1
|
Aza P, Camarero S. Fungal Laccases: Fundamentals, Engineering and Classification Update. Biomolecules 2023; 13:1716. [PMID: 38136587 PMCID: PMC10741624 DOI: 10.3390/biom13121716] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Multicopper oxidases (MCOs) share a common catalytic mechanism of activation by oxygen and cupredoxin-like folding, along with some common structural determinants. Laccases constitute the largest group of MCOs, with fungal laccases having the greatest biotechnological applicability due to their superior ability to oxidize a wide range of aromatic compounds and lignin, which is enhanced in the presence of redox mediators. The adaptation of these versatile enzymes to specific application processes can be achieved through the directed evolution of the recombinant enzymes. On the other hand, their substrate versatility and the low sequence homology among laccases make their exact classification difficult. Many of the ever-increasing amounts of MCO entries from fungal genomes are automatically (and often wrongly) annotated as laccases. In a recent comparative genomic study of 52 basidiomycete fungi, MCO classification was revised based on their phylogeny. The enzymes clustered according to common structural motifs and theoretical activities, revealing three novel groups of laccase-like enzymes. This review provides an overview of the structure, catalytic activity, and oxidative mechanism of fungal laccases and how their biotechnological potential as biocatalysts in industry can be greatly enhanced by protein engineering. Finally, recent information on newly identified MCOs with laccase-like activity is included.
Collapse
Affiliation(s)
| | - Susana Camarero
- Margarita Salas Center for Biological Research, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain;
| |
Collapse
|
2
|
Enhancing laccase-assisted polymerization reactions with perfluorinated compounds. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Magina S, Barros-Timmons A, Evtuguin DV. Synthesis of Lignosulfonate-Based Dispersants for Application in Concrete Formulations. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7388. [PMID: 34885542 PMCID: PMC8658405 DOI: 10.3390/ma14237388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
Lignosulfonates (LS) are products from the sulfite pulping process that could be applied as renewable environmentally-friendly polymeric surfactants. Being widely used as plasticizers and water-reducing admixtures in concrete formulations LS compete in the market with petroleum-based superplasticizers, such as naphthalene sulfonate formaldehyde polycondensate (NSF) and copolymer polycarboxylate ethers (PCE). In this work, different chemical modification strategies were used to improve LS performance as dispersants for concrete formulations. One strategy consisted in increasing the molecular weight of LS through different approaches, such as laccase and polyoxometalate-mediated polymerization, glyoxalation, and reversible addition-fragmentation chain transfer (RAFT) polymerization. The other strategy consisted of preparing LS-based non-ionic polymeric dispersants using two different epoxidized oligomer derivatives of poly(ethylene glycol) (PEG) and poly(propylene glycol) (PPG). Modified LS were used to prepare cement pastes, which were examined for their fluidity. Results revealed that the most promising products are PPG-modified LS due to the introduction of PPG chains by reaction with phenolic moieties in LS. The enhanced dispersant efficiency of the ensuing products is probably related not only to electrostatic repulsion caused by the sulfonic ionizable groups in LS but also to steric hindrance phenomena due to the grafted bulky PPG chains.
Collapse
Affiliation(s)
| | | | - Dmitry V. Evtuguin
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (S.M.); (A.B.-T.)
| |
Collapse
|
4
|
Sun K, Li S, Si Y, Huang Q. Advances in laccase-triggered anabolism for biotechnology applications. Crit Rev Biotechnol 2021; 41:969-993. [PMID: 33818232 DOI: 10.1080/07388551.2021.1895053] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This is the first comprehensive overview of laccase-triggered anabolism from fundamental theory to biotechnology applications. Laccase is a typical biological oxidordeuctase that induces the one-electronic transfer of diverse substrates for engendering four phenoxy radicals with concomitant reduction of O2 into 2H2O. In vivo, laccase can participate in anabolic processes to create multifarious functional biopolymers such as fungal pigments, plant lignins, and insect cuticles, using mono/polyphenols and their derivatives as enzymatic substrates, and is thus conducive to biological tissue morphogenesis and global carbon storage. Exhilaratingly, fungal laccase has high redox potential (E° = 500-800 mV) and thermodynamic efficiency, making it a remarkable candidate for utilization as a versatile catalyst in the green and circular economy. This review elaborates the anabolic mechanisms of laccase in initiating the polymerization of natural phenolic compounds and their derivatives in vivo via radical-based self/cross-coupling. Information is also presented on laccase immobilization engineering that expands the practical application ranges of laccase in biotechnology by improving the enzymatic catalytic activity, stability, and reuse rate. Particularly, advances in biotechnology applications in vitro through fungal laccase-triggered macromolecular biosynthesis may provide a key research direction beneficial to the rational design of green chemistry.
Collapse
Affiliation(s)
- Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Shunyao Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, USA
| |
Collapse
|
5
|
Muniraj I, Shameer S, Ramachandran P, Uthandi S. Bacillus aryabhattai TFG5-mediated synthesis of humic substances from coir pith wastes. Microb Cell Fact 2021; 20:48. [PMID: 33596930 PMCID: PMC7891170 DOI: 10.1186/s12934-021-01538-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 01/05/2023] Open
Abstract
Background Humic substances (HS) form the largest proportion among all the constituents of soil organic matter and are a key component of the terrestrial ecosystem. HS plays a multifunctional role in the environment by controlling the biogeochemical carbon cycle, providing nutrients and bio-stimulants for plant growth, and interacting with inorganic and organic pollutants. The rate of formation of HS in soils determines its productivity and carbon sequestration capacity. Enhancement of HS synthesis in the soil through the microbial route not only increases CO2 sequestration but also mitigates the greenhouse gas emissions in the environment. Result In this study, we attempted to understand the mechanism of formation and enhancement of HS from coir pith wastes using the tyrosinase produced by Bacillus aryabhattai TFG5. The bacterium TFG5 isolated from the termite garden produced the tyrosinase (1.34 U mL−1) and laccase (2.1 U mL−1) at 48 h and 60 h of fermentation, respectively. The extracellular tyrosinase from B. aryabhattai TFG5 was designated as TyrB. Homology modeling of TyrB revealed a structure with a predicted molecular mass of 35.23 kDa and two copper ions in the active center with its conserved residues required for the tyrosinase activity. TyrB efficiently transformed and polymerized standard phenols, such as p-cresol, p-hydroxyl benzoic acid, Levo DOPA, and 2,6 DMP, besides transforming free phenols in coir pith wash water (CWW). Additionally, UV–Vis and FT-IR spectra of the degradation products of the coir pith treated with TyrB revealed the formation of HS within 3 days of incubation. Furthermore, the E472/664 ratio of the degradation products revealed a higher degree of condensation of the aromatic carbons and the presence of more aliphatic structures in the HS. Conclusion The results confirmed the influence of TyrB for the effective synthesis of HS from coir pith wastes. The results of the present study also confirm the recently accepted theory of humification proposed by the International Humic Substances Society.
Collapse
Affiliation(s)
- Iniyakumar Muniraj
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Syed Shameer
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Priyadharshini Ramachandran
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
| |
Collapse
|
6
|
Magnetically Responsive PA6 Microparticles with Immobilized Laccase Show High Catalytic Efficiency in the Enzymatic Treatment of Catechol. Catalysts 2021. [DOI: 10.3390/catal11020239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Herewith we report the first attempt towards non-covalent immobilization of Trametes versicolor laccase on neat and magnetically responsive highly porous polyamide 6 (PA6) microparticles and their application for catechol oxidation. Four polyamide supports, namely neat PA6 and such carrying Fe, phosphate-coated Fe and Fe3O4 cores were synthesized in suspension by activated anionic ring-opening polymerization (AAROP) of ε-caprolactam (ECL). Enzyme adsorption efficiency up to 92% was achieved in the immobilization process. All empty supports and PA6 laccase complexes were characterized by spectral and synchrotron WAXS/SAXS analyses. The activity of the immobilized laccase was evaluated using 2,2’-Azino-bis-(3- ethylbenzothiazoline-6-sulfonic acid (ABTS) and compared to the native enzyme. The PA6 laccase conjugates displayed up to 105% relative activity at room temperature, pH 4, 40 °C and 20 mM ionic strength (citrate buffer). The kinetic parameters of the ABTS oxidation were also determined. The reusability of the immobilized laccase-conjugates was proven for five consecutive oxidation cycles of catechol.
Collapse
|
7
|
New strategy for grafting hydrophobization of lignocellulosic fiber materials with octadecylamine using a laccase/TEMPO system. Int J Biol Macromol 2020; 160:192-200. [PMID: 32450328 DOI: 10.1016/j.ijbiomac.2020.05.167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
Abstract
The enzymatic functionalization of lignocellulosic fibers using oxidoreductases was successfully achieved by targeting lignin moieties as grafting sites on the surface. In this study, a novel strategy for hydrophobization of lignocelluloses was investigated, which involved the laccase/TEMPO-mediated grafting of octadecylamine (OA) onto both lignin and cellulose components of jute fabrics. The results showed that OA monomers were successfully grafted onto jute fabric surface using the laccase/TEMPO system with the grafting percentage and efficiency values of 0.712% and 10.571%, respectively. The primary hydroxyl groups of cellulose were oxidized by laccase/TEMPO to carbonyl groups, which were then coupled with amino-contained OA monomers via Schiff base reaction. The phenolic hydroxyl groups of lignin were transformed by laccase to radicals, on which OA molecules were grafted via Michael addition reaction. Consequently, grafted jute fabrics showed a considerable increase in the surface hydrophobicity with a contact angle of 125.9° and a wetting time of at least 2 h. Furthermore, there was an acceptable decrease in the breaking strength of jute fabrics by 13.60%, and the color of fabrics turned yellowish and reddish. This eco-friendly enzymatic process provides a new strategy for grafting hydrophobization and even functionalization of lignocellulosic fiber materials using amino compounds.
Collapse
|
8
|
Zhang Y, Lin DF, Hao J, Zhao ZH, Zhang YJ. The crucial role of bacterial laccases in the bioremediation of petroleum hydrocarbons. World J Microbiol Biotechnol 2020; 36:116. [PMID: 32661601 DOI: 10.1007/s11274-020-02888-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Laccases (EC 1.10.3.2) are a class of metallo-oxidases found in a variety of fungi, plants, and bacteria as well as in certain insects. They can oxidize a wide variety of organic compounds and can be widely applied in many fields, especially in the field of biodegradation and detoxification of environmental pollutants. The practical efficacy of laccases depends on their ability to capture the target substance as well as their catalytic activity, which is related to their catalytic center, substrate selectivity, and substrate tolerance. Over the past few decades, many laccases have been identified in plants and fungi. Concurrently, bacterial laccases have received increasing attention because of their high thermostability and high tolerance to organic compounds. The aim of this review is to summarize the role of bacterial laccases in the bioremediation of petroleum hydrocarbons and to outline the correlation between the molecular structure of the mononuclear T1 Cu center of bacterial laccases and their substrate preference.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Dong-Fa Lin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Jun Hao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Zhi-Hao Zhao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Ying-Jiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China. .,School of Life Science, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
9
|
Debnath R, Saha T. An insight into the production strategies and applications of the ligninolytic enzyme laccase from bacteria and fungi. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101645] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Pourghobadi R, Nematollahi D, Baezzat MR, Alizadeh S, Goljani H. Electropolymerization of catechol on wireless graphite electrode. Unusual cathodic polycatechol formation. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Su J, Wang C, Noro J, Cavaco-Paulo A, Silva C, Fu J. Polymers from Bamboo Extracts Produced by Laccase. Polymers (Basel) 2018; 10:E1141. [PMID: 30961066 PMCID: PMC6404019 DOI: 10.3390/polym10101141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 12/02/2022] Open
Abstract
A green methodology for the production of polymers from bamboo powder was investigated. The optimal conditions for the extraction of components from bamboo were defined by incubating the powder in an acetate buffer (pH 5) under boiling for 2 h. Native laccase from Myceliophthora thermophila was used afterwards to oxidize the extracts from the final resulting extraction liquid. The reduction of the free OH content after enzymatic oxidation, as well as the ¹H NMR data, confirmed the efficient polymerization of the extracts. The bamboo powder samples were also subjected to high compression and curing, in the absence and in the presence of laccase, to evaluate the hardness of the tablets formed by enzymatic bonding events. The results revealed a higher hardness when the tablets were produced in the presence of laccase, confirming the role of the catalyst on the precipitation of colloidal lignin and phenolic extractives. Herein we produce new oligomers/polymers by laccase oxidation of the extracts resulting from a clean method boiling. At the same time, the data open up new routes for the exploitation of new lignocellulosic materials by the direct application of the enzyme on the bamboo powder material.
Collapse
Affiliation(s)
- Jing Su
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi 214122, China.
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Cheng Wang
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi 214122, China.
| | - Jennifer Noro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Artur Cavaco-Paulo
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi 214122, China.
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Jiajia Fu
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi 214122, China.
- Jiangsu Sunshine Group Co., Ltd, Jiangyin 214426, China.
| |
Collapse
|
12
|
Kim S, Lee H, Kim J, Oliveira F, Souto P, Kim H, Nakamatsu J. Laccase-mediated grafting of polyphenols onto cationized cotton fibers to impart UV protection and antioxidant activities. J Appl Polym Sci 2017. [DOI: 10.1002/app.45801] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Suyeon Kim
- Engineering Department; Pontificia Universidad Catolica del Peru (PUCP), Av. Universitaria 1801; Lima 32 Lima Peru
| | - Hyunkyung Lee
- Human and Culture Convergence Technology R&BD Group; Korea Institute of Industrial Technology (KITECH) 143 Hanggaul-ro, Sangrok-gu, Ansan-si; Gyeonggi-do 426-910 Republic of Korea
| | - Juhea Kim
- Human and Culture Convergence Technology R&BD Group; Korea Institute of Industrial Technology (KITECH) 143 Hanggaul-ro, Sangrok-gu, Ansan-si; Gyeonggi-do 426-910 Republic of Korea
| | - Fernando Oliveira
- Engineering Department-Campus Blumenau; Federal University of Santa Catarina-UFSC, Rua Pomerode, 710-Salto Norte; Blumenau SC 89065-300 Brazil
| | - Pedro Souto
- Textile Engineering Department; Centro de Ciência e Tecnologia Têxtil, Universidade do Minho, Campus de Azurém; Guimarães 4800-058 Portugal
| | - Hyerim Kim
- Department of Clothing and Textiles; Sookmyung Women's University; Yongsan-gu Seoul 04310 Republic of Korea
| | - Javier Nakamatsu
- Science Department; Pontificia Universidad Catolica del Peru (PUCP), Av. Universitaria 1801; Lima 32 Lima Peru
| |
Collapse
|
13
|
Su J, Noro J, Loureiro A, Martins M, Azoia NG, Fu J, Wang Q, Silva C, Cavaco-Paulo A. PEGylation Greatly Enhances Laccase Polymerase Activity. ChemCatChem 2017. [DOI: 10.1002/cctc.201700849] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jing Su
- International Joint Research Laboratory for Textile and Fiber Bioprocesses; Jiangnan University; Wuxi 214122 China
- Centre of Biological Engineering; University of Minho, Campus de Gualtar; 4710-057 Braga Portugal
| | - Jennifer Noro
- Centre of Biological Engineering; University of Minho, Campus de Gualtar; 4710-057 Braga Portugal
| | - Ana Loureiro
- Centre of Biological Engineering; University of Minho, Campus de Gualtar; 4710-057 Braga Portugal
| | - Madalena Martins
- Centre of Biological Engineering; University of Minho, Campus de Gualtar; 4710-057 Braga Portugal
| | - Nuno G. Azoia
- Centre of Biological Engineering; University of Minho, Campus de Gualtar; 4710-057 Braga Portugal
| | - Jiajia Fu
- International Joint Research Laboratory for Textile and Fiber Bioprocesses; Jiangnan University; Wuxi 214122 China
| | - Qiang Wang
- International Joint Research Laboratory for Textile and Fiber Bioprocesses; Jiangnan University; Wuxi 214122 China
| | - Carla Silva
- Centre of Biological Engineering; University of Minho, Campus de Gualtar; 4710-057 Braga Portugal
| | - Artur Cavaco-Paulo
- International Joint Research Laboratory for Textile and Fiber Bioprocesses; Jiangnan University; Wuxi 214122 China
- Centre of Biological Engineering; University of Minho, Campus de Gualtar; 4710-057 Braga Portugal
| |
Collapse
|
14
|
Zerva A, Manos N, Vouyiouka S, Christakopoulos P, Topakas E. Bioconversion of Biomass-Derived Phenols Catalyzed by Myceliophthora thermophila Laccase. Molecules 2016; 21:molecules21050550. [PMID: 27128897 PMCID: PMC6273956 DOI: 10.3390/molecules21050550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 11/24/2022] Open
Abstract
Biomass-derived phenols have recently arisen as an attractive alternative for building blocks to be used in synthetic applications, due to their widespread availability as an abundant renewable resource. In the present paper, commercial laccase from the thermophilic fungus Myceliophthora thermophila was used to bioconvert phenol monomers, namely catechol, pyrogallol and gallic acid in water. The resulting products from catechol and gallic acid were polymers that were partially characterized in respect to their optical and thermal properties, and their average molecular weight was estimated via solution viscosity measurements and GPC. FT-IR and 1H-NMR data suggest that phenol monomers are connected with ether or C–C bonds depending on the starting monomer, while the achieved molecular weight of polycatechol is found higher than the corresponding poly(gallic acid). On the other hand, under the same condition, pyrogallol was dimerized in a pure red crystalline compound and its structure was confirmed by 1H-NMR as purpurogallin. The herein studied green synthesis of enzymatically synthesized phenol polymers or biological active compounds could be exploited as an alternative synthetic route targeting a variety of applications.
Collapse
Affiliation(s)
- Anastasia Zerva
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece.
| | - Nikolaos Manos
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece.
| | - Stamatina Vouyiouka
- Laboratory of Polymer Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece.
| | - Paul Christakopoulos
- Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå SE-97187, Sweden.
| | - Evangelos Topakas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece.
- Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå SE-97187, Sweden.
| |
Collapse
|
15
|
Hui J, Jiang X, Xie H, Chen D, Shen J, Sun X, Han W, Li J, Wang L. Laccase-catalyzed electrochemical fabrication of polyaniline/graphene oxide composite onto graphite felt electrode and its application in bioelectrochemical system. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Wu H, Noro J, Wang Q, Fan X, Silva C, Cavaco-Paulo A. Jute hydrophobization via laccase-catalyzed grafting of fluorophenol and fluoroamine. RSC Adv 2016. [DOI: 10.1039/c6ra17687a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The figure mechanism of the 4-[4-(trifluoromethyl)phenoxy]phenol (TFMPP) and 1H,1H-perfluorononylamine (PFNL) grafting onto the lignins of jute fabrics.
Collapse
Affiliation(s)
- Huimin Wu
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- PR China
| | - Jennifer Noro
- Centre of Biological Engineering
- University of Minho
- Braga
- Portugal
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- PR China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- PR China
| | - Carla Silva
- Centre of Biological Engineering
- University of Minho
- Braga
- Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering
- University of Minho
- Braga
- Portugal
- International Joint Research Laboratory for Textile and Fiber Bioprocesses
| |
Collapse
|
17
|
Pezzella C, Guarino L, Piscitelli A. How to enjoy laccases. Cell Mol Life Sci 2015; 72:923-40. [PMID: 25577278 PMCID: PMC11113763 DOI: 10.1007/s00018-014-1823-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 01/08/2023]
Abstract
An analysis of the scientific literature published in the last 10 years reveals a constant growth of laccase applicative research in several industrial fields followed by the publication of a great number of patents. The Green Chemistry journal devoted the cover of its September 2014 issue to a laccase as greener alternative for chemical oxidation. This indicates that laccase "never-ending story" has found a new promising trend within the constant search for efficient (bio)catalysts able to meet the 12 green chemistry principles. A survey of ancient and cutting-edge uses of laccase in different industrial sectors is offered in this review with the aim both to underline their potential and to provide inspiration for new ones. Applications in textile and food fields have been deeply described, as well as examples concerning polymer synthesis and laccase-catalysed grafting. Recent applications in pharmaceutical and cosmetic industry have also been reviewed.
Collapse
Affiliation(s)
- Cinzia Pezzella
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte S. Angelo, via Cintia 4, 80126, Naples, Italy,
| | | | | |
Collapse
|
18
|
Sanchez-Vazquez SA, Hailes HC, Evans JRG. Hydrophobic Polymers from Food Waste: Resources and Synthesis. POLYM REV 2013. [DOI: 10.1080/15583724.2013.834933] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Sun X, Bai R, Zhang Y, Wang Q, Fan X, Yuan J, Cui L, Wang P. Laccase-Catalyzed Oxidative Polymerization of Phenolic Compounds. Appl Biochem Biotechnol 2013; 171:1673-80. [DOI: 10.1007/s12010-013-0463-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/22/2013] [Indexed: 11/24/2022]
|
20
|
Gonçalves I, Matamá T, Cavaco-Paulo A, Silva C. Laccase coating of catheters with poly(catechin) for biofilm reduction. BIOCATAL BIOTRANSFOR 2013. [DOI: 10.3109/10242422.2013.828711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Sun SS, Xing T, Tang RC. Simultaneous Coloration and Functionalization of Wool, Silk, and Nylon with the Tyrosinase-Catalyzed Oxidation Products of Caffeic Acid. Ind Eng Chem Res 2013. [DOI: 10.1021/ie303350z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sha-Sha Sun
- National
Engineering Laboratory for Modern Silk, College
of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Tieling Xing
- National
Engineering Laboratory for Modern Silk, College
of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Ren-Cheng Tang
- National
Engineering Laboratory for Modern Silk, College
of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| |
Collapse
|
22
|
Abstract
A new concept of enzymatic coloration of silk fiber with tea polyphenols (TP) in the presence of Rhus vernicifera Laccase was proposed in this study. Three methods were investigated: the simultaneous enzymatic polymerization of TP and coloration of silk, the polymerization of TP with laccase followed by a further coloration of silk, and the adsorption of TP by silk followed by laccase treatment. All the methods, especially the first two methods can increase the color depth of silk and improve the color fastness. The color depth of silk increases with the dyeing time and the laccase concentration up to 4 U/mL at pH 5.0 and 50oC.
Collapse
|
23
|
|
24
|
|
25
|
Fu J, Nyanhongo GS, Gübitz GM, Cavaco-Paulo A, Kim S. Enzymatic colouration with laccase and peroxidases: Recent progress. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.649563] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Jeon JR, Baldrian P, Murugesan K, Chang YS. Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microb Biotechnol 2011; 5:318-32. [PMID: 21791030 PMCID: PMC3821676 DOI: 10.1111/j.1751-7915.2011.00273.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Laccases are oxidases that contain several copper atoms, and catalyse single-electron oxidations of phenolic compounds with concomitant reduction of oxygen to water. The enzymes are particularly widespread in ligninolytic basidiomycetes, but also occur in certain prokaryotes, insects and plants. Depending on the species, laccases are involved in various biosynthetic processes contributing to carbon recycling in land ecosystems and the morphogenesis of biomatrices, wherein low-molecular-weight naturally occurring phenols serve as key enzyme substrates. Studies of these in vivo synthetic pathways have afforded new insights into fungal laccase applicability in green synthetic chemistry. Thus, we here review fungal laccase-catalysed oxidations of naturally occurring phenols that are particularly relevant to the synthesis of fine organic chemicals, and we discuss how the discovered synthetic strategies mimic laccase-involved in vivo pathways, thus enhancing the green nature of such reactions. Laccase-catalysed in vivo processes yield several types of biopolymers, including those of cuticles, lignin, polyflavonoids, humus and the melanin pigments, using natural mono- or poly-phenols as building blocks. The in vivo synthetic pathways involve either phenoxyl radical-mediated coupling or cross-linking reactions, and can be adapted to the design of in vitro oxidative processes involving fungal laccases in organic synthesis; the laccase substrates and the synthetic mechanisms reflect in vivo processes. Notably, such in vitro synthetic pathways can also reproduce physicochemical properties (e.g. those of chromophores, and radical-scavenging, hydration and antimicrobial activities) found in natural biomaterials. Careful study of laccase-associated in vivo metabolic pathways has been rewarded by the discovery of novel green applications for fungal laccases. This review comprehensively summarizes the available data on laccase-catalysed biosynthetic pathways and associated applications in fine chemical syntheses.
Collapse
Affiliation(s)
- Jong-Rok Jeon
- Corporate R&D Group, LG Chem Research Park, Daejeon 305-380, Korea
| | | | | | | |
Collapse
|