of China
| | - Wei-Guo Zhang
- grid.258151.a 0000 0001 0708 1323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 1800# Lihu Road 214122 WuXi People’s Republic of China
| |
Collapse
|
37
|
Zhang L, Li F, Guo Q, Duan Y, Wang W, Zhong Y, Yang Y, Yin Y. Leucine Supplementation: A Novel Strategy for Modulating Lipid Metabolism and Energy Homeostasis. Nutrients 2020; 12:E1299. [PMID: 32370170 PMCID: PMC7282259 DOI: 10.3390/nu12051299] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Lipid metabolism is an important and complex biochemical process involved in the storage of energy and maintenance of normal biological functions. Leucine, a branched amino acid, has anti-obesity effects on glucose tolerance, lipid metabolism, and insulin sensitivity. Leucine also modulates mitochondrial dysfunction, representing a new strategy to target aging, neurodegenerative disease, obesity, diabetes, and cardiovascular disease. Although various studies have been carried out, much uncertainty still exists and further studies are required to fully elucidate the relationship between leucine and lipid metabolism. This review offers an up-to-date report on leucine, as key roles in both lipid metabolism and energy homeostasis in vivo and in vitro by acceleration of fatty acid oxidation, lipolysis, activation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)-silent information regulator of transcription 1 (SIRT1)-proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, synthesis, and/or secretion of adipokines and stability of the gut microbiota.
Collapse
Affiliation(s)
- Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha 410018, China
| | - Yinzhao Zhong
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China;
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| |
Collapse
|
38
|
Han G, Xu N, Sun X, Chen J, Chen C, Wang Q. Improvement of l-Valine Production by Atmospheric and Room Temperature Plasma Mutagenesis and High-Throughput Screening in Corynebacterium glutamicum. ACS OMEGA 2020; 5:4751-4758. [PMID: 32201760 PMCID: PMC7081258 DOI: 10.1021/acsomega.9b02747] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
As one of the branched-chain amino acids, l-valine is an essential nutrient for most mammalian species. In this study, the l-valine producer Corynebacterium glutamicum ΔppcΔaceEΔalatΔpqo was first constructed. Additionally, an improved biosensor based on the Lrp-type transcriptional regulator and temperature-sensitive replication was built. Then, the C. glutamicum strain was mutagenized by atmospheric and room temperature plasma. A sequential three-step procedure was carried out to screen l-valine-producing strains, including the fluorescence-activated cell sorting (FACS), 96-well plate screening, and flask fermentation. The final mutant HL2-7 obtained by screening produced 3.20 g/L of l-valine, which was 21.47% higher than the titer produced by the starting strain. This study demonstrates that the l-valine-producing mutants can be successfully isolated based on the Lrp sensor system in combination with FACS screening after random mutagenesis.
Collapse
Affiliation(s)
- Guoqiang Han
- Life
Science and Technology Institute, Yangtze
Normal University, Chongqing 408100, P. R. China
- School
of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Ning Xu
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin 300308, P. R. China
| | - Xieping Sun
- Life
Science and Technology Institute, Yangtze
Normal University, Chongqing 408100, P. R. China
| | - Jinzhao Chen
- Life
Science and Technology Institute, Yangtze
Normal University, Chongqing 408100, P. R. China
| | - Chun Chen
- Life
Science and Technology Institute, Yangtze
Normal University, Chongqing 408100, P. R. China
| | - Qing Wang
- Life
Science and Technology Institute, Yangtze
Normal University, Chongqing 408100, P. R. China
- School
of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, P. R. China
| |
Collapse
|
39
|
Liu Y, Wang X, Zhan J, Hu J. The 138th residue of acetohydroxyacid synthase in Corynebacterium glutamicum is important for the substrate binding specificity. Enzyme Microb Technol 2019; 129:109357. [DOI: 10.1016/j.enzmictec.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/12/2019] [Accepted: 06/01/2019] [Indexed: 11/28/2022]
|
40
|
Lee D, Hong J, Kim KJ. Crystal Structure and Biochemical Characterization of Ketol-Acid Reductoisomerase from Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8527-8535. [PMID: 31298526 DOI: 10.1021/acs.jafc.9b03262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
l-Valine belongs to the branched-chain amino acids (BCAAs) and is an essential amino acid that is crucial for all living organisms. l-Valine is industrially produced by the nonpathogenic bacterium Corynebacterium glutamicum and is synthesized by the BCAA biosynthetic pathway. Ketol-acid reductoisomerase (KARI) is the second enzyme in the BCAA pathway and catalyzes the conversion of (S)-2-acetolactate into (R)-2,3-dihydroxy-isovalerate, or the conversion of (S)-2-aceto-2-hydroxybutyrate into (R)-2,3-dihydroxy-3-methylvalerate. To elucidate the enzymatic properties of KARI from C. glutamicum (CgKARI), we successfully produced CgKARI protein and determined its crystal structure in complex with NADP+ and two Mg2+ ions. Based on the complex structure, docking simulations, and site-directed mutagenesis experiments, we revealed that CgKARI belongs to Class I KARI and identified key residues involved in stabilization of the substrate, metal ions, and cofactor. Furthermore, we confirmed the difference in the binding of metal ions that depended on the conformational change.
Collapse
Affiliation(s)
- Donghoon Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group , Kyungpook National University , Daehak-ro 80, Buk-ku , Daegu 702-701 , Korea
- KNU Institute for Microorganisms , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Jiyeon Hong
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group , Kyungpook National University , Daehak-ro 80, Buk-ku , Daegu 702-701 , Korea
- KNU Institute for Microorganisms , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group , Kyungpook National University , Daehak-ro 80, Buk-ku , Daegu 702-701 , Korea
- KNU Institute for Microorganisms , Kyungpook National University , Daegu 41566 , Republic of Korea
| |
Collapse
|
41
|
Wang YY, Xu JZ, Zhang WG. Metabolic engineering of l-leucine production in Escherichia coli and Corynebacterium glutamicum: a review. Crit Rev Biotechnol 2019; 39:633-647. [PMID: 31055970 DOI: 10.1080/07388551.2019.1577214] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
l-Leucine, as an essential branched-chain amino acid for humans and animals, has recently been attracting much attention because of its potential for a fast-growing market demand. The applicability ranges from flavor enhancers, animal feed additives and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. Microbial fermentation is the major method for producing l-leucine by using Escherichia coli and Corynebacterium glutamicum as host bacteria. This review gives an overview of the metabolic pathway of l-leucine (i.e. production, import and export systems) and highlights the main regulatory mechanisms of operons in E. coli and C. glutamicum l-leucine biosynthesis. We summarize here the current trends in metabolic engineering techniques and strategies for manipulating l-leucine producing strains. Finally, future perspectives to construct industrially advantageous strains are considered with respect to recent advances in biology.
Collapse
Affiliation(s)
- Ying-Yu Wang
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China
| | - Jian-Zhong Xu
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China.,b The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China
| | - Wei-Guo Zhang
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China
| |
Collapse
|
42
|
Improvement of l-Leucine Production in Corynebacterium glutamicum by Altering the Redox Flux. Int J Mol Sci 2019; 20:ijms20082020. [PMID: 31022947 PMCID: PMC6515235 DOI: 10.3390/ijms20082020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/13/2019] [Accepted: 04/20/2019] [Indexed: 12/14/2022] Open
Abstract
The production of l-leucine was improved by the disruption of ltbR encoding transcriptional regulator and overexpression of the key genes (leuAilvBNCE) of the l-leucine biosynthesis pathway in Corynebacterium glutamicum XQ-9. In order to improve l-leucine production, we rationally engineered C. glutamicum to enhance l-leucine production, by improving the redox flux. On the basis of this, we manipulated the redox state of the cells by mutating the coenzyme-binding domains of acetohydroxyacid isomeroreductase encoded by ilvC, inserting NAD-specific leucine dehydrogenase, encoded by leuDH from Lysinibacillus sphaericus, and glutamate dehydrogenase encoded by rocG from Bacillus subtilis, instead of endogenous branched-chain amino acid transaminase and glutamate dehydrogenase, respectively. The yield of l-leucine reached 22.62 ± 0.17 g·L-1 by strain ΔLtbR-acetohydroxyacid isomeroreductase (AHAIR)M/ABNCME, and the concentrations of the by-products (l-valine and l-alanine) increased, compared to the strain ΔLtbR/ABNCE. Strain ΔLtbR-AHAIRMLeuDH/ABNCMLDH accumulated 22.87±0.31 g·L-1 l-leucine, but showed a drastically low l-valine accumulation (from 8.06 ± 0.35 g·L-1 to 2.72 ± 0.11 g·L-1), in comparison to strain ΔLtbR-AHAIRM/ABNCME, which indicated that LeuDH has much specificity for l-leucine synthesis but not for l-valine synthesis. Subsequently, the resultant strain ΔLtbR-AHAIRMLeuDHRocG/ABNCMLDH accumulated 23.31 ± 0.24 g·L-1 l-leucine with a glucose conversion efficiency of 0.191 g·g-1.
Collapse
|
43
|
Savrasova EA, Stoynova NV. Application of leucine dehydrogenase Bcd from Bacillus subtilis for l-valine synthesis in Escherichia coli under microaerobic conditions. Heliyon 2019; 5:e01406. [PMID: 30993221 PMCID: PMC6449708 DOI: 10.1016/j.heliyon.2019.e01406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 12/02/2022] Open
Abstract
Microaerobic cultivation conditions have been shown experimentally and theoretically to improve the performance of a number of bioproduction systems. However, under these conditions, the production of l-valine by Escherichia coli is decreased mainly because of a redox cofactor imbalance and a decreased l-glutamate supply. The synthesis of one mole of l-valine from one mole of glucose generates two moles of NADH via glycolysis but consumes a total of two moles of NADPH, one in the ketol-acid reductoisomerase (KARI) reaction and the other in the regeneration of l-glutamate as an amino group donor for the branched-chain amino acid aminotransferase (BCAT) reaction. The improvement of l-valine synthesis under oxygen deprivation may be due to solving these problems. Increased l-valine synthesis under oxygen deprivation conditions was previously shown in Corynebacterium glutamicum (Hasegawa et al., 2012). In this study, we have proposed the use of NADH-dependent leucine dehydrogenase (LeuDH; EC 1.4.1.9) Bcd from B. subtilis instead of the native NADPH-dependent pathway including aminotransferase encoded by ilvE to improve l-valine production in E. coli under microaerobic conditions. We have created l-valine-producing strains on the base of the aminotransferase B-deficient strain V1 (B-7 ΔilvBN ΔilvIH ΔilvGME::PL-ilvBNN17KDA) by introducing one chromosomal copy of the bcd gene or the ilvE gene. Evaluation of the l-valine production by the obtained strains under microaerobic and aerobic conditions revealed that leucine dehydrogenase Bcd had a higher potential for l-valine production under microaerobic conditions. The Bcd-possessing strain exhibited 2.2-fold higher l-valine accumulation (up to 9.1 g/L) and 2.0-fold higher yield (up to 35.3%) under microaerobic conditions than the IlvE-possessing strain. The obtained results could be interpreted as follows: an altering of redox cofactor balance in the l-valine biosynthesis pathway increased the production and yield by E. coli cells under microaerobic conditions. Thus, the effective synthesis of l-valine by means of “valine fermentation” was shown in E. coli. This methodology has the advantages of being an economical and environmentally friendly process.
Collapse
|
44
|
Chen CY, Chang YC, Lin BL, Lin KF, Huang CH, Hsieh DL, Ko TP, Tsai MD. Use of Cryo-EM To Uncover Structural Bases of pH Effect and Cofactor Bispecificity of Ketol-Acid Reductoisomerase. J Am Chem Soc 2019; 141:6136-6140. [DOI: 10.1021/jacs.9b01354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chin-Yu Chen
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | | | | | - Kuan-Fu Lin
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Hsiang Huang
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Dong-Lin Hsieh
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | | | - Ming-Daw Tsai
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
45
|
Takagi H. Metabolic regulatory mechanisms and physiological roles of functional amino acids and their applications in yeast. Biosci Biotechnol Biochem 2019; 83:1449-1462. [PMID: 30712454 DOI: 10.1080/09168451.2019.1576500] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In yeast, amino acid metabolism and its regulatory mechanisms vary under different growth environments by regulating anabolic and catabolic processes, including uptake and export, and the metabolic styles form a complicated but robust network. There is also crosstalk with various metabolic pathways, products and signal molecules. The elucidation of metabolic regulatory mechanisms and physiological roles is important fundamental research for understanding life phenomenon. In terms of industrial application, the control of amino acid composition and content is expected to contribute to an improvement in productivity, and to add to the value of fermented foods, alcoholic beverages, bioethanol, and other valuable compounds (proteins and amino acids, etc.). This review article mainly describes our research in constructing yeast strains with high functionality, focused on the metabolic regulatory mechanisms and physiological roles of "functional amino acids", such as l-proline, l-arginine, l-leucine, l-valine, l-cysteine, and l-methionine, found in yeast.
Collapse
Affiliation(s)
- Hiroshi Takagi
- a Division of Biological Science, Graduate School of Science and Technology , Nara Institute of Science and Technology , Nara , Japan
| |
Collapse
|
46
|
Takpho N, Watanabe D, Takagi H. High-level production of valine by expression of the feedback inhibition-insensitive acetohydroxyacid synthase in Saccharomyces cerevisiae. Metab Eng 2019; 46:60-67. [PMID: 29477860 DOI: 10.1016/j.ymben.2018.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
Abstract
Valine, which is one of the branched-chain amino acids (BCAAs) essential for humans, is widely used in animal feed, dietary supplements and pharmaceuticals. At the commercial level, valine is usually produced by bacterial fermentation from glucose. However, valine biosynthesis can also proceed in the yeast Saccharomyces cerevisiae, which is a useful microorganism in fermentation industry. In S. cerevisiae, valine biosynthesis is regulated by valine itself via the feedback inhibition of acetohydroxyacid synthase (AHAS), which consists of two subunits, the catalytic subunit Ilv2 and the regulatory subunit Ilv6. In this study, to improve the valine productivity of yeast cells, we constructed several variants of Ilv6 by introducing amino acid substitutions based on a protein sequence comparison with the AHAS regulatory subunit of E. coli. Among them, we found that the Asn86Ala, Gly89Asp and Asn104Ala variants resulted in approximately 4-fold higher intracellular valine contents compared with those in cells with the wild-type Ilv6. The computational analysis of Ilv6 predicted that Asn86, Gly89 and Asn104 are located in the vicinity of a valine-binding site, suggesting that amino acid substitutions at these positions induce conformational change of the valine-binding site. To test the effects of these variants on AHAS activity, both recombinant Ilv2 and Ilv6 were purified and reconstituted in vitro. The Ilv6 variants were much less sensitive to feedback inhibition by valine than the wild-type Ilv6. Only a portion of the amino acid changes identified in the E. coli AHAS regulatory subunit IlvH enhanced the valine synthesis, suggesting structural and/or functional differences between the S. cerevisiae and E. coli AHAS regulatory subunits. It should also be noted that these amino acid substitutions did not affect the intracellular pools of the other BCAAs, leucine and isoleucine. The approach described here could be a practical method for the development of industrial yeast strains with high-level production of valine or isobutanol.
Collapse
Affiliation(s)
- Natthaporn Takpho
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Daisuke Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
47
|
Strategy for improving L-isoleucine production efficiency in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2019; 103:2101-2111. [DOI: 10.1007/s00253-019-09632-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 01/25/2023]
|
48
|
Zheng B, Ma X, Wang N, Ding T, Guo L, Zhang X, Yang Y, Li C, Huo YX. Utilization of rare codon-rich markers for screening amino acid overproducers. Nat Commun 2018; 9:3616. [PMID: 30190534 PMCID: PMC6127279 DOI: 10.1038/s41467-018-05830-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 07/27/2018] [Indexed: 11/24/2022] Open
Abstract
The translation of rare codons relies on their corresponding rare tRNAs, which could not be fully charged under amino acid starvation. Theoretically, disrupted or retarded translation caused by the lack of charged rare tRNAs can be partially restored by feeding or intracellular synthesis of the corresponding amino acids. Inspired by this assumption, we develop a screening or selection system for obtaining overproducers of a target amino acid by replacing its common codons with the corresponding synonymous rare alternative in the coding sequence of selected reporter proteins or antibiotic-resistant markers. Results show that integration of rare codons can inhibit gene translations in a frequency-dependent manner. As a proof-of-concept, Escherichia coli strains overproducing L-leucine, L-arginine or L-serine are successfully selected from random mutation libraries. The system is also applied to Corynebacterium glutamicum to screen out L-arginine overproducers. This strategy sheds new light on obtaining and understanding amino acid overproduction strains.
Collapse
Affiliation(s)
- Bo Zheng
- School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Xiaoyan Ma
- School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Ning Wang
- School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Tingting Ding
- School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Liwei Guo
- School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
- UCLA Institute of Advancement (Suzhou), 10 Yueliangwan Road, Suzhou Industrial Park, 215123, Suzhou, China
| | - Xiaorong Zhang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, 100101, Beijing, China
| | - Yu Yang
- School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Chun Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Yi-Xin Huo
- School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China.
- UCLA Institute of Advancement (Suzhou), 10 Yueliangwan Road, Suzhou Industrial Park, 215123, Suzhou, China.
| |
Collapse
|
49
|
Feng LY, Xu JZ, Zhang WG. Improved l-Leucine Production in Corynebacterium glutamicum by Optimizing the Aminotransferases. Molecules 2018; 23:molecules23092102. [PMID: 30134636 PMCID: PMC6225143 DOI: 10.3390/molecules23092102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
The production of branched-chain amino acids (BCAAs) is still challenging, therefore we rationally engineered Corynebacterium glutamicum FA-1 to increase the l-leucine production by optimizing the aminotransferases. Based on this, we investigated the effects of the native aminotransferases, i.e., branched-chain amino acid aminotransferase (BCAT; encoded by ilvE) and aspartate aminotransferase (AspB; encoded by aspB) on l-leucine production in C. glutamicum. The strain FA-1△ilvE still exhibited significant growth without leucine addition, while FA-1△ilvE△aspB couldn't, which indicated that AspB also contributes to L-leucine synthesis in vivo and the yield of leucine reached 20.81 ± 0.02 g/L. It is the first time that AspB has been characterized for l-leucine synthesis activity. Subsequently, the aromatic aminotransferase TyrB and the putative aspartate aminotransferases, the aspC, yhdR, ywfG gene products, were cloned, expressed and characterized for leucine synthesis activity in FA-1△ilvE△aspB. Only TyrB was able to synthesize l-leucine and the l-leucine production was 18.55 ± 0.42 g/L. The two putative branched-chain aminotransferase genes, ybgE and CaIlvE, were also cloned and expressed. Both genes products function efficiently in BCAAs biosynthesis. This is the first report of a rational modification of aminotransferase activity that improves the l-leucine production through optimizing the aminotransferases.
Collapse
Affiliation(s)
- Li-Yan Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
50
|
NADH/NADPH bi-cofactor-utilizing and thermoactive ketol-acid reductoisomerase from Sulfolobus acidocaldarius. Sci Rep 2018; 8:7176. [PMID: 29739976 PMCID: PMC5940873 DOI: 10.1038/s41598-018-25361-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/19/2018] [Indexed: 11/13/2022] Open
Abstract
Ketol-acid reductoisomerase (KARI) is a bifunctional enzyme in the second step of branched-chain amino acids biosynthetic pathway. Most KARIs prefer NADPH as a cofactor. However, KARI with a preference for NADH is desirable in industrial applications including anaerobic fermentation for the production of branched-chain amino acids or biofuels. Here, we characterize a thermoacidophilic archaeal Sac-KARI from Sulfolobus acidocaldarius and present its crystal structure at a 1.75-Å resolution. By comparison with other holo-KARI structures, one sulphate ion is observed in each binding site for the 2′-phosphate of NADPH, implicating its NADPH preference. Sac-KARI has very high affinity for NADPH and NADH, with KM values of 0.4 μM for NADPH and 6.0 μM for NADH, suggesting that both are good cofactors at low concentrations although NADPH is favoured over NADH. Furthermore, Sac-KARI can catalyze 2(S)-acetolactate (2S-AL) with either cofactor from 25 to 60 °C, but the enzyme has higher activity by using NADPH. In addition, the catalytic activity of Sac-KARI increases significantly with elevated temperatures and reaches an optimum at 60 °C. Bi-cofactor utilization and the thermoactivity of Sac-KARI make it a potential candidate for use in metabolic engineering or industrial applications under anaerobic or harsh conditions.
Collapse
|