1
|
Bou Orm E, Bergeret A, Malhautier L. Microbial communities and their role in enhancing hemp fiber quality through field retting. Appl Microbiol Biotechnol 2024; 108:501. [PMID: 39500773 PMCID: PMC11538233 DOI: 10.1007/s00253-024-13323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
The current development of industrial hemp "Cannabis Sativa L." fibers for technical textiles and industrial applications requires high-quality fibers with homogeneous properties. However, several factors have been reported to influence the fibers' intrinsic properties, including a post-harvest process known as retting. This process plays a crucial role in facilitating the mechanical extraction of fibers from hemp stems. Retting involves the degradation of the amorphous components surrounding the fiber bundles enabling their decohesion from stems. Microorganisms play a central role in mediating this bioprocess. During retting, they colonize the stems' surface. Therefore, the biochemical components of plant cell wall, acting as natural binding between fibers, undergo a breakdown through the production of microbial enzymes. Although its critical role, farmers often rely on empirical retting practices, and considering various biotic and abiotic factors, resulting in fibers with heterogenous properties. These factors limit the industrial applications of hemp fibers due to their inconsistent properties. Thus, the purpose of this review is to enhance our comprehension of how retting influences the dynamics of microbial communities and, consequently, the evolution of the biochemical properties of hemp stems throughout this process. Better understanding of retting is crucial for effective process management, leading to high-value fibers. KEY POINTS: • Retting enables degradation of cell wall components, controlling fiber properties. • Microbial enzymatic activity is crucial for successful decohesion of fiber bundles. • Understanding retting mechanisms is essential for consistent fiber production.
Collapse
Affiliation(s)
- Eliane Bou Orm
- Polymers, Composites and Hybrids (PCH), IMT Mines Alès, 6 Avenue de Clavières, 30100, Alès, France.
- Laboratoire des Sciences des Risques (LSR), IMT Mines Alès, 6 Avenue de Clavières, 30100, Alès, France.
| | - Anne Bergeret
- Polymers, Composites and Hybrids (PCH), IMT Mines Alès, 6 Avenue de Clavières, 30100, Alès, France
| | - Luc Malhautier
- Laboratoire des Sciences des Risques (LSR), IMT Mines Alès, 6 Avenue de Clavières, 30100, Alès, France
| |
Collapse
|
2
|
Ventorino V, Chouyia FE, Romano I, Mori M, Pepe O. Water retting process with hemp pre-treatment: effect on the enzymatic activities and microbial populations dynamic. Appl Microbiol Biotechnol 2024; 108:464. [PMID: 39269645 PMCID: PMC11399178 DOI: 10.1007/s00253-024-13300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Proper retting process of hemp stems, in which efficient separation of cellulose fiber from the rest of the stem is promoted by indigenous microorganisms able to degrade pectin, is essential for fiber production and quality. This research aimed to investigate the effect of a pre-treatment dew retting in field of hemp stalks on the pectinolytic enzymatic activity and microbiota dynamic during lab-scale water retting process. A strong increase in the pectinase activity as well as in the aerobic and anaerobic pectinolytic concentration was observed from 14 to 21 days, especially using hemp stalks that were not subjected to a pre-retting treatment on field (WRF0 0.690 ± 0.05 U/mL). Results revealed that the microbial diversity significantly varied over time during the water retting and the development of microbiota characterizing the water retting of hemp stalks of different biosystems used in this study was affected by pre-treatment conditions in the field and water retting process and by an interaction between the two methods. Although at the beginning of the experiment a high biodiversity was recorded in all biosystems, the water retting led to a selection of microbial populations in function of the time of pre-treatment in field, especially in bacterial populations. The use of hemp stems did not subject to a field pre-treatment seems to help the development of a homogeneous and specific pectinolytic microbiota with a higher enzymatic activity in respect to samples exposed to uncontrolled environmental conditions for 10, 20, or 30 days before the water retting process. KEY POINTS: • Microbial diversity significantly varied over time during water retting. • Water retting microbiota was affected by dew pre-treatment in the field. • Retting of no pretreated hemp allows the development of specific microbiota with high enzymatic activity.
Collapse
Affiliation(s)
- Valeria Ventorino
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy.
- Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| | - Fatima Ezzahra Chouyia
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
| | - Ida Romano
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
| | - Mauro Mori
- Department of Agricultural Sciences, Division of Plant Biology and Crop Science, University of Naples Federico II, Naples, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
- Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Davies J, Hawkins S, Winters A, Farrar K. Bacterial endophytic community composition varies by hemp cultivar in commercially sourced seed. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13259. [PMID: 38649235 PMCID: PMC11035101 DOI: 10.1111/1758-2229.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
The seed-endophytic bacterial community is a potentially beneficial and heritable fraction of the plant microbiome. Its utilization as a sustainable crop improvement strategy could be especially valuable for species such as hemp, where production is being scaled up and new challenges will be faced in managing crop productivity and health. However, little is known about the makeup and variation of the hemp seed microbiome. This study profiled the endophytic bacterial communities harboured by 16 hemp cultivars sourced from commercial suppliers in Europe. A 16S rDNA amplicon sequencing approach identified 917 amplicon sequence variants across samples. Taxonomic classification of sequences revealed 4 phyla and 87 genera to be represented in the dataset. Several genera were widespread while some were specific to one or a few cultivars. Flavobacterium, Pseudomonas, and Pantoea were notable in their high overall abundance and prevalence, but community composition was variable and no one taxon was universally abundant, suggesting a high degree of flexibility in community assembly. Taxonomic composition and alpha diversity differed among cultivars, though further work is required to understand the relative influence of hemp genetic factors on community structure. The taxonomic profiles presented here can be used to inform further work investigating the functional characteristics and potential plant-growth-promoting traits of seed-borne bacteria in hemp.
Collapse
Affiliation(s)
- Jack Davies
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Sarah Hawkins
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Ana Winters
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Kerrie Farrar
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| |
Collapse
|
4
|
Palberg D, Kaszecki E, Dhanjal C, Kisiała A, Morrison EN, Stock N, Emery RJN. Impact of glyphosate and glyphosate-based herbicides on phyllospheric Methylobacterium. BMC PLANT BIOLOGY 2024; 24:119. [PMID: 38369476 PMCID: PMC10875822 DOI: 10.1186/s12870-024-04818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Symbiotic Methylobacterium comprise a significant portion of the phyllospheric microbiome, and are known to benefit host plant growth, development, and confer tolerance to stress factors. The near ubiquitous use of the broad-spectrum herbicide, glyphosate, in farming operations globally has necessitated a more expansive evaluation of the impacts of the agent itself and formulations containing glyphosate on important components of the plant phyllosphere, including Methylobacterium.This study provides an investigation of the sensitivity of 18 strains of Methylobacterium to glyphosate and two commercially available glyphosate-based herbicides (GBH). Nearly all strains of Methylobacterium showed signs of sensitivity to the popular GBH formulations WeatherMax® and Transorb® in a modified Kirby Bauer experiment. However, exposure to pure forms of glyphosate did not show a significant effect on growth for any strain in both the Kirby Bauer test and in liquid broth, until polysorbate-20 (Tween20) was added as a surfactant. Artificially increasing membrane permeability through the introduction of polysorbate-20 caused a 78-84% reduction in bacterial cell biomass relative to controls containing glyphosate or high levels of surfactant only (0-9% and 6-37% reduction respectively). Concentrations of glyphosate as low as 0.05% w/v (500 µg/L) from both commercial formulations tested, inhibited the culturability of Methylobacterium on fresh nutrient-rich medium.To better understand the compatibility of important phyllospheric bacteria with commercial glyphosate-based herbicides, this study endeavours to characterize sensitivity in multiple strains of Methylobacterium, and explore possible mechanisms by which toxicity may be induced.
Collapse
Affiliation(s)
- Daniel Palberg
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Emma Kaszecki
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Chetan Dhanjal
- Department of Biological Sciences, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Anna Kisiała
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Erin N Morrison
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Naomi Stock
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
- Water Quality Centre, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - R J Neil Emery
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
5
|
Kaur D, Sharma V, Joshi A, Batra N, Ramniwas S, Sharma AK. Pectinases as promising green biocatalysts having broad-spectrum applications: Recent trends, scope, and relevance. Biotechnol Appl Biochem 2023; 70:1663-1678. [PMID: 36977651 DOI: 10.1002/bab.2464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Pectinases are a collection of multiple enzymes that have a common substrate, that is, pectin. They can act on different parts of pectin due to the structural heterogeneity of pectin. Therefore, they have been placed in different groups, such as protopectinases, polygalacturonases, polymethylesterases, pectin lyases, and pectate lyases. They are naturally present both in multicellular organisms such as higher plants and in unicellular organisms such as microbes. In past decade, it has been witnessed that chemical and mechanical methods employed in industrial processes have led to environmental hazards and serious health disorders, thus increasing the search for eco-friendly approaches with minimal health risks. Hence, microbial enzymes have been extensively used as safer alternative for these environmentally unsafe methods. Among these microbial enzymes, pectinases hold great significance and is one of the principal enzymes that have been used commercially. It is predominantly used as a green biocatalyst for fruit, fiber, oil, textile, beverage, pulp, and paper industry. Thus, this review focuses on the structure of pectin, microbial sources of pectin, and principle industrial applications of pectinases.
Collapse
Affiliation(s)
- Damanjeet Kaur
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Amit Joshi
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Navneet Batra
- Department of Biotechnology, GGDSD College, Chandigarh, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Biotechnology Chandigarh University, Gharuan, Mohali, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| |
Collapse
|
6
|
Bou Orm E, Sauvagère S, Rocher J, Benezet JC, Bayle S, Siatka C, Bergeret A, Malhautier L. Estimating the bias related to DNA recovery from hemp stems for retting microbial community investigation. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12582-5. [PMID: 37227475 DOI: 10.1007/s00253-023-12582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
The industrial hemp plant Cannabis sativa is a source of vegetable fiber for both textiles and biocomposite applications. After harvesting, the plant stems are laid out on the ground and colonized by microorganisms (bacteria and fungi) naturally present in the soil and on the stems. By producing hydrolytic enzymes that degrade the plant wall polymers, the natural cement that binds the fiber bundles together is removed, thus facilitating their dissociation (retting process) which is required for producing high-performant fibers. To investigate temporal dynamics of retting microbial communities (density levels, diversity, and structure), a reliable protocol for extracting genomic DNA from stems is mandatory. However, very little attention has been paid to the methodological aspects of nucleic acid extraction, although they are crucial for the significance of the final result. Three protocols were selected and tested: a commercial kit (FastDNA™ Spin Kit for soil), the Gns-GII procedure, and a custom procedure from the Genosol platform. A comparative analysis was carried out on soil and two different varieties of hemp stem. The efficiency of each method was measured by evaluating both the quantity and quality of the extracted DNA and the abundance and taxonomy of bacterial and fungal populations. The Genosol protocol provides interesting yields in terms of quantity and quality of genomic DNA compared to the other two protocols. However, no major difference was observed in microbial diversity between the two extraction procedures (FastDNA™ SPIN Kit and Genosol protocol). Based on these results, the FastDNA™ SPIN kit or the Genosol procedure seems to be suitable for studying bacterial and fungal communities of the retting process. It should be noted that this work has demonstrated the importance of evaluating biases associated with DNA recovery from hemp stems. KEY POINTS: • Metagenomic DNA was successfully extracted from hemp stem samples using three different protocols. • Further evaluation was performed in terms of DNA yield and purity, abundance level, and microbial community structure. • This work exhibited the crucial importance of DNA recovery bias evaluation.
Collapse
Affiliation(s)
- Eliane Bou Orm
- Polymers, Composites and Hybrids (PCH), IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France
- Laboratoire des Sciences des Risques (LSR), IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France
| | - Stéphane Sauvagère
- École de l'ADN, Université de Nîmes, 19 Grand Rue BP 81295, 30015, Nîmes cedex 1, France
| | - Janick Rocher
- Laboratoire des Sciences des Risques (LSR), IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France
| | - Jean-Charles Benezet
- Polymers, Composites and Hybrids (PCH), IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France
| | - Sandrine Bayle
- Laboratoire des Sciences des Risques (LSR), IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France
| | - Christian Siatka
- UPR CHROME, Université de Nîmes, Place Gabriel Péri, 30000, Nîmes cedex 1, France
| | - Anne Bergeret
- Polymers, Composites and Hybrids (PCH), IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France
| | - Luc Malhautier
- Laboratoire des Sciences des Risques (LSR), IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France.
| |
Collapse
|
7
|
Xu H, Zhang L, Feng X, Yang Q, Zheng K, Duan S, Cheng L. Metagenomic and proteomic analysis of bacterial retting community and proteome profile in the degumming process of kenaf bast. BMC PLANT BIOLOGY 2022; 22:516. [PMID: 36333799 PMCID: PMC9636830 DOI: 10.1186/s12870-022-03890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Data on the microbial community and functional proteins associated with degumming in kenaf remains scant. Here, we analyzed the microbial communities associated with kenaf (Hibiscus cannabinus) bast fibers during retting to identify potential candidate degumming bacteria. Retting liquids were collected and analyzed at 0 days, 10 days, and 34 days and then evaluated the yield and quality of kenaf fiber at the different retting times. Besides, the microbial communities were characterized using metagenomic and proteomic analysis by LC-MS/MS technology. RESULTS The data showed that increase in the retting time significantly improves the softness, dispersion, and fiber whiteness of the kenaf fiber. The relative abundance of Acinetobacter increased from 2.88% at the baseline to 6.64% at the 34th retting. On the other hand, some members of Clostridium were reduced from 3% at the baseline to 2% at the 34th retting. Analysis of carbohydrate active enzymes showed constant changes in the utilization of carbohydrates. Besides, benzoquinone reductase, cellobiose dehydrogenase, glucose 1-oxidase, aryl alcohol oxidase and alcohol oxidase were the top five most abundant enzymes in the retting liquids. This present results demonstrated that the expressions of B7GYR8, Q6RYW5 and Q6FFK2 proteins were suppressed in Acinetobacter with the retting time. On the contrary, P05149 was upregulated with the retting time. In Clostridium, P37698, P52040 and P54937 proteins were upregulated with the retting time. CONCLUSION In addition, bacteria Acinetobacter and Clostridium might be playing important roles in the kenaf degumming process. Similarly, up-regulation of P37698, P52040 and P54937 proteins is an important manifestation and mediates important roles in the degumming process.
Collapse
Affiliation(s)
- Huan Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, 348 West XianJiahu Road, Changsha, China
| | - Lixia Zhang
- Xinyang City Academy of Agricultural Sciences, 20 Minquan South Street, Shihe District, Xinyang, Henan, China
| | - Xiangyuan Feng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, 348 West XianJiahu Road, Changsha, China
| | - Qi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, 348 West XianJiahu Road, Changsha, China
| | - Ke Zheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, 348 West XianJiahu Road, Changsha, China
| | - Shengwen Duan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, 348 West XianJiahu Road, Changsha, China.
| | - Lifeng Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, 348 West XianJiahu Road, Changsha, China.
| |
Collapse
|
8
|
Lake microbiome and trophy fluctuations of the ancient hemp rettery. Sci Rep 2022; 12:8846. [PMID: 35614182 PMCID: PMC9132974 DOI: 10.1038/s41598-022-12761-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Lake sediments not only store the long-term ecological information including pollen and microfossils but are also a source of sedimentary DNA (sedDNA). Here, by the combination of traditional multi-proxy paleolimnological methods with the whole-metagenome shotgun-sequencing of sedDNA we were able to paint a comprehensive picture of the fluctuations in trophy and bacterial diversity and metabolism of a small temperate lake in response to hemp retting, across the past 2000 years. Hemp retting (HR), a key step in hemp fibre production, was historically carried out in freshwater reservoirs and had a negative impact on the lake ecosystems. In Lake Slone, we identified two HR events, during the late stage of the Roman and Early Medieval periods and correlated these to the increased trophy and imbalanced lake microbiome. The metagenomic analyses showed a higher abundance of Chloroflexi, Planctomycetes and Bacteroidetes and a functional shift towards anaerobic metabolism, including degradation of complex biopolymers such as pectin and cellulose, during HR episodes. The lake eutrophication during HR was linked to the allochthonous, rather than autochthonous carbon supply—hemp straws. We also showed that the identification of HR based on the palynological analysis of hemp pollen may be inconclusive and we suggest the employment of the fibre count analysis as an additional and independent proxy.
Collapse
|
9
|
Amarasinghe P, Pierre C, Moussavi M, Geremew A, Woldesenbet S, Weerasooriya A. The morphological and anatomical variability of the stems of an industrial hemp collection and the properties of its fibres. Heliyon 2022; 8:e09276. [PMID: 35497024 PMCID: PMC9043397 DOI: 10.1016/j.heliyon.2022.e09276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 04/09/2022] [Indexed: 11/26/2022] Open
Abstract
Industrial hemp (Cannabis sativa L.) is identified as a leading fibre crop and there is increasing interest in C. sativa fibre due to its new range of industrial applications. However, the complexity of hemp germplasm resulted in insufficient information on the effect of genotypes on fibre quality and quantity. In this study, 16 fibre and non-fibre type hemp genotypes were evaluated to compare the morpho-anatomical differences of stems and physico-mechanical fibre properties under three retting methods and to understand the effect of stem colour on the properties of hemp fibres. Morphological markers were scored and stem anatomy was examined using live and herbarium collections. Stems were retted using chemical, enzymatic, and microbiological methods. The resulting fibres were tested for tensile strength, moisture retention, colour, bast and hurd dry weights. Hemp genotypes showed morphological variations that affect fibre processing and a unique pattern of fibre wedges in cross-sections of the basal internode. Fibre yield, tensile strength, colour, and moisture retention significantly varied among the genotypes. The hemp collection used in this study formed three clusters in principal component analysis and traits such as internodal length, node number, hurd yield, and tensile strength highly contributed to the total variability. Additionally, non-fibre type hemp genotypes that showed important fibre properties were identified. The hemp genotypes that were selected based on our approaches can be tailored towards the specificities of the end-usage of choice. Our methods will enable the exploration of hemp genetic diversity pertaining to fibre properties and contribute to the preliminary identification of genotypes as a supplement to genetic analyses.
Collapse
Affiliation(s)
- Prabha Amarasinghe
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, Texas 77446.,MOgene LC, 2252 Welsch Industrial Ct, St. Louis, Missouri 63146
| | - Camille Pierre
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, Texas 77446
| | - Mahta Moussavi
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, Texas 77446
| | - Addisie Geremew
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, Texas 77446
| | - Selamawit Woldesenbet
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, Texas 77446
| | - Aruna Weerasooriya
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, Texas 77446
| |
Collapse
|
10
|
Hemp Fibre Properties and Processing Target Textile: A Review. MATERIALS 2022; 15:ma15051901. [PMID: 35269132 PMCID: PMC8911747 DOI: 10.3390/ma15051901] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/07/2022]
Abstract
Over the last several decades, Cannabis sativa L. has become one of the most fashionable plants. To use the hemp potential for the development of a sustainable textile bio-product sector, it is necessary to learn about the effect of the processes creating hemp’s value chain on fibre properties. This review presents a multi-perspective approach to industrial hemp as a resource delivering textile fibres. This article extensively explores the current development of hemp fibre processes including methods of fibre extraction and processing and comprehensive fibre characteristics to indicate the challenges and opportunities regarding Cannabis sativa L. Presented statistics prove the increasing interest worldwide in hemp raw material and hemp-based bio-products. This article discusses the most relevant findings in terms of the effect of the retting processes on the composition of chemical fibres resulting in specific fibre properties. Methods of fibre extraction include dew retting, water retting, osmotic degumming, enzymatic retting, steam explosion and mechanical decortication to decompose pectin, lignin and hemicellulose to remove them from the stem with varying efficiency. This determines further processes and proves the diversity of ways to produce yarn by employing different spinning systems such as linen spinning, cotton and wool spinning technology with or without the use of the decortication process. The aim of this study is to provide knowledge for better understanding of the textile aspects of hemp fibres and their relationship to applied technological processes.
Collapse
|
11
|
Balthazar C, Joly DL, Filion M. Exploiting Beneficial Pseudomonas spp. for Cannabis Production. Front Microbiol 2022; 12:833172. [PMID: 35095829 PMCID: PMC8795690 DOI: 10.3389/fmicb.2021.833172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Among the oldest domesticated crops, cannabis plants (Cannabis sativa L., marijuana and hemp) have been used to produce food, fiber, and drugs for thousands of years. With the ongoing legalization of cannabis in several jurisdictions worldwide, a new high-value market is emerging for the supply of marijuana and hemp products. This creates unprecedented challenges to achieve better yields and environmental sustainability, while lowering production costs. In this review, we discuss the opportunities and challenges pertaining to the use of beneficial Pseudomonas spp. bacteria as crop inoculants to improve productivity. The prevalence and diversity of naturally occurring Pseudomonas strains within the cannabis microbiome is overviewed, followed by their potential mechanisms involved in plant growth promotion and tolerance to abiotic and biotic stresses. Emphasis is placed on specific aspects relevant for hemp and marijuana crops in various production systems. Finally, factors likely to influence inoculant efficacy are provided, along with strategies to identify promising strains, overcome commercialization bottlenecks, and design adapted formulations. This work aims at supporting the development of the cannabis industry in a sustainable way, by exploiting the many beneficial attributes of Pseudomonas spp.
Collapse
Affiliation(s)
- Carole Balthazar
- Department of Biology, Faculty of Sciences, Université de Moncton, Moncton, NB, Canada
| | - David L. Joly
- Department of Biology, Faculty of Sciences, Université de Moncton, Moncton, NB, Canada
| | - Martin Filion
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| |
Collapse
|
12
|
Klamt A, Poulsen SP, Odgaard BV, Hübener T, McGowan S, Jensen HS, Reitzel K. Holocene lake phosphorus species and primary producers reflect catchment processes in a small, temperate lake. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anna‐Marie Klamt
- Department of Biology University of Southern Denmark Odense Denmark
- School of Tourism and Geography Yunnan Normal University Kunming China
| | | | | | - Thomas Hübener
- Institute of Biosciences University of Rostock Rostock Germany
| | - Suzanne McGowan
- School of Geography University of Nottingham Nottingham United Kingdom
| | | | - Kasper Reitzel
- Department of Biology University of Southern Denmark Odense Denmark
| |
Collapse
|
13
|
Djemiel C, Goulas E, Badalato N, Chabbert B, Hawkins S, Grec S. Targeted Metagenomics of Retting in Flax: The Beginning of the Quest to Harness the Secret Powers of the Microbiota. Front Genet 2020; 11:581664. [PMID: 33193706 PMCID: PMC7652851 DOI: 10.3389/fgene.2020.581664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanical and chemical properties of natural plant fibers are determined by many different factors, both intrinsic and extrinsic to the plant, during growth but also after harvest. A better understanding of how all these factors exert their effect and how they interact is necessary to be able to optimize fiber quality for use in different industries. One important factor is the post-harvest process known as retting, representing the first step in the extraction of bast fibers from the stem of species such as flax and hemp. During this process microorganisms colonize the stem and produce hydrolytic enzymes that target cell wall polymers thereby facilitating the progressive destruction of the stem and fiber bundles. Recent advances in sequencing technology have allowed researchers to implement targeted metagenomics leading to a much better characterization of the microbial communities involved in retting, as well as an improved understanding of microbial dynamics. In this paper we review how our current knowledge of the microbiology of retting has been improved by targeted metagenomics and discuss how related '-omics' approaches might be used to fully characterize the functional capability of the retting microbiome.
Collapse
Affiliation(s)
- Christophe Djemiel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Estelle Goulas
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Nelly Badalato
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Brigitte Chabbert
- Université de Reims Champagne Ardenne, INRAE, UMR FARE A 614, Reims, France
| | - Simon Hawkins
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Grec
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
14
|
Lashermes G, Bleuze L, Recous S, Voinot R, Lafolie F, Chabbert B. Multiscale modeling of microbial degradation of outer tissues of fiber-crop stems during the dew retting process. BIORESOURCE TECHNOLOGY 2020; 311:123558. [PMID: 32485603 DOI: 10.1016/j.biortech.2020.123558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Dew retting of fiber crops, such as hemp or flax, in the field after harvest promotes the microbial biodegradation of the tissues surrounding cellulosic fibers, which helps preserve the quality of fibers during their extraction and valorization for industry. This bioprocess is currently the bottleneck for plant fiber valorization because it is empirically managed and its controlling factors have not been properly quantified. A novel multiscale model representing tissue and polymer biodegradation was developed to simulate microbial growth on the stem during retting. The model was evaluated against experimental hemp retting data. It consistently simulated the mass loss of eight plant polymers belonging to two tissues of the stem outer layer, i.e., parenchyma and fiber bundles. Microbial growth was modeled by Monod equations and modulated by the functions of temperature and moisture. This work provides a tool for gaining more insights into microorganism behavior during retting under local climate conditions.
Collapse
Affiliation(s)
| | - Laurent Bleuze
- Université de Reims Champagne Ardenne, INRAE, FARE, 51100 Reims, France
| | - Sylvie Recous
- Université de Reims Champagne Ardenne, INRAE, FARE, 51100 Reims, France
| | - Richard Voinot
- Université de Reims Champagne Ardenne, INRAE, FARE, 51100 Reims, France
| | - François Lafolie
- Université d'Avignon et des pays de Vaucluse, INRAE, EMMAH, 84000 Avignon, France
| | - Brigitte Chabbert
- Université de Reims Champagne Ardenne, INRAE, FARE, 51100 Reims, France
| |
Collapse
|
15
|
Huet S, Pouvreau JB, Delage E, Delgrange S, Marais C, Bahut M, Delavault P, Simier P, Poulin L. Populations of the Parasitic Plant Phelipanche ramosa Influence Their Seed Microbiota. FRONTIERS IN PLANT SCIENCE 2020; 11:1075. [PMID: 32765559 PMCID: PMC7379870 DOI: 10.3389/fpls.2020.01075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/30/2020] [Indexed: 05/27/2023]
Abstract
Seeds of the parasitic weed Phelipanche ramosa are well adapted to their hosts because they germinate and form haustorial structures to connect to roots in response to diverse host-derived molecular signals. P. ramosa presents different genetic groups that are preferentially adapted to certain hosts. Since there are indications that microbes play a role in the interaction especially in the early stages of the interaction, we studied the microbial diversity harbored by the parasitic seeds with respect to their host and genetic group. Twenty-six seed lots from seven cropping plots of three different hosts-oilseed rape, tobacco, and hemp-in the west of France were characterized for their bacterial and fungal communities using 16S rRNA gene and ITS (Internal transcribed spacer) sequences, respectively. First seeds were characterized genetically using twenty microsatellite markers and phenotyped for their sensibility to various germination stimulants including strigolactones and isothiocyanates. This led to the distinction of three P. ramosa groups that corresponded to their host of origin. The observed seed diversity was correlated to the host specialization and germination stimulant sensitivity within P. ramosa species. Microbial communities were both clustered by host and plot of origin. The seed core microbiota was composed of seventeen species that were also retrieved from soil and was in lower abundances for bacteria and similar abundances for fungi compared to seeds. The host-related core microbiota of parasitic seeds was limited and presumably well adapted to the interaction with its hosts. Two microbial candidates of Sphingobacterium species and Leptosphaeria maculans were especially identified in seeds from oilseed rape plots, suggesting their involvement in host recognition and specialization as well as seed fitness for P. ramosa by improving the production of isothiocyanates from glucosinolates in the rhizosphere of oilseed rape.
Collapse
Affiliation(s)
- Sarah Huet
- Laboratoire de Biologie et Pathologie Végétales, EA 1157, SFR 4207 QUASAV, UFR Sciences et Techniques, Université de Nantes, Nantes, France
| | - Jean-Bernard Pouvreau
- Laboratoire de Biologie et Pathologie Végétales, EA 1157, SFR 4207 QUASAV, UFR Sciences et Techniques, Université de Nantes, Nantes, France
| | - Erwan Delage
- Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004, IMT Atlantique, ECN, Université de Nantes, Nantes, France
| | - Sabine Delgrange
- Laboratoire de Biologie et Pathologie Végétales, EA 1157, SFR 4207 QUASAV, UFR Sciences et Techniques, Université de Nantes, Nantes, France
| | - Coralie Marais
- Plateau Technique Mutualisé ANAN, SFR 4207 QUASAV, Beaucouzé, France
| | - Muriel Bahut
- Plateau Technique Mutualisé ANAN, SFR 4207 QUASAV, Beaucouzé, France
| | - Philippe Delavault
- Laboratoire de Biologie et Pathologie Végétales, EA 1157, SFR 4207 QUASAV, UFR Sciences et Techniques, Université de Nantes, Nantes, France
| | - Philippe Simier
- Laboratoire de Biologie et Pathologie Végétales, EA 1157, SFR 4207 QUASAV, UFR Sciences et Techniques, Université de Nantes, Nantes, France
| | - Lucie Poulin
- Laboratoire de Biologie et Pathologie Végétales, EA 1157, SFR 4207 QUASAV, UFR Sciences et Techniques, Université de Nantes, Nantes, France
| |
Collapse
|
16
|
Kumar A, Yadav M, Tiruneh W. Debarking, pitch removal and retting: Role of microbes and their enzymes. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractMicrobial enzymes are green and clean alternatives for several processes in the pulp and paper industry. Enzyme treatment decreases the energy requirement and minimizes the wood losses during drum debarking. Lipophilic wood extractives are known as pitch. Pitch deposition adversely affects the pulp quality and increases equipment maintenance and operating costs during paper manufacturing. Several chemical additives have been used to remove pitch deposits. Natural seasoning of wood is used to minimize pitch content in wood, but it has some disadvantages including yield losses and decreased brightness. Controlled seasoning with white-rot fungi or albino strains of sapstain fungi is an effective tool for degradation and removal of wood extractives. Enzymes including lipase, laccase, sterol esterase, and lipooxygenase have also been used to minimize pitch-related problems. Enzymatic retting has been proved an eco-friendly and economical solution for chemical degumming and traditional retting.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biotechnology, College of Natural and Computational Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Workinesh Tiruneh
- Department of Animal Science, College of Agriculture and Natural Resources, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
17
|
Duan SW, Cheng LF, Feng XY, Yang Q, Liu ZY, Zheng K, Peng YD. Insights on bio-degumming of kenaf bast based on metagenomic and proteomics. BMC Genomics 2020; 21:121. [PMID: 32013905 PMCID: PMC6998070 DOI: 10.1186/s12864-020-6531-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/23/2020] [Indexed: 11/27/2022] Open
Abstract
Background Microbes play important roles in kanef-degumming. This study aims at identifying the key candidate microbes and proteins responsible for the degumming of kenaf bast (Hibiscus cannabinus). Kenaf bast was cut into pieces and immersed into microbia fermentation liquid collected from different sites. Fermentation liquid samples were collected at 0, 40, 110 and 150 h and then subjected to the 16S/18S rRNA sequencing analysis and isobaric tag for relative and absolute quantitation (iTRAQ) analysis. The microbial (bacterial and fungal) diversity and the differentially expressed proteins/peptides (DEPs) were identified. Results With the prolonged degumming time, the weight loss rate increased, the bacterial diversity was decreased. [Weeksellaceae], Enterobacteriaceae and Moraxellaceae were rapidly increased at 0~40 h, and then decreased and were gradually replaced by Bacteroidaceae from 40 h to 150 h. Similarly, Chryseobacterium and Dysgonomonas were gradually increased at 0~110 h and then decreased; Acinetobacter and Lactococcus were increased at 0~40 h, followed by decrease. Bacteroides was the dominant genus at 150 h. Sequencing 18S rRNA-seq showed the gradually decreased Wallemia hederae and increased Codosiga hollandica during degumming. iTRAQ data analysis showed Rds1, and pyruvate kinase I was decreased and increased in the kanef-degumming, respectively. Other DEPs of ferredoxin I, superoxide dismutase and aconitatehydratase were identified to be related to the Glyoxylate and dicarboxylate metabolism (ko00630). Conclusions Bacteria including Chryseobacterium, Dysgonomonas, Acinetobacter, Lactococcus and Bacteroidesand fungi like Wallemia hederae and Codosiga hollandica are key candidate microbes for kanef degumming.
Collapse
Affiliation(s)
- Sheng Wen Duan
- Institute of Bast Fiber Crops, Chinese Academy of Agriculture Sciences, Changsha, 410000, China
| | - Li Feng Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agriculture Sciences, Changsha, 410000, China
| | - Xiang Yuan Feng
- Institute of Bast Fiber Crops, Chinese Academy of Agriculture Sciences, Changsha, 410000, China
| | - Qi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agriculture Sciences, Changsha, 410000, China
| | - Zhi Yuan Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agriculture Sciences, Changsha, 410000, China
| | - Ke Zheng
- Institute of Bast Fiber Crops, Chinese Academy of Agriculture Sciences, Changsha, 410000, China
| | - Yuan De Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agriculture Sciences, Changsha, 410000, China.
| |
Collapse
|
18
|
Tavares TD, Antunes JC, Ferreira F, Felgueiras HP. Biofunctionalization of Natural Fiber-Reinforced Biocomposites for Biomedical Applications. Biomolecules 2020; 10:E148. [PMID: 31963279 PMCID: PMC7023167 DOI: 10.3390/biom10010148] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
In the last ten years, environmental consciousness has increased worldwide, leading to the development of eco-friendly materials to replace synthetic ones. Natural fibers are extracted from renewable resources at low cost. Their combination with synthetic polymers as reinforcement materials has been an important step forward in that direction. The sustainability and excellent physical and biological (e.g., biocompatibility, antimicrobial activity) properties of these biocomposites have extended their application to the biomedical field. This paper offers a detailed overview of the extraction and separation processes applied to natural fibers and their posterior chemical and physical modifications for biocomposite fabrication. Because of the requirements for biomedical device production, specialized biomolecules are currently being incorporated onto these biocomposites. From antibiotics to peptides and plant extracts, to name a few, this review explores their impact on the final biocomposite product, in light of their individual or combined effect, and analyzes the most recurrent strategies for biomolecule immobilization.
Collapse
Affiliation(s)
| | | | | | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (T.D.T.); (J.C.A.); (F.F.)
| |
Collapse
|
19
|
A Comparative Study of the Effect of Field Retting Time on the Properties of Hemp Fibres Harvested at Different Growth Stages. FIBERS 2019. [DOI: 10.3390/fib7120108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, the comparison of field retting of hemp fibres harvested at different growth stages (beginning and end of flowering, seed maturity) was studied. Regardless of the harvest period, identical evolution of the fibres’ properties was observed during retting. The main difference is the kinetics of this transformation, which depend on weather conditions and the initial state of the fibres after harvesting. Retting leads to a change in colour of the stems and fibres, an increase of the cellulose fraction and a gradual improvement of the fibres’ thermal stability, in relation with a decrease in the non-cellulosic materials. This process induces fibre bundle separation into elementary fibres. A long period (5 weeks) is required for getting the highest mechanical properties of fibres harvested at the beginning and the end of flowering. However, the retting of fibres harvested at seed maturity has to be performed in a short period (1 week) in order to avoid over-retting treatment. If the fibres are over-retted, their quality decreases in terms of structure and mechanical properties.
Collapse
|
20
|
Mazian B, Cariou S, Chaignaud M, Fanlo JL, Fauconnier ML, Bergeret A, Malhautier L. Evolution of temporal dynamic of volatile organic compounds (VOCs) and odors of hemp stem during field retting. PLANTA 2019; 250:1983-1996. [PMID: 31529396 DOI: 10.1007/s00425-019-03280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
New non-destructive approach to evaluate the retting process was investigated. Increase of retting duration led to a decrease of VOCs emitted by plants and change of color and plant odor. The variation of VOCs and odor could be used as indicators for the degree of retting. In the hemp industry, retting is an upstream bioprocessing applied to the plants to facilitate the decortication of fibres from the central woody part of the stem. This treatment is currently carried out in an empirical way on the ground which leads to variability in the hemp stems quality, and thus to the hemp fibres quality. Therefore, controlling retting treatment is a crucial step for high-performance hemp fibre. In this study, a new approach is used to assess the retting degree by following the evolution of VOCs emitted by plants during different retting durations. Either harvest time or retting induces a change in VOCs released by plants. During plant maturity, volatile compounds emitted decreased with a factor of about 2, in relation to VOCs released at the end of flowering. Regardless of the harvest period, the majority of VOCs and odor concentrations, monitored by olfactometric analysis, decrease gradually until some of them disappear at the end of retting. Likewise, the green plant odor disappears during retting with an increase of dry plants odor and an appearance of fermented odor at the end of retting. Following the evolution of VOCs emitted by plants during retting could be a tool for farmers to improve the retting management.
Collapse
Affiliation(s)
- Brahim Mazian
- Laboratoire du Génie de l'Environnement Industriel des Mines d'Alès, IMT Mines Alès, Université de Montpellier, 6 Avenue de Clavières, 30319, Alès Cedex, France
- Centre des Matériaux des Mines d'Alès, IMT Mines Alès, Université de Montpellier, 6 Avenue de Clavières, 30319, Alès Cedex, France
| | - Stéphane Cariou
- Laboratoire du Génie de l'Environnement Industriel des Mines d'Alès, IMT Mines Alès, Université de Montpellier, 6 Avenue de Clavières, 30319, Alès Cedex, France
| | | | - Jean-Louis Fanlo
- Laboratoire du Génie de l'Environnement Industriel des Mines d'Alès, IMT Mines Alès, Université de Montpellier, 6 Avenue de Clavières, 30319, Alès Cedex, France
- Olentica sas, 14 Boulevard Charles Peguy, 30100, Alès, France
| | - Marie-Laure Fauconnier
- Laboratoire de Chimie des Molécules Naturelles, Gembloux Agro-Bio Tech, e, Université de Liège, 2 Passage des Déportés, 5030, Gembloux, Belgium
| | - Anne Bergeret
- Centre des Matériaux des Mines d'Alès, IMT Mines Alès, Université de Montpellier, 6 Avenue de Clavières, 30319, Alès Cedex, France
| | - Luc Malhautier
- Laboratoire du Génie de l'Environnement Industriel des Mines d'Alès, IMT Mines Alès, Université de Montpellier, 6 Avenue de Clavières, 30319, Alès Cedex, France.
| |
Collapse
|
21
|
M.R. S, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydr Polym 2019; 207:108-121. [DOI: 10.1016/j.carbpol.2018.11.083] [Citation(s) in RCA: 366] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/24/2018] [Accepted: 11/25/2018] [Indexed: 11/28/2022]
|
22
|
Musio S, Müssig J, Amaducci S. Optimizing Hemp Fiber Production for High Performance Composite Applications. FRONTIERS IN PLANT SCIENCE 2018; 9:1702. [PMID: 30532760 PMCID: PMC6265480 DOI: 10.3389/fpls.2018.01702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/01/2018] [Indexed: 05/21/2023]
Abstract
Hemp is a sustainable and environmental friendly crop that can provide valuable raw materials to a large number of industrial applications. Traditionally harvested at full flowering for textile destinations, nowadays hemp is mainly harvested at seed maturity for dual-purpose applications and has a great potential as multipurpose crop. However, the European hemp fiber market is stagnating if compared to the growing market of hemp seeds and phytocannabinoids. To support a sustainable growth of the hemp fiber market, agronomic techniques as well as genotypes and post-harvest processing should be optimized to preserve fiber quality during grain ripening, enabling industrial processing and maintaining, or even increasing, actual fiber applications and improving high-added value applications. In this paper, the effect of genotypes, harvest times, retting methods and processing on the yield and quality of long hemp for wet spun yarns was investigated. Conventional green-stem varieties were compared with yellow-stem ones on two harvesting times: at full flower and seed maturity. Scutching was performed on un-retted stems and dew-retted stems, the un-retted scutched fiber bundles were then bio-degummed before hackling. Both scutching and hackling was performed on flax machines. Quality of hackled hemp, with particular reference to its suitability for high performance composites production, was assessed. The results of fiber extraction indicate that yellow-stem varieties are characterized by higher scutching efficiency than green-stem varieties. Composites strength at breaking point, measured on specimens produced with the Impregnated Fiber Bundle Test, was lower with hemp obtained from stems harvested at seed maturity than at full flowering. On average, back-calculated fiber properties, from hackled hemp-epoxy composites, proved the suitability of long hemp fiber bundles for high performance composites applications, having properties comparable to those of high quality long flax. Highlights: - The trait yellow stem in hemp is an indicator of processability. - Yellow stem varieties have finer hackled fiber bundles. - Controlled dew retting increased yield of hackled fiber compared to bio-degumming. - Retting influenced fiber and composite mechanical properties. - Hemp can achieve properties comparable to high quality long flax for high performance composites.
Collapse
Affiliation(s)
- Salvatore Musio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
- The Biological Materials Group, Biomimetics, Hochschule Bremen, City University of Applied Sciences Bremen, Bremen, Germany
- Gruppo Fibranova srl, Bientina, Italy
| | - Jörg Müssig
- The Biological Materials Group, Biomimetics, Hochschule Bremen, City University of Applied Sciences Bremen, Bremen, Germany
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
23
|
Liu M, Ale MT, Kołaczkowski B, Fernando D, Daniel G, Meyer AS, Thygesen A. Comparison of traditional field retting and Phlebia radiata Cel 26 retting of hemp fibres for fibre-reinforced composites. AMB Express 2017; 7:58. [PMID: 28275995 PMCID: PMC5342995 DOI: 10.1186/s13568-017-0355-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 11/10/2022] Open
Abstract
Classical field retting and controlled fungal retting of hemp using Phlebia radiata Cel 26 (a mutant with low cellulose degrading ability) were compared with pure pectinase treatment with regard to mechanical properties of the produced fibre/epoxy composites. For field retting a classification of the microbial evolution (by gene sequencing) and enzyme profiles were conducted. By phylogenetic frequency mapping, different types of fungi, many belonging to the Ascomycota phylum were found on the fibres during the first 2 weeks of field retting, and thereafter, different types of bacteria, notably Proteobacteria, also proliferated on the field retted fibres. Extracts from field retted fibres exhibited high glucanase activities, while extracts from P. radiata Cel 26 retted fibres showed high polygalacturonase and laccase activities. As a result, fungal retting gave a significantly higher glucan content in the fibres than field retting (77 vs. 67%) and caused a higher removal of pectin as indicated by lower galacturonan content of fibres (1.6%) after fibres were retted for 20 days with P. radiata Cel 26 compared to a galacturonan content of 3.6% for field retted fibres. Effective fibre stiffness increased slightly after retting with P. radiata Cel 26 from 65 to 67 GPa, while it decreased after field retting to 52 GPa. Effective fibre strength could not be determined similarly due to variations in fibre fracture strain and fibre-matrix adhesion. A maximum composite strength with 50 vol% fibres of 307 MPa was obtained using P. radiata Cel 26 compared to 248 MPa with field retting.
Collapse
Affiliation(s)
- Ming Liu
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 229, 2800 Kongens Lyngby, Denmark
| | - Marcel T. Ale
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 229, 2800 Kongens Lyngby, Denmark
| | - Bartłomiej Kołaczkowski
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 229, 2800 Kongens Lyngby, Denmark
| | - Dinesh Fernando
- Department of Forest Products/Wood Science, Swedish University of Agricultural Sciences, Vallvägen 9D, 750-07 Uppsala, Sweden
| | - Geoffrey Daniel
- Department of Forest Products/Wood Science, Swedish University of Agricultural Sciences, Vallvägen 9D, 750-07 Uppsala, Sweden
| | - Anne S. Meyer
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 229, 2800 Kongens Lyngby, Denmark
| | - Anders Thygesen
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 229, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Schluttenhofer C, Yuan L. Challenges towards Revitalizing Hemp: A Multifaceted Crop. TRENDS IN PLANT SCIENCE 2017; 22:917-929. [PMID: 28886910 DOI: 10.1016/j.tplants.2017.08.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 05/21/2023]
Abstract
Hemp has been an important crop throughout human history for food, fiber, and medicine. Despite significant progress made by the international research community, the basic biology of hemp plants remains insufficiently understood. Clear objectives are needed to guide future research. As a semi-domesticated plant, hemp has many desirable traits that require improvement, including eliminating seed shattering, enhancing the quantity and quality of stem fiber, and increasing the accumulation of phytocannabinoids. Methods to manipulate the sex of hemp plants will also be important for optimizing yields of seed, fiber, and cannabinoids. Currently, research into trait improvement is hindered by the lack of molecular techniques adapted to hemp. Here we review how addressing these limitations will help advance our knowledge of plant biology and enable us to fully domesticate and maximize the agronomic potential of this promising crop.
Collapse
Affiliation(s)
- Craig Schluttenhofer
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA; The Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA; The Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
25
|
Djemiel C, Grec S, Hawkins S. Characterization of Bacterial and Fungal Community Dynamics by High-Throughput Sequencing (HTS) Metabarcoding during Flax Dew-Retting. Front Microbiol 2017; 8:2052. [PMID: 29104570 PMCID: PMC5655573 DOI: 10.3389/fmicb.2017.02052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/06/2017] [Indexed: 11/13/2022] Open
Abstract
Flax dew-retting is a key step in the industrial extraction of fibers from flax stems and is dependent upon the production of a battery of hydrolytic enzymes produced by micro-organisms during this process. To explore the diversity and dynamics of bacterial and fungal communities involved in this process we applied a high-throughput sequencing (HTS) DNA metabarcoding approach (16S rRNA/ITS region, Illumina Miseq) on plant and soil samples obtained over a period of 7 weeks in July and August 2014. Twenty-three bacterial and six fungal phyla were identified in soil samples and 11 bacterial and four fungal phyla in plant samples. Dominant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes (bacteria) and Ascomycota, Basidiomycota, and Zygomycota (fungi) all of which have been previously associated with flax dew-retting except for Bacteroidetes and Basidiomycota that were identified for the first time. Rare phyla also identified for the first time in this process included Acidobacteria, CKC4, Chlorobi, Fibrobacteres, Gemmatimonadetes, Nitrospirae and TM6 (bacteria), and Chytridiomycota (fungi). No differences in microbial communities and colonization dynamics were observed between early and standard flax harvests. In contrast, the common agricultural practice of swath turning affects both bacterial and fungal community membership and structure in straw samples and may contribute to a more uniform retting. Prediction of community function using PICRUSt indicated the presence of a large collection of potential bacterial enzymes capable of hydrolyzing backbones and side-chains of cell wall polysaccharides. Assignment of functional guild (functional group) using FUNGuild software highlighted a change from parasitic to saprophytic trophic modes in fungi during retting. This work provides the first exhaustive description of the microbial communities involved in flax dew-retting and will provide a valuable benchmark in future studies aiming to evaluate the effects of other parameters (e.g., year-to year and site variability etc.) on this complex process.
Collapse
Affiliation(s)
- Christophe Djemiel
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Grec
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Simon Hawkins
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
26
|
Hu Q, Zhang J, Xu C, Li C, Liu S. The Dynamic Microbiota Profile During Pepper (Piper nigrum L.) Peeling by Solid-State Fermentation. Curr Microbiol 2017; 74:739-746. [PMID: 28378160 DOI: 10.1007/s00284-017-1242-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/23/2017] [Indexed: 01/15/2023]
Abstract
White pepper (Piper nigrum L.), a well-known spice, is the main pepper processing product in Hainan province, China. The solid-state method of fermentation can peel pepper in a highly efficient manner and yield high-quality white pepper. In the present study, we used next-generation sequencing to reveal the dynamic changes in the microbiota during pepper peeling by solid-state fermentation. The results suggested that the inoculated Aspergillus niger was dominant throughout the fermentation stage, with its strains constituting more than 95% of the fungi present; thus, the fungal community structure was relatively stable. The bacterial community structure fluctuated across different fermentation periods; among the bacteria present, Pseudomonas, Tatumella, Pantoea, Acinetobacter, Lactococcus, and Enterobacter accounted for more than 95% of all bacteria. Based on the correlations among the microbial community, we found that Pseudomonas and Acinetobacter were significantly positively related with A. niger, which showed strong synergy with them. In view of the microbial functional gene analysis, we found that these three bacteria and fungi were closely related to the production of pectin esterase (COG4677) and acetyl xylan esterase (COG3458), the key enzymes for pepper peeling. The present research clarifies the solid-state fermentation method of pepper peeling and lays a theoretical foundation to promote the development of the pepper peeling process and the production of high-quality white pepper.
Collapse
Affiliation(s)
- Qisong Hu
- College of Food Science and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Jiachao Zhang
- College of Food Science and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Chuanbiao Xu
- College of Food Science and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Congfa Li
- College of Food Science and Technology, Hainan University, Haikou, 570228, People's Republic of China.
| | - Sixin Liu
- College of Food Science and Technology, Hainan University, Haikou, 570228, People's Republic of China.
- College of Materials and Chemical Engineering, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|