1
|
Nawaz T, Gu L, Gibbons J, Hu Z, Zhou R. Bridging Nature and Engineering: Protein-Derived Materials for Bio-Inspired Applications. Biomimetics (Basel) 2024; 9:373. [PMID: 38921253 PMCID: PMC11201842 DOI: 10.3390/biomimetics9060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
The sophisticated, elegant protein-polymers designed by nature can serve as inspiration to redesign and biomanufacture protein-based materials using synthetic biology. Historically, petro-based polymeric materials have dominated industrial activities, consequently transforming our way of living. While this benefits humans, the fabrication and disposal of these materials causes environmental sustainability challenges. Fortunately, protein-based biopolymers can compete with and potentially surpass the performance of petro-based polymers because they can be biologically produced and degraded in an environmentally friendly fashion. This paper reviews four groups of protein-based polymers, including fibrous proteins (collagen, silk fibroin, fibrillin, and keratin), elastomeric proteins (elastin, resilin, and wheat glutenin), adhesive/matrix proteins (spongin and conchiolin), and cyanophycin. We discuss the connection between protein sequence, structure, function, and biomimetic applications. Protein engineering techniques, such as directed evolution and rational design, can be used to improve the functionality of natural protein-based materials. For example, the inclusion of specific protein domains, particularly those observed in structural proteins, such as silk and collagen, enables the creation of novel biomimetic materials with exceptional mechanical properties and adaptability. This review also discusses recent advancements in the production and application of new protein-based materials through the approach of synthetic biology combined biomimetics, providing insight for future research and development of cutting-edge bio-inspired products. Protein-based polymers that utilize nature's designs as a base, then modified by advancements at the intersection of biology and engineering, may provide mankind with more sustainable products.
Collapse
Affiliation(s)
- Taufiq Nawaz
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| | - Liping Gu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| | | | - Zhong Hu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007, USA;
| | - Ruanbao Zhou
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| |
Collapse
|
2
|
Mouro C, Gouveia IC. Electrospun wound dressings with antibacterial function: a critical review of plant extract and essential oil incorporation. Crit Rev Biotechnol 2024; 44:641-659. [PMID: 37156536 DOI: 10.1080/07388551.2023.2193859] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Among the many different types of wound dressings, nanofiber-based materials produced through electrospinning are claimed to be ideal because of their advantageous intrinsic properties and the feasibility of employing several strategies to load bioactive compounds into their structure. Bioactive compounds with antimicrobial properties have been incorporated into different wound dressings to promote healing as well as prevent and treat bacterial infections. Among these, natural products, such as medicinal plant extracts and essential oils (EOs), have proven particularly attractive thanks to their nontoxic nature, minor side effects, desirable bioactive properties, and favorable effects on the healing process. To this end, the present review provides an exhaustive and up-to-date revision of the most prominent medicinal plant extracts and EOs with antimicrobial properties that have been incorporated into nanofiber-based wound dressings. The most common methods used for incorporating bioactive compounds into electrospun nanofibers include: pre-electrospinning (blend, encapsulation, coaxial, and emulsion electrospinning), post-electrospinning (physical adsorption, chemical immobilization, and layer-by-layer assembly), and nanoparticle loading. Furthermore, a general overview of the benefits of EOs and medicinal plant extracts is presented, describing their intrinsic properties and biotechniques for their incorporation into wound dressings. Finally, the current challenges and safety issues that need to be adequately clarified and addressed are discussed.
Collapse
Affiliation(s)
- Cláudia Mouro
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, Covilhã, Portugal
| | - Isabel C Gouveia
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
3
|
Kenawy ER, El-Moaty MSA, Ghoneum M, Soliman HMA, El-Shanshory AA, Shendy S. Biobran-loaded core/shell nanofibrous scaffold: a promising wound dressing candidate. RSC Adv 2024; 14:4930-4945. [PMID: 38327812 PMCID: PMC10848241 DOI: 10.1039/d3ra08609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
This research examined the effectiveness of Biobran as a bioactive substance that could potentially improve wound healing. It also looked at how Biobran affects the properties of a nanofibrous scaffold made through coaxial electrospinning. This is the first study exploring the use of Biobran in this context and its interaction with nanofibrous scaffolds. The scaffolds were composed of poly(ε-caprolactone) (PCL) in the shell and various concentrations of Biobran blended with polyvinyl alcohol (PVA) in the core. The properties of the scaffolds were characterized by SEM, TEM, FTIR, XRD, TGA, DSC, stress-strain test, WCA, release test, MTT cytotoxicity assay, wound scratching assay, and the dye exclusion method using trypan blue. The scaffolds loaded with Biobran exhibited a more compact and smooth morphology compared with the scaffold without Biobran. The physical interaction and crystallinity of the polymers in the scaffolds were also affected by Biobran in a concentration-dependent manner. This positively influenced their tensile strength, elongation at break, thermal stability, and hydrophilicity. The porosity, water uptake capacity, and WVTR of the nanofibrous scaffolds are within the optimal ranges for wound healing. The release rate of Biobran, which revealed a biphasic release pattern, decreased with increasing Biobran concentration, resulting in controlled and sustained delivery of Biobran from the nanofiber scaffolds. The cell viability assays showed a dose-dependent effect of Biobran on WISH cells, which might be attributed to the positive effect of Biobran on the physicochemical properties of the nanofibrous scaffolds. These findings suggest that Biobran-loaded core/shell nanofiber scaffolds have a potential application in wound healing as an ideal multifunctional wound dressing.
Collapse
Affiliation(s)
- El-Refaie Kenawy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Mohammed S A El-Moaty
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science 1731 E. 120th Street Los Angeles CA 90059 USA
- Department of Surgery, University of California Los Angeles Los Angeles CA 90095 USA
| | - Hesham M A Soliman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab Alexandria 21934 Egypt
| | - Ahmed A El-Shanshory
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab Alexandria 21934 Egypt
| | - S Shendy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| |
Collapse
|
4
|
Thakur M, Chandel M, Kumar A, Kumari S, Kumar P, Pathania D. The development of carbohydrate polymer- and protein-based biomaterials and their role in environmental health and hygiene: A review. Int J Biol Macromol 2023; 242:124875. [PMID: 37196726 DOI: 10.1016/j.ijbiomac.2023.124875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Biological macromolecules have been significantly used in the medicine due to their certain therapeutic values. Macromolecules have been employed in medical filed in order to enhance, support, and substitute damaged tissues or any other biological function. In the past decade, the biomaterial field has developed considerably because of vast innovations in regenerative medicine, tissue engineering, etc. Different types of biological macromolecules such as natural protein and polysaccharide etc. and synthetic molecules such as metal based, polymer based, and ceramic based etc. have been discussed. These materials can be modified by coatings, fibres, machine parts, films, foams, and fabrics for utilization in biomedical products and other environmental applications. At present, the biological macromolecules can used in different areas like medicine, biology, physics, chemistry, tissue engineering, and materials science. These materials have been used to promote the healing of human tissues, medical implants, bio-sensors and drug delivery, etc. These materials also considered as environmentally sustainable as they are prepared in association with renewable natural resources and living organisms in contrast to non-renewable resources (petrochemicals). In addition, enhanced compatibility, durability and circular economy of biological materials make them highly attractive and innovative for current research.The present review paper summarizes a brief about biological macromolecules, their classification, methods of synthesis, and their role in biomedicine, dyes and herbal products.
Collapse
Affiliation(s)
- Manita Thakur
- Department of Chemistry, IEC University Baddi, Solan, Himachal Pradesh, India
| | - Manisha Chandel
- Department of Chemistry, IEC University Baddi, Solan, Himachal Pradesh, India
| | - Ajay Kumar
- Department of Chemistry, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Sarita Kumari
- Department of Zoology, Sardar Patel University, Mandi, (HP) 175001, India
| | - Pawan Kumar
- Himalayan Forest Research Institute, Conifer Campus, Panthaghati, Shimla 171013, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Bagla (RahyaSuchani), Jammu 181143, India.
| |
Collapse
|
5
|
Naylor BH, Tarazi JM, Salem HS, Harwin SF, Mont MA. Wound Management following Total Knee Arthroplasty: An Updated Review. J Knee Surg 2023; 36:274-283. [PMID: 34261158 DOI: 10.1055/s-0041-1731740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optimal wound closure techniques following total knee arthroplasty (TKA) have focused on enhancing healing potential, preventing infection, yielding satisfactory cosmesis, and allowing early ambulation and functionality. An appropriate layered closure and management of the TKA typically involves addressing the (1) deep fascial layer; (2) subdermal layer; (3) intradermal layer, including the subcuticular region; and (4) final application of a specific aseptic dressing, each of which are covered here in detail. This focused critical review of the literature discusses traditional techniques used in all layers of wound closure following TKA while introducing several emerging popular techniques. For example, absorbable barbed skin sutures and occlusive dressings have the potential to reduce operative time, limit the need for early postoperative visits, obviate the need for suture or staple removal, and safely promote patient communication via telemedicine. As novel wound closure techniques continue to emerge and traditional approaches are improved upon, future comparative studies will assist in elucidating the key advantages of various options. In an extremely important field that has tremendous variability, these efforts may enable the reaching of a classically elusive standard of care for these techniques.
Collapse
Affiliation(s)
- Brandon H Naylor
- Northwell Health Orthopaedics, Lenox Hill Hospital, New York City, New York
| | - John M Tarazi
- Northwell Health Orthopaedics, Lenox Hill Hospital, New York City, New York
| | - Hytham S Salem
- Northwell Health Orthopaedics, Lenox Hill Hospital, New York City, New York
| | - Steven F Harwin
- Department of Orthopaedic Surgery, Mount Sinai West Hospital, New York City, New York
| | - Michael A Mont
- Northwell Health Orthopaedics, Lenox Hill Hospital, New York City, New York
| |
Collapse
|
6
|
Joo S, Kim JH, Lee CE, Kang J, Seo S, Kim JH, Song YK. Eco-Friendly Keratin-Based Additives in the Polymer Matrix to Enhance the Output of Triboelectric Nanogenerators. ACS APPLIED BIO MATERIALS 2022; 5:5706-5715. [PMID: 36473275 DOI: 10.1021/acsabm.2c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A triboelectric nanogenerator (TENG) is an energy generator that converts mechanical energy into electrical energy using triboelectricity at a nanoscale. Given their potential application as power sources in electronic devices, various attempts have been made to improve their output performance. Here, we present an eco-friendly, low-cost, and facile fabrication method to enhance TENG characteristics with keratin protein additives. Keratin sources, human and cat hair, are processed into powder and added to the friction layer, which increases their positive charge affinity, thereby boosting the output performance of the TENG. The output performances of the keratin-added TENG (K-TENG) are measured in the vertical contact-separation mode, with both additives having the highest output values at 5 wt % load. The K-TENG generates more output voltage and current values than the pristine TENG by 90 and 208%, respectively. Hence, we conclude that this method would potentially promote TENG as a strong candidate for a competitive "green" energy harvesting device in future electronics applications.
Collapse
Affiliation(s)
- Seokwon Joo
- Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul08826, Korea.,Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon16499, Korea
| | - Jong Hyeok Kim
- College of BioNano Technology, Gachon University, Gyeonggi13120, Republic of Korea
| | - Chae-Eun Lee
- Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul08826, Korea
| | - Jeongmin Kang
- Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon16499, Korea
| | - Soonmin Seo
- College of BioNano Technology, Gachon University, Gyeonggi13120, Republic of Korea
| | - Ju-Hyung Kim
- Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon16499, Korea
| | - Yoon-Kyu Song
- Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul08826, Korea.,Research Institute for Convergence Science, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
7
|
Chen Z, Bains SS, Sax OC, Sodhi N, Mont MA. Dressing Management during Total Knee Arthroplasty: A Systematic Review and Meta-Analysis. J Knee Surg 2022; 35:1524-1532. [PMID: 36538940 DOI: 10.1055/s-0042-1758674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dressings for total knee arthroplasty (TKA) typically focus on promoting optimal healing, while preventing infection, allowing for functionality and immediate ambulation, while providing for excellent cosmesis. We have previously described four aspects of closure after TKA involving the: (1) deep fascial layer; (2) subdermal layer; (3) intradermal layer, including the subcuticular region; and (4) a specific aseptic dressing. In this meta-analysis and systematic review of the literature, we will focus on the dressing. Specifically, we assessed: (1) infection risk of different techniques; (2) re-operation or readmission risk; and (3) length of time until dressing change needed. There were 16 reports on infection risk, re-operation risk, and length of time until change needed. A meta-analysis focused on the qualifying wound complication risk reports was also performed. The meta-analysis including four studies (732 patients) demonstrated overall lower wound complication risk with the use of adhesives and mesh dressings (odds ratio 0.67) versus traditional closures. Additionally, studies demonstrated fewer re-operations and readmissions with the use of adhesives and mesh dressings. Furthermore, one report demonstrated mesh dressings persist longer than silver dressings. Therefore, multiple recent reports suggest superior outcomes when using adhesive and mesh dressings for TKAs.
Collapse
Affiliation(s)
- Zhongming Chen
- Department of Orthopaedic Surgery, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, Baltimore, Maryland
| | - Sandeep S Bains
- Department of Orthopaedic Surgery, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, Baltimore, Maryland
| | - Oliver C Sax
- Department of Orthopaedic Surgery, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, Baltimore, Maryland
| | - Nipun Sodhi
- Department of Orthopaedic Surgery, Long Island Jewish Medical Center, North Shore University Hospital Northwell Health, New York, New York
| | - Michael A Mont
- Department of Orthopaedic Surgery, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, Baltimore, Maryland
| |
Collapse
|
8
|
Nano/micro-formulations of keratin in biocomposites, wound healing and drug delivery systems; recent advances in biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Photocrosslinkable Silk-Based Biomaterials for Regenerative Medicine and Healthcare Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022; 23:ijms23169035. [PMID: 36012297 PMCID: PMC9409034 DOI: 10.3390/ijms23169035] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and β-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate’s bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate’s remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.
Collapse
|
11
|
Lygrisse KA, Teo G, Singh V, Muthusamy N, Schwarzkopf R, William L. Comparison of silver-embedded occlusive dressings and negative pressure wound therapy following total joint arthroplasty in high BMI patients: a randomized controlled trial. Arch Orthop Trauma Surg 2022; 143:2989-2995. [PMID: 35779102 DOI: 10.1007/s00402-022-04530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION High body mass index (BMI) and wound drainage following total joint arthroplasty (TJA) can lead to wound healing complications and periprosthetic joint infection. Silver-embedded occlusive dressings and negative pressure wound therapy (NPWT) have been shown to reduce these complications. The purpose of this prospective trial was to compare the effect of silver-embedded dressings and NPWT on wound complications in patients with BMI ≥ 35 m/kg2 undergoing TJA. METHODS We conducted a randomized control trial of patients who had a BMI > 35 m/kg2 and were undergoing primary TJA between October 2017 and February 2020. Patients who underwent revision surgery, or those with an active infection, previous scar, history of wound healing complications, post-traumatic degenerative joint disease with hardware, or inflammatory arthritis were excluded. Patients were randomized to receive either a silver-embedded occlusive dressing (control) or NPWT. Frequency distributions, means, and standard deviations were used to describe patient demographics, postoperative complications, 90-day readmissions, and reoperations. T-test and chi-squared tests were used to test for significant differences between continuous and categorical variables, respectively. RESULTS Two hundred-thirty patients with 3-month follow-up were included. One-hundred-fifteen patients received the control and 115 patients received NPWT. There were six patients (5.2%) in the control group with wound complications (drainage: n = 5, non-healing wound: n = 1) and two patients (1.7%) in the NPWT with complications (drainage: n = 2). There were no 90-day readmissions in the control group versus two (1.8%) 90-day readmissions in the NPWT group. Finally, three patients (2.6%) in the control group underwent reoperations (irrigation and debridement [I&D], I&D with modular implant exchange, and implant revision), while none in the NPWT group had undergone reoperation. The two groups showed insignificant differences in wound complications (p = 0.28), 90-day readmissions (p = 0.50), and reoperations (p = 0.25). CONCLUSION Patients with BMI ≥ 35 m/kg2 undergoing TJA have no statistical difference in early wound complications, readmissions, or reoperations when treated with either silver-embedded dressings or NPWT.
Collapse
Affiliation(s)
- Katherine A Lygrisse
- Department of Orthopedic Surgery, Huntington Hospital, Zucker School of Medicine Hofstra/Northwell, 270 Park Ave, Huntington, NY, 11743, USA
| | - Greg Teo
- Department of Orthopedic Surgery, Hospital for Special Surgeries, 541 East 71st St, 7th Fl, New York, NY, 10021, USA
| | - Vivek Singh
- Department of Orthopedic Surgery, NYU Langone Health, 301 East 17th Street, 15th Fl Suite 1518, New York, NY, 10003, USA
| | - Nishanth Muthusamy
- Department of Orthopedic Surgery, NYU Langone Health, 301 East 17th Street, 15th Fl Suite 1518, New York, NY, 10003, USA.
- Department of Orthopedic Surgery, Division of Adult Reconstructive Surgery, NYU Langone Health, 301, East 17th Street, New York, NY, 10003, USA.
| | - Ran Schwarzkopf
- Department of Orthopedic Surgery, NYU Langone Health, 301 East 17th Street, 15th Fl Suite 1518, New York, NY, 10003, USA
| | - Long William
- Department of Orthopedic Surgery, Hospital for Special Surgeries, 541 East 71st St, 7th Fl, New York, NY, 10021, USA
| |
Collapse
|
12
|
Khosropanah MH, Vaghasloo MA, Shakibaei M, Mueller AL, Kajbafzadeh AM, Amani L, Haririan I, Azimzadeh A, Hassannejad Z, Zolbin MM. Biomedical applications of silkworm (Bombyx Mori) proteins in regenerative medicine (a narrative review). J Tissue Eng Regen Med 2021; 16:91-109. [PMID: 34808032 DOI: 10.1002/term.3267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Silk worm (Bombyx Mori) protein, have been considered as potential materials for a variety of advanced engineering and biomedical applications for decades. Recently, silkworm silk has gained significant importance in research attention mainly because of its remarkable and exceptional mechanical properties. Silk has already been shown to have unique interactions with cells in tissues through bio-recognition units. The natural silk contains fibroin and sericin and has been used in various tissues of the human body (skin, bone, nerve, and so on). Besides, silk also still has anti-cancer, anti-tyrosinase, anti-coagulant, anti-oxidant, anti-bacterial, and anti-diabetic properties. This article is supposed to describe the diverse biomedical capabilities of B. Mori silk as the appropriate biomaterial among the assorted natural and artificial polymers that are presently accessible, and ideal for usage in regenerative medicine fields.
Collapse
Affiliation(s)
- Mohammad Hossein Khosropanah
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Alizadeh Vaghasloo
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Amani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy and Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Ujjwal RR, Yadav A, Tripathi S, Krishna STVS. Polymer-Based Nanotherapeutics for Burn Wounds. Curr Pharm Biotechnol 2021; 23:1460-1482. [PMID: 34579630 DOI: 10.2174/1389201022666210927103755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/11/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022]
Abstract
Burn wounds are complex and intricate injuries that have become a common cause of trauma leading to significant mortality and morbidity every year. Dressings are applied to burn wounds with the aim of promoting wound healing, preventing burn infection and restoring skin function. The dressing protects the injury and contributes to recovery of dermal and epidermal tissues. Polymer-based nanotherapeutics are increasingly being exploited as burn wound dressings. Natural polymers such as cellulose, chitin, alginate, collagen, gelatin and synthetic polymers like poly (lactic-co-glycolic acid), polycaprolactone, polyethylene glycol, and polyvinyl alcohol are being obtained as nanofibers by nanotechnological approaches like electrospinning and have shown wound healing and re-epithelialization properties. Their biocompatibility, biodegradability, sound mechanical properties and unique structures provide optimal microenvironment for cell proliferation, differentiation, and migration contributing to burn wound healing. The polymeric nanofibers mimic collagen fibers present in extracellular matrix and their high porosity and surface area to volume ratio enable increased interaction and sustained release of therapeutics at the site of thermal injury. This review is an attempt to compile all recent advances in the use of polymer-based nanotherapeutics for burn wounds. The various natural and synthetic polymers used have been discussed comprehensively and approaches being employed have been reported. With immense research effort that is currently being invested in this field and development of proper characterization and regulatory framework, future progress in burn treatment is expected to occur. Moreover, appropriate preclinical and clinical research will provide evidence for the great potential that polymer-based nanotherapeutics hold in the management of burn wounds.
Collapse
Affiliation(s)
- Rewati Raman Ujjwal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. India
| | - Awesh Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. India
| | - Shourya Tripathi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. India
| | - S T V Sai Krishna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. India
| |
Collapse
|
14
|
Azhar FF, Rostamzadeh P, Khordadmehr M, Mesgari-Abbasi M. Evaluation of a novel bioactive wound dressing: an in vitro and in vivo study. J Wound Care 2021; 30:482-490. [PMID: 34121431 DOI: 10.12968/jowc.2021.30.6.482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Hard-to-heal wounds, such as pressure ulcers and diabetic ulcers, are a major challenge for wound dressings. The aim of this study was to develop a bioactive dressing based on polymers and natural materials with unique biological and therapeutic properties. METHOD The dressing was composed of an active layer containing polyvinyl alcohol (PVA), honey, curcumin and keratin, and an upper layer with lower hydrophilicity comprising PVA to induce flexibility. Physicochemical properties of the dressing were characterised by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, swelling behaviour and antibacterial measurements. A wound healing study was performed using an experimental rat model and two different compositions of the bioactive dressing were compared with a commercial wound dressing (Comfeel, Coloplast, Denmark). Histopathological evaluation was conducted for this purpose. RESULTS Characterisation results showed that a smooth bilayer film with two homogenous but distinct layers was produced. The dressing also provided adequate moisture to the wound environment without infection and adhesion due to dryness occurring. Our results exhibited significant bactericidal activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria and improved the wound healing process without any scarring. Histopathological findings demonstrated a significant higher healing rate in vivo together with well-formed epidermis, granulation tissue formation and tissue contraction, when compared with the commercial wound dressing. CONCLUSION Our results demonstrated acceptable physical and healing effects for the novel bioactive wound dressing; however, more investigations are recommended.
Collapse
Affiliation(s)
- Fahimeh Farshi Azhar
- Applied Polymer Research Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Paria Rostamzadeh
- Applied Polymer Research Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Monireh Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
15
|
Shao J, Cui Y, Liang Y, Liu H, Ma B, Ge S. Unilateral Silver-Loaded Silk Fibroin Difunctional Membranes as Antibacterial Wound Dressings. ACS OMEGA 2021; 6:17555-17565. [PMID: 34278141 PMCID: PMC8280680 DOI: 10.1021/acsomega.1c02035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Silk fibroin (SF) has been widely used as wound dressings due to its good biocompatibility. To enhance the antibacterial properties of the dressings, silver (Ag) is often added. However, an overdose of Ag may cause cytotoxicity and inhibit wound healing. Therefore, this study aimed to develop a two-layered membrane to reduce cytotoxicity while maintaining the antibacterial properties of Ag through a simplified layer-by-layer technique. The membranes comprised an Ag-rich SF layer (Ag-SF) and a pure SF layer. The unilateral Ag-loaded membranes showed efficient antibacterial properties at doses above 0.06 mg/mL Ag, and the antibacterial properties were comparable on both sides. In contrast, the SF sides of the membranes showed lower cytotoxicity than the Ag-SF sides of the membranes. Further studies on the thickness ratio of Ag-SF/SF layers revealed that Ag0.12-SF/SF membranes with a ratio of 1:3 had high cytocompatibility on the SF sides while holding a strong antibacterial property. Besides, the SF sides of the Ag0.12-SF/SF1:3 membranes promoted the expression levels of collagen I and transforming growth factor-β mRNA in human foreskin fibroblasts. The SF sides of the Ag0.12-SF/SF1:3 membranes significantly promoted the healing of infected wounds in vivo. Therefore, unilateral loading with the simplified layer-by-layer preparation technique provided an effective method to balance the cytotoxicity and the antibacterial property of Ag-loaded materials and thus form a broader therapeutic window for Ag applications. The unilateral Ag-loaded silk fibroin difunctional membranes have the potential to be further preclinically explored as wound dressings.
Collapse
Affiliation(s)
- Jinlong Shao
- Department
of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory
of Oral Tissue Regeneration & Shandong Engineering Laboratory
for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Yating Cui
- Department
of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory
of Oral Tissue Regeneration & Shandong Engineering Laboratory
for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Ye Liang
- Department
of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory
of Oral Tissue Regeneration & Shandong Engineering Laboratory
for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Hong Liu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan, Shandong 250100, China
| | - Baojin Ma
- Department
of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory
of Oral Tissue Regeneration & Shandong Engineering Laboratory
for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Shaohua Ge
- Department
of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory
of Oral Tissue Regeneration & Shandong Engineering Laboratory
for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| |
Collapse
|
16
|
Chen M, Ren X, Dong L, Li X, Cheng H. Preparation of dynamic covalently crosslinking keratin hydrogels based on thiol/disulfide bonds exchange strategy. Int J Biol Macromol 2021; 182:1259-1267. [PMID: 33991559 DOI: 10.1016/j.ijbiomac.2021.05.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 01/16/2023]
Abstract
Dynamic covalently crosslinking (DCC) hydrogels can mimic extracellular matrix and have the functions such as self-healing, self-adapting, and shape memory. The DCC keratin hydrogels based on thiol group-disulfide bonds exchange strategy have no reports so far as we know. Herein, inspired by the rich content of the intramolecular disulfide bonds and free thiol groups in the keratins extracted by reducing agents, we report a simple thiol-disulfide bonds exchange strategy for preparing the DCC keratin hydrogels. While the pH value of the keratin solution extracted by reducing agents was adjusted to 9.5-10.0, the keratin hydrogels showed the characteristic with injectability, self-healing, self-adapting, biocompatibility, and redox-responsive capacity. The extracted type II neutral/alkali keratin plays a critical role in imparting the keratin hydrogels with the reversibility behaviors due to that the keratins could build dynamic covalent bonds through thiol oxidation and disulfide exchange reactions in alkali conditions. This strategy provides an inspiration for forming DCC keratin hydrogel by avoiding the extra introduction of chemical crosslinking agents.
Collapse
Affiliation(s)
- Mianhong Chen
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Xingrong Ren
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liming Dong
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiaohe Li
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haiming Cheng
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
17
|
Younis I. Dehisced abdominal wall reconstruction. J Wound Care 2021; 29:S29-S30. [PMID: 32427032 DOI: 10.12968/jowc.2020.29.sup5b.s29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ibby Younis
- Consultant Plastic and Reconstructive Surgeon, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
18
|
Homaeigohar S, Monavari M, Koenen B, Boccaccini AR. Biomimetic biohybrid nanofibers containing bovine serum albumin as a bioactive moiety for wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111965. [PMID: 33812593 DOI: 10.1016/j.msec.2021.111965] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
For the first time, a biohybrid nanofibrous wound dressing is developed via green electrospinning of a blend solution of bovine serum albumin (BSA) (1 and 3 wt%) and polycaprolactone (PCL). In such a system, the components are miscible and interact through hydrogen bonding between the carbonyl group of PCL and the amine group of BSA, as verified by ATR-FTIR. As a result, the biohybrid nanofibers show a superior elastic modulus and elongation (300% and 58%, respectively) compared with the neat PCL nanofibers. The included protein induces a hydrophilicity effect to the PCL nanofibers, notably at the higher BSA content (3 wt%). In contrast to the neat nanofibers, the biohybrid ones are bioactive and encourage formation of biominerals (made of amorphous calcium carbonate) on the surface, after immersion in simulated body fluid (SBF). Based on the WST-8 cell viability tests, NIH3T3 fibroblast cells were seen to properly interact with the biohybrid mats and to proliferate in their proximity. SEM images show that the cells largely adhere onto such nanofibers even more than they do on the neat ones and adopt a flattened and stretched shape. In addition, the live/dead assay and phalloidin/DAPI staining assay confirm large cell viability and normal cell morphology on the biohybrid nanofiber mats after 4 days incubation. Taken together, BSA/PCL nanofibers are able to offer optimum mechanical properties (elasticity) as well as mineralization which can potentially stimulate the wound healing process, and can be considered a suitable candidate for wound dressing applications.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - Mahshid Monavari
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Benedict Koenen
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
19
|
Asadi L, Mokhtari J, Abbasi M. An alginate-PHMB-AgNPs based wound dressing polyamide nanocomposite with improved antibacterial and hemostatic properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:7. [PMID: 33471210 PMCID: PMC7817589 DOI: 10.1007/s10856-020-06484-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Wound dressing should be impenetrable against microorganisms and it should keep the wound wet. Gauze and polyamide (PA) substrate were treated with various concentrations of AgNPs (25, 50, 75, and 100 ppm), PHMB (0.2, 0.4, 0.6, 0.8, and 1% w/v), and constant concentration of alginate (0.5% W/V) using a simple dipping method. Prepared samples were characterized by various techniques including Fourier transform infrared spectroscopy and scanning electron microscopy. The results indicated that the particles were successfully applied onto both substrates with an average diameter of particle size of 78 nm on gauze and 172 nm on the PA substrate surface (based on 50 nanoparticles). Antibacterial activity of the prepared nanocomposite against Staphylococcus aureus (gram-positive) bacteria on PA substrate and gauze were evaluated using the disc diffusion method. The results indicated that the prepared nanocomposites offer favorable antibacterial properties and bacteria would not grow in culture media. The water uptake capacity test of the treated samples was assessed and the data demonstrated that the water absorption rate significantly increases on both treated substrates (gauze and PA substrate) due to the presence of alginate polymer. Also, observing the results of the coagulation test showed that treated samples caused blood clots on the dressing. This is due to the presence of alginate polymer. The present work demonstrates that the prepared samples offer excellent antibacterial properties and good water uptake capacity that capable of being a potential candidate for wound dressings. Due to the results, the produced PA substrate could be an appropriate replacement for the cotton gauze as a wound dressing.
Collapse
Affiliation(s)
- Laleh Asadi
- Department of Textile Engineering, Faculty of Engineering, University of Guilan, Rasht, 41635-3756, Iran
| | - Javad Mokhtari
- Department of Textile Engineering, Faculty of Engineering, University of Guilan, Rasht, 41635-3756, Iran.
| | - Marjan Abbasi
- Department of Textile Engineering, Faculty of Engineering, University of Guilan, Rasht, 41635-3756, Iran
| |
Collapse
|
20
|
Xu X, Wang X, Qin C, Khan AUR, Zhang W, Mo X. Silk fibroin/poly-(L-lactide-co-caprolactone) nanofiber scaffolds loaded with Huangbai Liniment to accelerate diabetic wound healing. Colloids Surf B Biointerfaces 2021; 199:111557. [PMID: 33434880 DOI: 10.1016/j.colsurfb.2021.111557] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022]
Abstract
Diabetic infection is a long-term complication difficult to cure. The skin of diabetic patients is prone to damage, the healing is slow after the injury, and the wound occurs repeatedly. Therefore, there is an urgent need to develop an effective method for treating diabetes wounds. In this study, we used the electrospinning technique to load Huangbai Liniment (Compound Phellodendron Liquid, CPL) into Silk fibroin (SF) /poly-(L-lactide-co-caprolactone) (PLCL) to prepare the nanofiber membrane (SP/CPL) to treat the diabetic wound. The morphology and structure of the nanofibers were observed by scanning electron microscope (SEM). The SEM results indicate the smooth and bead free fibers and the diameter of the fiber decreased with increasing drug concentration. The release profile indicates the sustained release of the drug. Moreover, the drug-loaded nanofibers showed inhibitory effects for S.aureus and E.coli. Furthermore, in vitro cell culture studies showed the increased proliferation and adhesion of NIH-3T3 cells on the drug-containing nanofiber membrane. Animal experiments showed that the nanofiber membrane loaded with CPL increases the expression of the TGF-β signaling pathway and collagen during wound healing, inhibits the expression of pro-inflammatory factors, and thus effectively promotes wound healing in diabetic mice. Therefore, the SP/CPL nanofiber scaffold with CPL loading is a potential candidate for diabetic wound dressings and tissue engineering.
Collapse
Affiliation(s)
- Xiaoqing Xu
- State Key Lab. For Modification of Chemical Fiber & Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Xiangsheng Wang
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chengxue Qin
- School of Pharmaceutical Science, Shandong University, Jinan, 250012, China; Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Atta Ur Rehman Khan
- State Key Lab. For Modification of Chemical Fiber & Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, China.
| | - Xiumei Mo
- State Key Lab. For Modification of Chemical Fiber & Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
21
|
Abstract
Enzymes are a class of protein that catalyze a wide range of chemical reactions, including the cleavage of specific peptide bonds. They are expressed in all cell types, play vital roles in tissue development and homeostasis, and in many diseases, such as cancer. Enzymatic activity is tightly controlled through the use of inactive pro-enzymes, endogenous inhibitors and spatial localization. Since the presence of specific enzymes is often correlated with biological processes, and these proteins can directly modify biomolecules, they are an ideal biological input for cell-responsive biomaterials. These materials include both natural and synthetic polymers, cross-linked hydrogels and self-assembled peptide nanostructures. Within these systems enzymatic activity has been used to induce biodegradation, release therapeutic agents and for disease diagnosis. As technological advancements increase our ability to quantify the expression and nanoscale organization of proteins in cells and tissues, as well as the synthesis of increasingly complex and well-defined biomaterials, enzyme-responsive biomaterials are poised to play vital roles in the future of biomedicine.
Collapse
Affiliation(s)
- E. Thomas Pashuck
- Department of Bioengineering, P.C. Rossin College of Engineering and Applied Science, Lehigh University Bethlehem Pennsylvania USA
| |
Collapse
|
22
|
Ha DH, Chae S, Lee JY, Kim JY, Yoon J, Sen T, Lee SW, Kim HJ, Cho JH, Cho DW. Therapeutic effect of decellularized extracellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent. Biomaterials 2020; 266:120477. [PMID: 33120198 DOI: 10.1016/j.biomaterials.2020.120477] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/26/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Radiation esophagitis, the most common acute adverse effect of radiation therapy, leads to unwanted consequences including discomfort, pain, an even death. However, no direct cure exists for patients suffering from this condition, with the harmful effect of ingestion and acid reflux on the damaged esophageal mucosa remaining an unresolved problem. Through the delivery of the hydrogel with stent platform, we aimed to evaluate the regenerative capacity of a tissue-specific decellularized extracellular matrix (dECM) hydrogel on damaged tissues. For this, an esophagus-derived dECM (EdECM) was developed and shown to have superior biofunctionality and rheological properties, as well as physical stability, potentially providing a better microenvironment for tissue development. An EdECM hydrogel-loaded stent was sequentially fabricated using a rotating rod combined 3D printing system that showed structural stability and protected a loaded hydrogel during delivery. Finally, following stent implantation, the therapeutic effect of EdECM was examined in a radiation esophagitis rat model. Our findings demonstrate that EdECM hydrogel delivery via a stent platform can rapidly resolve an inflammatory response, thus promoting a pro-regenerative microenvironment. The results suggest a promising therapeutic strategy for the treatment of radiation esophagitis.
Collapse
Affiliation(s)
- Dong-Heon Ha
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea; EDmicBio, Inc., South Korea
| | - Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Jae Yeon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea; Department of Companion Animal Health, Daegu Haany University, Gyeongsan, South Korea
| | - Jae Yun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Jungbin Yoon
- Center for Rapid Prototyping based 3D Tissue/Organ Printing, Pohang University of Science and Technology, Pohang, South Korea
| | - Tugce Sen
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Sung-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea; Combinatorial Tumor Immunotherapy Medical Research Center, Chonnam National University Medical School, Hwasun, South Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae Ho Cho
- Combinatorial Tumor Immunotherapy Medical Research Center, Chonnam National University Medical School, Hwasun, South Korea; CNU Biomed Center, Chonnam National University Hwasun Hospital, Hwason, South Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea; Center for Rapid Prototyping based 3D Tissue/Organ Printing, Pohang University of Science and Technology, Pohang, South Korea; Postech-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology, Pohang, South Korea; Institute of Convergence Science, Yonsei University, Seoul, South Korea.
| |
Collapse
|
23
|
Zhang M, Zhao X. Alginate hydrogel dressings for advanced wound management. Int J Biol Macromol 2020; 162:1414-1428. [PMID: 32777428 DOI: 10.1016/j.ijbiomac.2020.07.311] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 01/07/2023]
Abstract
Wound healing is a complicated and continuous process affected by several factors, and it needs an appropriate surrounding to achieve accelerated healing. At present, various wound dressings are used for wound management, such as fiber, sponge, hydrogel, foam, hydrocolloid and so on. Hydrogels can provide mechanical support and moist environment for wounds, and are widely used in biomedical field. Alginate is a natural linear polysaccharide derived from brown algae or bacteria, consisting of repeating units of β-1,4-linked D-mannuronic acid (M) and L-guluronic acid (G) in different ratios. It is widely used in biomedical and engineering fields due to its good biocompatibility and liquid absorption capacity. Alginate-based hydrogels have been used in wound dressing, tissue engineering, and drug delivery applications for decades. In this review, we summarize the recent approaches in the chemical and physical preparation and the application of alginate hydrogels in wound dressings.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
24
|
Perera E, Rodriguez-Viera L, Montero-Alejo V, Perdomo-Morales R. Crustacean Proteases and Their Application in Debridement. Trop Life Sci Res 2020; 31:187-209. [PMID: 32922675 PMCID: PMC7470474 DOI: 10.21315/tlsr2020.31.2.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Digestive proteases from marine organisms have been poorly applied to biomedicine. Exceptions are trypsin and other digestive proteases from a few cold-adapted or temperate fish and crustacean species. These enzymes are more efficient than enzymes from microorganism and higher vertebrates that have been used traditionally. However, the biomedical potential of digestive proteases from warm environment species has received less research attention. This review aims to provide an overview of this unrealised biomedical potential, using the debridement application as a paradigm. Debridement is intended to remove nonviable, necrotic and contaminated tissue, as well as fibrin clots, and is a key step in wound treatment. We discuss the physiological role of enzymes in wound healing, the use of exogenous enzymes in debridement, and the limitations of cold-adapted enzymes such as their poor thermal stability. We show that digestive proteases from tropical crustaceans may have advantages over their cold-adapted counterparts for this and similar uses. Differences in thermal stability, auto-proteolytic stability, and susceptibility to proteinase inhibitors are discussed. Furthermore, it is proposed that the feeding behaviour of the source organism may direct the evaluation of enzymes for particular applications, as digestive proteases have evolved to fill a wide variety of feeding habitats, natural substrates, and environmental conditions. We encourage more research on the biomedical application of digestive enzymes from tropical marine crustaceans.
Collapse
Affiliation(s)
- Erick Perera
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Valencia, Spain
| | | | - Vivian Montero-Alejo
- Department of Biochemistry, Center for Pharmaceuticals Research and Development, Havana, Cuba
| | - Rolando Perdomo-Morales
- Department of Biochemistry, Center for Pharmaceuticals Research and Development, Havana, Cuba
| |
Collapse
|
25
|
Nair HKR. Non-healing venous leg ulcer. J Wound Care 2020; 29:S26-S27. [DOI: 10.12968/jowc.2020.29.sup5b.s26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Boey J. Arteriovenous foot ulcer. J Wound Care 2020; 29:S24-S25. [PMID: 32427029 DOI: 10.12968/jowc.2020.29.sup5b.s24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Boey J. Delayed healing following amputation of the fifth ray. J Wound Care 2020; 29:S23-S24. [PMID: 32427028 DOI: 10.12968/jowc.2020.29.sup5b.s23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Johnson Boey
- Podiatrist, Singapore General Hospital, Singapore
| |
Collapse
|
28
|
Abstract
Not only does oxygen play an essential role in each stage of the wound healing process. It also helps to increases host resistance to infection. Any impairment to the oxygen supply can therefore delay healing. This article explores the affects of oxygen on the wound cells and tissue, and explains how an adequate supply is required for granulation tissue formation and epithelialisation to occur
Collapse
Affiliation(s)
- Ibby Younis
- Consultant Plastic and Reconstructive Surgeon, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
29
|
Hicks L. Diabetic foot ulcer with osteomyelitis. J Wound Care 2020; 29:S27-S29. [DOI: 10.12968/jowc.2020.29.sup5b.s27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Linda Hicks
- Advanced Podiatrist, County Durham and Darlington NHS Foundation Trust, Darlington, UK
| |
Collapse
|
30
|
Tong X, Pan W, Su T, Zhang M, Dong W, Qi X. Recent advances in natural polymer-based drug delivery systems. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104501] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Keratinous materials: Structures and functions in biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110612. [PMID: 32204061 DOI: 10.1016/j.msec.2019.110612] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 11/21/2022]
Abstract
Keratins are a family of fibrous proteins anticipated to possess wide-ranging biomedical applications due to their abundance, physicochemical properties and intrinsic biological activity. This review mainly focuses on the biomaterials derived from three major sources of keratins; namely human hair, wool and feather, that have effective applications in tissue engineering, wound healing and drug delivery. This article offers five viewpoints regarding keratin i) an introduction to keratin protein extraction and keratin-based scaffold fabrication methods ii) applications in nerve and bone tissue engineering iii) a review on the keratin dressings applied to different types of wounds to facilitate wound healing and thereby repair the skin iv) the utilization of keratinous materials as a carrier system for therapeutics with a controlled manner v) a discussion regarding the main challenges for using keratin in biomedical applications as well as its future prospects.
Collapse
|
32
|
Tomoda BT, Corazza FG, Beppu MM, Lopes PS, Moraes MA. Silk fibroin membranes with self‐assembled globular structures for controlled drug release. J Appl Polym Sci 2019. [DOI: 10.1002/app.48763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bruno Thorihara Tomoda
- Department of Chemical EngineeringInstitute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo Rua São Nicolau 210 Diadema Brazil
| | - Fulvio Gabriel Corazza
- Department of Pharmaceutical SciencesInstitute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo Rua São Nicolau 210 Diadema Brazil
| | - Marisa Masumi Beppu
- School of Chemical Engineering, University of Campinas Avenida Albert Einstein 500 Campinas Brazil
| | - Patricia Santos Lopes
- Department of Pharmaceutical SciencesInstitute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo Rua São Nicolau 210 Diadema Brazil
| | - Mariana Agostini Moraes
- Department of Chemical EngineeringInstitute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo Rua São Nicolau 210 Diadema Brazil
| |
Collapse
|
33
|
Silk: A Promising Biomaterial Opening New Vistas Towards Affordable Healthcare Solutions. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00114-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Shah SA, Sohail M, Khan S, Minhas MU, de Matas M, Sikstone V, Hussain Z, Abbasi M, Kousar M. Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. Int J Biol Macromol 2019; 139:975-993. [PMID: 31386871 DOI: 10.1016/j.ijbiomac.2019.08.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Non-healing, chronic wounds place a huge burden on healthcare systems as well as individual patients. These chronic wounds especially diabetic wounds will ultimately lead to compromised mobility, amputation of limbs and even death. Currently, wounds and limb ulcers associated with diabetes remain significant health issues; the associated healthcare cost ultimately leads to the increased clinical burden. The presence of diabetes interrupts a highly coordinated cascade of events in the wound closure process. Advances in the understanding of pathophysiological conditions associated with diabetic wounds lead to the development of drug delivery systems which can enhance wound healing by targeting various phases of the impaired processes. Wound environments typically contain degradative enzymes, along with an elevated pH and demonstrate a physiological cascade involved in the regeneration of tissue, which requires the application of an effective delivery system. This article aims to review the pathophysiological conditions associated with chronic and diabetic wounds. The delivery systems, involved in their treatment are described, highlighting potential biomaterials and polymers for establishing drug delivery systems, specifically for the treatment of diabetic wounds and the promotion of the associated mechanisms involved in advanced wound healing. Emerging approaches and engineered devices for effective wound care are reported. The discussion will give insight into the mechanisms relevant to all stages of wound healing.
Collapse
Affiliation(s)
- Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan.
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409, USA.; Discipline of Pharmaceutical Sciences, School of Health Sciences, UKZN, Durban, South Africa
| | | | - Marcel de Matas
- SEDA Pharmaceutical Development Services, The BioHub at Alderley Park, Cheshire, UK
| | - Victoria Sikstone
- Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, UK
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mudassir Abbasi
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| |
Collapse
|
35
|
Zhang D, Li L, Shan Y, Xiong J, Hu Z, Zhang Y, Gao J. In vivo study of silk fibroin/gelatin electrospun nanofiber dressing loaded with astragaloside IV on the effect of promoting wound healing and relieving scar. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Fahimirad S, Ajalloueian F. Naturally-derived electrospun wound dressings for target delivery of bio-active agents. Int J Pharm 2019; 566:307-328. [PMID: 31125714 DOI: 10.1016/j.ijpharm.2019.05.053] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022]
Abstract
Electrospun nanofibers are known as the advanced means for wound dressing. They have represented remarkable potency to encapsulate and deliver biomolecules promoting the wound healing process. Compared to synthetic polymers, naturally derived polymers (NDP) are more qualified candidates for fabrication of biomedical electrospun scaffolds. Not only nanofibers of NDP illustrate higher biocompatibility and biodegradability rates, but also they mimic the native extracellular matrix more closely, which leads to the wound closure acceleration by enhancing tissue regeneration. Aside, incorporation of bioactive molecules and therapeutic agents into the nanofibers can generate innovative bioactive wound dressings with significantly improved healing potentials. This paper starts with a brief discussion on the steps and factors influencing the wound healing process. Then, the recent applications of electrospun nanofibers as wound dressing with healing accelerating properties are reviewed. Further, the various healing agents and alternative strategies for modification and functionalization of bioactive naturally-derived electrospun nanofibers are discussed.
Collapse
Affiliation(s)
- Shohreh Fahimirad
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj 31587-11167, Iran.
| | - Fatemeh Ajalloueian
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
37
|
Cruz-Maya I, Guarino V, Almaguer-Flores A, Alvarez-Perez MA, Varesano A, Vineis C. Highly polydisperse keratin rich nanofibers: Scaffold design and in vitro characterization. J Biomed Mater Res A 2019; 107:1803-1813. [PMID: 31004452 DOI: 10.1002/jbm.a.36699] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/11/2019] [Accepted: 04/16/2019] [Indexed: 02/03/2023]
Abstract
The use of bioactive proteins such as keratin has been successfully explored to improve the biological interface of scaffolds with cells during the tissue regeneration. In this work, it is optimized the fabrication of nanofibers combining wool keratin extracted by sulfitolysis, with polycaprolactone (PCL) in order to design bicomponent fibrous matrices able to exert a self-adapting pattern of signals-morphological, chemical, or physical-confined at the single fiber level, to influence cell and bacteria interactions. It is demonstrated that the blending of highly polydisperse keratin with PCL (50:50) improves the stability of the electrospinning process, promoting the formation of nanofibers-144.1 ± 43.9 nm-without the formation of defects (i.e., beads, ribbons) typically recognized in the fabrication of keratin ones. Moreover, keratin drastically increases the fiber hydrophilicity-compared with PCL fiber alone-thus improving the hMSC adhesion and in vitro proliferation until 14 days. Moreover, the growth of bacterial strains (i.e., Escherichia coli and Staphylococcus aureus) seems to be not specifically inhibited by the contribution of keratin, so that the integration of further selected compounds (i.e., metal ions) is suggested to more efficiently fight against bacteria resistance, to make them suitable for the regeneration of different interfaces and soft tissues (i.e., skin and cornea). © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1803-1813, 2019.
Collapse
Affiliation(s)
- Iriczalli Cruz-Maya
- IPCB/CNR, Institute of Polymers, Composites and Biomaterials - Consiglio Nazionale delle Ricerche, Mostra D'Oltremare, Pad. 20, V.le J.F. Kennedy 54, 80125, Naples, Italy.,Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Vincenzo Guarino
- IPCB/CNR, Institute of Polymers, Composites and Biomaterials - Consiglio Nazionale delle Ricerche, Mostra D'Oltremare, Pad. 20, V.le J.F. Kennedy 54, 80125, Naples, Italy
| | - Argelia Almaguer-Flores
- Tissue Bioengineering Laboratory, DEPeI, School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n C.P., 04510, Coyoacán, Mexico, DF, Mexico
| | - Marco A Alvarez-Perez
- Tissue Bioengineering Laboratory, DEPeI, School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n C.P., 04510, Coyoacán, Mexico, DF, Mexico
| | - Alessio Varesano
- ISMAC/CNR, Institute for Macromolecular Studies - Consiglio Nazionale delle Ricerche, C.so G. Pella 16, Biella, Italy
| | - Claudia Vineis
- ISMAC/CNR, Institute for Macromolecular Studies - Consiglio Nazionale delle Ricerche, C.so G. Pella 16, Biella, Italy
| |
Collapse
|
38
|
Gad HA, Abd El-Rahman FA, Hamdy GM. Chamomile oil loaded solid lipid nanoparticles: A naturally formulated remedy to enhance the wound healing. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Al-Houraibi RK, Aalirezaie A, Adib F, Anoushiravani A, Bhashyam A, Binlaksar R, Blevins K, Bonanzinga T, Chih-Kuo F, Cordova M, Deirmengian GK, Fillingham Y, Frenkel T, Gomez J, Gundtoft P, Harris MA, Harris M, Heller S, Jennings JA, Jiménez-Garrido C, Karam JA, Khlopas A, Klement MR, Komnos G, Krebs V, Lachiewicz P, Miller AO, Mont MA, Montañez E, Romero CA, Schwarzkopf R, Shaffer A, Sharkey PF, Smith BM, Sodhi N, Thienpont E, Villanueva AO, Yazdi H. General Assembly, Prevention, Wound Management: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019; 34:S157-S168. [PMID: 30360978 DOI: 10.1016/j.arth.2018.09.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
40
|
Abstract
Despite the development of newer preventative measures, the rate of infection continues to be approximately 1% for patients undergoing total joint arthroplasty (TJA). The extent of the infection can range from a mild superficial infection to a more serious periprosthetic joint infection (PJI). PJIs not only play a significant role in the clinical well-being of the TJA patient population, but also have substantial economic implications on the health care system. Several approaches are currently being used to mitigate the risk of PJI after TJA. The variety of prophylactic measures to prevent infection after TJA must be thoroughly discussed and evaluated.
Collapse
|
41
|
Tati R, Nordin S, Abdillahi SM, Mörgelin M. Biological wound matrices with native dermis-like collagen efficiently modulate protease activity. J Wound Care 2018; 27:199-209. [DOI: 10.12968/jowc.2018.27.4.199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ramesh Tati
- Postdoctoral Researcher, Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Sara Nordin
- Postdoctoral Researcher, Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Suado M Abdillahi
- Postdoctoral Researcher, Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Matthias Mörgelin
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-221 84 Lund, Sweden, Colzyx ltd, Medicon Village, Scheelevägen 2, SE-223 81 Lund, Sweden
| |
Collapse
|
42
|
Ashtikar M, Wacker MG. Nanopharmaceuticals for wound healing - Lost in translation? Adv Drug Deliv Rev 2018; 129:194-218. [PMID: 29567397 DOI: 10.1016/j.addr.2018.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 12/17/2022]
Abstract
Today, many of the newly developed pharmaceuticals and medical devices take advantage of nanotechnology and with a rising incidence of chronic diseases such as diabetes and cardiovascular disease, the number of patients afflicted globally with non-healing wounds is growing. This has created a requirement for improved therapies and wound care. However, converting the strategies applied in early research into new products is still challenging. Many of them fail to comply with the market requirements. This review discusses the legal and scientific challenges in the design of nanomedicines for wound healing. Are they lost in translation or is there a new generation of therapeutics in the pipeline?
Collapse
Affiliation(s)
- Mukul Ashtikar
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany; Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany
| | - Matthias G Wacker
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany; Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany.
| |
Collapse
|
43
|
Chen KK, Elbuluk AM, Vigdorchik JM, Long WJ, Schwarzkopf R. The effect of wound dressings on infection following total joint arthroplasty. Arthroplast Today 2018; 4:125-129. [PMID: 29560407 PMCID: PMC5859663 DOI: 10.1016/j.artd.2017.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 11/24/2022] Open
Abstract
Background The use of perioperative surgical wound dressings is an important factor in the mitigation of infection following total joint arthroplasty (TJA). Few studies have been published comparing wound dressings and infection rates after TJA. Methods MEDLINE, PubMed, and EMBASE were searched for studies published between 2006 and 2016 reporting infection rates in patients using various wound dressings after undergoing TJA. All studies comparing Hydrofibre dressings to Standard dressings or Absorbent dressings were included in this meta-analysis. Studies looking at TJA secondary to trauma were excluded. Two individuals independently extracted data, and study results were divided based on type of treatment. The primary outcome was to compare the infection rate of Hydrofibre dressings to that of both Standard Dressings and Absorbent dressings. Results Of a total of 3721 participants, 1483 were treated with Standard dressings (non-impregnated gauze), 1911 with Hydrofibre dressings, and 327 with Absorbent dressings. The risk ratio for infection comparing Standard with Hydrofibre was 4.16 (95% confidence interval, 1.71-10.16) as compared to 2.60 (95% confidence interval, 0.66-10.27) when comparing Absorbent with Hydrofibre dressings. Conclusions Our analysis suggests that Hydrofibre dressings may be significantly better than Standard and Absorbent dressings with respect to reducing infection. However, given the observed heterogeneity and small number of studies included, more comparative studies are needed to definitively recommend superiority among dressings following TJA. Level of Evidence Level 1.
Collapse
Affiliation(s)
- Kevin K Chen
- Department of Orthopaedic Surgery, NYU Langone Medical Center's Hospital for Joint Diseases, New York, NY, USA
| | - Ameer M Elbuluk
- Department of Orthopaedic Surgery, NYU Langone Medical Center's Hospital for Joint Diseases, New York, NY, USA
| | - Jonathan M Vigdorchik
- Department of Orthopaedic Surgery, NYU Langone Medical Center's Hospital for Joint Diseases, New York, NY, USA
| | - William J Long
- Department of Orthopaedic Surgery, NYU Langone Medical Center's Hospital for Joint Diseases, New York, NY, USA
| | - Ran Schwarzkopf
- Department of Orthopaedic Surgery, NYU Langone Medical Center's Hospital for Joint Diseases, New York, NY, USA
| |
Collapse
|
44
|
Le PN, Huynh CK, Tran NQ. Advances in thermosensitive polymer-grafted platforms for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1016-1030. [PMID: 30184725 DOI: 10.1016/j.msec.2018.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/16/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
Studies on "smart" polymeric material performing environmental stimuli such as temperature, pH, magnetic field, enzyme and photo-sensation have recently paid much attention to practical applications. Among of them, thermo-responsive grafted copolymers, amphiphilic steroids as well as polyester molecules have been utilized in the fabrication of several multifunctional platforms. Indeed, they performed a strikingly functional improvement comparing to some original materials and exhibited a holistic approach for biomedical applications. In case of drug delivery systems (DDS), there has been some successful proof of thermal-responsive grafted platforms on clinical trials such as ThermoDox®, BIND-014, Cynviloq IG-001, Genexol-PM, etc. This review would detail the recent progress and highlights of some temperature-responsive polymer-grafted nanomaterials or hydrogels in the 'smart' DDS that covered from synthetic polymers to nature-driven biomaterials and novel generations of some amphiphilic functional platforms. These approaches could produce several types of smart biomaterials for human health care in future.
Collapse
Affiliation(s)
- Phung Ngan Le
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam
| | - Chan Khon Huynh
- Biomedical Engineering Department, International University, National Universities in HCMC, HCMC 70000, Viet Nam
| | - Ngoc Quyen Tran
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam; Graduate School of Science and Technology Viet Nam, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam.
| |
Collapse
|
45
|
Rajabinejad H, Patrucco A, Caringella R, Montarsolo A, Zoccola M, Pozzo PD. Preparation of keratin-based microcapsules for encapsulation of hydrophilic molecules. ULTRASONICS SONOCHEMISTRY 2018; 40:527-532. [PMID: 28946454 DOI: 10.1016/j.ultsonch.2017.07.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
The interest towards microcapsules based on non-toxic, biodegradable and biocompatible polymers, such as proteins, is increasing considerably. In this work, microcapsules were prepared using water soluble keratin, known as keratoses, with the aim of encapsulating hydrophilic molecules. Keratoses were obtained via oxidizing extraction of pristine wool, previously degreased by Soxhlet. In order to better understand the shell part of microcapsules, pristine wool and obtained keratoses were investigated by FT-IR, gel-electrophoresis and HPLC. Production of the microcapsules was carried out by a sonication method. Thermal properties of microcapsules were investigated by DSC. Microencapsulation and dye encapsulation yields were obtained by UV-spectroscopy. Morphological structure of microcapsules was studied by light microscopy, SEM, and AFM. The molecular weights of proteins analyzed using gel-electrophoresis resulted in the range of 38-62kDa. The results confirmed that the hydrophilic dye (Telon Blue) was introduced inside the keratoses shells by sonication and the final microcapsules diameter ranged from 0.5 to 4µm. Light microscope investigation evidenced the presence of the dye inside the keratoses vesicles, confirming their capability of encapsulating hydrophilic molecules. The microcapsule yield and dye encapsulation yield were found to be 28.87±3% and 83.62±5% respectively.
Collapse
Affiliation(s)
- Hossein Rajabinejad
- Politecnico di Torino, DISAT - Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Alessia Patrucco
- CNR-ISMAC National Research Council, Institute for Macromolecular Studies, C.so Pella 16, 13900 Biella, Italy
| | - Rosalinda Caringella
- CNR-ISMAC National Research Council, Institute for Macromolecular Studies, C.so Pella 16, 13900 Biella, Italy
| | - Alessio Montarsolo
- CNR-ISMAC National Research Council, Institute for Macromolecular Studies, C.so Pella 16, 13900 Biella, Italy
| | - Marina Zoccola
- CNR-ISMAC National Research Council, Institute for Macromolecular Studies, C.so Pella 16, 13900 Biella, Italy
| | - Pier Davide Pozzo
- CNR-ISMAC National Research Council, Institute for Macromolecular Studies, C.so Pella 16, 13900 Biella, Italy
| |
Collapse
|
46
|
Wang L, Li X, Sun T, Tsou Y, Chen H, Xu X. Dual‐Functional Dextran‐PEG Hydrogel as an Antimicrobial Biomedical Material. Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700325] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Lei Wang
- Country State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
- Otto H. York Department of Chemical Biological and Pharmaceutical Engineering New Jersey Institute and Technology University Heights Newark NJ 07102 USA
| | - Xin Li
- Otto H. York Department of Chemical Biological and Pharmaceutical Engineering New Jersey Institute and Technology University Heights Newark NJ 07102 USA
| | - Tianyu Sun
- Otto H. York Department of Chemical Biological and Pharmaceutical Engineering New Jersey Institute and Technology University Heights Newark NJ 07102 USA
| | - Yung‐Hao Tsou
- Otto H. York Department of Chemical Biological and Pharmaceutical Engineering New Jersey Institute and Technology University Heights Newark NJ 07102 USA
| | - Hong Chen
- Country State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Xiaoyang Xu
- Otto H. York Department of Chemical Biological and Pharmaceutical Engineering New Jersey Institute and Technology University Heights Newark NJ 07102 USA
| |
Collapse
|
47
|
Yao CH, Lee CY, Huang CH, Chen YS, Chen KY. Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629050 DOI: 10.1016/j.msec.2017.05.076] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A bilayer membrane (GKU) with a commercial polyurethane wound dressing as an outer layer and electrospun gelatin/keratin nanofibrous mat as an inner layer was fabricated as a novel wound dressing. Scanning electron micrographs showed that gelatin/keratin nanofibers had a uniform morphology and bead-free structure with average fiber diameter of 160.4nm. 3-(4,5-Dimethylthiazolyl)-2,5-diphenyltetrazolium bromide assay using L929 fibroblast cells indicated that the residues released from the gelatin/keratin composite nanofibrous mat accelerated cell proliferation. Cell attachment experiments revealed that adhered cells spread better and migrated deeper into the gelatin/keratin nanofibrous mat than that into the gelatin nanofibrous mat. In animal studies, compared with the bilayer membrane without keratin, gauze and commercial wound dressing, Comfeel®, GKU membrane gave much more number of blood vessels and a greater reduction in wound area at 4days, and better wound repair at 14days with a thicker epidermis and larger number of newly formed hair follicles. GKU membrane, thus, could be a good candidate for wound dressing applications.
Collapse
Affiliation(s)
- Chun-Hsu Yao
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung 40202, Taiwan; Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40202, Taiwan; School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
| | - Chia-Yu Lee
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan
| | - Chiung-Hua Huang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Yueh-Sheng Chen
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
| | - Kuo-Yu Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| |
Collapse
|
48
|
Mahmoudi N, Eslahi N, Mehdipour A, Mohammadi M, Akbari M, Samadikuchaksaraei A, Simchi A. Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:73. [PMID: 28361280 DOI: 10.1007/s10856-017-5874-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
In recent years, temporary skin grafts (TSG) based on natural biopolymers modified with carbon nanostructures have received considerable attention for wound healing. Developments are required to improve physico-mechanical properties of these materials to match to natural skins. Additionally, in-deep pre-clinical examinations are necessary to ensure biological performance and toxicity effect in vivo. In the present work, we show superior acute-wound healing effect of graphene oxide nanosheets embedded in ultrafine biopolymer fibers (60 nm) on adult male rats. Nano-fibrous chitosan-based skin grafts crosslinked by Genepin with physico-mechanical properties close to natural skins were prepared by electrospinning of highly concentrated chitosan- polyvinylpyrrolidone solutions containing graphene oxide (GO) nanosheets. No surfactants and organic solvents were utilized to ensure high biocompatibility of the fibrous structure. In vitro evaluations by human skin fibroblast cells including live and dead assay and MTT results show that GO promote cell viability of porous nanofibrous membrane while providing enhanced bactericidal capacity. In vivo studies on rat's skin determine accelerated healing effect, i.e. a large open wound (1.5 × 1.5 cm2) is fully regenerated after 14-day of post operation while healing is observed for sterile gauze sponge (as the control). Pathological studies support thick dermis formation and complete epithelialization in the presence of 1.5 wt% GO nanosheets. Over 99% wound healing occurs after 21 days for the injury covered with TSG containing 1.5 wt% GO while this would takes weeks for the control. Therefore, the developed materials have a high potential to be used as TSG as pre-clinical testing has shown.
Collapse
Affiliation(s)
- N Mahmoudi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box11155-9161, Azadi Avenue, Tehran, 14588, Iran
| | - N Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - A Mehdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Mohammadi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box11155-9161, Azadi Avenue, Tehran, 14588, Iran
| | - M Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | - A Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box11155-9161, Azadi Avenue, Tehran, 14588, Iran.
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P. O. Box 11365-9466, Azadi Avenue, Tehran, 14588, Iran.
| |
Collapse
|
49
|
Silver-Impregnated Occlusive Dressing Reduces Rates of Acute Periprosthetic Joint Infection After Total Joint Arthroplasty. J Arthroplasty 2017; 32:929-932. [PMID: 27776905 DOI: 10.1016/j.arth.2016.08.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Commercial silver-impregnated occlusive dressings (such as AQUACEL® Ag SURGICAL Cover Dressing) have been touted as antimicrobial dressings to be used following total joint arthroplasty. Given the increased cost of an AQUACEL® Ag SURGICAL Cover Dressing over a standard dressing for total joint arthroplasty, the objective of this study was to determine whether AQUACEL® Ag SURGICAL Cover Dressing is effective in reducing the rates of acute periprosthetic joint infection (PJI) compared to standard sterile dressing. METHODS We retrospectively reviewed the charts of 1173 consecutive patients who underwent a total knee or total hip arthroplasty between 2007 and 2015 by 1 surgeon. The surgeon switched from using a standard xeroform/gauze dressing to an AQUACEL® Ag SURGICAL Cover Dressing in June 2011, with no other major changes in antimicrobial management. Charts were reviewed for evidence of acute PJI (within 3 months of surgery). RESULTS There were a total of 11 cases of acute PJI in this patient cohort (0.94%). The incidence of acute PJI for patients managed with a sterile xeroform dressing was 1.58% (9 of 568 patients), compared to 0.33% (2 of 605 patients) with the use of AQUACEL® Ag SURGICAL Cover Dressing. Univariate analysis showed this to be statistically significant (P = .03), and a multiple logistic regression model supported AQUACEL® Ag SURGICAL Cover Dressing as a protective factor with an odds ratio of 0.092 (95% confidence interval, 0.017-0.490; P = .005). CONCLUSION This 4-fold decrease in acute PJI with the use of AQUACEL® Ag SURGICAL Cover Dressing supports the use of silver-impregnated occlusive dressings for the reduction of acute PJI.
Collapse
|
50
|
Chouhan D, Chakraborty B, Nandi SK, Mandal BB. Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta Biomater 2017; 48:157-174. [PMID: 27746359 DOI: 10.1016/j.actbio.2016.10.019] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/10/2016] [Accepted: 10/12/2016] [Indexed: 12/31/2022]
Abstract
Bombyx mori silk fibroin (BMSF) as biopolymer has been extensively explored in wound healing applications. However, limited study is available on the potential of silk fibroin (SF) from non-mulberry (Antheraea assama and Philosamia ricini) silk variety. Herein, we have developed non-mulberry SF (NMSF) based electrospun mats functionalized with epidermal growth factor (EGF) and ciprofloxacin HCl as potential wound dressing. The NMSF based mats exhibited essential properties of wound dressing like biocompatibility, high water retention capacity (440%), water vapor transmission rate (∼2330gm-2day-1), high elasticity (∼2.6MPa), sustained drug release and antibacterial activity. Functionalized NMSF mats enhanced the proliferation of human dermal fibroblasts and HaCaT cells in vitro as compared to non-functionalized mats (p⩽0.01) showing effective delivery of EGF. Extensive in vivo wound healing assesment demonstrated accelerated wound healing, enhanced re-epithelialization, highly vascularized granulation tissue and higher wound maturity as compared to BMSF based mats. NMSF mats treated wounds showed regulated deposition of mature elastin, collagen and reticulin fibers in the extracellular matrix of skin. Presence of skin appendages and isotropic collagen fibers in the regenerated skin also demonstrated scar-less healing and aesthetic wound repair. STATEMENT OF SIGNIFICANCE A facile fabrication of a ready-to-use bioactive wound dressing capable of concomitantly accelerating the healing process as well as deposition of the extracellular matrix (ECM) to circumvent further scarring complicacies has become a focal point of research. In this backdrop, our present work is based on non-mulberry silk fibroin (NMSF) electrospun antibiotic loaded semi-occlusive mats, mimicking the ECM of skin in terms of morphology, topology, microporous structure and mechanical stiffness. Regulation of ECM deposition and isotropic orientation evinced the potential of the mat as an instructive platform for skin regeneration. The unique peptide motifs of NMSF assisted the augmented recruitment of fibroblast, keratinocytes and endothelial cells leading to accelerated wound healing. Early progression of mature granulation, faster re-epithelialization and angiogenesis in the wounds in in vivo rabbit model forwarded the blended nanofibrous mats of NMSF and PVA ferrying EGF, apt for scarless healing.
Collapse
|