1
|
Adıgüzel AO, Yabalak E, Cilmeli S, Durgun RT, Kaya NG. Robust peroxidase from Bacillus mojavensis TH309: Immobilization on walnut shell hydrochar and evaluation of its potential in dye decolorization. Int J Biol Macromol 2024; 277:134525. [PMID: 39111491 DOI: 10.1016/j.ijbiomac.2024.134525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/06/2024]
Abstract
Peroxidases have received considerable attention as a cost-effective and environmentally friendly catalyst for bioremediation. Their rapid activity loss under harsh environmental conditions and inability to be used repetitively limit their exploitation in real-world wastewater treatment. First, a peroxidase was produced extracellularly by Bacillus mojavensis TH309 and purified 8.12-fold with a final yield of 47.10 % using Sephadex G-100 superfine resin. The pure peroxidase (BmPer) possessed a relatively low molecular weight of ∼21 kDa and was active against L-DOPA on acrylamide gel after electrophoresis. BmPer was immobilized by adsorption functionalized walnut shell hydrochar (WsH) with 61.99 ± 1.34 % efficiency and 37.07 ± 4.16 % activity loss. BmPer and its immobilized form (WsH-BmPer) exhibited maximum activity at 50 °C and pH 9. WsH-BmPer exhibited 3.23-, 2.37-, 1.65-, and 2.25-fold longer half-life than BmPer at 50, 60, 70, and 80 °C, respectively. Immobilization significantly enhanced the stability of the enzyme under acidic conditions. BmPer and WsH-BmPer showed maximal activity in the presence of 1 % salt and retained more than 85 % of their activity even after pre-incubation with 2.5 M salt for 60 min at 50 °C. Their catalytic efficiency was significantly stimulated by pre-incubation with Triton X-100 (1 mM), Tween20 (1 mM), and Mg2+ (1 and 10 mM). Immobilization strongly reduced the loss of activity caused by inhibitors including Ba2+, Hg2+, and Cu2+. Moreover, both forms of the enzyme were compatible with solvents. The Michaelis constant (Km) values of BmPer and WsH-BmPer were 0.88 and 2.66 mM for 2,4 DCP, respectively. WsH-BmPer peroxidase maintained about 82 % and 85 % of its activity when stored at 4 °C for 30 days and reused for up to 10 cycles, respectively. Furthermore, it decolorized Cibacron red (CR), Poly R-478 (PR), Remazol Brilliant Blue R (RBBR), and Methyl red (MR) dyes by 60.13 %, 91.34 %, 86.41 %, and 50.51 % within 60 min, respectively.
Collapse
Affiliation(s)
- Ali Osman Adıgüzel
- Ondokuz Mayıs University, Science Faculty, Department of Molecular Biology and Genetics, Samsun, Turkey.
| | - Erdal Yabalak
- Mersin University, Department of Nanotechnology and Advanced Materials, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343 Mersin, Turkey.
| | - Sümeyye Cilmeli
- Ondokuz Mayıs University, Science Faculty, Department of Molecular Biology and Genetics, Samsun, Turkey
| | - Recep Tayyip Durgun
- Ondokuz Mayıs University, Science Faculty, Department of Molecular Biology and Genetics, Samsun, Turkey
| | - Nisa Gül Kaya
- Ondokuz Mayıs University, Science Faculty, Department of Molecular Biology and Genetics, Samsun, Turkey
| |
Collapse
|
2
|
Välimets S, Sun P, Virginia LJ, van Erven G, Sanders MG, Kabel MA, Peterbauer C. Characterization of Amycolatopsis 75iv2 dye-decolorizing peroxidase on O-glycosides. Appl Environ Microbiol 2024; 90:e0020524. [PMID: 38625022 PMCID: PMC11107159 DOI: 10.1128/aem.00205-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Dye-decolorizing peroxidases are heme peroxidases with a broad range of substrate specificity. Their physiological function is still largely unknown, but a role in the depolymerization of plant cell wall polymers has been widely proposed. Here, a new expression system for bacterial dye-decolorizing peroxidases as well as the activity with previously unexplored plant molecules are reported. The dye-decolorizing peroxidase from Amycolatopsis 75iv2 (DyP2) was heterologously produced in the Gram-positive bacterium Streptomyces lividans TK24 in both intracellular and extracellular forms without external heme supplementation. The enzyme was tested on a series of O-glycosides, which are plant secondary metabolites with a phenyl glycosidic linkage. O-glycosides are of great interest, both for studying the compounds themselves and as potential models for studying specific lignin-carbohydrate complexes. The primary DyP reaction products of salicin, arbutin, fraxin, naringin, rutin, and gossypin were oxidatively coupled oligomers. A cleavage of the glycone moiety upon radical polymerization was observed when using arbutin, fraxin, rutin, and gossypin as substrates. The amount of released glucose from arbutin and fraxin reached 23% and 3% of the total substrate, respectively. The proposed mechanism suggests a destabilization of the ether linkage due to the localization of the radical in the para position. In addition, DyP2 was tested on complex lignocellulosic materials such as wheat straw, spruce, willow, and purified water-soluble lignin fractions, but no remarkable changes in the carbohydrate profile were observed, despite obvious oxidative activity. The exact action of DyP2 on such lignin-carbohydrate complexes therefore remains elusive. IMPORTANCE Peroxidases require correct incorporation of the heme cofactor for activity. Heterologous overproduction of peroxidases often results in an inactive enzyme due to insufficient heme synthesis by the host organism. Therefore, peroxidases are incubated with excess heme during or after purification to reconstitute activity. S. lividans as a production host can produce fully active peroxidases both intracellularly and extracellularly without the need for heme supplementation. This reduces the number of downstream processing steps and is beneficial for more sustainable production of industrially relevant enzymes. Moreover, this research has extended the scope of dye-decolorizing peroxidase applications by studying naturally relevant plant secondary metabolites and analyzing the formed products. A previously overlooked artifact of radical polymerization leading to the release of the glycosyl moiety was revealed, shedding light on the mechanism of DyP peroxidases. The key aspect is the continuous addition, rather than the more common approach of a single addition, of the cosubstrate, hydrogen peroxide. This continuous addition allows the peroxidase to complete a high number of turnovers without self-oxidation.
Collapse
Affiliation(s)
- Silja Välimets
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse, Vienna, Austria
- Doctoral Programme Biomolecular Technology of Proteins (BioToP), BOKU, Muthgasse, Vienna, Austria
| | - Peicheng Sun
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Ludovika Jessica Virginia
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse, Vienna, Austria
- Doctoral Programme Biomolecular Technology of Proteins (BioToP), BOKU, Muthgasse, Vienna, Austria
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Mark G. Sanders
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Clemens Peterbauer
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse, Vienna, Austria
- Doctoral Programme Biomolecular Technology of Proteins (BioToP), BOKU, Muthgasse, Vienna, Austria
| |
Collapse
|
3
|
Hermann E, Rodrigues CF, Martins LO, Peterbauer C, Oostenbrink C. Engineering A-type Dye-Decolorizing Peroxidases by Modification of a Conserved Glutamate Residue. Chembiochem 2024; 25:e202300872. [PMID: 38376941 DOI: 10.1002/cbic.202300872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
Dye-decolorizing peroxidases (DyPs) are recently identified microbial enzymes that have been used in several Biotechnology applications from wastewater treatment to lignin valorization. However, their properties and mechanism of action still have many open questions. Their heme-containing active site is buried by three conserved flexible loops with a putative role in modulating substrate access and enzyme catalysis. Here, we investigated the role of a conserved glutamate residue in stabilizing interactions in loop 2 of A-type DyPs. First, we did site saturation mutagenesis of this residue, replacing it with all possible amino acids in bacterial DyPs from Bacillus subtilis (BsDyP) and from Kitasatospora aureofaciens (KaDyP1), the latter being characterized here for the first time. We screened the resulting libraries of variants for activity towards ABTS and identified variants with increased catalytic efficiency. The selected variants were purified and characterized for activity and stability. We furthermore used Molecular Dynamics simulations to rationalize the increased catalytic efficiency and found that the main reason is the electron channeling becoming easier from surface-exposed tryptophans. Based on our findings, we also propose that this glutamate could work as a pH switch in the wild-type enzyme, preventing intracellular damage.
Collapse
Affiliation(s)
- Enikö Hermann
- Institute of Food Technology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190, Vienna, Austria
- Institute for Molecular Modeling and Simulation, Department of Material Science and Life Sciences, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Carolina F Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Clemens Peterbauer
- Institute of Food Technology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190, Vienna, Austria
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, Department of Material Science and Life Sciences, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
- Christian Doppler Laboratory for Molecular Informatics in the Biosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
4
|
Pupart H, Lukk T, Väljamäe P. Dye-decolorizing peroxidase of Thermobifida halotolerance displays complex kinetics with both substrate inhibition and apparent positive cooperativity. Arch Biochem Biophys 2024; 754:109931. [PMID: 38382807 DOI: 10.1016/j.abb.2024.109931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Dye-decolorizing peroxidases (DyPs) have been intensively investigated for the purpose of industrial dye decolourization and lignin degradation. Unfortunately, the characterization of these peroxidases is hampered by their non-Michaelis-Menten kinetics, exemplified by substrate inhibition and/or positive cooperativity. Although often observed, the underlying mechanisms behind the unusual kinetics of DyPs are poorly understood. Here we studied the kinetics of the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroquinones, and anthraquinone dyes by DyP from the bacterium Thermobifida halotolerans (ThDyP) and solved its crystal structure. We also provide rate equations for different kinetic mechanisms explaining the complex kinetics of heme peroxidases. Kinetic studies along with the analysis of the structure of ThDyP suggest that the substrate inhibition is caused by the non-productive binding of ABTS to the enzyme resting state. Strong irreversible inactivation of ThDyP by H2O2 in the absence of ABTS suggests that the substrate inhibition by H2O2 may be caused by the non-productive binding of H2O2 to compound I. Positive cooperativity was observed only with the oxidation of ABTS but not with the two electron-donating substrates. Although the conventional mechanism of cooperativity cannot be excluded, we propose that the oxidation of ABTS assumes the simultaneous binding of two ABTS molecules to reduce compound I to the enzyme resting state, and this causes the apparent positive cooperativity.
Collapse
Affiliation(s)
- Hegne Pupart
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Tiit Lukk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b-202, 51010, Tartu, Estonia.
| |
Collapse
|
5
|
Pupart H, Vastšjonok D, Lukk T, Väljamäe P. Dye-Decolorizing Peroxidase of Streptomyces coelicolor ( ScDyPB) Exists as a Dynamic Mixture of Kinetically Different Oligomers. ACS OMEGA 2024; 9:3866-3876. [PMID: 38284010 PMCID: PMC10809370 DOI: 10.1021/acsomega.3c07963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
Dye-decolorizing peroxidases (DyPs) are heme-dependent enzymes that catalyze the oxidation of various substrates including environmental pollutants such as azo dyes and also lignin. DyPs often display complex non-Michaelis-Menten kinetics with substrate inhibition or positive cooperativity. Here, we performed in-depth kinetic characterization of the DyP of the bacterium Streptomyces coelicolor (ScDyPB). The activity of ScDyPB was found to be dependent on its concentration in the working stock used to initiate the reactions as well as on the pH of the working stock. Furthermore, the above-listed conditions had different effects on the oxidation of 2,2'-azino-di(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) and methylhydroquinone, suggesting that different mechanisms are used in the oxidation of these substrates. The kinetics of the oxidation of ABTS were best described by the model whereby ScDyPB exists as a mixture of two kinetically different enzyme forms. Both forms obey the ping-pong kinetic mechanism, but one form is substrate-inhibited by the ABTS, whereas the other is not. Gel filtration chromatography and dynamic light scattering analyses revealed that ScDyPB exists as a complex mixture of molecules with different sizes. We propose that ScDyPB populations with low and high degrees of oligomerization have different kinetic properties. Such enzyme oligomerization-dependent modulation of the kinetic properties adds further dimension to the complexity of the kinetics of DyPs but also suggests novel possibilities for the regulation of their catalytic activity.
Collapse
Affiliation(s)
- Hegne Pupart
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 15 Akadeemia tee, Tallinn 12618, Estonia
| | - Darja Vastšjonok
- Institute
of Molecular and Cell Biology, University
of Tartu, Riia 23b-202, Tartu 51010, Estonia
| | - Tiit Lukk
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 15 Akadeemia tee, Tallinn 12618, Estonia
| | - Priit Väljamäe
- Institute
of Molecular and Cell Biology, University
of Tartu, Riia 23b-202, Tartu 51010, Estonia
| |
Collapse
|
6
|
Sethupathy S, Xie R, Liang N, Shafreen RMB, Ali MY, Zhuang Z, Zhe L, Zahoor, Yong YC, Zhu D. Evaluation of a dye-decolorizing peroxidase from Comamonas serinivorans for lignin valorization potentials. Int J Biol Macromol 2023; 253:127117. [PMID: 37774822 DOI: 10.1016/j.ijbiomac.2023.127117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Although dye-decolourising peroxidases (DyPs) are well-known for lignin degradation, a comprehensive understanding of their mechanism remains unclear. Therefore, studying the mechanism of lignin degradation by DyPs is necessary for industrial applications and enzyme engineering. In this study, a dye-decolourising peroxidase (CsDyP) gene from C. serinivorans was heterologously expressed and studied for its lignin degradation potential. Molecular docking analysis predicted the binding of 2, 2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), veratryl alcohol (VA), 2, 6-dimethylphenol (2, 6- DMP), guaiacol (GUA), and lignin to the substrate-binding pocket of CsDyP. Evaluation of the enzymatic properties showed that CsDyP requires pH 4.0 and 30 °C for optimal activity and has a high affinity for ABTS. In addition, CsDyP is stable over a wide range of temperatures and pH and can tolerate 5.0 mM organic solvents. Low NaCl concentrations promoted CsDyP activity. Further, CsDyP significantly reduced the chemical oxygen demand decolourised alkali lignin (AL) and milled wood lignin (MWL). CsDyP targets the β-O-4, CO, and CC bonds linking lignin's G, S, and H units to depolymerize and produce aromatic compounds. Overall, this study delivers valuable insights into the lignin degradation mechanism of CsDyP, which can benefit its industrial applications and lignin valorization.
Collapse
Affiliation(s)
- Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rongrong Xie
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nian Liang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Raja Mohamed Beema Shafreen
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Algappapuram, Karaikudi 630003, Tamil Nadu, India
| | - Mohamed Yassin Ali
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Biochemistry Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Zhipeng Zhuang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Liang Zhe
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zahoor
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Barbosa C, Rodrigues CF, Lončar N, Martins LO, Todorovic S, Silveira CM. Spectroelectrochemistry for determination of the redox potential in heme enzymes: Dye-decolorizing peroxidases. BBA ADVANCES 2023; 5:100112. [PMID: 38235374 PMCID: PMC10792693 DOI: 10.1016/j.bbadva.2023.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024] Open
Abstract
Dye-decolorizing peroxidases (DyPs) are heme-containing enzymes that are structurally unrelated to other peroxidases. Some DyPs show high potential for applications in biotechnology, which critically depends on the stability and redox potential (E°') of the enzyme. Here we provide a comparative analysis of UV-Vis- and surface-enhanced resonance Raman-based spectroelectrochemical methods for determination of the E°' of DyPs from two different organisms, and their variants generated targeting E°' upshift. We show that substituting the highly conserved Arginine in the distal side of the heme pocket by hydrophobic amino acid residues impacts the heme architecture and redox potential of DyPs from the two organisms in a very distinct manner. We demonstrate the advantages and drawbacks of the used spectroelectrochemical approaches, which is relevant for other heme proteins that contain multiple heme centers or spin populations.
Collapse
Affiliation(s)
- Catarina Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Carolina F. Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Nikola Lončar
- Gecco Biotech, Nijenborgh 4, Groningen 9747AG, the Netherlands
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Célia M. Silveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| |
Collapse
|
8
|
Silva D, Sousa AC, Robalo MP, Martins LO. A wide array of lignin-related phenolics are oxidized by an evolved bacterial dye-decolourising peroxidase. N Biotechnol 2023; 77:176-184. [PMID: 36563877 DOI: 10.1016/j.nbt.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Lignin is the second most abundant natural polymer next to cellulose and by far the largest renewable source of aromatic compounds on the planet. Dye-decolourising peroxidases (DyPs) are biocatalysts with immense potential in lignocellulose biorefineries to valorize emerging lignin building blocks for environmentally friendly chemicals and materials. This work investigates the catalytic potential of the engineered PpDyP variant 6E10 for the oxidation of 24 syringyl, guaiacyl and hydroxybenzene lignin-phenolic derivatives. Variant 6E10 exhibited up to 100-fold higher oxidation rates at pH 8 for all the tested phenolic substrates compared to the wild-type enzyme and other acidic DyPs described in the literature. The main products of reactions were dimeric isomers with molecular weights of (2 × MWsubstrate - 2 H). Their structure depends on the substitution pattern of the aromatic ring of substrates, i.e., of the coupling possibilities of the primarily formed radicals upon enzymatic oxidation. Among the dimers identified were syringaresinol, divanillin and diapocynin, important sources of structural scaffolds exploitable in medicinal chemistry, food additives and polymers.
Collapse
Affiliation(s)
- Diogo Silva
- Institute of Chemical and Biological Technology António Xavier, NOVA New University of Lisbon, Av da República, 2780-157 Oeiras, Portugal
| | - Ana Catarina Sousa
- Department of Chemical Engineering, Instituto Superior de Engenharia de Lisboa, Polytechnic Institute of Lisbon, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal; Centre for Structural Chemistry, Institute of Molecular Sciences, Complexo I; Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - M Paula Robalo
- Department of Chemical Engineering, Instituto Superior de Engenharia de Lisboa, Polytechnic Institute of Lisbon, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal; Centre for Structural Chemistry, Institute of Molecular Sciences, Complexo I; Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Lígia O Martins
- Institute of Chemical and Biological Technology António Xavier, NOVA New University of Lisbon, Av da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
9
|
Lee S, Kang M, Jung CD, Bae JH, Lee JY, Park YK, Joo JC, Kim H, Sohn JH, Sung BH. Development of novel recombinant peroxidase secretion system from Pseudomonas putida for lignin valorisation. BIORESOURCE TECHNOLOGY 2023; 388:129779. [PMID: 37739186 DOI: 10.1016/j.biortech.2023.129779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Pseudomonas putida is a promising strain for lignin valorisation. However, there is a dearth of stable and efficient systems for secreting enzymes to enhance the process. Therefore, a novel secretion system for recombinant lignin-depolymerising peroxidase was developed. By adopting a flagellar type III secretion system, P. putida KT-M2, a secretory host strain, was constructed and an optimal secretion signal fusion partner was identified. Application of the dye-decolourising peroxidase of P. putida to this system resulted in efficient oxidation activity of the cell-free supernatant against various chemicals, including lignin model compounds. This peroxidase-secreting strain was examined to confirm its lignin utilisation capability, resulting in the efficient assimilation of various lignin substrates with 2.6-fold higher growth than that of the wild-type strain after 72 h of cultivation. Finally, this novel system will lead efficient bacterial lignin breakdown and utilization through enzyme secretion, paving the way for sustainable lignin-consolidated bioprocessing.
Collapse
Affiliation(s)
- Siseon Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Minsik Kang
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Biosystems and Bioengineering Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Chan-Duck Jung
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jung-Hoon Bae
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ju Young Lee
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hoyong Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jung-Hoon Sohn
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Biosystems and Bioengineering Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Biosystems and Bioengineering Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
10
|
Scocozza M, Vieyra F, Battaglini F, Martins LO, Murgida DH. Electrochemical Actuation of a DyP Peroxidase: A Facile Method for Drastic Improvement of the Catalytic Performance. ACS Catal 2023; 13:7437-7449. [PMID: 37288089 PMCID: PMC10243304 DOI: 10.1021/acscatal.3c01530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Indexed: 06/09/2023]
Abstract
Dye decolorizing peroxidases (DyP) have attracted interest for applications such as dye-containing wastewater remediation and biomass processing. So far, efforts to improve operational pH ranges, activities, and stabilities have focused on site-directed mutagenesis and directed evolution strategies. Here, we show that the performance of the DyP from Bacillus subtilis can be drastically boosted without the need for complex molecular biology procedures by simply activating the enzyme electrochemically in the absence of externally added H2O2. Under these conditions, the enzyme shows specific activities toward a variety of chemically different substrates that are significantly higher than in its canonical operation. Moreover, it presents much broader pH activity profiles with the maxima shifted toward neutral to alkaline. We also show that the enzyme can be successfully immobilized on biocompatible electrodes. When actuated electrochemically, the enzymatic electrodes have two orders of magnitude higher turnover numbers than with the standard H2O2-dependent operation and preserve about 30% of the initial electrocatalytic activity after 5 days of operation-storage cycles.
Collapse
Affiliation(s)
- Magalí
F. Scocozza
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Francisco Vieyra
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Fernando Battaglini
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Ligia O. Martins
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
11
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fern'andez-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology-A review. Int J Biol Macromol 2023:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational frameworks, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fern'andez-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanizaci'on El Bosque, 28670 Villaviciosa de Od'on, Spain; Grupo de Investigaci'on en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
12
|
Silva D, Rodrigues F, Lorena C, Borges PT, Martins LO. Biocatalysis for biorefineries: The case of dye-decolorizing peroxidases. Biotechnol Adv 2023; 65:108153. [PMID: 37044267 DOI: 10.1016/j.biotechadv.2023.108153] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
Dye-decolorizing Peroxidases (DyPs) are heme-containing enzymes in fungi and bacteria that catalyze the reduction of hydrogen peroxide to water with concomitant oxidation of various substrates, including anthraquinone dyes, lignin-related phenolic and non-phenolic compounds, and metal ions. Investigation of DyPs has shed new light on peroxidases, one of the most extensively studied families of oxidoreductases; still, details of their microbial physiological role and catalytic mechanisms remain to be fully disclosed. They display a distinctive ferredoxin-like fold encompassing anti-parallel β-sheets and α-helices, and long conserved loops surround the heme pocket with a role in catalysis and stability. A tunnel routes H2O2 to the heme pocket, whereas binding sites for the reducing substrates are in cavities near the heme or close to distal aromatic residues at the surface. Variations in reactions, the role of catalytic residues, and mechanisms were observed among different classes of DyP. They were hypothetically related to the presence or absence of distal H2O molecules in the heme pocket. The engineering of DyPs for improved properties directed their biotechnological applications, primarily centered on treating textile effluents and degradation of other hazardous pollutants, to fields such as biosensors and valorization of lignin, the most abundant renewable aromatic polymer. In this review, we track recent research contributions that furthered our understanding of the activity, stability, and structural properties of DyPs and their biotechnological applications. Overall, the study of DyP-type peroxidases has significant implications for environmental sustainability and the development of new bio-based products and materials with improved end-of-life options via biodegradation and chemical recyclability, fostering the transition to a sustainable bio-based industry in the circular economy realm.
Collapse
Affiliation(s)
- Diogo Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - F Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Constança Lorena
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
13
|
Cagide C, Marizcurrena JJ, Vallés D, Alvarez B, Castro-Sowinski S. A bacterial cold-active dye-decolorizing peroxidase from an Antarctic Pseudomonas strain. Appl Microbiol Biotechnol 2023; 107:1707-1724. [PMID: 36773063 DOI: 10.1007/s00253-023-12405-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Abstract
DyP (dye-decolorizing peroxidase) enzymes are hemeproteins that catalyze the H2O2-dependent oxidation of various molecules and also carry out lignin degradation, albeit with low activity. We identified a dyp gene in the genome of an Antarctic cold-tolerant microbe (Pseudomonas sp. AU10) that codes for a class B DyP. The recombinant protein (rDyP-AU10) was produced using Escherichia coli as a host and purified. We found that rDyP-AU10 is mainly produced as a dimer and has characteristics that resemble psychrophilic enzymes, such as high activity at low temperatures (20 °C) when using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and H2O2 as substrates, thermo-instability, low content of arginine, and a catalytic pocket surface larger than the DyPs from some mesophilic and thermophilic microbes. We also report the steady-state kinetic parameters of rDyP-AU10 for ABTS, hydroquinone, and ascorbate. Stopped-flow kinetics revealed that Compound I is formed with a rate constant of (2.07 ± 0.09) × 106 M-1 s-1 at pH 5 and that this is the predominant species during turnover. The enzyme decolors dyes and modifies kraft lignin, suggesting that this enzyme may have potential use in bioremediation and in the cellulose and biofuel industries. KEY POINTS: • An Antarctic Pseudomonas strain produces a dye-decolorizing peroxidase. • The recombinant enzyme (rDyP-AU10) was produced in E. coli and purified. • rDyP-AU10 showed high activity at low temperatures. • rDyP-AU10 is potentially useful for biotechnological applications.
Collapse
Affiliation(s)
- Célica Cagide
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Juan José Marizcurrena
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Diego Vallés
- Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, and Centro de Investigaciones Biomédicas, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
14
|
Li J, Dong C, Sen B, Lai Q, Gong L, Wang G, Shao Z. Lignin-oxidizing and xylan-hydrolyzing Vibrio involved in the mineralization of plant detritus in the continental slope. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158714. [PMID: 36113801 DOI: 10.1016/j.scitotenv.2022.158714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
A large amount of terrigenous organic matter (TOM) is constantly transported to the deep sea. However, relatively little is known about the microbial mineralization of TOM therein. Our recent in situ enrichment experiments revealed that Vibrio is especially enriched as one of the predominant taxa in the cultures amended with natural plant materials in the deep sea. Yet their role in the mineralization of plant-derived TOM in the deep sea remains largely unknown. Here we isolated Vibrio strains representing dominant members of the enrichments and verified their potential to degrade lignin and xylan. The isolated strains were closely related to Vibrio harveyi, V. alginolyticus, V. diabolicus, and V. parahaemolyticus. Extracellular enzyme assays, and genome and transcriptome analyses revealed diverse peroxidases, including lignin peroxidase (LiP), catalase-peroxidase (KatG), and decolorizing peroxidase (DyP), which played an important role in the depolymerization and oxidation of lignin. Superoxide dismutase was found to likely promote lignin oxidation by supplying H2O2 to LiP, DyP, and KatG. Interestingly, these deep-sea Vibrio strains could oxidize lignin and hydrolyze xylan not only through aerobic pathway, but also through anaerobic pathway. Genome analysis revealed multiple anaerobic respiratory mechanisms, including the reductions of nitrate, arsenate, tetrathionate, and dimethyl sulfoxide. The strains showed the potential to anaerobically reduce sulfite and metal oxides of iron and manganese, in contrast the non-deep-sea Vibrio strains were not retrieved of genes involved in reduction of metal oxides. This is the first report about the lignin oxidation mechanisms in Vibrio and their role in TOM mineralization in anoxic and oxic environments of the marginal sea.
Collapse
Affiliation(s)
- Jianyang Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China; MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China.
| |
Collapse
|
15
|
Ikram M, Zahoor M, Naeem M, Islam NU, Shah AB, Shahzad B. Bacterial oxidoreductive enzymes as molecular weapons for the degradation and metabolism of the toxic azo dyes in wastewater: a review. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Azo dyes are extremely toxic and pose significant environmental and health risks. Consequently, mineralization and conversion to simple compounds are required to avoid their hazardous effects. A variety of enzymes from the bacterial system are thought to be involved in the degradation and metabolism of azo dyes. Bioremediation, a cost effective and eco-friendly biotechnology, involving bacteria is powered by bacterial enzymes. As mentioned, several enzymes from the bacterial system serve as molecular weapons in the degradation of these dyes. Among these enzymes, azoreductase, oxidoreductase, and laccase are of great interest for the degradation and decolorization of azo dyes. Combination of the oxidative and reductive enzymes is used for the removal of azo dyes from water. The aim of this review article is to provide information on the importance of bacterial enzymes. The review also discusses the genetically modified microorganisms in the biodegradation of azo dyes in polluted water.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Chemistry , Abdul Wali Khan University Mardan , Mardan , 23200 , Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry , University of Malakand at Chakdara , Dir Lower Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Naeem
- Department of Chemistry , Abdul Wali Khan University Mardan , Mardan , 23200 , Pakistan
| | - Noor Ul Islam
- Department of Chemistry , University of Malakand at Chakdara , Dir Lower Khyber Pakhtunkhwa , Pakistan
| | - Abdul Bari Shah
- Division of Applied Life Science (BK21 Plus) , Institute of Agriculture and Life Sciences, Gyeongsang National University , Jinju 52828 , Korea
| | - Babar Shahzad
- Department of Biochemistry , Institute of Basic Medical Sciences, Khyber Medical University Peshawar Khyber Pakhtunkhwa , Peshawar , Pakistan
| |
Collapse
|
16
|
Guo Y, Wang Y, Tang Y, Ma Q, Ji C, Zhao L. Combined in silico investigation and in vitro characterization of the zearalenone detoxification potential of dye-decolorizing peroxidase from Bacillus subtilis 168. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
17
|
Xu Z, Peng B, Kitata RB, Nicora CD, Weitz KK, Pu Y, Shi T, Cort JR, Ragauskas AJ, Yang B. Understanding of bacterial lignin extracellular degradation mechanisms by Pseudomonas putida KT2440 via secretomic analysis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:117. [PMID: 36316752 PMCID: PMC9620641 DOI: 10.1186/s13068-022-02214-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Bacterial lignin degradation is believed to be primarily achieved by a secreted enzyme system. Effects of such extracellular enzyme systems on lignin structural changes and degradation pathways are still not clearly understood, which remains as a bottleneck in the bacterial lignin bioconversion process. RESULTS This study investigated lignin degradation using an isolated secretome secreted by Pseudomonas putida KT2440 that grew on glucose as the only carbon source. Enzyme assays revealed that the secretome harbored oxidase and peroxidase/Mn2+-peroxidase capacity and reached the highest activity at 120 h of the fermentation time. The degradation rate of alkali lignin was found to be only 8.1% by oxidases, but increased to 14.5% with the activation of peroxidase/Mn2+-peroxidase. Gas chromatography-mass spectrometry (GC-MS) and two-dimensional 1H-13C heteronuclear single-quantum coherence (HSQC) NMR analysis revealed that the oxidases exhibited strong C-C bond (β-β, β-5, and β-1) cleavage. The activation of peroxidases enhanced lignin degradation by stimulating C-O bond (β-O-4) cleavage, resulting in increased yields of aromatic monomers and dimers. Further mass spectrometry-based quantitative proteomics measurements comprehensively identified different groups of enzymes particularly oxidoreductases in P. putida secretome, including reductases, peroxidases, monooxygenases, dioxygenases, oxidases, and dehydrogenases, potentially contributed to the lignin degradation process. CONCLUSIONS Overall, we discovered that bacterial extracellular degradation of alkali lignin to vanillin, vanillic acid, and other lignin-derived aromatics involved a series of oxidative cleavage, catalyzed by active DyP-type peroxidase, multicopper oxidase, and other accessory enzymes. These results will guide further metabolic engineering design to improve the efficiency of lignin bioconversion.
Collapse
Affiliation(s)
- Zhangyang Xu
- grid.451303.00000 0001 2218 3491Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, ashington State University Tri-Cities, Joint Appointment: Pacific Northwest National Laboratory, 2710 Crimson Way, Richland, WA 99354 USA
| | - Bo Peng
- grid.451303.00000 0001 2218 3491Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, ashington State University Tri-Cities, Joint Appointment: Pacific Northwest National Laboratory, 2710 Crimson Way, Richland, WA 99354 USA
| | - Reta Birhanu Kitata
- grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| | - Carrie D. Nicora
- grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| | - Karl K. Weitz
- grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| | - Yunqiao Pu
- grid.135519.a0000 0004 0446 2659Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Tujin Shi
- grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| | - John R. Cort
- grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| | - Arthur J. Ragauskas
- grid.135519.a0000 0004 0446 2659Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ,grid.411461.70000 0001 2315 1184Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA ,grid.411461.70000 0001 2315 1184Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996 USA
| | - Bin Yang
- grid.451303.00000 0001 2218 3491Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, ashington State University Tri-Cities, Joint Appointment: Pacific Northwest National Laboratory, 2710 Crimson Way, Richland, WA 99354 USA ,grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| |
Collapse
|
18
|
Genomic Features of Pseudomonas putida PCL1760: A Biocontrol Agent Acting via Competition for Nutrient and Niche. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pseudomonasputida strain PCL1760 is a biocontrol agent protecting plants from pathogens via the mechanism of competition for nutrients and niches (CNN). To confirm this mechanism as well as to adapt the strain for biotechnological applications, full genome analysis was compared with the known biotechnological model, P. putida S12, and other related species, which were analyzed on different genomic databases. Moreover, the antibacterial activity of PCL1760 was tested against Staphylococcus aureus, Pseudomonas aeruginosa, and Pseudomonas syringae. No genetic systems involved in antibiosis were revealed among the secondary metabolite clusters of the strain of PCL1760. The only antagonistic effect was observed against P. syringae, which might be because of siderophore (yellow-greenish fluorescence), although less than 19% pyoverdin biosynthesis clusters were predicted using the AntiSMASH server. P. putida PCL1760 in comparison with the Pseudomonas simiae strain PCL1751, another biocontrol agent acting solely via CNN, which lost its ‘luxury’ genes necessary for antibiosis or parasitism/predation mechanisms, but carries genetic systems providing motility. Interestingly, immunity genes (CRISPR/Cas and prophages) showed PCL1760 to be robust in comparison with S12, while annotation on OrthoVenn2 showed PCL1760 to be amenable for genetic manipulations. It is tempting to state that rhizobacteria using the mechanism of CNN are distinguishable from biocontrol agents acting via antibiosis or parasitism/predation at the genomic level. This confirms the CNN of PCL1760 as the sole mechanism for biocontrol and we suggest the strain as a new model for genetic engineering.
Collapse
|
19
|
Bhardwaj SK, Knaus T, Garcia A, Yan N, Mutti FG. Bacterial Peroxidase on Electrochemically Reduced Graphene Oxide for Highly Sensitive H 2 O 2 Detection. Chembiochem 2022; 23:e202200346. [PMID: 35723909 PMCID: PMC9543142 DOI: 10.1002/cbic.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 11/09/2022]
Abstract
Peroxidase enzymes enable the construction of electrochemical sensors for highly sensitive and selective quantitative detection of various molecules, pathogens and diseases. Herein, we describe the immobilization of a peroxidase from Bacillus s. (BsDyP) on electrochemically reduced graphene oxide (ERGO) deposited on indium tin oxide (ITO) and polyethylene terephthalate (PET) layers. XRD, SEM, AFM, FT-IR and Raman characterization of the sensor confirmed its structural integrity and a higher enzyme surface occupancy. The BsDyP-ERGO/ITO/PET electrode performed better than other horseradish peroxidase-based electrodes, as evinced by an improved electrochemical response in the nanomolar range (linearity 0.05-280 μM of H2 O2 , LOD 32 nM). The bioelectrode was mechanically robust, active in the 3.5-6 pH range and exhibited no loss of activity upon storage for 8 weeks at 4 °C.
Collapse
Affiliation(s)
- Sheetal K. Bhardwaj
- Van't Hoff Institute for Molecular Sciences HIMS-Biocat & HetCatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for Molecular Sciences HIMS-Biocat & HetCatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Amanda Garcia
- Van't Hoff Institute for Molecular Sciences HIMS-Biocat & HetCatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Ning Yan
- Van't Hoff Institute for Molecular Sciences HIMS-Biocat & HetCatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- Van't Hoff Institute for Molecular Sciences HIMS-Biocat & HetCatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
20
|
Borges PT, Silva D, Silva TF, Brissos V, Cañellas M, Lucas MF, Masgrau L, Melo EP, Machuqueiro M, Frazão C, Martins LO. Unveiling molecular details behind improved activity at neutral to alkaline pH of an engineered DyP-type peroxidase. Comput Struct Biotechnol J 2022; 20:3899-3910. [PMID: 35950185 PMCID: PMC9334217 DOI: 10.1016/j.csbj.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023] Open
Abstract
DyP-type peroxidases (DyPs) are microbial enzymes that catalyze the oxidation of a wide range of substrates, including synthetic dyes, lignin-derived compounds, and metals, such as Mn2+ and Fe2+, and have enormous biotechnological potential in biorefineries. However, many questions on the molecular basis of enzyme function and stability remain unanswered. In this work, high-resolution structures of PpDyP wild-type and two engineered variants (6E10 and 29E4) generated by directed evolution were obtained. The X-ray crystal structures revealed the typical ferredoxin-like folds, with three heme access pathways, two tunnels, and one cavity, limited by three long loops including catalytic residues. Variant 6E10 displays significantly increased loops' flexibility that favors function over stability: despite the considerably higher catalytic efficiency, this variant shows poorer protein stability compared to wild-type and 29E4 variants. Constant-pH MD simulations revealed a more positively charged microenvironment near the heme pocket of variant 6E10, particularly in the neutral to alkaline pH range. This microenvironment affects enzyme activity by modulating the pK a of essential residues in the heme vicinity and should account for variant 6E10 improved activity at pH 7-8 compared to the wild-type and 29E4 that show optimal enzymatic activity close to pH 4. Our findings shed light on the structure-function relationships of DyPs at the molecular level, including their pH-dependent conformational plasticity. These are essential for understanding and engineering the catalytic properties of DyPs for future biotechnological applications.
Collapse
Affiliation(s)
- Patrícia T. Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Diogo Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Tomás F.D. Silva
- BioISI – Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marina Cañellas
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain
| | | | - Laura Masgrau
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain,Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eduardo P. Melo
- Centro de Ciências do Mar, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Miguel Machuqueiro
- BioISI – Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal,Corresponding author.
| |
Collapse
|
21
|
Zhong H, Zhou J, Wang F, Wu W, Abdelrahman M, Li X. Whole-Genome Sequencing Reveals Lignin-Degrading Capacity of a Ligninolytic Bacterium (Bacillus cereus) from Buffalo (Bubalus bubalis) Rumen. Genes (Basel) 2022; 13:genes13050842. [PMID: 35627226 PMCID: PMC9140826 DOI: 10.3390/genes13050842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023] Open
Abstract
The buffalo is an amazing ruminant. Its ability to degrade lignin, which has been recently reported, is most likely due to unique rumen microorganisms with lignin-degradation potential. Our goal was to explore the lignin-degradation potential of ruminal microorganisms, in which ligninolytic enzyme encoding genes were involved to provide ideas for revealing the mechanism of lignin degradation by buffalo. In this study, a bacterium strain identified as Bacillus cereus AH7-7 was isolated from the buffalo (Bubalus bubalis) rumen. After whole-genome sequencing, the results demonstrated that B. cereus AH7-7 had laccase, cytochrome P450 and vanillin alcohol oxidase-encoding genes. Sixty-four genes of B. cereus AH7-7 were involved in multiple aromatic metabolic pathways, such as phenylalanine metabolism and aminobenzoate degradation. A positive reaction resulting in guaiacol medium indicated that laccase secretion from B. cereus AH7-7 increased with time. A biodegradation experiment revealed that a significant reduction in kraft lignin content (25.9%) by B. cereus AH7-7 occurred at the end of 6 days of incubation, which confirmed its lignin-degradation capacity. Overall, this is the first report showing that B. cereus AH7-7 from the buffalo rumen can degrade lignin, and revealing the encoding genes of lignin-degrading enzymes from genome level.
Collapse
Affiliation(s)
- Huimin Zhong
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (J.Z.); (F.W.); (W.W.)
| | - Jiayan Zhou
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (J.Z.); (F.W.); (W.W.)
| | - Fan Wang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (J.Z.); (F.W.); (W.W.)
| | - Wenqing Wu
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (J.Z.); (F.W.); (W.W.)
| | - Mohamed Abdelrahman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Animal Production Department, Faculty of Agriculture, Assuit University, Asyut 71515, Egypt
| | - Xiang Li
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (J.Z.); (F.W.); (W.W.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-18995622055
| |
Collapse
|
22
|
Microbial Degradation of Azo Dyes: Approaches and Prospects for a Hazard-Free Conversion by Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084740. [PMID: 35457607 PMCID: PMC9026373 DOI: 10.3390/ijerph19084740] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Azo dyes have become a staple in various industries, as colors play an important role in consumer choices. However, these dyes pose various health and environmental risks. Although different wastewater treatments are available, the search for more eco-friendly options persists. Bioremediation utilizing microorganisms has been of great interest to researchers and industries, as the transition toward greener solutions has become more in demand through the years. This review tackles the health and environmental repercussions of azo dyes and its metabolites, available biological approaches to eliminate such dyes from the environment with a focus on the use of different microorganisms, enzymes that are involved in the degradation of azo dyes, and recent trends that could be applied for the treatment of azo dyes.
Collapse
|
23
|
Niu Q, Meng Q, Yang H, Wang Y, Li X, Li G, Li Q. Humification process and mechanisms investigated by Fenton-like reaction and laccase functional expression during composting. BIORESOURCE TECHNOLOGY 2021; 341:125906. [PMID: 34523564 DOI: 10.1016/j.biortech.2021.125906] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
This study aims to explore the impacts of the Fenton-like reaction on hydrogen peroxide, hydroxyl radicals, humic substance (HS) formation, laccase activity and microbial communities during composting to optimize composting performances. The results indicated that the activity of laccase in the presence of the Fenton-like reaction (HC) (35.92 U/g) was significantly higher than that in the control (CP) (29.56 U/g). The content of HS in HC (151.91 g/kg) was higher than that in CP (131.73 g/kg), and amides, quinones, aliphatic compounds and aromatic compounds were promoted to form HS in HC by 2D-FTIR-COS analysis. Proteobacteria contributed most greatly to AA1 at phylum level, Pseudomonas and Sphingomonas abundances increased in HC. Redundancy analysis indicated that there was a strong positive correlation among the Fenton-like reaction, laccase and HS. Conclusively, the Fenton-like reaction improved the activity of laccase, promoted the formation of HS and enhanced the quality of compost.
Collapse
Affiliation(s)
- Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Qingran Meng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yiwu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiaolan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Gen Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
24
|
Scocozza MF, Martins LO, Murgida DH. Direct Electrochemical Generation of Catalytically Competent Oxyferryl Species of Classes I and P Dye Decolorizing Peroxidases. Int J Mol Sci 2021; 22:12532. [PMID: 34830413 PMCID: PMC8653965 DOI: 10.3390/ijms222212532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
This work introduces a novel way to obtain catalytically competent oxyferryl species for two different dye-decolorizing peroxidases (DyPs) in the absence of H2O2 or any other peroxide by simply applying a reductive electrochemical potential under aerobic conditions. UV-vis and resonance Raman spectroscopies show that this method yields long-lived compounds II and I for the DyPs from Bacillus subtilis (BsDyP; Class I) and Pseudomonas putida (PpDyP; Class P), respectively. Both electrochemically generated high valent intermediates are able to oxidize ABTS at both acidic and alkaline pH. Interestingly, the electrocatalytic efficiencies obtained at pH 7.6 are very similar to the values recorded for regular catalytic ABTS/H2O2 assays at the optimal pH of the enzymes, ca. 3.7. These findings pave the way for the design of DyP-based electrocatalytic reactors operable in an extended pH range without the need of harmful reagents such as H2O2.
Collapse
Affiliation(s)
- Magalí F. Scocozza
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| | - Daniel H. Murgida
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
25
|
Cordas CM, Nguyen GS, Valério GN, Jønsson M, Söllner K, Aune IH, Wentzel A, Moura JJG. Discovery and characterization of a novel Dyp-type peroxidase from a marine actinobacterium isolated from Trondheim fjord, Norway. J Inorg Biochem 2021; 226:111651. [PMID: 34740038 DOI: 10.1016/j.jinorgbio.2021.111651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022]
Abstract
A new dye-decolorizing peroxidase (DyP) was discovered through a data mining workflow based on HMMER software and profile Hidden Markov Model (HMM) using a dataset of 1200 genomes originated from a Actinobacteria strain collection isolated from Trondheim fjord. Instead of the conserved GXXDG motif known for Dyp-type peroxidases, the enzyme contains a new conserved motif EXXDG which has been not reported before. The enzyme can oxidize an anthraquinone dye Remazol Brilliant Blue R (Reactive Blue 19) and other phenolic compounds such as ferulic acid, sinapic acid, caffeic acid, 3-methylcatechol, dopamine hydrochloride, and tannic acid. The acidic pH optimum (3 to 4) and the low temperature optimum (25 °C) were confirmed using both biochemical and electrochemical assays. Kinetic and thermodynamic parameters associated with the catalytic redox center were attained by electrochemistry.
Collapse
Affiliation(s)
- Cristina M Cordas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Giang-Son Nguyen
- Sustainable Biotechnology and Bioprospecting, Department of Biotechnology and Nanomedicine, SINTEF Industry, Norway.
| | - Gabriel N Valério
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Malene Jønsson
- Sustainable Biotechnology and Bioprospecting, Department of Biotechnology and Nanomedicine, SINTEF Industry, Norway
| | - Katharina Söllner
- Sustainable Biotechnology and Bioprospecting, Department of Biotechnology and Nanomedicine, SINTEF Industry, Norway
| | - Ingvild H Aune
- Sustainable Biotechnology and Bioprospecting, Department of Biotechnology and Nanomedicine, SINTEF Industry, Norway
| | - Alexander Wentzel
- Sustainable Biotechnology and Bioprospecting, Department of Biotechnology and Nanomedicine, SINTEF Industry, Norway
| | - José J G Moura
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
26
|
Cloning, expression and biochemical characterization of lignin-degrading DyP-type peroxidase from Bacillus sp. Strain BL5. Enzyme Microb Technol 2021; 151:109917. [PMID: 34649688 DOI: 10.1016/j.enzmictec.2021.109917] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 11/21/2022]
Abstract
Lignin is a major byproduct of pulp and paper industries, which is resistant to depolymerization due to its heterogeneous structure. The enzymes peroxidases can be utilized as potent bio-catalysts to degrade lignin. In the current study, an Efeb gene of 1251bp encoding DyP-type peroxidase from Bacillus sp. strain BL5 (DyPBL5) was amplified, cloned into a pET-28a (+) vector and expressed in Escherichia coli BL21 (DE3) cells. A 46 kDa protein of DyPBL5 was purified through ion-exchange chromatography. Purified DyPBL5 was active at wide temperature (25-50 °C) and pH (3.0-8.0) range with optimum activity at 35 °C and pH 5.0. Effects of different chemicals on DyPBL5 were determined. The enzyme activity was strongly inhibited by SDS, DDT and β-mercaptoethanol, whereas stimulated in the presence of organic solvents such as methanol and ethanol. The kinetic parameters were determined and Km, Vmax and Kcat values were 1.06 mM, 519.75 μmol/min/mg and 395 S̶ 1, respectively. Docking of DyPBL5 with ABTS revealed that, Asn 244, Arg 339, Asp 383 and Thr 389 are putative amino acids, taking part in the oxidation of ABTS. The recombinant DyPBL5 resulted in the reduction of lignin contents up to 26.04 %. The SEM and FT-IR analysis of test samples gave some indications about degradation of lignin by DyPBL5. Various low molecular weight lignin degradation products were detected by analyzing the samples through gas chromatography mass spectrometry. High catalytic efficiency and lignin degradation rate make DyPBL5 an ideal bio-catalyst for remediation of lignin-contaminated sites.
Collapse
|
27
|
Rodrigues CF, Borges PT, Scocozza MF, Silva D, Taborda A, Brissos V, Frazão C, Martins LO. Loops around the Heme Pocket Have a Critical Role in the Function and Stability of BsDyP from Bacillus subtilis. Int J Mol Sci 2021; 22:ijms221910862. [PMID: 34639208 PMCID: PMC8509576 DOI: 10.3390/ijms221910862] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022] Open
Abstract
Bacillus subtilis BsDyP belongs to class I of the dye-decolorizing peroxidase (DyP) family of enzymes and is an interesting biocatalyst due to its high redox potential, broad substrate spectrum and thermostability. This work reports the optimization of BsDyP using directed evolution for improved oxidation of 2,6-dimethoxyphenol, a model lignin-derived phenolic. After three rounds of evolution, one variant was identified displaying 7-fold higher catalytic rates and higher production yields as compared to the wild-type enzyme. The analysis of X-ray structures of the wild type and the evolved variant showed that the heme pocket is delimited by three long conserved loop regions and a small α helix where, incidentally, the mutations were inserted in the course of evolution. One loop in the proximal side of the heme pocket becomes more flexible in the evolved variant and the size of the active site cavity is increased, as well as the width of its mouth, resulting in an enhanced exposure of the heme to solvent. These conformational changes have a positive functional role in facilitating electron transfer from the substrate to the enzyme. However, they concomitantly resulted in decreasing the enzyme’s overall stability by 2 kcal mol−1, indicating a trade-off between functionality and stability. Furthermore, the evolved variant exhibited slightly reduced thermal stability compared to the wild type. The obtained data indicate that understanding the role of loops close to the heme pocket in the catalysis and stability of DyPs is critical for the development of new and more powerful biocatalysts: loops can be modulated for tuning important DyP properties such as activity, specificity and stability.
Collapse
Affiliation(s)
- Carolina F. Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Patrícia T. Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Magali F. Scocozza
- Instituto de Química Física de los Materiales, Medio Ambiente y Energia (INQUIMAE), CONICET—Universidad de Buenos Aires, Buenos Aires 148EHA, Argentina;
| | - Diogo Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - André Taborda
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
- Correspondence:
| |
Collapse
|
28
|
Efficient Degradation of Zearalenone by Dye-Decolorizing Peroxidase from Streptomyces thermocarboxydus Combining Catalytic Properties of Manganese Peroxidase and Laccase. Toxins (Basel) 2021; 13:toxins13090602. [PMID: 34564606 PMCID: PMC8473283 DOI: 10.3390/toxins13090602] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Ligninolytic enzymes, including laccase, manganese peroxidase, and dye-decolorizing peroxidase (DyP), have attracted much attention in the degradation of mycotoxins. Among these enzymes, the possible degradation pathway of mycotoxins catalyzed by DyP is not yet clear. Herein, a DyP-encoding gene, StDyP, from Streptomyces thermocarboxydus 41291 was identified, cloned, and expressed in Escherichia coli BL21/pG-Tf2. The recombinant StDyP was capable of catalyzing the oxidation of the peroxidase substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), phenolic lignin compounds 2,6-dimethylphenol, and guaiacol, non-phenolic lignin compound veratryl alcohol, Mn2+, as well as anthraquinone dye reactive blue 19. Moreover, StDyP was able to slightly degrade zearalenone (ZEN). Most importantly, we found that StDyP combined the catalytic properties of manganese peroxidase and laccase, and could significantly accelerate the enzymatic degradation of ZEN in the presence of their corresponding substrates Mn2+ and 1-hydroxybenzotriazole. Furthermore, the biological toxicities of the main degradation products 15-OH-ZEN and 13-OH-ZEN-quinone might be remarkably removed. These findings suggested that DyP might be a promising candidate for the efficient degradation of mycotoxins in food and feed.
Collapse
|
29
|
Characterization of Two Hydrogen Peroxide Resistant Peroxidases from Rhodococcus opacus 1CP. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dye-decolorizing peroxidases (DyP) are a family of heme-dependent enzymes present on a broad spectrum of microorganisms. While the natural function of these enzymes is not fully understood, their capacity to degrade highly contaminant pigments such as azo dyes or anthraquinones make them excellent candidates for applications in bioremediation and organic synthesis. In this work, two novel DyP peroxidases from the organism Rhodococcus opacus 1CP (DypA and DypB) were cloned and expressed in Escherichia coli. The enzymes were purified and biochemically characterized. The activities of the two DyPs via 2,2′-azino-bis [3-ethylbenzthiazoline-6-sulphonic acid] (ABTS) assay and against Reactive Blue 5 were assessed and optimized. Results showed varying trends for DypA and DypB. Remarkably, these enzymes presented a particularly high tolerance towards H2O2, retaining its activities at about 10 mM H2O2 for DypA and about 4.9 mM H2O2 for DypB.
Collapse
|
30
|
Characterization of Class V DyP-Type Peroxidase SaDyP1 from Streptomyces avermitilis and Evaluation of SaDyPs Expression in Mycelium. Int J Mol Sci 2021; 22:ijms22168683. [PMID: 34445389 PMCID: PMC8395514 DOI: 10.3390/ijms22168683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
DyP-type peroxidases are a family of heme peroxidases named for their ability to degrade persistent anthraquinone dyes. DyP-type peroxidases are subclassified into three classes: classes P, I and V. Based on its genome sequence, Streptomyces avermitilis, eubacteria, has two genes presumed to encode class V DyP-type peroxidases and two class I genes. We have previously shown that ectopically expressed SaDyP2, a member of class V, indeed has the characteristics of a DyP-type peroxidase. In this study, we analyzed SaDyP1, a member of the same class V as SaDyP2. SaDyP1 showed high amino acid sequence identity to SaDyP2, retaining a conserved GXXDG motif and catalytic aspartate. SaDyP1 degraded anthraquinone dyes, which are specific substrates of DyP-type peroxidases but not azo dyes. In addition to such substrate specificity, SaDyP1 showed other features of DyP-type peroxidases, such as low optimal pH. Furthermore, immunoblotting using an anti-SaDyP2 polyclonal antibody revealed that SaDyP1 and/or SaDyP2 is expressed in mycelia of wild-type S. avermitilis.
Collapse
|
31
|
Dye Decoloring Peroxidase Structure, Catalytic Properties and Applications: Current Advancement and Futurity. Catalysts 2021. [DOI: 10.3390/catal11080955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dye decoloring peroxidases (DyPs) were named after their high efficiency to decolorize and degrade a wide range of dyes. DyPs are a type of heme peroxidase and are quite different from known heme peroxidases in terms of amino acid sequences, protein structure, catalytic residues, and physical and chemical properties. DyPs oxidize polycyclic dyes and phenolic compounds. Thus they find high application potentials in dealing with environmental problems. The structure and catalytic characteristics of DyPs of different families from the amino acid sequence, protein structure, and enzymatic properties, and analyzes the high-efficiency degradation ability of some DyPs in dye and lignin degradation, which vary greatly among DyPs classes. In addition, application prospects of DyPs in biomedicine and other fields are also discussed briefly. At the same time, the research strategy based on genetic engineering and synthetic biology in improving the stability and catalytic activity of DyPs are summarized along with the important industrial applications of DyPs and associated challenges. Moreover, according to the current research findings, bringing DyPs to the industrial level may require improving the catalytic efficiency of DyP, increasing production, and enhancing alkali resistance and toxicity.
Collapse
|
32
|
Zuccarello L, Barbosa C, Galdino E, Lončar N, Silveira CM, Fraaije MW, Todorovic S. SERR Spectroelectrochemistry as a Guide for Rational Design of DyP-Based Bioelectronics Devices. Int J Mol Sci 2021; 22:7998. [PMID: 34360763 PMCID: PMC8348443 DOI: 10.3390/ijms22157998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Immobilised dye-decolorizing peroxidases (DyPs) are promising biocatalysts for the development of biotechnological devices such as biosensors for the detection of H2O2. To this end, these enzymes have to preserve native, solution properties upon immobilisation on the electrode surface. In this work, DyPs from Cellulomonas bogoriensis (CboDyP), Streptomyces coelicolor (ScoDyP) and Thermobifida fusca (TfuDyP) are immobilised on biocompatible silver electrodes functionalized with alkanethiols. Their structural, redox and catalytic properties upon immobilisation are evaluated by surface-enhanced resonance Raman (SERR) spectroelectrochemistry and cyclic voltammetry. Among the studied electrode/DyP constructs, only CboDyP shows preserved native structure upon attachment to the electrode. However, a comparison of the redox potentials of the enzyme in solution and immobilised states reveals a large discrepancy, and the enzyme shows no electrocatalytic activity in the presence of H2O2. While some immobilised DyPs outperform existing peroxidase-based biosensors, others fail to fulfil the essential requirements that guarantee their applicability in the immobilised state. The capacity of SERR spectroelectrochemistry for fast screening of the performance of immobilised heme enzymes places it in the front-line of experimental approaches that can advance the search for promising DyP candidates.
Collapse
Affiliation(s)
- Lidia Zuccarello
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (L.Z.); (C.B.); (E.G.); (C.M.S.)
| | - Catarina Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (L.Z.); (C.B.); (E.G.); (C.M.S.)
| | - Edilson Galdino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (L.Z.); (C.B.); (E.G.); (C.M.S.)
| | - Nikola Lončar
- Gecco Biotech, Nijenborgh 4, 9747AG Groningen, The Netherlands;
| | - Célia M. Silveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (L.Z.); (C.B.); (E.G.); (C.M.S.)
| | - Marco W. Fraaije
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands;
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (L.Z.); (C.B.); (E.G.); (C.M.S.)
| |
Collapse
|
33
|
Singh AK, Bilal M, Iqbal HMN, Meyer AS, Raj A. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145988. [PMID: 33684751 DOI: 10.1016/j.scitotenv.2021.145988] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Lignin modifying enzymes from fungi and bacteria are potential biocatalysts for sustainable mitigation of different potentially toxic pollutants in wastewater. Notably, the paper and pulp industry generates enormous amounts of wastewater containing high amounts of complex lignin-derived chlorinated phenolics and sulfonated pollutants. The presence of these compounds in wastewater is a critical issue from environmental and toxicological perspectives. Some chloro-phenols are harmful to the environment and human health, as they exert carcinogenic, mutagenic, cytotoxic, and endocrine-disrupting effects. In order to address these most urgent concerns, the use of oxidative lignin modifying enzymes for bioremediation has come into focus. These enzymes catalyze modification of phenolic and non-phenolic lignin-derived substances, and include laccase and a range of peroxidases, specifically lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). In this review, we explore the key pollutant-generating steps in paper and pulp processing, summarize the most recently reported toxicological effects of industrial lignin-derived phenolic compounds, especially chlorinated phenolic pollutants, and outline bioremediation approaches for pollutant mitigation in wastewater from this industry, emphasizing the oxidative catalytic potential of oxidative lignin modifying enzymes in this regard. We highlight other emerging biotechnical approaches, including phytobioremediation, bioaugmentation, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based technology, protein engineering, and degradation pathways prediction, that are currently gathering momentum for the mitigation of wastewater pollutants. Finally, we address current research needs and options for maximizing sustainable biobased and biocatalytic degradation of toxic industrial wastewater pollutants.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Anne S Meyer
- Department for Biotechnology and Biomedicine, Technical University of Denmark, Building 221, DK-2800 Lyngby, Denmark.
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
34
|
Qin X, Su X, Tu T, Zhang J, Wang X, Wang Y, Wang Y, Bai Y, Yao B, Luo H, Huang H. Enzymatic Degradation of Multiple Major Mycotoxins by Dye-Decolorizing Peroxidase from Bacillus subtilis. Toxins (Basel) 2021; 13:toxins13060429. [PMID: 34205294 PMCID: PMC8235724 DOI: 10.3390/toxins13060429] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
The co-occurrence of multiple mycotoxins, including aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON), widely exists in cereal-based animal feed and food. At present, most reported mycotoxins degrading enzymes target only a certain type of mycotoxins. Therefore, it is of great significance for mining enzymes involved in the simultaneous degradation of different types of mycotoxins. In this study, a dye-decolorizing peroxidase-encoding gene BsDyP from Bacillus subtilis SCK6 was cloned and expressed in Escherichia coli BL21/pG-Tf2. The purified recombinant BsDyP was capable of oxidizing various substrates, including lignin phenolic model compounds 2,6-dimethylphenol and guaiacol, the substrate 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), anthraquinone dye reactive blue 19 and azo dye reactive black 5, as well as Mn2+. In addition, BsDyP could efficiently degrade different types of mycotoxins, including AFB1, ZEN and DON, in presence of Mn2+. More important, the toxicities of their corresponding enzymatic degradation products AFB1-diol, 15-OH-ZEN and C15H18O8 were significantly lower than AFB1, ZEN and DON. In summary, these results proved that BsDyP was a promising candidate for the simultaneous degradation of multiple mycotoxins in animal feed and food.
Collapse
|
35
|
Singh AK, Bilal M, Iqbal HMN, Raj A. Lignin peroxidase in focus for catalytic elimination of contaminants - A critical review on recent progress and perspectives. Int J Biol Macromol 2021; 177:58-82. [PMID: 33577817 DOI: 10.1016/j.ijbiomac.2021.02.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
Lignin peroxidase (LiP) seems to be a catalyst for cleaving high-redox potential non-phenolic compounds with an oxidative cleavage of CC and COC bonds. LiP has been picked to seek a practical and cost-effective alternative to the sustainable mitigation of diverse environmental contaminants. LiP has been an outstanding tool for catalytic cleaning and efficient mitigation of environmental pollutants, including lignin, lignin derivatives, dyes, endocrine-disrupting compounds (EDCs), and persistent organic pollutants (POPs) for the past couple of decades. The extended deployment of LiP has proved to be a promising method for catalyzing these environmentally related hazardous pollutants of supreme interest. The advantageous potential and capabilities to act at different pH and thermostability offer its working tendencies in extended environmental engineering applications. Such advantages led to the emerging demand for LiP and increasing requirements in industrial and biotechnological sectors. The multitude of the ability attributed to LiP is triggered by its stability in xenobiotic and non-phenolic compound degradation. However, over the decades, the catalytic activity of LiP has been continuing in focus enormously towards catalytic functionalities over the available physiochemical, conventional, catalyst mediated technology for catalyzing such molecules. To cover this literature gap, this became much more evident to consider the catalytic attributes of LiP. In this review, the existing capabilities of LiP and other competencies have been described with recent updates. Furthermore, numerous recently emerged applications, such as textile effluent treatment, dye decolorization, catalytic elimination of pharmaceutical and EDCs compounds, have been discussed with suitable examples.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
36
|
Markel U, Sauer DF, Wittwer M, Schiffels J, Cui H, Davari MD, Kröckert KW, Herres-Pawlis S, Okuda J, Schwaneberg U. Chemogenetic Evolution of a Peroxidase-like Artificial Metalloenzyme. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ulrich Markel
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Daniel F. Sauer
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Malte Wittwer
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Johannes Schiffels
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Konstantin W. Kröckert
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
37
|
Zhang Y, Ren J, Wang Q, Wang S, Li S, Li H. Oxidation characteristics and degradation potential of a dye-decolorizing peroxidase from Bacillus amyloliquefaciens for crystal violet dye. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Uchida T, Omura I, Umetsu S, Ishimori K. Radical transfer but not heme distal residues is essential for pH dependence of dye-decolorizing activity of peroxidase from Vibrio cholerae. J Inorg Biochem 2021; 219:111422. [PMID: 33756393 DOI: 10.1016/j.jinorgbio.2021.111422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/02/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023]
Abstract
Dye-decolorizing peroxidase (DyP) is a heme-containing enzyme that catalyzes the degradation of anthraquinone dyes. A main feature of DyP is the acidic optimal pH for dye-decolorizing activity. In this study, we constructed several mutant DyP enzymes from Vibrio cholerae (VcDyP), with a view to identifying the decisive factor of the low pH preference of DyP. Initially, distal Asp144, a conserved residue, was replaced with His, which led to significant loss of dye-decolorizing activity. Introduction of His into a position slightly distant from heme resulted in restoration of activity but no shift in optimal pH, indicating that distal residues do not contribute to the pH dependence of catalytic activity. His178, an essential residue for dye decolorization, is located near heme and forms hydrogen bonds with Asp138 and Thr278. While Trp and Tyr mutants of His178 were inactive, the Phe mutant displayed ~35% activity of wild-type VcDyP, indicating that this position is a potential radical transfer route from heme to the active site on the protein surface. The Thr278Val mutant displayed similar enzymatic properties as WT VcDyP, whereas the Asp138Val mutant displayed significantly increased activity at pH 6.5. On the basis of these findings, we propose that neither distal amino acid residues, including Asp144, nor hydrogen bonds between His178 and Thr278 are responsible while the hydrogen bond between His178 and Asp138 plays a key role in the pH dependence of activity.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Issei Omura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Sayaka Umetsu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
39
|
Comparing Ligninolytic Capabilities of Bacterial and Fungal Dye-Decolorizing Peroxidases and Class-II Peroxidase-Catalases. Int J Mol Sci 2021; 22:ijms22052629. [PMID: 33807844 PMCID: PMC7961821 DOI: 10.3390/ijms22052629] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022] Open
Abstract
We aim to clarify the ligninolytic capabilities of dye-decolorizing peroxidases (DyPs) from bacteria and fungi, compared to fungal lignin peroxidase (LiP) and versatile peroxidase (VP). With this purpose, DyPs from Amycolatopsis sp., Thermomonospora curvata, and Auricularia auricula-judae, VP from Pleurotus eryngii, and LiP from Phanerochaete chrysosporium were produced, and their kinetic constants and reduction potentials determined. Sharp differences were found in the oxidation of nonphenolic simple (veratryl alcohol, VA) and dimeric (veratrylglycerol-β- guaiacyl ether, VGE) lignin model compounds, with LiP showing the highest catalytic efficiencies (around 15 and 200 s−1·mM−1 for VGE and VA, respectively), while the efficiency of the A. auricula-judae DyP was 1–3 orders of magnitude lower, and no activity was detected with the bacterial DyPs. VP and LiP also showed the highest reduction potential (1.28–1.33 V) in the rate-limiting step of the catalytic cycle (i.e., compound-II reduction to resting enzyme), estimated by stopped-flow measurements at the equilibrium, while the T. curvata DyP showed the lowest value (1.23 V). We conclude that, when using realistic enzyme doses, only fungal LiP and VP, and in much lower extent fungal DyP, oxidize nonphenolic aromatics and, therefore, have the capability to act on the main moiety of the native lignin macromolecule.
Collapse
|
40
|
Kumar M, You S, Beiyuan J, Luo G, Gupta J, Kumar S, Singh L, Zhang S, Tsang DCW. Lignin valorization by bacterial genus Pseudomonas: State-of-the-art review and prospects. BIORESOURCE TECHNOLOGY 2021; 320:124412. [PMID: 33249259 DOI: 10.1016/j.biortech.2020.124412] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
The most prominent aromatic feedstock on Earth is lignin, however, lignin valorization is still an underrated subject. The principal preparatory strategies for lignin valorization are fragmentation and depolymerization which help in the production of fuels and chemicals. Owing to lignin's structural heterogeneity, these strategies result in product generation which requires tedious separation and purification to extract target products. The bacterial genus Pseudomonas has been dominant for its lignin valorization potency, owing to a robust enzymatic machinery that is used to funnel variable lignin derivatives into certain target products such as polyhydroxyalkanotes (PHAs) and cis, cis-muconic acid (MA). In this review, the potential of genus Pseudomonas in lignin valorization is critically reviewed along with the advanced genetic techniques and tools to ease the use of lignin/lignin-model compounds for the synthesis of bioproducts. This review also highlights the research gaps in lignin biovalorization and discuss the challenges and possibilities for future research.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; CSIR - National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Siming You
- University of Glasgow, James Watt School of Engineering, Glasgow G12 8 QQ, United Kingdom
| | - Jingzi Beiyuan
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Juhi Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sunil Kumar
- CSIR - National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Lal Singh
- CSIR - National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
41
|
Xu Z, Xu M, Cai C, Chen S, Jin M. Microbial polyhydroxyalkanoate production from lignin by Pseudomonas putida NX-1. BIORESOURCE TECHNOLOGY 2021; 319:124210. [PMID: 33254447 DOI: 10.1016/j.biortech.2020.124210] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
Biological approaches play an important role in lignin valorization, whereas many issues in this area remain unclear. Herein, ligninolytic enzymes in Pseudomonas putida NX-1 were systematically unraveled based on genome sequence technology. Particularly, a dye-decolorizing peroxidase was systematically studied by heterologous expression, enzyme purification, and enzymatic characterization, which suggested it possessed activities on both synthetic dyes and lignin-derived aromatics. Moreover, a complete pathway for polyhydroxyalkanoate biosynthesis was annotated, and the polyhydroxyalkanoate biosynthesis capability of P. putida NX-1 was experimentally confirmed with lignin as the sole carbon source. Furthermore, the monomer compositions, molecular weights, and thermal properties of polyhydroxyalkanoate from glucose and lignin-derived aromatics were comprehensively determined by gas chromatography-mass spectrometry, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. The results indicated that physical properties of polyhydroxyalkanoate prepared from glucose and lignin-derived aromatics were similar, which suggested lignin could be an alternative feedstock for polyhydroxyalkanoate production without compromising its quality.
Collapse
Affiliation(s)
- Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Meilin Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chenggu Cai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
42
|
Vijayalakshmi D, Sivaprasad BV, Veera Brahmma Chari P, Reddy MK, Prasad DVR. Microbial Consortia for Effective Degradation and Decolorization of Textile Effluents. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Shi Y, Yang Z, Xing L, Zhou J, Ren J, Ming L, Hua Z, Li X, Zhang D. Ethanol as an efficient cosubstrate for the biodegradation of azo dyes by Providencia rettgeri: Mechanistic analysis based on kinetics, pathways and genomics. BIORESOURCE TECHNOLOGY 2021; 319:124117. [PMID: 32979594 DOI: 10.1016/j.biortech.2020.124117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Azo dyes pose hazards to ecosystems and human health and the cosubstrate strategy has become the focus for the bioremediation of azo dyes. Herein, Brilliant Crocein (BC), a model pollutant, was biodegraded by Providencia rettgeri domesticated from activated sludge. Additional ethanol, as a cosubstrate, could accelerate P. rettgeri growth and BC biodegradation, as reflected by the Gompertz models. This phenomenon was attributed to the smaller metabolites and greater number of potential pathways observed under the synergistic effect of ethanol. Genomic analysis of P. rettgeri showed that functional genes related to azo bond cleavage, redox reactions, ring opening and hydrolysis played crucial roles in azo dye biodegradation. Furthermore, the mechanism proposed was that ethanol might stimulate the production of additional reducing power via the expression of related genes, leading to the cleavage of azo bonds and aromatic rings. However, biodegradation without ethanol could only partly cleave the azo bonds.
Collapse
Affiliation(s)
- Yaqi Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Zonglin Yang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Lei Xing
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Jingru Zhou
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Jiaqi Ren
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Leiqiang Ming
- Air Liquide (China) R&D Co., Ltd., Shanghai 201108, PR China
| | - Zhiliang Hua
- Air Liquide (China) R&D Co., Ltd., Shanghai 201108, PR China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China.
| |
Collapse
|
44
|
|
45
|
Falade AO, Ekundayo TC. Emerging biotechnological potentials of DyP-type peroxidases in remediation of lignin wastes and phenolic pollutants: a global assessment (2007-2019). Lett Appl Microbiol 2020; 72:13-23. [PMID: 32974921 DOI: 10.1111/lam.13392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Dye decolourizing peroxidase (DyP) is an emerging biocatalyst with enormous bioremediation and biotechnological potentials. This study examined the global trend of research related to DyP through a bibliometric analysis. The search term 'dye decolourizing peroxidase' or 'DyP-type peroxidase' was used to retrieve published articles between 2007 and 2019 from the Web of Science (WoS) and Scopus databases. A total of 62 articles were published within the period, with an annual growth rate of 17·6%. The highest research output was observed in 2015, which accounted for about 13% of the total output in 12 years. Germany published the highest number of articles (n = 10, 16·1%) with a total citation of 478. However, the lowest number of published articles among the top 10 countries was observed in India and Korea (n = 2, 3·2%). Research collaboration was low (collaboration index = 4·08). In addition to dye decolourizing peroxidase(s) and DyP-type peroxidase(s) (n = 33, 53·23%), the top authors keywords and research focus included lignin and lignin degradation (n = 10, 16·1 %). More so, peroxidase (n = 59, 95·2%), amino acid sequence (n = 27, 46·8%), lignin (n = 24, 38·7%) and metabolism (n = 23, 37·1%) were highly represented in keywords-plus. The most common conceptual framework from this study include characterization, lignin degradation and environmental proteomics. Apart from the inherent efficient dye-decolourizing properties, this study showed that DyP has emerging biotechnological potentials in lignin degradation and remediation of phenolic environmental pollutants, which at the moment are under explored globally.
Collapse
Affiliation(s)
- A O Falade
- Department of Biochemistry, University of Medical Sciences, Ondo, Ondo State, Nigeria
| | - T C Ekundayo
- Department of Biological Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria
| |
Collapse
|
46
|
Dhankhar P, Dalal V, Mahto JK, Gurjar BR, Tomar S, Sharma AK, Kumar P. Characterization of dye-decolorizing peroxidase from Bacillus subtilis. Arch Biochem Biophys 2020; 693:108590. [DOI: 10.1016/j.abb.2020.108590] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
|
47
|
Lin L, Wang X, Cao L, Xu M. Lignin catabolic pathways reveal unique characteristics of dye-decolorizing peroxidases in Pseudomonas putida. Environ Microbiol 2020; 21:1847-1863. [PMID: 30882973 DOI: 10.1111/1462-2920.14593] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 11/28/2022]
Abstract
Lignin is one of the largest carbon reservoirs in the environment, playing an important role in the global carbon cycle. However, lignin degradation in bacteria, especially non-model organisms, has not been well characterized either enzymatically or genetically. Here, a lignin-degrading bacterial strain, Pseudomonas putida A514, was used as the research model. Genomic and proteomic analyses suggested that two B subfamily dye-decolorizing peroxidases (DypBs) were prominent in lignin depolymerization, while the classic O2 -dependent ring cleavage strategy was utilized in central pathways to catabolize lignin-derived aromatic compounds that were funnelled by peripheral pathways. These enzymes, together with a range of transporters, sequential and expression-dose dependent regulation and stress response systems coordinated for lignin metabolism. Catalytic assays indicated these DypBs show unique Mn2+ independent lignin depolymerization activity, while Mn2+ oxidation activity is absent. Furthermore, a high synergy between DypB enzymes and A514 cells was observed to promote cell growth (5 × 1012 cfus/ml) and lignin degradation (27%). This suggested DypBs are competitive lignin biocatalysts and pinpointed limited extracellular secretion capacity as the rate-limiting factor in bacterial lignin degradation. DypB production was, therefore, optimized in recombinant strains and a 14,141-fold increase in DypB activity (56,565 U/l) was achieved, providing novel insights for lignin bioconversion.
Collapse
Affiliation(s)
- Lu Lin
- Institute of Marine Science and Technology, Shandong University, Jinan, China.,Ocean College, Zhejiang University, Hangzhou, China
| | | | - Lanfang Cao
- Ocean College, Zhejiang University, Hangzhou, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
48
|
Outer membrane vesicles catabolize lignin-derived aromatic compounds in Pseudomonas putida KT2440. Proc Natl Acad Sci U S A 2020; 117:9302-9310. [PMID: 32245809 DOI: 10.1073/pnas.1921073117] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lignin is an abundant and recalcitrant component of plant cell walls. While lignin degradation in nature is typically attributed to fungi, growing evidence suggests that bacteria also catabolize this complex biopolymer. However, the spatiotemporal mechanisms for lignin catabolism remain unclear. Improved understanding of this biological process would aid in our collective knowledge of both carbon cycling and microbial strategies to valorize lignin to value-added compounds. Here, we examine lignin modifications and the exoproteome of three aromatic-catabolic bacteria: Pseudomonas putida KT2440, Rhodoccocus jostii RHA1, and Amycolatopsis sp. ATCC 39116. P. putida cultivation in lignin-rich media is characterized by an abundant exoproteome that is dynamically and selectively packaged into outer membrane vesicles (OMVs). Interestingly, many enzymes known to exhibit activity toward lignin-derived aromatic compounds are enriched in OMVs from early to late stationary phase, corresponding to the shift from bioavailable carbon to oligomeric lignin as a carbon source. In vivo and in vitro experiments demonstrate that enzymes contained in the OMVs are active and catabolize aromatic compounds. Taken together, this work supports OMV-mediated catabolism of lignin-derived aromatic compounds as an extracellular strategy for nutrient acquisition by soil bacteria and suggests that OMVs could potentially be useful tools for synthetic biology and biotechnological applications.
Collapse
|
49
|
Silveira CM, Moe E, Fraaije M, Martins LO, Todorovic S. Resonance Raman view of the active site architecture in bacterial DyP-type peroxidases. RSC Adv 2020; 10:11095-11104. [PMID: 35495352 PMCID: PMC9050505 DOI: 10.1039/d0ra00950d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/11/2020] [Indexed: 11/21/2022] Open
Abstract
Dye decolorizing peroxidases (DyPs) are novel haem-containing peroxidases, which are structurally unrelated to classical peroxidases. They lack the highly conserved distal histidine that acts as an acid-base catalyst in the catalytic reaction of classical peroxidases, which implies distinct mechanistic properties. Despite the remarkable catalytic properties and recognized potential for biotechnology applications, the knowledge of DyP's structural features in solution, which govern the reactivity and catalysis, is lagging behind. Resonance Raman (RR) spectroscopy can reveal fine details of the active site structure in hemoproteins, reporting on the oxidation and spin state and coordination of the haem cofactor. We provide an overview of the haem binding pocket architecture of the enzymes from A, B and C DyP subfamilies, in the light of those established for classical peroxidases and search for subfamily specific features among DyPs. RR demonstrates that multiple spin populations typically co-exist in DyPs, like in the case of classical peroxidases. The haem spin/coordination state is strongly pH dependent and correlates well with the respective catalytic properties of DyPs. Unlike in the case of classical peroxidases, a surprisingly high abundance of catalytically incompetent low spin population is observed in several DyPs, and tentatively related to the alternative physiological function of these enzymes. The molecular details of active sites of DyPs, elucidated by RR spectroscopy, can furthermore guide approaches for biotechnological exploitation of these promising biocatalysts.
Collapse
Affiliation(s)
- Célia M Silveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Elin Moe
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Marco Fraaije
- Molecular Enzymology, University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa Av. da República 2780-157 Oeiras Portugal
| |
Collapse
|
50
|
Granja-Travez RS, Persinoti GF, Squina FM, Bugg TDH. Functional genomic analysis of bacterial lignin degraders: diversity in mechanisms of lignin oxidation and metabolism. Appl Microbiol Biotechnol 2020; 104:3305-3320. [PMID: 32088760 DOI: 10.1007/s00253-019-10318-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Although several bacterial lignin-oxidising enzymes have been discovered in recent years, it is not yet clear whether different lignin-degrading bacteria use similar mechanisms for lignin oxidation and degradation of lignin fragments. Genome sequences of 13 bacterial lignin-oxidising bacteria, including new genome sequences for Microbacterium phyllosphaerae and Agrobacterium sp., were analysed for the presence of lignin-oxidising enzymes and aromatic degradation gene clusters that could be used to metabolise the products of lignin degradation. Ten bacterial genomes contain DyP-type peroxidases, and ten bacterial strains contain putative multi-copper oxidases (MCOs), both known to have activity for lignin oxidation. Only one strain lacks both MCOs and DyP-type peroxidase genes. Eleven bacterial genomes contain aromatic degradation gene clusters, of which ten contain the central β-ketoadipate pathway, with variable numbers and types of degradation clusters for other aromatic substrates. Hence, there appear to be diverse metabolic strategies used for lignin oxidation in bacteria, while the β-ketoadipate pathway appears to be the most common route for aromatic metabolism in lignin-degrading bacteria.
Collapse
Affiliation(s)
- Rommel Santiago Granja-Travez
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Quito, Ecuador
| | | | - Fabio M Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|