1
|
Deng L, Liu C, Li L, Hao P, Wang M, Jin N, Yin R, Du S, Li C. Genomic characteristics of an avipoxvirus 282E4 strain. Virus Res 2023; 336:199218. [PMID: 37678517 PMCID: PMC10507152 DOI: 10.1016/j.virusres.2023.199218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Avipoxvirus 282E4 strain was extensively applied into recombinant vaccine vector to prevent other infectious diseases. However, little information on the genomic background, functional and genetic evolutionary of the isolate 282E4 strain was clarified. The results showed that the linear genome of avipoxvirus 282E4 was 308,826 bp, containing 313 open reading frames (ORFs) and 12 new predicted ORFs. The 282E4 strain appears to encode two novel thymidine kinase proteins and two TGF-beta-like proteins that may be associated with the suppression of the host's antiviral response. Avipoxvirus 282E4 also encodes 57 ankyrin repeat proteins and 5 variola B22R-like proteins, which composed 7% of the avipoxvirus 282E4 genome. GO and KEGG analysis further revealed that 12 ORFs participate in viral transcription process, 7 ORFs may function during DNA repair, replication and biological synthesis, and ORF 208 is involved in the process of virus life cycle. Interestingly, phylogenetic analysis based on concatenated sequences p4b and DNA polymerase of avipoxviruses gene demonstrates that avipoxvirus 282E4 strain is divergent from known FWPV isolates and is similar to shearwater poxvirus (SWPV-1) that belongs to the CNPV-like virus. Sequencing avipoxvirus 282E4 is a significant step to judge the genetic position of avipoxviruses within the larger Poxviridae phylogenetic tree and provide a new insight into the genetic background of avipoxvirus 282E4 and interspecies transmission of poxviruses, meanwhile, explanation of gene function provides theoretical foundation for vaccine design with 282E4 strain as skeleton.
Collapse
Affiliation(s)
- Lingcong Deng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Cunxia Liu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Immunity and Diagnosis of Poultry Diseases, Jinan, 250100, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Maopeng Wang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Ronglan Yin
- Academy of Animal Science and Veterinary Medicine in Jilin Province, Changchun, 130062, China.
| | - Shouwen Du
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Chang Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
2
|
Saminathan M, Singh KP, Khorajiya JH, Dinesh M, Vineetha S, Maity M, Rahman AF, Misri J, Malik YS, Gupta VK, Singh RK, Dhama K. An updated review on bluetongue virus: epidemiology, pathobiology, and advances in diagnosis and control with special reference to India. Vet Q 2021; 40:258-321. [PMID: 33003985 PMCID: PMC7655031 DOI: 10.1080/01652176.2020.1831708] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bluetongue (BT) is an economically important, non-contagious viral disease of domestic and wild ruminants. BT is caused by BT virus (BTV) and it belongs to the genus Orbivirus and family Reoviridae. BTV is transmitted by Culicoides midges and causes clinical disease in sheep, white-tailed deer, pronghorn antelope, bighorn sheep, and subclinical manifestation in cattle, goats and camelids. BT is a World Organization for Animal Health (OIE) listed multispecies disease and causes great socio-economic losses. To date, 28 serotypes of BTV have been reported worldwide and 23 serotypes have been reported from India. Transplacental transmission (TPT) and fetal abnormalities in ruminants had been reported with cell culture adopted live-attenuated vaccine strains of BTV. However, emergence of BTV-8 in Europe during 2006, confirmed TPT of wild-type/field strains of BTV. Diagnosis of BT is more important for control of disease and to ensure BTV-free trade of animals and their products. Reverse transcription polymerase chain reaction, agar gel immunodiffusion assay and competitive enzyme-linked immunosorbent assay are found to be sensitive and OIE recommended tests for diagnosis of BTV for international trade. Control measures include mass vaccination (most effective method), serological and entomological surveillance, forming restriction zones and sentinel programs. Major hindrances with control of BT in India are the presence of multiple BTV serotypes, high density of ruminant and vector populations. A pentavalent inactivated, adjuvanted vaccine is administered currently in India to control BT. Recombinant vaccines with DIVA strategies are urgently needed to combat this disease. This review is the first to summarise the seroprevalence of BTV in India for 40 years, economic impact and pathobiology.
Collapse
Affiliation(s)
- Mani Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sobharani Vineetha
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Madhulina Maity
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - At Faslu Rahman
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Jyoti Misri
- Animal Science Division, Indian Council of Agricultural Research, New Delhi, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Raj Kumar Singh
- Director, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
3
|
Viral Vector Vaccines against Bluetongue Virus. Microorganisms 2020; 9:microorganisms9010042. [PMID: 33375723 PMCID: PMC7823852 DOI: 10.3390/microorganisms9010042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Bluetongue virus (BTV), the prototype member of the genus Orbivirus (family Reoviridae), is the causative agent of an important livestock disease, bluetongue (BT), which is transmitted via biting midges of the genus Culicoides. To date, up to 29 serotypes of BTV have been described, which are classified as classical (BTV 1–24) or atypical (serotypes 25–27), and its distribution has been expanding since 1998, with important outbreaks in the Mediterranean Basin and devastating incursions in Northern and Western Europe. Classical vaccine approaches, such as live-attenuated and inactivated vaccines, have been used as prophylactic measures to control BT through the years. However, these vaccine approaches fail to address important matters like vaccine safety profile, effectiveness, induction of a cross-protective immune response among serotypes, and implementation of a DIVA (differentiation of infected from vaccinated animals) strategy. In this context, a wide range of recombinant vaccine prototypes against BTV, ranging from subunit vaccines to recombinant viral vector vaccines, have been investigated. This article offers a comprehensive outline of the live viral vectors used against BTV.
Collapse
|
4
|
Zhao Y, Han Z, Zhang X, Zhang X, Sun J, Ma D, Liu S. Construction and immune protection evaluation of recombinant virus expressing Newcastle disease virus F protein by the largest intergenic region of fowlpox virus NX10. Virus Genes 2020; 56:734-748. [PMID: 33009986 DOI: 10.1007/s11262-020-01799-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/26/2020] [Indexed: 01/27/2023]
Abstract
Fowlpox virus (FPV) is used as a vaccine vector to prevent diseases in poultry and mammals. The insertion site is considered as one of the main factors influencing foreign gene expression. Therefore, the identification of insertion sites that can stably and efficiently express foreign genes is crucial for the construction of recombinant vaccines. In this study, we found that the insertion of foreign genes into ORF054 and the ORF161/ORF162 intergenic region of the FPV genome did not affect replication, and that the foreign genes inserted into the intergenic region were more efficiently expressed than when they were inserted into a gene. Based on these results, the recombinant virus rFPVNX10-NDV F-E was constructed and immune protection against virulent FPV and Newcastle disease virus (NDV) was evaluated. Tests for anti-FPV antibodies in the vaccinated chickens were positive within 14 days post-vaccination. After challenge with FPV102, no clinical signs of FP were observed in vaccinated chickens, as compared to that in the control group (unvaccinated), which showed 100% morbidity. Low levels of NDV-specific neutralizing antibodies were detected in vaccinated chickens before challenge. After challenge with NDV ck/CH/LHLJ/01/06, all control chickens died within 4 days post-challenge, whereas 5/15 vaccinated chickens died between 4 and 12 days post-challenge. Vaccination provided an immune protection rate of 66.7%, whereas the control group showed 100% mortality. These results indicate that the ORF161/ORF162 intergenic region of FPVNX10 can be used as a recombination site for foreign gene expression in vivo and in vitro.
Collapse
Affiliation(s)
- Yan Zhao
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Xiaocai Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Xuemei Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Deying Ma
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China.
| |
Collapse
|
5
|
Pan Y, Jia R, Li J, Wang M, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Yin Z, Jing B, Huang J, Zhang S, Zhang L, Liu Y, Yu Y, Tian B, Pan L, Rehman MU, Cheng A. Heterologous prime-boost: an important candidate immunization strategy against Tembusu virus. Virol J 2020; 17:67. [PMID: 32398028 PMCID: PMC7218524 DOI: 10.1186/s12985-020-01334-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/23/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Tembusu virus (TMUV), a newly emerging pathogenic flavivirus, spreads rapidly between ducks, causing massive economic losses in the Chinese duck industry. Vaccination is the most effective method to prevent TMUV. Therefore, it is urgent to look for an effective vaccine strategy against TMUV. Heterologous prime-boost regimens priming with vaccines and boosting with recombinant adenovirus vaccines have been proven to be successful strategies for protecting against viruses in experimental animal models. METHODS In this study, heterologous and homologous prime-boost strategies using an attenuated salmonella vaccine and a recombinant adenovirus vaccine expressing prM-E or the E gene of TMUV were evaluated to protect ducks against TMUV infection for the first time, including priming and boosting with the attenuated salmonella vaccine, priming and boosting with the recombinant adenovirus vaccine, and priming with the attenuated salmonella vaccine and boosting with the recombinant adenovirus vaccine. Humoral and cellular immune responses were detected and evaluated. We then challenged the ducks with TMUV at 12 days after boosting to assay for clinical symptoms, mortality, viral loads and histopathological lesions after these different strategies. RESULTS Compared with the homologous prime-boost strategies, the heterologous prime-boost regimen produced higher levels of neutralizing antibodies and IgG antibodies against TMUV. Additionally, it could induce higher levels of IFN-γ than homologous prime-boost strategies in the later stage. Interestingly, the heterologous prime-boost strategy induced higher levels of IL-4 in the early stage, but the IL-4 levels gradually decreased and were even lower than those induced by the homologous prime-boost strategy in the later stage. Moreover, the heterologous prime-boost strategy could efficiently protect ducks, with low viral titres, no clinical symptoms and histopathological lesions in this experiment after challenge with TMUV, while slight clinical symptoms and histopathological lesions were observed with the homologous prime-boost strategies. CONCLUSIONS Our results indicated that the heterologous prime-boost strategy induced higher levels of humoral and cellular immune responses and better protection against TMUV infection in ducks than the homologous prime-boost strategies, suggesting that the heterologous prime-boost strategy is an important candidate for the design of a novel vaccine strategy against TMUV.
Collapse
Affiliation(s)
- Yuting Pan
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Juping Li
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Zhongqiong Yin
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Bo Jing
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Lin Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Yunya Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Yanlin Yu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Leichang Pan
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Mujeeb Ur Rehman
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| |
Collapse
|
6
|
van Rijn PA. Prospects of Next-Generation Vaccines for Bluetongue. Front Vet Sci 2019; 6:407. [PMID: 31824966 PMCID: PMC6881303 DOI: 10.3389/fvets.2019.00407] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/01/2019] [Indexed: 01/16/2023] Open
Abstract
Bluetongue (BT) is a haemorrhagic disease of wild and domestic ruminants with a huge economic worldwide impact on livestock. The disease is caused by BT-virus transmitted by Culicoides biting midges and disease control without vaccination is hardly possible. Vaccination is the most feasible and cost-effective way to minimize economic losses. Marketed BT vaccines are successfully used in different parts of the world. Inactivated BT vaccines are efficacious and safe but relatively expensive, whereas live-attenuated vaccines are efficacious and cheap but are unsafe because of under-attenuation, onward spread, reversion to virulence, and reassortment events. Both manufactured BT vaccines do not enable differentiating infected from vaccinated animals (DIVA) and protection is limited to the respective serotype. The ideal BT vaccine is a licensed, affordable, completely safe DIVA vaccine, that induces quick, lifelong, broad protection in all susceptible ruminant species. Promising vaccine candidates show improvement for one or more of these main vaccine standards. BTV protein vaccines and viral vector vaccines have DIVA potential depending on the selected BTV antigens, but are less effective and likely more costly per protected animal than current vaccines. Several vaccine platforms based on replicating BTV are applied for many serotypes by exchange of serotype dominant outer shell proteins. These platforms based on one BTV backbone result in attenuation or abortive virus replication and prevent disease by and spread of vaccine virus as well as reversion to virulence. These replicating BT vaccines induce humoral and T-cell mediated immune responses to all viral proteins except to one, which could enable DIVA tests. Most of these replicating vaccines can be produced similarly as currently marketed BT vaccines. All replicating vaccine platforms developed by reverse genetics are classified as genetic modified organisms. This implies extensive and expensive safety trails in target ruminant species, and acceptance by the community could be hindered. Nonetheless, several experimental BT vaccines show very promising improvements and could compete with marketed vaccines regarding their vaccine profile, but none of these next generation BT vaccines have been licensed yet.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
7
|
Modeling Arboviral Infection in Mice Lacking the Interferon Alpha/Beta Receptor. Viruses 2019; 11:v11010035. [PMID: 30625992 PMCID: PMC6356211 DOI: 10.3390/v11010035] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/22/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Arboviruses are arthropod-borne viruses that exhibit worldwide distribution and are a constant threat, not only for public health but also for wildlife, domestic animals, and even plants. To study disease pathogenesis and to develop efficient and safe therapies, the use of an appropriate animal model is a critical concern. Adult mice with gene knockouts of the interferon α/β (IFN-α/β) receptor (IFNAR(-/-)) have been described as a model of arbovirus infections. Studies with the natural hosts of these viruses are limited by financial and ethical issues, and in some cases, the need to have facilities with a biosafety level 3 with sufficient space to accommodate large animals. Moreover, the number of animals in the experiments must provide results with statistical significance. Recent advances in animal models in the last decade among other gaps in knowledge have contributed to the better understanding of arbovirus infections. A tremendous advantage of the IFNAR(-/-) mouse model is the availability of a wide variety of reagents that can be used to study many aspects of the immune response to the virus. Although extrapolation of findings in mice to natural hosts must be done with care due to differences in the biology between mouse and humans, experimental infections of IFNAR(-/-) mice with several studied arboviruses closely mimics hallmarks of these viruses in their natural host. Therefore, IFNAR(-/-) mice are a good model to facilitate studies on arbovirus transmission, pathogenesis, virulence, and the protective efficacy of new vaccines. In this review article, the most important arboviruses that have been studied using the IFNAR(-/-) mouse model will be reviewed.
Collapse
|
8
|
Sauermann U, Radaelli A, Stolte-Leeb N, Raue K, Bissa M, Zanotto C, Krawczak M, Tenbusch M, Überla K, Keele BF, De Giuli Morghen C, Sopper S, Stahl-Hennig C. Vector Order Determines Protection against Pathogenic Simian Immunodeficiency Virus Infection in a Triple-Component Vaccine by Balancing CD4 + and CD8 + T-Cell Responses. J Virol 2017; 91:e01120-17. [PMID: 28904195 PMCID: PMC5686736 DOI: 10.1128/jvi.01120-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
An effective AIDS vaccine should elicit strong humoral and cellular immune responses while maintaining low levels of CD4+ T-cell activation to avoid the generation of target cells for viral infection. The present study investigated two prime-boost regimens, both starting vaccination with single-cycle immunodeficiency virus, followed by two mucosal boosts with either recombinant adenovirus (rAd) or fowlpox virus (rFWPV) expressing SIVmac239 or SIVmac251 gag/pol and env genes, respectively. Finally, vectors were switched and systemically administered to the reciprocal group of animals. Only mucosal rFWPV immunizations followed by systemic rAd boost significantly protected animals against a repeated low-dose intrarectal challenge with pathogenic SIVmac251, resulting in a vaccine efficacy (i.e., risk reduction per exposure) of 68%. Delayed viral acquisition was associated with higher levels of activated CD8+ T cells and Gag-specific gamma interferon (IFN-γ)-secreting CD8+ cells, low virus-specific CD4+ T-cell responses, and low Env antibody titers. In contrast, the systemic rFWPV boost induced strong virus-specific CD4+ T-cell activity. rAd and rFWPV also induced differential patterns of the innate immune responses, thereby possibly shaping the specific immunity. Plasma CXCL10 levels after final immunization correlated directly with virus-specific CD4+ T-cell responses and inversely with the number of exposures to infection. Also, the percentage of activated CD69+ CD8+ T cells correlated with the number of exposures to infection. Differential stimulation of the immune response likely provided the basis for the diverging levels of protection afforded by the vaccine regimen.IMPORTANCE A failed phase II AIDS vaccine trial led to the hypothesis that CD4+ T-cell activation can abrogate any potentially protective effects delivered by vaccination or promote acquisition of the virus because CD4+ T helper cells, required for an effective immune response, also represent the target cells for viral infection. We compared two vaccination protocols that elicited similar levels of Gag-specific immune responses in rhesus macaques. Only the animal group that had a low level of virus-specific CD4+ T cells in combination with high levels of activated CD8+ T cells was significantly protected from infection. Notably, protection was achieved despite the lack of appreciable Env antibody titers. Moreover, we show that both the vector and the route of immunization affected the level of CD4+ T-cell responses. Thus, mucosal immunization with FWPV-based vaccines should be considered a potent prime in prime-boost vaccination protocols.
Collapse
Affiliation(s)
- Ulrike Sauermann
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Nicole Stolte-Leeb
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Katharina Raue
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Klaus Überla
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Sieghart Sopper
- Clinic for Hematology and Oncology, Medical University Innsbruck, Tyrolean Cancer Research Center, Innsbruck, Austria
| | | |
Collapse
|
9
|
Abstract
The performance of different bluetongue control measures related to both vaccination and protection from bluetongue virus (BTV) vectors was assessed. By means of a mathematical model, it was concluded that when vaccination is applied on 95% of animals even for 3 years, bluetongue cannot be eradicated and is able to re‐emerge. Only after 5 years of vaccination, the infection may be close to the eradication levels. In the absence of vaccination, the disease can persist for several years, reaching an endemic condition with low level of prevalence of infection. Among the mechanisms for bluetongue persistence, the persistence in the wildlife, the transplacental transmission in the host, the duration of viraemia and the possible vertical transmission in vectors were assessed. The criteria of the current surveillance scheme in place in the EU for demonstration of the virus absence need revision, because it was highlighted that under the current surveillance policy bluetongue circulation might occur undetected. For the safe movement of animals, newborn ruminants from vaccinated mothers with neutralising antibodies can be considered protected against infection, although a protective titre threshold cannot be identified. The presence of colostral antibodies interferes with the vaccine immunisation in the newborn for more than 3 months after birth, whereas the minimum time after vaccination of animal to be considered immune can be up to 48 days. The knowledge about vectors ecology, mechanisms of over‐wintering and criteria for the seasonally vector‐free period was updated. Some Culicoides species are active throughout the year and an absolute vector‐free period may not exist at least in some areas in Europe. To date, there is no evidence that the use of insecticides and repellents reduce the transmission of BTV in the field, although this may reduce host/vector contact. By only using pour‐on insecticides, protection of animals is lower than the one provided by vector‐proof establishments. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1182/full, http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1171/full
Collapse
|
10
|
Feenstra F, van Rijn PA. Current and next-generation bluetongue vaccines: Requirements, strategies, and prospects for different field situations. Crit Rev Microbiol 2016; 43:142-155. [PMID: 27800699 DOI: 10.1080/1040841x.2016.1186005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bluetongue virus (BTV) causes the hemorrhagic disease bluetongue (BT) in ruminants. The best way to control outbreaks is vaccination. Currently, conventionally modified-live and inactivated vaccines are commercially available, which have been successfully used to control BT, but nonetheless have their specific shortcomings. Therefore, there is a need for improved BT vaccines. The ideal BT vaccine is efficacious, safe, affordable, protective against multiple serotypes and enables the differentiation of infected from vaccinated animals. Different field situations require specific vaccine profiles. Single serotype outbreaks in former BT-free areas need rapid onset of protection against viremia of the respective serotype. In contrary, endemic multiple serotype situations require long-lasting protection against all circulating serotypes. The ideal BT vaccine for all field situations does not exist and balancing between vaccine properties is needed. Many new vaccines candidates, ranging from non-replicating subunits to replicating next-generation reverse genetics based vaccines, have been developed. Some have been tested extensively in large numbers of ruminants, whereas others were developed recently and have only been tested in vitro and in mice models. Most vaccine candidates are promising, but have their specific shortcomings and advantages. In this review, current and next-generation BT vaccines are discussed in the light of prerequisites for different field situations.
Collapse
Affiliation(s)
- Femke Feenstra
- a Department of Virology , Central Veterinary Institute of Wageningen UR , Lelystad , The Netherlands.,b Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine , Utrecht University , Utrecht , The Netherlands
| | - Piet A van Rijn
- a Department of Virology , Central Veterinary Institute of Wageningen UR , Lelystad , The Netherlands.,c Department of Biochemistry , Center for Human Metabolomics, North-West University , Potchefstroom , South Africa
| |
Collapse
|
11
|
Sun EC, Huang LP, Xu QY, Wang HX, Xue XM, Lu P, Li WJ, Liu W, Bu ZG, Wu DL. Emergence of a Novel Bluetongue Virus Serotype, China 2014. Transbound Emerg Dis 2016; 63:585-589. [PMID: 27597166 DOI: 10.1111/tbed.12560] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 01/10/2023]
Abstract
One hundred and twenty-six blood samples were collected from healthy sheep and goats in Xinjiang, China, during July 2014. Seventy-three samples (57.93%) were bluetongue virus (BTV) serology-positive, and 39 samples (30.95%) were BTV NS1 gene-positive. BTV strain XJ1407 was isolated from the blood of BTV NS1 gene-positive animals and sequenced. Analysis of its genome sequence suggests that XJ1407 is a novel BTV serotype.
Collapse
Affiliation(s)
- E C Sun
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - L P Huang
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Q Y Xu
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - H X Wang
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - X M Xue
- The Center for Animal Disease Control of Bayingol Mongol Autonomous Prefecture, Korla, China
| | - P Lu
- The Institute of Animal Health Supervision of Bayingol Mongol Autonomous Prefecture, Korla, China
| | - W J Li
- China Animal Disease Control Center, Beijing, China
| | - W Liu
- China Animal Disease Control Center, Beijing, China
| | - Z G Bu
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - D L Wu
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
12
|
Prime-boost vaccine strategy against viral infections: Mechanisms and benefits. Vaccine 2016; 34:413-423. [DOI: 10.1016/j.vaccine.2015.11.062] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 01/01/2023]
|