1
|
Hosseini E, Tsegay ZT, Smaoui S, Varzakas T. Lactic Acid Bacteria in Vinegar Fermentation: Diversity, Functionality and Health Benefits. Foods 2025; 14:698. [PMID: 40002142 PMCID: PMC11854781 DOI: 10.3390/foods14040698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Vinegar, frequently distilled by solid fermentation or liquid processes, was generated through the synergistic effect of a microbial community in open or semi-open environments. Based on the studied raw materials, researchers distributed the vinegar into three classes: grain, fruit and animal, with lactic acid bacteria (LAB) playing a pivotal role in their fermentation and contributing significantly to their functional and sensory qualities. Typically, the natural maturation of fresh vinegar necessitates a long period and vast space, engendering a reduced efficiency. To accelerate the vinegar aging process, some physical methods, viz. micro-oxygenation, ozone, ultrasound, microwave, gamma rays, infrared, electric fields and high pressure, have been developed. Produced or enriched by LAB, key bioactive vinegar components are organic acids, phenolic compounds, melanoidins, and tetramethylpyrazine. These active compounds have antibacterial, antioxidant, anti-inflammatory functions; aid in the regulation of liver protection metabolism and glucose control; and have blood pressure, anti-tumor, anti-fatigue and metabolic regulatory effects. The review explores advancements in vinegar production, including modernized fermentation processes and optimized aging techniques, which enhance these beneficial compounds and ensure product consistency and safety. By examining the LAB variety strains and the bioactive profiles of different vinegar types, this study highlights vinegar's value beyond a culinary product, as a potential therapeutic agent in human nutrition and health. The findings underscore vinegar's relevance not only in dietary and preventive healthcare but also as a potential functional food ingredient. Further research is needed to explore the mechanisms of action through which LAB contribute to the development of several new healthy vinegars.
Collapse
Affiliation(s)
- Elahesadat Hosseini
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran;
- Department of Chemical Engineering, Payame Noor University, Tehran 1659639884, Iran
| | - Zenebe Tadesse Tsegay
- Department of Food Science and Post-Harvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle P.O. Box 231, Ethiopia;
| | - Slim Smaoui
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| |
Collapse
|
2
|
Zhang J, Duan Y, Lin Y, Chen J, Cheng J, Song C, Zuo J, Zhang S, Zuo Y. Effects of pits of different ages on ethyl acetate and its metabolism-related microorganisms during strong-flavor Baijiu fermentation. Front Microbiol 2025; 16:1532869. [PMID: 39931382 PMCID: PMC11807979 DOI: 10.3389/fmicb.2025.1532869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
The esters are the most important flavor components in Baijiu as their species and content decide the style of Baijiu. During the formation of esters, pits play important roles. In this study, the main esters and their related microorganisms in different years of pits (5, 35 and 100 years) of strong-flavor Baijiu were comprehensively researched by headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) and amplicon sequencing. A total of 690 bacterial genera and 155 fungal genera were detected. The microbial composition of ZPs (fermented grains) from 100 years pit was the most abundant at the genus level. A total of 177 volatile flavor components were observed, including 80 esters, 42 alcohols, 21 acids, 10 ketones and 11 aldehydes. Ethyl acetate was the lowest and ethyl caproate was relatively high in 100 years pit. 15 genera, including Lactobacillus, Pichia, Issatchenkia, Saccharomyces, and Aspergillus, were positively related to the formation of four major esters and their precursors. The research demonstrated that 100 years pit was benefit for maintaining microbial diversity and controlling ethyl acetate. This study is helpful for understanding the microbial composition and succession in the fermentation process of strong-flavor Baijiu, and revealing the complex relationships between dominant genera, physicochemical properties and volatile flavor components.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Luzhou Laojiao Group Co., Ltd., Luzhou, China
| | - Yunxuan Duan
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yang Lin
- Luzhou Laojiao Group Co., Ltd., Luzhou, China
| | - Jing Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jie Cheng
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Luzhou Laojiao Group Co., Ltd., Luzhou, China
| | - Chuan Song
- Luzhoulaojiao Postdoctoral Programme, Luzhou Laojiao Group Co., Ltd., Luzhou, China
| | - Jincen Zuo
- Xichong County, Agricultural and Rural Bureau, Nanchong, China
| | - Suyi Zhang
- Luzhou Laojiao Group Co., Ltd., Luzhou, China
- Luzhoulaojiao Postdoctoral Programme, Luzhou Laojiao Group Co., Ltd., Luzhou, China
| | - Yong Zuo
- College of Life Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
3
|
Li Q, Zhang Y, Wang C, Zhang X, Wei R, Li Y, Li Q, Xu N. Comparative Study on the Fermentation Characteristics of Selective Lactic Acid Bacteria in Shanxi Aged Vinegar: Pure Culture Versus Co-Culture. Foods 2024; 13:3374. [PMID: 39517158 PMCID: PMC11544899 DOI: 10.3390/foods13213374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The diversity of the microbial community structure plays a crucial role in the flavor and nutritional value of Shanxi aged vinegar in fermentation. Illumina Miseq high-throughput sequencing identified thirteen bacterial genera, with Lactobacillales (44.89%) and Acetobacter (21.04%) being the predominant species. Meanwhile, the fermentation characteristics of selected lactic acid bacteria strains isolated from Shanxi aged vinegar were studied in different media. The results showed that the biomass, and physical and chemical indices, as well as flavor compounds of the four strains of lactic acid bacteria in the simulated vinegar fermented grains medium were superior to those in barley and pea medium and sorghum juice medium. The bacterial interaction was conducted to investigate the effects on growth, the physicochemical indices, and flavor substances in order to determine the optimal combination. Furthermore, the interaction between pure cultures and co-cultures of lactic acid bacteria in a simulated vinegar culture medium was investigated, with a focus on the impact of this interaction on strain growth, fermentation characteristics, and flavor compound production. Compared with the pure culture, when strains L7 and L729 were co-inoculated, the reducing sugar content was 0.31 ± 0.01 g/100 g, total acid content was 3.02 ± 0.06 g/100 g, acetoin content was 2.41 ± 0.07 g/100 g, and total organic acid content was 3.77 ± 0.17 g/100 g. In terms of flavor compounds, the combined culture system exhibited higher levels of esters, aldehydes, and acids compared to pure cultures or other co-culture systems. This study revealed the fermentation characteristics of selected lactic acid strains in Shanxi aged vinegar under different conditions and their interaction in simulated vinegar fermentation media, which could provide theoretical support for the safety and health evaluation of aged vinegar.
Collapse
Affiliation(s)
- Qi Li
- Shanxi Province Vinegar Brewing Technology Innovation Center, College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Q.L.); (Y.Z.); (C.W.); (X.Z.); (R.W.)
| | - Yujing Zhang
- Shanxi Province Vinegar Brewing Technology Innovation Center, College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Q.L.); (Y.Z.); (C.W.); (X.Z.); (R.W.)
| | - Chaomin Wang
- Shanxi Province Vinegar Brewing Technology Innovation Center, College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Q.L.); (Y.Z.); (C.W.); (X.Z.); (R.W.)
| | - Xiaoyu Zhang
- Shanxi Province Vinegar Brewing Technology Innovation Center, College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Q.L.); (Y.Z.); (C.W.); (X.Z.); (R.W.)
| | - Ruteng Wei
- Shanxi Province Vinegar Brewing Technology Innovation Center, College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Q.L.); (Y.Z.); (C.W.); (X.Z.); (R.W.)
| | - Yunlong Li
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, China;
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China;
| | - Nv Xu
- Shanxi Province Vinegar Brewing Technology Innovation Center, College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Q.L.); (Y.Z.); (C.W.); (X.Z.); (R.W.)
| |
Collapse
|
4
|
Ye X, Yu Y, Liu J, Zhu Y, Yu Z, Liu P, Wang Y, Wang K. Seasonal environmental factors drive microbial community succession and flavor quality during acetic acid fermentation of Zhenjiang aromatic vinegar. Front Microbiol 2024; 15:1442604. [PMID: 39171262 PMCID: PMC11335490 DOI: 10.3389/fmicb.2024.1442604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
This study investigated the impact of seasonal environmental factors on microorganisms and flavor compounds during acetic acid fermentation (AAF) of Zhenjiang aromatic vinegar (ZAV). Environmental factors were monitored throughout the fermentation process, which spanned multiple seasons. Methods such as headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), high performance liquid chromatography (HPLC), and high-throughput sequencing were employed to examine how these environmental factors influenced the flavor profile and microbial community of ZAV. The findings suggested that ZAV brewed in autumn had the strongest flavor and sweetness. The key microorganisms responsible for the flavor of ZAV included Lactobacillus acetotolerans, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus fermentum, Acetobacter pasteurianus. Moreover, correlation analysis showed that room temperature had a significant impact on the composition of the microbial community, along with other key seasonal environmental factors like total acid, pH, reducing sugar, and humidity. These results provide a theoretical foundation for regulating core microorganisms and environmental factors during fermentation, enhancing ZAV quality.
Collapse
Affiliation(s)
- Xiaoting Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Jiaxin Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| |
Collapse
|
5
|
Yu X, Gu C, Guo X, Guo R, Zhu L, Qiu X, Chai J, Liu F, Feng Z. Dynamic changes of microbiota and metabolite of traditional Hainan dregs vinegar during fermentation based on metagenomics and metabolomics. Food Chem 2024; 444:138641. [PMID: 38325080 DOI: 10.1016/j.foodchem.2024.138641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Hainan dregs vinegar (HNDV) is a traditional fermented food in China that is renowned for its unique flavor. HNDV is one of the most popular vinegars in Southeast Asia. However, research on the microorganisms and characteristic metabolites specific to HNDV is lacking. This study investigated the changes in microbial succession, volatile flavor compounds and characteristic non-volatile flavor compounds during HNDV fermentation based on metagenomics and metabolomics. The predominant microbial genera were Lactococcus, Limosilactobacillus, Lactiplantibacillus, and Saccharomyces. Unlike traditional vinegar, l-lactic acid was identified as the primary organic acid in HNDV. Noteworthy flavor compounds specific to HNDV included 3-methylthiopropanol and dl-phenylalanine. Significant associations were observed between six predominant microorganisms and six characteristic volatile flavor compounds, as well as seven characteristic non-volatile flavor compounds. The present results contribute to the development of starter cultures and the enhancement of HNDV quality.
Collapse
Affiliation(s)
- Xiaohan Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chunhe Gu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Xiaoxue Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ruijia Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lin Zhu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinrong Qiu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jun Chai
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhen Feng
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China.
| |
Collapse
|
6
|
Han D, Yang Y, Guo Z, Chen K, Dai S, Zhu Y, Wang Y, Yu Z, Wang K, Liu P, Rong C, Yu Y. Metagenomics profiling of the microbial community and functional differences in solid-state fermentation vinegar starter (seed Pei) from different Chinese regions. Front Microbiol 2024; 15:1389737. [PMID: 38756727 PMCID: PMC11096547 DOI: 10.3389/fmicb.2024.1389737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction The starter used in solid-state fermentation (SSF) vinegar, known as seed Pei is a microbial inoculant from the previous batch that is utilized during the acetic acid fermentation stage. The seed Pei, which has a notable impact on vinegar fermentation and flavor, is under-researched with comparative studies on microorganisms. Methods Herein metagenomics was employed to reveal the microbes and their potential metabolic functions of four seed Pei from three regions in China. Results The predominant microbial taxa in all four starters were bacteria, followed by viruses, eukaryotes, and archaea, with Lactobacillus sp. or Acetobacter sp. as main functional taxa. The seed Pei used in Shanxi aged vinegar (SAV) and Sichuan bran vinegar (SBV) exhibited a higher similarity in microbial composition and distribution of functional genes, while those used in two Zhenjiang aromatic vinegar (ZAV) differed significantly. Redundancy analysis (RDA) of physicochemical factors and microbial communities indicated that moisture content, pH, and reducing sugar content are significant factors influencing microbial distribution. Moreover, seven metagenome-assembled genomes (MAGs) that could potentially represent novel species were identified. Conclusions There are distinctions in the microbiome and functional genes among different seed Pei. The vinegar starters were rich in genes related to carbohydrate metabolism. This research provides a new perspective on formulating vinegar fermentation starters and developing commercial fermentation agents for vinegar production.
Collapse
Affiliation(s)
- Dong Han
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yunsong Yang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhantong Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ken Chen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Shuwen Dai
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Chunchi Rong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
7
|
Leal Maske B, Murawski de Mello AF, da Silva Vale A, Prado Martin JG, de Oliveira Soares DL, De Dea Lindner J, Soccol CR, de Melo Pereira GV. Exploring diversity and functional traits of lactic acid bacteria in traditional vinegar fermentation: A review. Int J Food Microbiol 2024; 412:110550. [PMID: 38199016 DOI: 10.1016/j.ijfoodmicro.2023.110550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Vinegar has been used for centuries as a food preservative, flavor enhancer, and medicinal agent. While commonly known for its sour taste and acidic properties due to acetic acid bacteria metabolism, vinegar is also home to a diverse community of lactic acid bacteria (LAB). The main genera found during natural fermentation include Lactobacillus, Lacticaseibacillus, Lentilactobacillus, Limosilactbacillus, Leuconostoc, and Pedicoccus. Many of the reported LAB species fulfill the probiotic criteria set by the World Health Organization (WHO). However, it is crucial to acknowledge that LAB viability undergoes a significant reduction during vinegar fermentation. While containing LAB, none of the analyzed vinegar met the minimum viable amount required for probiotic labeling. To fully unlock the potential of vinegar as a probiotic, investigations should be focused on enhancing LAB viability during vinegar fermentation, identifying strains with probiotic properties, and establishing appropriate dosage and consumption guidelines to ensure functional benefits. Currently, vinegar exhibits substantial potential as a postbiotic product, attributed to the high incidence and growth of LAB in the initial stages of the fermentation process. This review aims to identify critical gaps and address the essential requirements for establishing vinegar as a viable probiotic product. It comprehensively examines various relevant aspects, including vinegar processing, total and LAB diversity, LAB metabolism, the potential health benefits linked to vinegar consumption, and the identification of potential probiotic species.
Collapse
Affiliation(s)
- Bruna Leal Maske
- Federal University of Paraná (UFPR), Department of Bioprocess Engineering and Biotechnology, Curitiba, PR, Brazil; SENAI Institute of Innovation in Electrochemistry, Curitiba, PR, Brazil
| | | | - Alexander da Silva Vale
- Federal University of Paraná (UFPR), Department of Bioprocess Engineering and Biotechnology, Curitiba, PR, Brazil
| | | | | | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Carlos Ricardo Soccol
- Federal University of Paraná (UFPR), Department of Bioprocess Engineering and Biotechnology, Curitiba, PR, Brazil
| | | |
Collapse
|
8
|
Li Y, Wang A, Dang B, Yang X, Nie M, Chen Z, Lin R, Wang L, Wang F, Tong LT. Deeply analyzing dynamic fermentation of highland barley vinegar: Main physicochemical factors, key flavors, and dominate microorganisms. Food Res Int 2024; 177:113919. [PMID: 38225120 DOI: 10.1016/j.foodres.2023.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Highland barley vinegar, as a solid-state fermentation-type vinegar emerged recently, is well-known in Qinghai-Tibet plateau area of China. This work aimed to explore the main physicochemical factors, key flavor volatile compounds, and dominate microorganisms of highland barley vinegar during fermentation. The results showed that the decrease trend of reducing sugar, pH and the increase trend of amino acid nitrogen were associated with the metabolism of dominate bacteria, especially Lactobacillus and Acetobacter. Totally, 35 volatile compounds mainly including 20 esters, 10 alcohols, 2 aldehydes, 1 ketone and 2 pyrazines and 7 organic acids were identified. Especially, isoamyl acetate, acetyl methyl carbinol, ethyl caprylate, 1,2-propanediol, 3-methyl-1-butanol and ethyl isovalerate with high odor activity values were confirmed as key aroma compounds. Meanwhile, the relative average abundance of bacteria at genus level decreased significantly as fermentation time goes on. Among these microbes, Lactobacillus were the dominate bacteria at alcohol fermentation stage, Lactobacillus and Acetobacter were dominate at acetic acid fermentation stage. Furthermore, the correlations between dominate bacteria and the key volatile compounds were revealed, which highlighted Lactobacillus and Acetobacter were significantly correlated with key volatile compounds (|r| > 0.5, P < 0.01). The fundings of this study provide insights into the flavor and assist to improve the production quality of highland barley vinegar.
Collapse
Affiliation(s)
- Yan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Aixia Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Bin Dang
- Qinghai Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, China
| | - Xijuan Yang
- Qinghai Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, China
| | - Mengzi Nie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Zhiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Ran Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
9
|
Qin Y, Wu L, Zhang Q, Wen C, Van Nostrand JD, Ning D, Raskin L, Pinto A, Zhou J. Effects of error, chimera, bias, and GC content on the accuracy of amplicon sequencing. mSystems 2023; 8:e0102523. [PMID: 38038441 PMCID: PMC10734440 DOI: 10.1128/msystems.01025-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Amplicon sequencing of targeted genes is the predominant approach to estimate the membership and structure of microbial communities. However, accurate reconstruction of community composition is difficult due to sequencing errors, and other methodological biases and effective approaches to overcome these challenges are essential. Using a mock community of 33 phylogenetically diverse strains, this study evaluated the effect of GC content on sequencing results and tested different approaches to improve overall sequencing accuracy while characterizing the pros and cons of popular amplicon sequence data processing approaches. The sequencing results from this study can serve as a benchmarking data set for future algorithmic improvements. Furthermore, the new insights on sequencing error, chimera formation, and GC bias from this study will help enhance the quality of amplicon sequencing studies and support the development of new data analysis approaches.
Collapse
Affiliation(s)
- Yujia Qin
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Liyou Wu
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Qiuting Zhang
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Chongqin Wen
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Joy D. Van Nostrand
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Daliang Ning
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ameet Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma, USA
- School of Computer Science, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
10
|
Nishihara K, van Niekerk J, He Z, Innes D, Guan LL, Steele M. Reduction in mucosa thickness is associated with changes in immune function in the colon mucosa during the weaning transition in Holstein bull dairy calves. Genomics 2023; 115:110680. [PMID: 37454938 DOI: 10.1016/j.ygeno.2023.110680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
This study aims to characterize changes in the structure and the molecules related to immune function in the colon mucosa in dairy calves during the weaning transition (weaned at week 6 of age). Colon mucosa thickness, measured at week 5 to 8 and 12 of age, decreased for 2 weeks after weaning, but then recovered. Colon mucosa's transcriptome profiling at week 5, 7, and 12 of age was obtained using RNA-sequencing. Functional analysis showed that pathways related to immune function were up-regulated postweaning. A weighted gene co-expression network analysis identified 17 immune function related genes, expressed higher postweaning, which were negatively correlated with colon mucosa thickness, suggesting that these genes may be involved in colon mucosa inflammation and recovery from mucosa thickness decrement during the weaning transition. As such, it is important to determine the function of immune cells in the colon mucosa during the weaning transition in dairy calves.
Collapse
Affiliation(s)
- Koki Nishihara
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - Jolet van Niekerk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - David Innes
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Michael Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada.
| |
Collapse
|
11
|
Yang H, Wang J, Cao W. Improved liquid-liquid extraction followed by HPLC-UV for accurate and eco-friendly determination of tetramethylpyrazine in vinegar products. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123869. [PMID: 37716345 DOI: 10.1016/j.jchromb.2023.123869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Tetramethylpyrazine (TMP) is an important bioactive compound in vinegars, contributing to their health-enhancing attributes. It serves as a crucial benchmark for the assessment of vinegar quality. Unfortunately, inaccuracies have arisen due to incomplete extraction techniques and the use of an inappropriate standard substance. These challenges have significantly curtailed comprehensive exploration into the underlying TMP formation mechanisms, impeding advancements within prevailing benchmarks and methodologies governing vinegar products. To address these challenges, several critical parameters, encompassing pH, solvent type, centrifugal force, extraction times and reference materials were investigated and optimized. The TMP content was determined by adjusting the pH to 9 using a sodium hydroxide solution, followed by extraction with ethyl acetate and subsequent re-extraction of the ethyl acetate layer with 0.2 mol/L HCl. A high-performance liquid chromatography method with an ultraviolet detector (UV) was developed and validated. This method demonstrated superior sensitivity compared to existing methods, with a limit of detection (LOD) of 0.0237 μg/g, limit of quantification (LOQ) of 0.0829 μg/g, method limit of detection (MLOD) of 0.10 μg/g and method limit of quantitation (MLOQ) of 0.25 μg/g. The modified method exhibited excellent linearity for TMP in the range of 0.1-118.4 μg/mL, with a good correlation coefficient (R2 > 0.999). The recovery rate of TMP in vinegar products ranged from 82.4 to 96.2%. Consequently, the proposed method exhibits substantial promise for systematic inquiry into TMP formation mechanisms and for ensuring consistent quality control during the production of premium-grade vinegars.
Collapse
Affiliation(s)
- Hong Yang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Jing Wang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Wenming Cao
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China.
| |
Collapse
|
12
|
Sun D, Li W, Luo L. Deciphering the brewing process of Cantonese-style rice vinegar: Main flavors, key physicochemical factors, and important microorganisms. Food Res Int 2023; 171:113068. [PMID: 37330828 DOI: 10.1016/j.foodres.2023.113068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Cantonese-style rice vinegar is one of the most important Chinese rice vinegars and is quite popular all over the southeast coast of China, especially in Guangdong. This study identified 31 volatile compounds, including 11 esters, 6 alcohols, 3 aldehydes, 3 acids, 2 ketones, 1 phenol, and 5 alkanes, using headspace solid-phase microextraction-gas chromatography-mass spectrometry. Six organic acids were detected by high performance liquid chromatography. The ethanol content was detected by gas chromatography. During acetic acid fermentation, physicochemical analysis showed that the initial concentrations of reducing sugar and ethanol were 0.0079 g/L and 23.81 g/L, respectively, and the final value of total acid was 46.5 g/L, and the pH value was stable at 3.89. High-throughput sequencing was used to identify the microorganisms, and Acetobacter, Komagataeibacter, and Ralstonia were the top three bacterial genera. Quantitative real-time polymerase chain reaction revealed patterns that were different from those of high-throughput sequencing. The co-occurrence network of microorganisms and the correlation analysis between microorganisms and flavor substances indicate that Acetobacter and Ameyamaea played crucial roles as the main functional AAB, and the failure of Cantonese-style rice vinegar fermentation can be attributed to the abnormal increase in Komagataeibacter. Microbial co-occurrence network analysis indicated that Oscillibacter, Parasutterella, and Alistipes were the top three microorganisms. Redundancy analysis disclosed that total acid and ethanol were the key environmental factors influencing the microbial community. Fifteen microorganisms closely related to the metabolites were identified using the bidirectional orthogonal partial least squares model. Correlation analysis showed that these microorganisms were strongly associated with flavor metabolites and environmental factors. The findings of this study deepen our understanding of the fermentation of traditional Cantonese-style rice vinegar.
Collapse
Affiliation(s)
- Dongdong Sun
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Weixin Li
- Guangdong Heshan Donggu Flavoring Food Co. Ltd, Heshan 529700, PR China
| | - Lixin Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
13
|
Dong K, Li W, Xu Q, Hong Z, Zhang S, Zhang B, Wu Y, Zuo H, Liu J, Yan Z, Pei X. Exploring the correlation of metabolites changes and microbial succession in solid-state fermentation of Sichuan Sun-dried vinegar. BMC Microbiol 2023; 23:197. [PMID: 37488503 PMCID: PMC10364395 DOI: 10.1186/s12866-023-02947-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND The traditional Sichuan Sun-dried vinegar (SSV) with unique flavor and taste is believed to be generated by the solid-state fermentation craft. However, how microorganisms and their metabolites change along with fermentation has not yet been explored. RESULTS In this study, our results demonstrated that the middle and late stages of SSV fermentation were the periods showing the largest accumulation of organic acids and amino acids. Furthermore, in the bacterial community, the highest average relative abundance was Lactobacillus (ranging from 37.55 to 92.50%) in all fermentation stages, while Acetobacters ranked second position (ranging from 20.15 to 0.55%). The number of culturable lactic acid bacteria is also increased during fermentation process (ranging from 3.93 to 8.31 CFU/g). In fungal community, Alternaria (29.42%), Issatchenkia (37.56%) and Zygosaccharomyces (69.24%) were most abundant in different fermentation stages, respectively. Interestingly, Zygosaccharomyces, Schwanniomyces and Issatchenkia were first noticed as the dominant yeast genera in vinegar fermentation process. Additionally, spearman correlation coefficients exhibited that Lactobacillus, Zygosaccharomyces and Schwanniomyces were significant correlation with most metabolites during the fermentation, implying that these microorganisms might make a significant contribution to the flavor formation of SSV. CONCLUSION The unique flavor of SSV is mainly produced by the core microorganisms (Lactobacillus, Zygosaccharomyces and Schwanniomyces) during fermentation. This study will provide detailed information related to the structure of microorganism and correlation between changes in metabolites and microbial succession in SSV. And it will be very helpful for proposing a potential approach to monitor the traditional fermentation process.
Collapse
Affiliation(s)
- Ke Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China
| | - Weizhou Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China
| | - Qiuhong Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China
| | - Zehui Hong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China
| | - Shirong Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China
| | - Baochao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China
| | - Yating Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China
| | - Haojiang Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China
| | - Jiazhen Liu
- Zigong Qiantian Baiwei Food Co., Ltd, Zigong, 643200, PR China
| | - Ziwen Yan
- Zigong Qiantian Baiwei Food Co., Ltd, Zigong, 643200, PR China
| | - Xiaofang Pei
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China.
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
- West China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
14
|
Li Q, Hu K, Mou J, Li J, Liu A, Ao X, Yang Y, He L, Chen S, Zou L, Guo M, Liu S. Insight into the acid tolerance mechanism of Acetilactobacillus jinshanensis subsp. aerogenes Z-1. Front Microbiol 2023; 14:1226031. [PMID: 37520381 PMCID: PMC10382275 DOI: 10.3389/fmicb.2023.1226031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Several lactic acid bacteria (LAB) are double-edged swords in the production of Sichuan bran vinegar; on the one hand, they are important for the flavour of the vinegar, but on the other hand, they result in vinegar deterioration because of their gas-producing features and their acid resistance. These characteristics intensify the difficulty in managing the safe production of vinegar using strains such as Acetilactobacillus jinshanensis subsp. aerogenes Z-1. Therefore, it is necessary to characterize the mechanisms underlying their acid tolerance. The results of this study showed a survival rate of 77.2% for Z-1 when exposed to pH 3.0 stress for 1 h. This strain could survive for approximately 15 days in a vinegar solution with 4% or 6% total acid content, and its growth was effectively enhanced by the addition of 10 mM of arginine (Arg). Under acidic stress, the relative content of the unsaturated fatty acid C18:1 (n-11) increased, and eight amino acids accumulated in the cells. Meanwhile, based on a transcriptome analysis, the genes glnA, carA/B, arcA, murE/F/G, fabD/H/G, DnaK, uvrA, opuA/C, fliy, ecfA2, dnaA and LuxS, mainly enriched in amino acid transport and metabolism, protein folding, DNA repair, and cell wall/membrane metabolism processes, were hypothesized to be acid resistance-related genes in Z-1. This work paves the way for further clarifying the acid tolerance mechanism of Z-1 and shares applicable perspectives for vinegar brewing.
Collapse
Affiliation(s)
- Qin Li
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Juan Mou
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingye Guo
- Sichuan Baoning Vinegar Co., Ltd, Langzhong, Sichuan, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| |
Collapse
|
15
|
Tang Q, Huang J, Zhang S, Qin H, Dong Y, Wang C, Li D, Zhou R. Exploring the mechanism of regulating the microbial community and metabolizing trait in Chinese Baijiu fermentation via Huizao. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Wang W, Zhang F, Dai X, Liu Y, Mu J, Wang J, Ma Q, Sun J. Changes in vinegar quality and microbial dynamics during fermentation using a self-designed drum-type bioreactor. Front Nutr 2023; 10:1126562. [PMID: 36908901 PMCID: PMC9994180 DOI: 10.3389/fnut.2023.1126562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023] Open
Abstract
The bioreactor based on solid-state fermentation technology has been developed for vinegar production, standardization of fermentation process and stabilization of vinegar quality. The microbial community diversity, and volatile compounds of six cultivars of vinegar samples fermented in a self-designed solid-state fermentation bioreactors were investigated using Illumina MiSeq platform and gas chromatography mass spectrometry (GC-MS) technology. The correlations between the richness and diversity of microbiota and volatile profiles, organic acids, as well as physicochemical indicators were explored by R software with the coplot package. The findings indicated that Acetobacter, norank-c-Cyanobacteria, and Weissella played key roles during fermentation process. Norank-f-Actinopolyporaceae, norank-c-Cyanobacteria, Pediococcus, and Microbacterium had significant correlations with the physicochemical characteristics. The most common bacterial species were associated with a citric acid content, whereas the least number of bacterial species correlated with malic acid content. Findings could be helpful for the bioreactor optimization, and thus reaching the level of pilot scale and industrialization.
Collapse
Affiliation(s)
- Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Fan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xinpeng Dai
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jianlou Mu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China.,Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding, China.,Sino-US and Sino-Japan Joint Centre of Food Science and Technology, Baoding, China
| |
Collapse
|
17
|
Liu A, Ou Y, Shu H, Mou T, Li Q, Li J, Hu K, Chen S, He L, Zhou J, Ao X, Yang Y, Liu S. Exploring the role of Sichuan Baoning vinegar microbiota and the association with volatile flavor compounds at different fermentation depths. Front Microbiol 2023; 14:1135912. [PMID: 36876092 PMCID: PMC9975336 DOI: 10.3389/fmicb.2023.1135912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Cereal vinegar is usually produced through solid-state fermentation, and the microbial community plays an important role in fermentation. In this study, the composition and function of Sichuan Baoning vinegar microbiota at different fermentation depths were evaluated by high-throughput sequencing combined with PICRUSt and FUNGuild analysis, and variations in volatile flavor compounds were also determined. The results revealed that no significant differences (p > 0.05) were found in both total acid content and pH of vinegar Pei collected on the same day with different depths. There were significant differences between the bacterial community of samples from the same day with different depths at both phylum and genus levels (p < 0.05), however, no obvious difference (p > 0.05) was observed in the fungal community. PICRUSt analysis indicated that fermentation depth affected the function of microbiota, meanwhile, FUNGuild analysis showed that there were variations in the abundance of trophic mode. Additionally, differences in volatile flavor compounds were observed in samples from the same day with different depths, and significant correlations between microbial community and volatile flavor compounds were observed. The present study provides insights into the composition and function of microbiota at different depths in cereal vinegar fermentation and quality control of vinegar products.
Collapse
Affiliation(s)
- Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yixue Ou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Haojie Shu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Tianyu Mou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jiang Zhou
- Sichuan Baoning Vinegar Co., Ltd., Langzhong, Sichuan, China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
18
|
Liu A, Pan W, Li S, Li J, Li Q, He L, Chen S, Hu K, Hu X, Han G, Li S, Zhou J, Chen F, Liu S. Seasonal dynamics of microbiota and physicochemical indices in the industrial-scale fermentation of Sichuan Baoning vinegar. Food Chem X 2022; 16:100452. [PMID: 36185105 PMCID: PMC9516444 DOI: 10.1016/j.fochx.2022.100452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Differences between the microbiomes in every-two seasons were observed. The increase in total acidity of vinegar Pei was lowest in the summer (3.40 g/100 g). Lactic acid and acetic acid contents in raw vinegar from each season were different.
We investigated the impact of seasons of the year on microbiota and physicochemical indices in industrial-scale fermentation of Sichuan Baoning vinegar. Illumina HiSeq sequencing results showed significant differences (P < 0.05) between the microbiomes of vinegar Pei in every-two seasons, except for bacterial communities between summer and autumn. Total acid, reducing sugar, starch, and alcohol contents of vinegar Pei from the same sampling day of each season were measurably different. Although total acid content in vinegar Pei was similar at the end of fermentation (P > 0.05), the increase in total acidity was highest in the autumn. Acetic acid content in raw vinegar was highest in the autumn (3472.42 mg/100 mL), and lowest in the summer (2304.01 mg/100 mL). This study provides a theoretical basis for the production of Sichuan bran vinegar with consistent quality and provides insights into the quality control of traditional fermented foods.
Collapse
|
19
|
Yao Z, Zhu Y, Wu Q, Xu Y. Challenges and perspectives of quantitative microbiome profiling in food fermentations. Crit Rev Food Sci Nutr 2022; 64:4995-5015. [PMID: 36412251 DOI: 10.1080/10408398.2022.2147899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spontaneously fermented foods are consumed and appreciated for thousands of years although they are usually produced with fluctuated productivity and quality, potentially threatening both food safety and food security. To guarantee consistent fermentation productivity and quality, it is essential to control the complex microbiota, the most crucial factor in food fermentations. The prerequisite for the control is to comprehensively understand the structure and function of the microbiota. How to quantify the actual microbiota is of paramount importance. Among various microbial quantitative methods evolved, quantitative microbiome profiling, namely to quantify all microbial taxa by absolute abundance, is the best method to understand the complex microbiota, although it is still at its pioneering stage for food fermentations. Here, we provide an overview of microbial quantitative methods, including the development from conventional methods to the advanced quantitative microbiome profiling, and the application examples of these methods. Moreover, we address potential challenges and perspectives of quantitative microbiome profiling methods, as well as future research needs for the ultimate goal of rational and optimal control of microbiota in spontaneous food fermentations. Our review can serve as reference for the traditional food fermentation sector for stable fermentation productivity, quality and safety.
Collapse
Affiliation(s)
- Zhihao Yao
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education; State Key Laboratory of Food Science and Technology; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yang Zhu
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education; State Key Laboratory of Food Science and Technology; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education; State Key Laboratory of Food Science and Technology; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
20
|
Shi Y, Pu D, Zhou X, Zhang Y. Recent Progress in the Study of Taste Characteristics and the Nutrition and Health Properties of Organic Acids in Foods. Foods 2022; 11:3408. [PMID: 36360025 PMCID: PMC9654595 DOI: 10.3390/foods11213408] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 08/11/2023] Open
Abstract
Organic acids could improve the food flavor, maintain the nutritional value, and extend the shelf life of food. This review summarizes the detection methods and concentrations of organic acids in different foods, as well as their taste characteristics and nutritional properties. The composition of organic acids varies in different food. Fruits and vegetables often contain citric acid, creatine is a unique organic acid found in meat, fermented foods have a high content of acetic acid, and seasonings have a wide range of organic acids. Determination of the organic acid contents among different food matrices allows us to monitor the sensory properties, origin identification, and quality control of foods, and further provides a basis for food formulation design. The taste characteristics and the acid taste perception mechanisms of organic acids have made some progress, and binary taste interaction is the key method to decode multiple taste perception. Real food and solution models elucidated that the organic acid has an asymmetric interaction effect on the other four basic taste attributes. In addition, in terms of nutrition and health, organic acids can provide energy and metabolism regulation to protect the human immune and myocardial systems. Moreover, it also exhibited bacterial inhibition by disrupting the internal balance of bacteria and inhibiting enzyme activity. It is of great significance to clarify the synergistic dose-effect relationship between organic acids and other taste sensations and further promote the application of organic acids in food salt reduction.
Collapse
Affiliation(s)
- Yige Shi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Pu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xuewei Zhou
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
21
|
Xia M, Zhang X, Xiao Y, Sheng Q, Tu L, Chen F, Yan Y, Zheng Y, Wang M. Interaction of acetic acid bacteria and lactic acid bacteria in multispecies solid-state fermentation of traditional Chinese cereal vinegar. Front Microbiol 2022; 13:964855. [PMID: 36246224 PMCID: PMC9557190 DOI: 10.3389/fmicb.2022.964855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The microbial community plays an important role on the solid-state fermentation (SSF) of Chinese cereal vinegar, where acetic acid bacteria (AAB) and lactic acid bacteria (LAB) are the dominant bacteria. In this study, the top-down (in situ) and bottom-up (in vitro) approaches were employed to reveal the interaction of AAB and LAB in SSF of Shanxi aged vinegar (SAV). The results of high-throughput sequencing indicates that Acetobacter pasteurianus and Lactobacillus helveticus are the predominant species of AAB and LAB, respectively, and they showed negative interrelationship during the fermentation. A. pasteurianus CGMCC 3089 and L. helveticus CGMCC 12062, both of which were isolated from fermentation of SAV, showed no nutritional competition when they were co-cultured in vitro. However, the growth and metabolism of L. helveticus CGMCC 12062 were inhibited during SSF due to the presence of A. pasteurianus CGMCC 3089, indicating an amensalism phenomenon between these two species. The transcriptomic results shows that there are 831 differentially expressed genes (|log2 (Fold Change)| > 1 and, p ≤ 0.05) in L. helveticus CGMCC 12062 under co-culture condition comparing to its mono-culture, which are mainly classified into Gene Ontology classification of molecular function, biological process, and cell composition. Of those 831 differentially expressed genes, 202 genes are up-regulated and 629 genes are down-regulated. The down-regulated genes were enriched in KEGG pathways of sugar, amino acid, purine, and pyrimidine metabolism. The transcriptomic results for A. pasteurianus CGMCC 3089 under co-culture condition reveals 529 differentially expressed genes with 393 up-regulated and 136 down-regulated, and the genes within KEGG pathways of sugar, amino acid, purine, and pyrimidine metabolism are up-regulated. Results indicate an amensalism relationship in co-culture of A. pasteurianus and L. helveticus. Therefore, this work gives a whole insight on the interaction between the predominant species in SSF of cereal vinegar from nutrient utilization, endogenous factors inhibition and the regulation of gene transcription.
Collapse
Affiliation(s)
- Menglei Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaofeng Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yun Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qing Sheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Linna Tu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
| | - Yufeng Yan
- Shanxi Zilin Vinegar Industry Co., Ltd., Shanxi Province Key Laboratory of Vinegar Fermentation Science and Engineering, Taiyuan, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China,*Correspondence: Yu Zheng, Min Wang,
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China,*Correspondence: Yu Zheng, Min Wang,
| |
Collapse
|
22
|
Quantitative microbiome analysis reveals the microbial community assembly along with its correlation with the flavor substances during the manufacturing process of Qingzhuan brick tea at an industrial scale. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Liang S, Liu Y, Yuan S, Liu Y, Zhu B, Zhang M. Study of Consumer Liking of Six Chinese Vinegar Products and the Correlation between These Likings and the Volatile Profile. Foods 2022; 11:foods11152224. [PMID: 35892812 PMCID: PMC9332478 DOI: 10.3390/foods11152224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
As the aroma of Chinese vinegar is a key quality trait that influences consumer liking, a combination of sensory data and instrumental measurements were performed to help understand the aroma differences of six types of Chinese vinegar. A total of 52 volatile compounds, mostly ethyl acetate, acetic acid, and phenethyl alcohol, were detected in six types of Chinese vinegar using solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC–MS). Combined with open-ended questions, the correlation between consumer liking and the volatile profile of the vinegar was further investigated. More consumers preferred the potato vinegar (B6) described as “having a sweet aroma and fruity vinegar aroma”. The Heng-shun Jinyou balsamic vinegar (B5) was not favored by consumers with its exhibition of “too pungent vinegar aroma”. Based on their preference patterns, consumers were grouped into three clusters by k-means clustering and principal component analysis (PCA). Using partial least squares regression (PLSR), the most important volatile compounds that drove consumer liking in the three clusters were obtained, among which 14 compounds such as 1-methylpyrrole-2-carboxaldehyde, ethyl acetate, and acetylfuran had the greatest impact on consumer liking, which could guide manufacturers to improve product quality and customer satisfaction.
Collapse
Affiliation(s)
- Shan Liang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (S.L.); (Y.L.)
| | - Ying Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (S.L.); (Y.L.)
| | - Shao Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.Y.); (Y.L.)
| | - Yixuan Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.Y.); (Y.L.)
| | - Baoqing Zhu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.Y.); (Y.L.)
- Correspondence: (B.Z.); (M.Z.)
| | - Min Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (S.L.); (Y.L.)
- Correspondence: (B.Z.); (M.Z.)
| |
Collapse
|
24
|
Xie Z, Koysomboon C, Zhang H, Lu Z, Zhang X, Chen F. Vinegar Volatile Organic Compounds: Analytical Methods, Constituents, and Formation Processes. Front Microbiol 2022; 13:907883. [PMID: 35847078 PMCID: PMC9279916 DOI: 10.3389/fmicb.2022.907883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Vinegar is an acid condiment shared all over the world. According to the raw materials, vinegar can be mainly divided into fruit and cereal ones, both of which possess unique aroma and flavor characteristics and corresponding volatile organic compounds (VOCs). Many studies about vinegar VOCs' (VVOCs) sorts, analytical methods, and forming mechanisms have been done. In this review, the main categories of vinegar and their distribution in the world are briefly introduced, then VVOCs' analytical and identified methods, types, and forming processes are summarized. Additionally, the VVOCs' research directions are discussed and prospected. According to the searched literatures, this study is the first to systematically review the analytical methods, sorts, and formation mechanisms of VVOCs, which will make the readers better understand the vinegar's aromas and flavors and their producing mechanisms.
Collapse
Affiliation(s)
- Zhenzhen Xie
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chanisara Koysomboon
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenming Lu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Xiuyan Zhang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Mao F, Huang J, Zhou R, Qin H, Zhang S, Cai X, Qiu C. Effects of Different Daqu on Microbial Community Domestication and Metabolites in Nongxiang Baijiu Brewing Microecosystem. Front Microbiol 2022; 13:939904. [PMID: 35847071 PMCID: PMC9279870 DOI: 10.3389/fmicb.2022.939904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
The quality and yield of the fresh Baijiu mainly depend on the activity of pit mud (PM) and the quality of Daqu. However, the cultivation of PM is a long-term process, and high-quality Daqu can change the community structure of fermented grain (FG) and accelerate the evolution of PM communities. The present research aimed to investigate the four different types of Daqu on the FG-fermenting microbial community structure and metabolites and their interphase interactions with PM. These results show that Kroppenstedtia in the bacterial community of Taikong Daqu (TK) was positively correlated with ethyl caproate, which significantly increased the content of FG volatile metabolites, especially lipid components, and facilitated the accelerated evolution of Methanobacteriales and Methanosarcinales in PM. Bacillus has a high relative abundance in Qianghua Daqu (QH), which shows obvious advantages to improving the alcoholic strength of FG and contributing to increasing the abundance of Methanomicrobiales in PM. Qianghua and traditional-mixed Daqu (HH) have a similar bacterial composition to QH and a similar fungal composition to traditional Daqu (DZ), and thus also showed the advantage of increased yield, but the volatile flavor metabolites produced were not as dominant as DZ. β-diversity analysis showed that in TK fermentation systems, FG is more likely to domesticate the structure of PM microorganisms. These results indicated that the interaction between microbial communities in Baijiu fermentation niches was significantly influenced by different Daqu. It can not only enhance the key volatiles in FG but also accelerate the evolving direction of the community in PM. Daqu fortified by functional genera or microbiota can evolve a community structure more suitable for Baijiu fermentation. The microbiota composition and interaction between the communities in both Daqu and PM significantly impacts the yield and quality of the base liquor.
Collapse
Affiliation(s)
- Fengjiao Mao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- National Engineering Laboratory of Clean Technology for Leather Manufacture, Sichuan University, Chengdu, China
- National Engineering Research Centre of Solid-State Brewing, Luzhou, China
- *Correspondence: Rongqing Zhou,
| | - Hui Qin
- Lu Zhou Lao Jiao Co., Ltd., Luzhou, China
| | - Suyi Zhang
- Lu Zhou Lao Jiao Co., Ltd., Luzhou, China
| | - Xiaobo Cai
- Lu Zhou Lao Jiao Co., Ltd., Luzhou, China
| | | |
Collapse
|
26
|
Zheng S, Wu W, Zhang Y, Hu P, Li J, Jiang J. Improvement of tomato sour soup fermentation by
Lacticaseibacillus casei
H1
addition. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shasha Zheng
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Wenyan Wu
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Yulong Zhang
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Ping Hu
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Juan Li
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Jingzhu Jiang
- College of Brewing and Food Engineering Guizhou University Guiyang China
| |
Collapse
|
27
|
Liu RC, Li R, Wang Y, Jiang ZT. Analysis of volatile odor compounds and aroma properties of European vinegar by the ultra-fast gas chromatographic electronic nose. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Processing Technologies and Flavor Analysis of Chinese Cereal Vinegar: a Comprehensive Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02328-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Zheng Y, Zhao C, Li X, Xia M, Wang X, Zhang Q, Yan Y, Lang F, Song J, Wang M. Kinetics of predominant microorganisms in the multi-microorganism solid-state fermentation of cereal vinegar. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Shi H, Li J, Zhang Y, Ding K, Zhao G, Hadiatullah H, Duan X. Effect of wheat germination on nutritional properties and the flavor of soy sauce. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Analysis of the microbial community and the metabolic profile in medium-temperature Daqu after inoculation with Bacillus licheniformis and Bacillus velezensis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Wang D, Wang M, Cao L, Wang X, Sun J, Yuan J, Gu S. Changes and correlation of microorganism and flavor substances during persimmon vinegar fermentation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Unraveling the Chemosensory Characteristics of Typical Chinese Commercial Rice Vinegars with Multiple Strategies. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Shi H, Zhou X, Yao Y, Qu A, Ding K, Zhao G, Liu SQ. Insights into the microbiota and driving forces to control the quality of vinegar. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Exploring of seasonal dynamics of microbial community in multispecies fermentation of Shanxi mature vinegar. J Biosci Bioeng 2022; 133:375-381. [DOI: 10.1016/j.jbiosc.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/04/2023]
|
36
|
Xue Y, Tang F, Cai W, Zhao X, Song W, Zhong J, Liu Z, Guo Z, Shan C. Bacterial Diversity, Organic Acid, and Flavor Analysis of Dacha and Ercha Fermented Grains of Fen Flavor Baijiu. Front Microbiol 2022; 12:769290. [PMID: 35058895 PMCID: PMC8765705 DOI: 10.3389/fmicb.2021.769290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 01/12/2023] Open
Abstract
Fen flavor Baijiu needs two rounds of fermentation, which will obtain Dacha after initial fermentation and Ercha after secondary fermentation. The quality of Baijiu is closely related to the microbes within fermented grains. However, the bacterial diversity in Dacha and Ercha fermented grains of Fen flavor Baijiu has not been reported. In the present study, the structure and diversity of bacteria communities within fermented grains of Fen flavor Baijiu were analyzed and evaluated using MiSeq platform's HTS with a sequencing target of the V3-V4 region of the 16S rRNA gene. Through the analysis of physical and chemical indexes and electronic senses, the relationship between bacterial flora, organic acid, taste, and aroma in fermented grains was clarified. The results indicated that Lactobacillus was the main bacteria in Dacha, and the mean relative content was 97.53%. The bacteria within Ercha samples were Pseudomonas and Bacillus, mean relative content was 37.16 and 28.02%, respectively. The diversity of bacterial communities in Ercha samples was significantly greater than that in Dacha samples. The correlation between Lactobacillus and organic acids, especially lactic acid, led to the difference between Dacha and Ercha organic acids, which also made the pH value of Dacha lower and the sour taste significantly higher than Ercha. Lactobacillus was significantly positively correlated with a variety of aromas, which made Dacha the response value of aromas higher. In addition, Bacillus had a significant positive correlation with bitterness and aromatic compounds, which led to a higher response value of bitterness in Ercha and made it present an aromatic aroma. This study provides an in-depth analysis of the difference between different stages of Fen flavor Baijiu, and theoretical support for the standard production and improvement in quality of Fen flavor Baijiu in the future.
Collapse
Affiliation(s)
- Yu'ang Xue
- School of Food Science, Shihezi University, Shihezi, China.,School of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China.,Xiangyang Liquor Brewing Biotechnology and Application Enterprise-University Joint Innovation Center, Xiangyang, China
| | - Fengxian Tang
- School of Food Science, Shihezi University, Shihezi, China
| | - Wenchao Cai
- School of Food Science, Shihezi University, Shihezi, China
| | - Xinxin Zhao
- School of Food Science, Shihezi University, Shihezi, China
| | - Wen Song
- School of Food Science, Shihezi University, Shihezi, China
| | - Ji'an Zhong
- Xiangyang Liquor Brewing Biotechnology and Application Enterprise-University Joint Innovation Center, Xiangyang, China.,Xiangyang Fen-Flavor Baijiu Biotechnology Key Laboratory, Xiangyang, China
| | - Zhongjun Liu
- Xiangyang Liquor Brewing Biotechnology and Application Enterprise-University Joint Innovation Center, Xiangyang, China.,Xiangyang Fen-Flavor Baijiu Biotechnology Key Laboratory, Xiangyang, China
| | - Zhuang Guo
- School of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China.,Xiangyang Liquor Brewing Biotechnology and Application Enterprise-University Joint Innovation Center, Xiangyang, China
| | - Chunhui Shan
- School of Food Science, Shihezi University, Shihezi, China
| |
Collapse
|
37
|
Mao J, Liu X, Gao T, Gu S, Wu Y, Zhao L, Ma J, Li X, Zhang J. Unraveling the correlations between bacterial diversity, physicochemical properties and bacterial community succession during the fermentation of traditional Chinese strong-flavor Daqu. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Wu Y, Xia M, Zhang X, Li X, Zhang R, Yan Y, Lang F, Zheng Y, Wang M. Unraveling the metabolic network of organic acids in solid-state fermentation of Chinese cereal vinegar. Food Sci Nutr 2021; 9:4375-4384. [PMID: 34401086 PMCID: PMC8358386 DOI: 10.1002/fsn3.2409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/23/2021] [Accepted: 05/30/2021] [Indexed: 12/27/2022] Open
Abstract
Shanxi aged vinegar (SAV) is fermented by multispecies microorganism with solid-state fermentation (SSF) technology, which contains a variety of organic acids. However, the metabolic network of them in SSF is still unclear. In this study, metagenomics technology was used to reveal the microbial community and functional genes in SAV fermentation. The metabolic network of key organic acids with taste active value higher than 1 was reconstructed for the first time, including acetate, lactate, malate, citrate, succinate, and tartrate. The results show pyruvate is the core compound in the metabolic network of organic acids. Metabolic pathway of acetate plays a pivotal role in this network, and acetate has regulatory function on metabolism of other organic acids. Acetobacter and Lactobacillus are the predominant genera for organic acid metabolism in SSF of SAV. This is also the first report on metabolic network of organic acids in cereal vinegar, adding new knowledge on the flavor substance metabolism during multispecies fermentation of traditional fermented food.
Collapse
Affiliation(s)
- Yanfang Wu
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation MicrobiologyMinistry of EducationCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| | - Menglei Xia
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation MicrobiologyMinistry of EducationCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and EngineeringShanxi Zilin Vinegar Industry Co., Ltd.TaiyuanChina
| | - Xiaofeng Zhang
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation MicrobiologyMinistry of EducationCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| | - Xiaowei Li
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation MicrobiologyMinistry of EducationCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| | - Rongzhan Zhang
- Tianjin Tianli Duliu Mature Vinegar Co., Ltd.TianjinChina
| | - Yufeng Yan
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and EngineeringShanxi Zilin Vinegar Industry Co., Ltd.TaiyuanChina
| | - Fanfan Lang
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and EngineeringShanxi Zilin Vinegar Industry Co., Ltd.TaiyuanChina
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation MicrobiologyMinistry of EducationCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and EngineeringShanxi Zilin Vinegar Industry Co., Ltd.TaiyuanChina
| | - Min Wang
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation MicrobiologyMinistry of EducationCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| |
Collapse
|
39
|
Liu C, Gong X, Zhao G, Soe Htet MN, Jia Z, Yan Z, Liu L, Zhai Q, Huang T, Deng X, Feng B. Liquor Flavour Is Associated With the Physicochemical Property and Microbial Diversity of Fermented Grains in Waxy and Non-waxy Sorghum ( Sorghum bicolor) During Fermentation. Front Microbiol 2021; 12:618458. [PMID: 34220729 PMCID: PMC8247930 DOI: 10.3389/fmicb.2021.618458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 05/10/2021] [Indexed: 12/01/2022] Open
Abstract
The fermentation process of Chinese Xifeng liquor involves numerous microbes. However, the sources of microbes in fermented grain and the link between liquor flavour and physicochemical properties and microbial diversity during fermentation still remain unknown. Herein, two waxy (JiNiang 2 [JN-2] and JinNuo 3 [JN-3]) and four non-waxy (JiZa 127 [JZ-127], JinZa 34 [JZ-34], LiaoZa 19 [LZ-19], and JiaXian [JX]) sorghum varieties were selected for the comprehensive analysis of the relationship between liquor flavour and the physicochemical properties and microbial diversity of fermented grains. Results showed that ethyl acetate was the main flavour component of JZ-127, JZ-34, and JX, whereas ethyl lactate was mainly detected in JN-2, JN-3, and LZ-19. Ethyl lactate accounted for half of the ethyl acetate content, and JX exhibited a higher liquor yield than the other sorghum varieties. The fermented grains of waxy sorghum presented higher temperature and reducing sugar contents but lower moisture and starch contents than their non-waxy counterparts during fermentation. We selected JN-3 and JX sorghum varieties to further investigate the microbial changes in the fermented grains. The bacterial diversity gradually reduced, whereas the fungal diversity showed nearly no change in either JN-3 or JX. Lactobacillus was the most abundant bacterial genus, and its level rapidly increased during fermentation. The abundance of Lactobacillus accounted for the total proportion of bacteria in JX, and it was higher than that in JN-3. Saccharomyces was the most abundant fungal genus in JX, but its abundance accounted for a small proportion of fungi in JN-3. Four esters and five alcohols were significantly positively related to Proteobacteria, Bacteroidetes, and Actinobacteria; Alphaproteobacteria, Actinobacteria, and Bacteroidia; Bacillales, Bacteroidales, and Rhodospirillales; and Acetobacter, Pediococcus, and Prevotella_7. This positive relation is in contrast with that observed for Firmicutes, Bacilli, Lactobacillales, and Lactobacillus. Meanwhile, Aspergillus was the only fungal microorganism that showed a significantly negative relation with such compounds (except for butanol and isopentanol). These findings will help in understanding the fermentation mechanism and flavour formation of fermented Xifeng liquor.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Life Sciences, Northwest A&F University, Yangling, China.,College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A&F University, Yangling, China
| | - Xiangwei Gong
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A&F University, Yangling, China
| | - Guan Zhao
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A&F University, Yangling, China
| | - Maw Ni Soe Htet
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A&F University, Yangling, China
| | - Zhiyong Jia
- Shaanxi Xifeng Liquor Co., Ltd., Baoji, China
| | - Zongke Yan
- Shaanxi Xifeng Liquor Co., Ltd., Baoji, China
| | - Lili Liu
- Shaanxi Xifeng Liquor Co., Ltd., Baoji, China
| | | | - Ting Huang
- Shaanxi Xifeng Liquor Co., Ltd., Baoji, China
| | - Xiping Deng
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Baili Feng
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A&F University, Yangling, China
| |
Collapse
|
40
|
Wu Y, Xia M, Zhao N, Tu L, Xue D, Zhang X, Zhao C, Cheng Y, Zheng Y, Wang M. Metabolic profile of main organic acids and its regulatory mechanism in solid-state fermentation of Chinese cereal vinegar. Food Res Int 2021; 145:110400. [PMID: 34112403 DOI: 10.1016/j.foodres.2021.110400] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Shanxi aged vinegar (SAV), a traditional Chinese cereal vinegar, is produced using solid-state fermentation (SSF) technology. Organic acids are the key flavor compounds of vinegar. However, the metabolic mechanism of organic acids during SSF process is still unclear. In this study, metatranscriptomics was used to explore the metabolic profile of main organic acids in SSF. The results show that carbon metabolism is the dominant pathway during fermentation, among which pyruvate metabolism, glycolysis and starch and sucrose metabolism associated with organic acids were the most abundant. The metabolic pathways of acetic acid and lactic acid shift from acetyl-P and pyruvate pathways at early and middle-early stages of fermentation to acetaldehyde and L-lactaldehyde pathways at later stages, respectively, and Lactobacillus and Acetobacter are the predominant microorganisms contributed to them. Temperature and acetic acid are proven to be the environmental factors that regulate the metabolic activity during SSF. This study sheds new lights on metabolism of flavor substances in the spontaneous ecosystems of traditional fermented food.
Collapse
Affiliation(s)
- Yanfang Wu
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Menglei Xia
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Nan Zhao
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Linna Tu
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Danni Xue
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xianglong Zhang
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Cuimei Zhao
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yang Cheng
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| |
Collapse
|
41
|
Zhao C, Su W, Mu Y, Mu Y, Jiang L. Integrative Metagenomics-Metabolomics for Analyzing the Relationship Between Microorganisms and Non-volatile Profiles of Traditional Xiaoqu. Front Microbiol 2021; 11:617030. [PMID: 33597930 PMCID: PMC7882485 DOI: 10.3389/fmicb.2020.617030] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Xiaoqu, one of three traditional jiuqu in China, is a saccharifying and fermenting agent used in Xiaoqu jiu brewing, with different ingredient compositions and preparation techniques used in various regions. The yield and quality of Xiaoqu jiu are significantly affected by the metabolites and microbiota of Xiaoqu; however, the associated relationship remains poorly understood. This study aimed to analyze this relationship in three typical traditional Xiaoqu from the Guizhou province in China. The non-volatile metabolites of Xiaoqu were detected using gas chromatography time-of-flight mass spectrometry, whereas the classification and metabolic potential of the microbiota were investigated using metagenomic sequencing. Results show that Firmicutes, Proteobacteria, and Actinobacteria represent the dominant bacterial phyla, with Lactobacillus, Bacillus, Acinetobacter, Leuconostoc, and Weissella found to be the dominant bacterial genera. Meanwhile, Ascomycota, Mucoromycota, and Basidiomycota are the dominant fungal phyla with Aspergillus, Saccharomyces, Pichia, Rhizopus, and Phycomyces being the predominant fungal genera. Functional annotation of the microbiota revealed a major association with metabolism of carbohydrates, cofactors, and vitamins, as well as amino acids. A total of 39 significantly different metabolites (SDMs) were identified that are involved in 47 metabolic pathways, primarily that of starch and sucrose; glycine, serine, and threonine; glyoxylate and dicarboxylate; pyruvate; as well as biosynthesis of pantothenate and CoA. Further, based on Spearman's correlation analysis, Aspergillus, Saccharomyces, Lactobacillus, Acetobacter, Weissella, Pantoea, Desmospora, and Bacillus are closely correlated with production of physicochemical indexes and SDMs. Moreover, the metabolic network generated for the breakdown of substrates and formation of SDMs in Xiaoqu was found to primarily center on the metabolism of carbohydrates and the tricarboxylic acid cycle. These results provide insights into the functional microorganisms and metabolic patterns present in traditional Guizhou Xiaoqu and might guide researchers in the production of stable and efficient Xiaoqu in the future.
Collapse
Affiliation(s)
- Chi Zhao
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China.,Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China.,Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang, China
| | - Yu Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China.,Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang, China
| | - Yingchun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Li Jiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
42
|
Zhang Q, Zhao C, Wang X, Li X, Zheng Y, Song J, Xia M, Zhang R, Wang M. Bioaugmentation by Pediococcus acidilactici AAF1-5 Improves the Bacterial Activity and Diversity of Cereal Vinegar Under Solid-State Fermentation. Front Microbiol 2021; 11:603721. [PMID: 33584567 PMCID: PMC7876233 DOI: 10.3389/fmicb.2020.603721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/22/2020] [Indexed: 11/18/2022] Open
Abstract
Bioaugmentation technology may be an effective strategy to improve the solid-state fermentation rate and utilization of raw materials for traditional vinegar production. The relationship between bacteria and fermentation process was analyzed to rationally design and perform bioaugmented solid-state fermentation of the Tianjin Duliu mature vinegar (TDMV). Fermentation process was highly correlated with Acetobacter, Lactobacillus, and Pediococcus contents, which were the core functional microorganisms in TDMV fermentation. Pediococcus acidilactici AAF1-5 was selected from 20 strains to fortify the fermentation due to its acidity and thermal tolerance. Bioaugmentation was performed in the upper layer of TDMV fermentation. P. acidilactici AAF1-5 colonized and then spread into the lower layer to improve the fermentation. Result showed that the fermentation period was 5 days less than that of the control. Meanwhile, the non-volatile acid, lactic acid, amino nitrogen, and reducing sugar contents in the bioaugmented TDMV increased by 53%, 14%, 32%, and 36%, respectively, compared with those in the control. Bioaugmentation with P. acidilactici AAF1-5 not only improved the utilization of starch from 79% to 83% but also increased the bacterial community diversity.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Cuimei Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaobin Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaowei Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Jia Song
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Menglei Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Rongzhan Zhang
- Tianjin Tianli Duliu Mature Vinegar Co., Ltd., Tianjin, China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
43
|
Yuan X, Chen X, Virk MS, Ma Y, Chen F. Effects of Various Rice-Based Raw Materials on Enhancement of Volatile Aromatic Compounds in Monascus Vinegar. Molecules 2021; 26:687. [PMID: 33525711 PMCID: PMC7866154 DOI: 10.3390/molecules26030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Monascus vinegar (MV), during whose brewing process Monascus spp. and polished rice (PR) are normally used as the starter and the raw material, respectively, is one of the traditional vinegars in China. In this study, the effects of three raw materials, including PR, unhusked rice (UR), and germinated UR (GR), on MV volatile compounds have been investigated. The results revealed that MV of GR (GMV), and its intermediate Monascus wine (GMW), exhibited the highest amount of aroma, not only in the concentrations but also in the varieties of the aromatic compounds mainly contributing to the final fragrance. Especially after three years of aging, the contents of benzaldehyde and furfural in GMV could reach to 13.93% and 0.57%, respectively, both of which can coordinate synergistically on enhancing the aroma. We also found that the filtering efficiency was significantly improved when UR and GR were applied as the raw materials, respectively. Therefore, GR might be more suitable raw materials for MV.
Collapse
Affiliation(s)
- Xi Yuan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (M.S.V.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyuan Chen
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China;
| | - Muhammad Safiullah Virk
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (M.S.V.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yinglun Ma
- Fujian Yongchun Ageing Vinegar Vinegar Industry Co., Ltd., Quanzhou 362000, China;
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (M.S.V.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
44
|
Deciphering the succession patterns of bacterial community and their correlations with environmental factors and flavor compounds during the fermentation of Zhejiang rosy vinegar. Int J Food Microbiol 2021; 341:109070. [PMID: 33503540 DOI: 10.1016/j.ijfoodmicro.2021.109070] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
Zhejiang Rosy Vinegar (ZRV) is a traditional condiment in Southeast China, produced using semi-solid-state fermentation techniques under an open environment, yet little is known about the functional microbiota involved in the flavor formation of ZRV. In this study, 43 kinds of volatile flavor substances were identified by HS-SPME/GC-MS, mainly including ethyl acetate (relative content at the end of fermentation: 1104.1 mg/L), phenylethyl alcohol (417.6 mg/L) and acetoin (605.2 mg/L). The most abundant organic acid was acetic acid (59.6 g/L), which kept rising during the fermentation, followed by lactic acid (7.0 g/L), which showed a continuously downward trend. Amplicon sequencing analysis revealed that the richness and diversity of bacterial community were the highest at the beginning and then maintained decreasing during the fermentation. The predominant bacteria were scattered in Acetobacter (average relative abundance: 63.7%) and Lactobacillus (19.8%). Both sequencing and culture-dependent analysis showed Lactobacillus dominated the early stage (day 10 to 30), and Acetobacter kept highly abundant from day 40 to the end. Spearman correlation analysis displayed that the potential major groups involved in the formation of flavor compounds were Acetobacter and Lactobacillus, which were also showed strong relationships with other bacteria through co-occurrence network analysis (edges attached to Acetobacter: 61.7%; Lactobacillus: 14.0%). Moreover, structural equation model showed that the contents of ethanol, titratable acid and reducing sugar were the major environmental factors playing essential roles in influencing the succession of bacterial community and their metabolism during the fermentation. Overall, these findings illuminated the dynamic profiles of bacterial community and flavor compounds and the potential functional microbes, which were expected to help us understand the formation of flavor substances in ZRV.
Collapse
|
45
|
Metabolic network of ammonium in cereal vinegar solid-state fermentation and its response to acid stress. Food Microbiol 2020; 95:103684. [PMID: 33397616 DOI: 10.1016/j.fm.2020.103684] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022]
Abstract
Shanxi aged vinegar (SAV), a Chinese traditional vinegar, is produced by various microorganisms. Ammonium is an important nitrogen source for microorganisms and a key intermediate for the utilization of non-ammonium nitrogen sources. In this work, an ammonium metabolic network during SAV fermentation was constructed through the meta-transcriptomic analysis of in situ samples, and the potential mechanism of acid affecting ammonium metabolism was revealed. The results showed that ammonium was enriched as the acidity increased. Meta-transcriptomic analysis showed that the conversion of glutamine to ammonia is the key pathway of ammonium metabolism in vinegar and that Lactobacillus and Acetobacter are the dominant genera. The construction and analysis of the metabolic network showed that amino acid metabolism, nucleic acid metabolism, pentose phosphate pathway and energy metabolism were enhanced to resist acid damage to the intracellular environment and cell structures. The enhancement of nitrogen assimilation provides nitrogen for metabolic pathways that resist acid cytotoxicity. In addition, the concentration gradient allows ammonium to diffuse outside the cell, which causes ammonium to accumulate during fermentation.
Collapse
|
46
|
Monitoring microbial succession and metabolic activity during manual and mechanical solid-state fermentation of Chinese cereal vinegar. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Guan T, Lin Y, Chen K, Ou M, Zhang J. Physicochemical Factors Affecting Microbiota Dynamics During Traditional Solid-State Fermentation of Chinese Strong-Flavor Baijiu. Front Microbiol 2020; 11:2090. [PMID: 33013762 PMCID: PMC7509048 DOI: 10.3389/fmicb.2020.02090] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Spontaneous solid-state fermentation (SSF) of Chinese Baijiu involves diverse microbes from Daqu and pit mud (PM). Given that the transfer of interphase microflora during the fermentation is a continuous and dynamic process, longitudinal studies are essential to provide ecological insights into community stability and response to consecutive disturbances in the process. In this context, this study aimed to generate a comprehensive longitudinal characterization of the microbiota during the fermentation processes of Chinese strong-flavor Baijiu (CSFB) differing in cellar ages with consideration for potential relation to physicochemical variables. The microecology variations observed during the 6-years cellar SSF (SCSSF) and 30-years cellar SSF (TCSSF) processes reveal that fungal composition contributes to a larger extent than bacterial composition to such variations. Orders of Lactobacillales, Anaerolineales, Enterobacteriales, Bacillales, Eurotiales, and Saccharomycetales dominated (average relative abundances >10%) the microbiota in both SCSSF and TCSSF processes but with a different percentage in the operational taxonomic unit (out) abundances. Compared with the SCSSF process, TCSSF possessed slower microbial succession rates, which were in accordance with the profile of physicochemical properties. From a network perspective, the microbial community structure observed in the TCSSF processes was more stable than that in the SCSSF. This may benefit from the milder physicochemical conditions of the TCSSF processes, especially the temperature, which is also more beneficial to the growth of some groups that have negative effects on fermentation, such as Staphylococcus, Pseudomonas, and Acinetobacter.
Collapse
Affiliation(s)
- Tongwei Guan
- College of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Yijin Lin
- College of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Kebao Chen
- College of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Mengying Ou
- College of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Jiaxu Zhang
- Chengdu Shuzhiyuan of Liquor Co., Ltd., Chengdu, China
| |
Collapse
|
48
|
Effects of Aspergillus niger biofortification on the microbial community and quality of Baoning vinegar. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Analysis of spatial distribution of bacterial community associated with accumulation of volatile compounds in Jiupei during the brewing of special-flavor liquor. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Chai LJ, Shen MN, Sun J, Deng YJ, Lu ZM, Zhang XJ, Shi JS, Xu ZH. Deciphering the d-/l-lactate-producing microbiota and manipulating their accumulation during solid-state fermentation of cereal vinegar. Food Microbiol 2020; 92:103559. [PMID: 32950153 DOI: 10.1016/j.fm.2020.103559] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/30/2023]
Abstract
Symphony orchestra of multi-microorganisms characterizes the solid-state acetic acid fermentation process of Chinese cereal vinegars. Lactate is the predominant non-volatile acid and plays indispensable roles in flavor formation. This study investigated the microbial consortia driving the metabolism of D-/l-lactate during fermentation. Sequencing analysis based on D-/l-lactate dehydrogenase genes demonstrated that Lactobacillus (relative abundance: > 95%) dominated the production of both d-lactate and l-lactate, showing species-specific features between the two types. Lactobacillus helveticus (>65%) and L. reuteri (~80%) respectively dominated l- and d-lactate-producing communities. D-/l-lactate production and utilization capabilities of eight predominant Lactobacillus strains were determined by culture-dependent approach. Subsequently, D-/l-lactate producer L. plantarum M10-1 (d:l ≈ 1:1), l-lactate producer L. casei 21M3-1 (D:L ≈ 0.2:9.8) and D-/l-lactate utilizer Acetobacter pasteurianus G3-2 were selected to modulate the metabolic flux of D-/l-lactate of microbial consortia. The production ratio of D-/l-lactate was correspondingly shifted coupling with microbial consortia changes. Bioaugmentation with L.casei 21M3-1 merely enhanced l-lactate production, displaying ~4-fold elevation at the end of fermentation. Addition of L.plantarum M10-1 twice increased both D- and l-lactate production, while A. pasteurianus G3-2 decreased the content of D-/l-isomer. Our results provided an alternative strategy to specifically manipulate the metabolic flux within microbial consortia of certain ecological niches.
Collapse
Affiliation(s)
- Li-Juan Chai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Mi-Na Shen
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Jia Sun
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yong-Jian Deng
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Xiao-Juan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, PR China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, PR China.
| |
Collapse
|