1
|
Wang Y, Chen L, Fang W, Zeng Z, Wu Z, Liu F, Liu X, Gong Y, Zhu L, Wang K. Genomic and Comparative Transcriptomic Analyses Reveal Key Genes Associated with the Biosynthesis Regulation of Okaramine B in Penicillium daleae NBP-49626. Int J Mol Sci 2024; 25:1965. [PMID: 38396642 PMCID: PMC10888127 DOI: 10.3390/ijms25041965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Restricted production of fungal secondary metabolites hinders the ability to conduct comprehensive research and development of novel biopesticides. Okaramine B from Penicillium demonstrates remarkable insecticidal efficacy; however, its biosynthetic yield is low, and its regulatory mechanism remains unknown. The present study found that the yield difference was influenced by fermentation modes in okaramine-producing strains and performed genomic and comparative transcriptome analysis of P. daleae strain NBP-49626, which exhibits significant features. The NBP-49626 genome is 37.4 Mb, and it encodes 10,131 protein-encoding genes. Up to 5097 differentially expressed genes (DEGs) were identified during the submerged and semi-solid fermentation processes. The oka gene cluster, lacking regulatory and transport genes, displayed distinct transcriptional patterns in response to the fermentation modes and yield of Okaramine B. Although transcription trends of most known global regulatory genes are inconsistent with those of oka, this study identified five potential regulatory genes, including two novel Zn(II)2Cys6 transcription factors, Reg2 and Reg19. A significant correlation was also observed between tryptophan metabolism and Okaramine B yields. In addition, several transporter genes were identified as DEGs. These results were confirmed using real-time quantitative PCR. This study provides comprehensive information regarding the regulatory mechanism of Okaramine B biosynthesis in Penicillium and is critical to the further yield improvement for the development of insecticides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lei Zhu
- National Biopesticide Engineering Technology Research Centre, Hubei Biopesticide Engineering Research Centre, Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.W.); (L.C.); (W.F.); (Z.Z.); (Z.W.); (F.L.); (X.L.); (Y.G.)
| | - Kaimei Wang
- National Biopesticide Engineering Technology Research Centre, Hubei Biopesticide Engineering Research Centre, Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.W.); (L.C.); (W.F.); (Z.Z.); (Z.W.); (F.L.); (X.L.); (Y.G.)
| |
Collapse
|
2
|
Zhang W, Chen X, Eleftherianos I, Mohamed A, Bastin A, Keyhani NO. Cross-talk between immunity and behavior: insights from entomopathogenic fungi and their insect hosts. FEMS Microbiol Rev 2024; 48:fuae003. [PMID: 38341280 PMCID: PMC10883697 DOI: 10.1093/femsre/fuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024] Open
Abstract
Insects are one of the most successful animals in nature, and entomopathogenic fungi play a significant role in the natural epizootic control of insect populations in many ecosystems. The interaction between insects and entomopathogenic fungi has continuously coevolved over hundreds of millions of years. Many components of the insect innate immune responses against fungal infection are conserved across phyla. Additionally, behavioral responses, which include avoidance, grooming, and/or modulation of body temperature, have been recognized as important mechanisms for opposing fungal pathogens. In an effort to investigate possible cross-talk and mediating mechanisms between these fundamental biological processes, recent studies have integrated and/or explored immune and behavioral responses. Current information indicates that during discrete stages of fungal infection, several insect behavioral and immune responses are altered simultaneously, suggesting important connections between the two systems. This review synthesizes recent advances in our understanding of the physiological and molecular aspects influencing cross-talk between behavioral and innate immune antifungal reactions, including chemical perception and olfactory pathways.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, China
| | - Xuanyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, China
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, United States
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
- Research fellow, King Saud University Museum of Arthropods, Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Saudi Arabia
| | - Ashley Bastin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, United States
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, United States
| |
Collapse
|
3
|
Nicoletti R, Andolfi A, Becchimanzi A, Salvatore MM. Anti-Insect Properties of Penicillium Secondary Metabolites. Microorganisms 2023; 11:1302. [PMID: 37317276 PMCID: PMC10221605 DOI: 10.3390/microorganisms11051302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023] Open
Abstract
In connection with their widespread occurrence in diverse environments and ecosystems, fungi in the genus Penicillium are commonly found in association with insects. In addition to some cases possibly implying a mutualistic relationship, this symbiotic interaction has mainly been investigated to verify the entomopathogenic potential in light of its possible exploitation in ecofriendly strategies for pest control. This perspective relies on the assumption that entomopathogenicity is often mediated by fungal products and that Penicillium species are renowned producers of bioactive secondary metabolites. Indeed, a remarkable number of new compounds have been identified and characterized from these fungi in past decades, the properties and possible applications of which in insect pest management are reviewed in this paper.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy;
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (M.M.S.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (M.M.S.)
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| |
Collapse
|
4
|
Geedi R, Canas L, Reding ME, Ranger CM. Attraction of Myzus persicae (Hemiptera: Aphididae) to Volatiles Emitted From the Entomopathogenic Fungus Beauveria bassiana. ENVIRONMENTAL ENTOMOLOGY 2023; 52:31-38. [PMID: 36421055 DOI: 10.1093/ee/nvac100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 06/16/2023]
Abstract
Beauveria bassiana (Balsamo) Vuillemin infects a wide variety of insects, including the green peach aphid, Myzus persicae (Sulzer). Volatiles emitted from B. bassiana can act as semiochemical attractants or repellents, with most responses reported to date resulting in insects avoiding B. bassiana. Since insects can detect 'enemy-specific volatile compounds', we hypothesized the preference behavior of M. persicae would be influenced by volatile emissions from B. bassiana. We conducted Petri dish and Y-tube olfactometer bioassays to characterize the preference of M. persicae to B. bassiana strain GHA. During Petri dish bioassays, more apterous and alate M. persicae were recorded in the vicinity of agar colonized by B. bassiana compared to agar, or Fusarium proliferatum (Matsushima) Nirenberg and Ambrosiella grosmanniae Mayers, McNew, & Harrington as representatives of nonentomopathogenic fungi. Petri dish bioassays also determined that apterous and alate M. persicae preferred filter paper saturated with 1 × 107, 1 × 106, and 1 × 105B. bassiana conidia/ml compared to Tween 80. Y-tube bioassays documented that more apterous and alate M. persicae oriented upwind to volatiles from B. bassiana mycelia compared to agar. Apterous and alate Myzus persicae were also preferentially attracted to 1 × 107 and 1 × 106B. bassiana conidia/ml compared to Tween-80 during Y-tube bioassays. These results complement a previous finding that the mosquito Anopheles stephensi (Diptera: Culicidae) Liston is attracted to volatiles from B. bassiana. Future studies aimed at characterizing the olfactory mechanism leading to the attraction of M. persicae to B. bassiana could aid in optimizing lure-and-kill strategies.
Collapse
Affiliation(s)
- Ruchika Geedi
- USDA-Agricultural Research Service, Horticultural Insects Research Lab, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Luis Canas
- The Ohio State University, Department of Entomology, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Michael E Reding
- USDA-Agricultural Research Service, Horticultural Insects Research Lab, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Christopher M Ranger
- USDA-Agricultural Research Service, Horticultural Insects Research Lab, 1680 Madison Avenue, Wooster, OH 44691, USA
| |
Collapse
|
5
|
Efficacy of Green Extracting Solvents on Antioxidant, Xanthine Oxidase, and Plant Inhibitory Potentials of Solid-Based Residues (SBRs) of Cordyceps militaris. STRESSES 2022. [DOI: 10.3390/stresses3010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-based residues (SBRs) of Cordyceps militaris are often considered as waste after the cultivation of the fruiting body. To demonstrate the value of this by-product, different ratios of two favorable green solvents (EtOH and water) were employed to optimize the yields of cordycepin (Cor) and adenosine (Ado) and investigate relevant activities of plant growth inhibition (allelopathy), antioxidants, and xanthine oxidase. The SBR extracts of 60% EtOH-40% water (W4) and 40% EtOH-60% water (W6) exhibited the highest antioxidant activity as well as yielded the optimum content of Cor and Ado. The W4 and Wt (hot water) exhibited maximum inhibitory effects on the growth of Raphanus sativus (radish), Lactuca sativa (lettuce) and two noxious weeds, Echinochloa crus-galli (barnyard grass) and Bidens pilosa (beggarticks). Furthermore, GC-MS scan analysis revealed the presence of 14 major compounds in the SBRs. W4 is the best solvent to optimize yields of Cor and Ado, as well as having the strongest levels of antioxidant activity, xanthine oxidase, and growth-inhibitory activity. This study reveals that SBRs are a potential source of medicinal and agricultural utilization.
Collapse
|
6
|
Ai S, Zhang Y, Chen Y, Zhang T, Zhong G, Yi X. Insect-Microorganism Interaction Has Implicates on Insect Olfactory Systems. INSECTS 2022; 13:1094. [PMID: 36555004 PMCID: PMC9787996 DOI: 10.3390/insects13121094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Olfaction plays an essential role in various insect behaviors, including habitat selection, access to food, avoidance of predators, inter-species communication, aggregation, and reproduction. The olfactory process involves integrating multiple signals from external conditions and internal physiological states, including living environments, age, physiological conditions, and circadian rhythms. As microorganisms and insects form tight interactions, the behaviors of insects are constantly challenged by versatile microorganisms via olfactory cues. To better understand the microbial influences on insect behaviors via olfactory cues, this paper summarizes three different ways in which microorganisms modulate insect behaviors. Here, we deciphered three interesting aspects of microorganisms-contributed olfaction: (1) How do volatiles emitted by microorganisms affect the behaviors of insects? (2) How do microorganisms reshape the behaviors of insects by inducing changes in the synthesis of host volatiles? (3) How do symbiotic microorganisms act on insects by modulating behaviors?
Collapse
Affiliation(s)
- Shupei Ai
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yuhua Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyao Chen
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Activation of mycelial defense mechanisms in the oyster mushroom Pleurotus ostreatus induced by Tyrophagus putrescentiae. Food Res Int 2022; 160:111708. [DOI: 10.1016/j.foodres.2022.111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022]
|
8
|
Nones S, Sousa E, Holighaus G. Symbiotic Fungi of an Ambrosia Beetle Alter the Volatile Bouquet of Cork Oak Seedlings. PHYTOPATHOLOGY 2022; 112:1965-1978. [PMID: 35357159 DOI: 10.1094/phyto-08-21-0345-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In Portugal, fungal symbionts of the ambrosia beetle Platypus cylindrus affect tree vigor of cork oak (Quercus suber) and are linked with the cork oak decline process. Fungal symbionts play crucial roles in the life history of bark and ambrosia beetles and recent work indicates complex interactions on the fungal and plant metabolic level. Colonized trees may respond with an array of currently unknown volatile metabolites being indicative of such interactions, acting as infochemicals with their environment. In this study, we examined volatile organic compounds (VOCs) of cork oak seedlings wound inoculated with strains of three fungal associates of P. cylindrus (Raffaelea montetyi, R. quercina, and Ceratocystiopsis sp. nov.) over a 45-day period by means of thermodesorption gas chromatography-mass spectrometry techniques. Fungal strains induced largely quantitative but species-specific changes among the 58 VOCs characterized. Overall, monoterpenes-the major volatiles of cork oak foliage-were significantly reduced, possibly a result of fungal biotransformation. Acetophenone, sulcatone, and nonanal-volatiles known for mediating ambrosia beetle behavior-increased in response to fungal inoculation. Qualitative VOC profiles of excised tissue of wood lesions (21 VOCs) and pure fungal cultures (60 VOCs) showed little overlap with seedling VOCs, indicating their plant-derived but fungal-induced origin. This chemoecological study expands on the limited knowledge of VOCs as infochemicals emitted from oak trees threatened by oak decline in relation to beetle-vectored ophiostomatoid fungi. It opens new avenues of research to clarify mutualistic or pathogenic aspects of these complex symbiotic interactions and develop new control strategies for P. cylindrus, including its mycobiota.
Collapse
Affiliation(s)
- Stefano Nones
- Agrarian and Forestry Systems and Vegetal Health Unit, National Institute for Agricultural and Veterinary Research (INIAV, I.P.), Av. da República, Quinta do Marquês, 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
- Institute of Chemical and Biological Technology António Xavier, NOVA University of Lisbon, Av. da República, 2780-157 Oeiras, Portugal
| | - Edmundo Sousa
- Agrarian and Forestry Systems and Vegetal Health Unit, National Institute for Agricultural and Veterinary Research (INIAV, I.P.), Av. da República, Quinta do Marquês, 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| | - Gerrit Holighaus
- Department of Forest Zoology and Forest Conservation, Büsgen Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
- Northwest German Forest Research Institute, Department of Forest Protection, Grätzelstraße 2, 37079 Göttingen, Germany
| |
Collapse
|
9
|
Mozūraitis R, Apšegaitė V, Radžiutė S, Aleknavičius D, Būdienė J, Stanevičienė R, Blažytė-Čereškienė L, Servienė E, Būda V. Volatiles Produced by Yeasts Related to Prunus avium and P. cerasus Fruits and Their Potentials to Modulate the Behaviour of the Pest Rhagoletis cerasi Fruit Flies. J Fungi (Basel) 2022; 8:95. [PMID: 35205850 PMCID: PMC8876962 DOI: 10.3390/jof8020095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Yeast produced semiochemicals are increasingly used in pest management programs, however, little is known on which yeasts populate cherry fruits and no information is available on the volatiles that modify the behaviour of cherry pests including Rhagoletis cerasi flies. Eighty-two compounds were extracted from the headspaces of eleven yeast species associated with sweet and sour cherry fruits by solid phase micro extraction. Esters and alcohols were the most abundant volatiles released by yeasts. The multidimensional scaling analysis revealed that the odour blends emitted by yeasts were species-specific. Pichia kudriavzevii and Hanseniaspora uvarum yeasts released the most similar volatile blends while P. kluyveri and Cryptococcus wieringae yeasts produced the most different blends. Combined gas chromatographic and electroantennographic detection methods showed that 3-methybutyl acetate, 3-methylbutyl propionate, 2-methyl-1-butanol, and 3-methyl-1-butanol elicited antennal responses of both R. cerasi fruit fly sexes. The two-choice olfactometric tests revealed that R. cerasi flies preferred 3-methylbutyl propionate and 3-methyl-1-butanol but avoided 3-methybutyl acetate. Yeast-produced behaviourally active compounds indicated a potential for use in pest monitoring and control of R. cerasi fruit flies, an economically important pest of cherry fruits.
Collapse
Affiliation(s)
- Raimondas Mozūraitis
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (S.R.); (D.A.); (J.B.); (L.B.-Č.); (V.B.)
| | - Violeta Apšegaitė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (S.R.); (D.A.); (J.B.); (L.B.-Č.); (V.B.)
| | - Sandra Radžiutė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (S.R.); (D.A.); (J.B.); (L.B.-Č.); (V.B.)
| | - Dominykas Aleknavičius
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (S.R.); (D.A.); (J.B.); (L.B.-Č.); (V.B.)
| | - Jurga Būdienė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (S.R.); (D.A.); (J.B.); (L.B.-Č.); (V.B.)
| | - Ramunė Stanevičienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (R.S.); (E.S.)
| | - Laima Blažytė-Čereškienė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (S.R.); (D.A.); (J.B.); (L.B.-Č.); (V.B.)
| | - Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (R.S.); (E.S.)
| | - Vincas Būda
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (S.R.); (D.A.); (J.B.); (L.B.-Č.); (V.B.)
| |
Collapse
|
10
|
Faal H, Cha DH, Hajek AE, Teale SA. A double-edged sword: Amylostereum areolatum odors attract both Sirex noctilio (Hymenoptera: Siricidae) and its parasitoid, Ibalia leucospoides. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Dalbon VA, Acevedo JPM, Ribeiro Junior KAL, Ribeiro TFL, da Silva JM, Fonseca HG, Santana AEG, Porcelli F. Perspectives for Synergic Blends of Attractive Sources in South American Palm Weevil Mass Trapping: Waiting for the Red Palm Weevil Brazil Invasion. INSECTS 2021; 12:insects12090828. [PMID: 34564268 PMCID: PMC8466344 DOI: 10.3390/insects12090828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022]
Abstract
Coupling several natural and synthetic lures with aggregation pheromones from the palm weevils Rhynchophorus palmarum and R. ferrugineus reveals a synergy that results in an increase in pest captures. The combined attraction of pure pheromones, ethyl acetate, and decaying sweet and starchy plant tissue increases the net total of mass-trapped weevils. The 2018 entrance of the red palm weevil (RPW) into South America has threatened palm-product income in Brazil and other neighboring countries. The presence of the new A1 quarantine pest necessitates the review of all available options for a sustainable mass-trapping, monitoring, and control strategy to ultimately target both weevils with the same device. The effective lure-blend set for the mass-trapping system will attract weevils in baiting and contaminating stations for entomopathogenic fungi that the same weevils will spread.
Collapse
Affiliation(s)
- Viviane Araujo Dalbon
- Natural Resources Research Laboratory, Center for Engineering and Agrarian Sciences, Federal University of Alagoas, Renorbio (LPqRN, CECA, Renorbio-UFAL), Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió 57072-900, AL, Brazil; (K.A.L.R.J.); (T.F.L.R.); (H.G.F.); (A.E.G.S.)
- Correspondence:
| | - Juan Pablo Molina Acevedo
- Colombian Corporation for Agricultural Research Agrosavia C. I. Turipana—AGROSAVIA, Km. 13, Vía Montería-Cereté 230558, Córdoba, Colombia;
| | - Karlos Antônio Lisboa Ribeiro Junior
- Natural Resources Research Laboratory, Center for Engineering and Agrarian Sciences, Federal University of Alagoas, Renorbio (LPqRN, CECA, Renorbio-UFAL), Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió 57072-900, AL, Brazil; (K.A.L.R.J.); (T.F.L.R.); (H.G.F.); (A.E.G.S.)
| | - Thyago Fernando Lisboa Ribeiro
- Natural Resources Research Laboratory, Center for Engineering and Agrarian Sciences, Federal University of Alagoas, Renorbio (LPqRN, CECA, Renorbio-UFAL), Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió 57072-900, AL, Brazil; (K.A.L.R.J.); (T.F.L.R.); (H.G.F.); (A.E.G.S.)
| | - Joao Manoel da Silva
- Microbiology Research Laboratory, Center for Engineering and Agrarian Sciences, Federal University of Alagoas, Renorbio (LM, CECA, Renorbio-UFAL), Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió 57072-900, AL, Brazil;
| | - Henrique Goulart Fonseca
- Natural Resources Research Laboratory, Center for Engineering and Agrarian Sciences, Federal University of Alagoas, Renorbio (LPqRN, CECA, Renorbio-UFAL), Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió 57072-900, AL, Brazil; (K.A.L.R.J.); (T.F.L.R.); (H.G.F.); (A.E.G.S.)
| | - Antônio Euzébio Goulart Santana
- Natural Resources Research Laboratory, Center for Engineering and Agrarian Sciences, Federal University of Alagoas, Renorbio (LPqRN, CECA, Renorbio-UFAL), Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió 57072-900, AL, Brazil; (K.A.L.R.J.); (T.F.L.R.); (H.G.F.); (A.E.G.S.)
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy;
- CIHEAM Mediterranean Agronomic Institute of Bari, Via Ceglie 9, 70010 Bari, Italy
| |
Collapse
|
12
|
Đurović G, Van Neerbos FAC, Bossaert S, Herrera-Malaver B, Steensels J, Arnó J, Wäckers F, Sobhy IS, Verstrepen KJ, Jacquemyn H, Lievens B. The Pupal Parasitoid Trichopria drosophilae Is Attracted to the Same Yeast Volatiles as Its Adult Host. J Chem Ecol 2021; 47:788-798. [PMID: 34269959 DOI: 10.1007/s10886-021-01295-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
There is increasing evidence that microorganisms, particularly fungi and bacteria, emit volatile compounds that mediate the foraging behaviour of insects and therefore have the potential to affect key ecological relationships. However, to what extent microbial volatiles affect the olfactory response of insects across different trophic levels remains unclear. Adult parasitoids use a variety of chemical stimuli to locate potential hosts, including those emitted by the host's habitat, the host itself, and microorganisms associated with the host. Given the great capacity of parasitoids to utilize and learn odours to increase foraging success, parasitoids of eggs, larvae, or pupae may respond to the same volatiles the adult stage of their hosts use when locating their resources, but compelling evidence is still scarce. In this study, using Saccharomyces cerevisiae we show that Trichopria drosophilae, a pupal parasitoid of Drosophila species, is attracted to the same yeast volatiles as their hosts in the adult stage, i.e. acetate esters. Parasitoids significantly preferred the odour of S. cerevisiae over the blank medium in a Y-tube olfactometer. Deletion of the yeast ATF1 gene, encoding a key acetate ester synthase, decreased attraction of T. drosophilae, while the addition of synthetic acetate esters to the fermentation medium restored parasitoid attraction. Bioassays with individual compounds revealed that the esters alone were not as attractive as the volatile blend of S. cerevisiae, suggesting that other volatile compounds also contribute to the attraction of T. drosophilae. Altogether, our results indicate that pupal parasitoids respond to the same volatiles as the adult stage of their hosts, which may aid them in locating oviposition sites.
Collapse
Affiliation(s)
- Gordana Đurović
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium.,Research and Innovation Centre, Fondazione Edmund Mach, 38098, San Michele all'Adige, Italy.,Biobest, B-2260, Westerlo, Belgium
| | - Francine A C Van Neerbos
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium
| | - Sofie Bossaert
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium
| | - Beatriz Herrera-Malaver
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Flanders Institute for Biotechnology (VIB), KU Leuven Center for Microbiology, B-3001, Leuven, Belgium
| | - Jan Steensels
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Flanders Institute for Biotechnology (VIB), KU Leuven Center for Microbiology, B-3001, Leuven, Belgium
| | | | - Felix Wäckers
- Biobest, B-2260, Westerlo, Belgium.,Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Islam S Sobhy
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium.,Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Kevin J Verstrepen
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Flanders Institute for Biotechnology (VIB), KU Leuven Center for Microbiology, B-3001, Leuven, Belgium
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium.,Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, B-3001, Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, B-3001, Leuven, Belgium. .,Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium.
| |
Collapse
|
13
|
Berestetskiy A, Hu Q. The Chemical Ecology Approach to Reveal Fungal Metabolites for Arthropod Pest Management. Microorganisms 2021; 9:1379. [PMID: 34202923 PMCID: PMC8307166 DOI: 10.3390/microorganisms9071379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Biorational insecticides (for instance, avermectins, spinosins, azadirachtin, and afidopyropen) of natural origin are increasingly being used in agriculture. The review considers the chemical ecology approach for the search for new compounds with insecticidal properties (entomotoxic, antifeedant, and hormonal) produced by fungi of various ecological groups (entomopathogens, soil saprotrophs, endophytes, phytopathogens, and mushrooms). The literature survey revealed that insecticidal metabolites of entomopathogenic fungi have not been sufficiently studied, and most of the well-characterized compounds show moderate insecticidal activity. The greatest number of substances with insecticidal properties was found to be produced by soil fungi, mainly from the genera Aspergillus and Penicillium. Metabolites with insecticidal and antifeedant properties were also found in endophytic and phytopathogenic fungi. It was noted that insect pests of stored products are mostly low sensitive to mycotoxins. Mushrooms were found to be promising producers of antifeedant compounds as well as insecticidal proteins. The expansion of the number of substances with insecticidal properties detected in prospective fungal species is possible by mining fungal genomes for secondary metabolite gene clusters and secreted proteins with their subsequent activation by various methods. The efficacy of these studies can be increased with high-throughput techniques of extraction of fungal metabolites and their analysis by various methods of chromatography and mass spectrometry.
Collapse
Affiliation(s)
| | - Qiongbo Hu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
14
|
Coles PS, Mazin M, Nogin G. The Association Between Mushroom Sciarid Flies, Cultural Techniques, and Green Mold Disease Incidence on Commercial Mushroom Farms. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:555-559. [PMID: 33511397 DOI: 10.1093/jee/toaa322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Many growers on mushroom farms producing white and brown varieties of Agaricus bisporus have noticed a potential association between sciarid fly (Lycoriella ingenua) pest populations and green mold (Trichoderma aggressivum) disease expression, and suspect that in addition to other preventative measures, controlling flies may be important to controlling green mold spread. In this study, we examined the association between L. ingenua populations and green mold disease incidence in commercial mushroom farms. In addition, we studied how relevant variables related to farming practices and farm characteristics may affect fly and disease incidence. Our data show that L. ingenua and green mold incidence are associated and that preventative measures such as sanitation and new technologies to reduce human-substrate contact are correlated with reduced green mold incidence. In addition, data indicated farm characteristics such as the proximity to neighboring farms as well as an organic mushroom growing regime are associated with fly incidence.
Collapse
Affiliation(s)
- Phillip S Coles
- College of Business, Lehigh University, Bethlehem, PA
- Division of Engineering, Business and Computing, Berks College, The Pennsylvania State University, Tulpehocken Road, Reading, PA
| | | | - Galina Nogin
- Department of Statistical Science, Cornell University, Malott Hall, Ithaca, NY
| |
Collapse
|
15
|
From Plants to Ants: Fungal Modification of Leaf Lipids for Nutrition and Communication in the Leaf-Cutter Ant Fungal Garden Ecosystem. mSystems 2021; 6:6/2/e01307-20. [PMID: 33758033 PMCID: PMC8547007 DOI: 10.1128/msystems.01307-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipids are essential to all living organisms, as an energy source, as an important cellular structural component, and as a communication tool. In this study, we used global lipidomic methods to evaluate the lipids in leaf-cutter ant fungal gardens. Leaf-cutter ants and their coevolved fungal cultivar, Leucoagaricus gongylophorus, are a model mutualistic system. The fungus enzymatically digests fresh plant material that the ants cut and deliver, converting energy and nutrients from plants and providing them to the ants through specialized hyphal swellings called gongylidia. Using combined liquid chromatography, ion mobility spectrometry, and tandem mass spectrometry, we evaluated differences between the molecular species of lipids in the leaf-cutter ant fungal garden ecosystem. This lipidomic study characterized leaves that are fed to the gardens, gongylidia that are produced by the fungus to feed the ants, and spatially resolved regions of the fungal garden through stages of leaf degradation. Lipids containing alpha-linolenic acid (18:3) were enriched in leaves and the top of the gardens but not dominant in the middle or bottom regions. Gongylidia were dominated by lipids containing linoleic acid (18:2). To evaluate the communicative potential of the lipids in fungal gardens, we conducted a behavioral experiment that showed Atta leaf-cutter ants responded differently to 18:3 and 18:2 fatty acids, with aggression toward 18:3 and attraction for 18:2. This work demonstrates the role of lipids in both the transfer of energy and as an interkingdom communication tool in leaf-cutter ant fungal gardens. IMPORTANCE In this work, we examined the role of lipids in the mutualism between leaf-cutter ants and fungus. These ants cut fresh leaf material, which they provide to their fungal cultivar, that converts energy and nutrients from the plants and provides it to the ants in specialized hyphal swellings called gongylidia. This work constitutes the first example of a global lipidomics study of a symbiotic system and provides insights as to how the fungus modifies plant lipids into a usable source for the ants. Through a behavioral experiment, this work also demonstrates how lipids can be used as an interkingdom communication tool, in this case, as an attractant rather than as a repellant, which is more often seen. Author Video: An author video summary of this article is available.
Collapse
|
16
|
Kecskeméti S, Szelényi MO, Erdei AL, Geösel A, Fail J, Molnár BP. Fungal Volatiles as Olfactory Cues for Female Fungus Gnat, Lycoriella ingenua in the Avoidance of Mycelia Colonized Compost. J Chem Ecol 2020; 46:917-926. [PMID: 33026596 PMCID: PMC7547978 DOI: 10.1007/s10886-020-01210-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022]
Abstract
The chemical signatures emitted by fungal substrates are key components for mycophagous insects in the search for food source or for suitable oviposition sites. These volatiles are usually emitted by the fruiting bodies and mycelia. The volatiles attract fungivorous insects, like flowers attract pollinators; certain flowers mimic the shape of mushroom fruiting bodies and even produce a typical mushroom odor to exploit on fungus-insect mutualism. There are numerous insects which are mycophagous or eat fungi additionally, but only a few are considered a threat in agriculture. Lycoriella ingenua is one of the most serious pests in mushroom cultivation worldwide. Here we attempt to examine the role of environmental volatiles upon behavioral oviposition preference. In two-choice bioassays, fungus gnats preferred uncolonized compost compared to colonized compost but preferred colonized compost against nothing. However, when colonized compost was paired against distilled water, no significant choice was observed. The comparison of fresh casing material and mycelium colonized casing material resulted in no significant preference. From colonized compost headspace, three antennally active volatiles were isolated by gas chromatography coupled with electroantennography and subsequently identified with gas chromatography coupled mass spectrometry as 1-hepten-3-ol, 3-octanone and 1-octen-3-ol. In behavioral assays the addition of said synthetic volatiles to uncolonized compost separately and in combination to mimic colonized compost resulted in avoidance. We thus partially elucidate the role of fungal volatiles in the habitat seeking behavior of Lycoriella ingenua.
Collapse
Affiliation(s)
- Sándor Kecskeméti
- Department of Vegetable and Mushroom Growing, Institute of Sustainable Horticulture, Szent István University, Budapest, Hungary
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Entomology, Plant Protection Institute, Szent István University, Budapest, Hungary
| | - Magdolna Olívia Szelényi
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Anna Laura Erdei
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - András Geösel
- Department of Vegetable and Mushroom Growing, Institute of Sustainable Horticulture, Szent István University, Budapest, Hungary
| | - József Fail
- Department of Entomology, Plant Protection Institute, Szent István University, Budapest, Hungary
| | - Béla Péter Molnár
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary.
| |
Collapse
|
17
|
Karthi S, Vasantha-Srinivasan P, Ganesan R, Ramasamy V, Senthil-Nathan S, Khater HF, Radhakrishnan N, Amala K, Kim TJ, El-Sheikh MA, Krutmuang P. Target Activity of Isaria tenuipes (Hypocreales: Clavicipitaceae) Fungal Strains against Dengue Vector Aedes aegypti (Linn.) and Its Non-Target Activity Against Aquatic Predators. J Fungi (Basel) 2020; 6:E196. [PMID: 33003327 PMCID: PMC7712577 DOI: 10.3390/jof6040196] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
The present investigation aimed to determine the fungal toxicity of Isaria tenuipes (My-It) against the dengue mosquito vector Aedes aegypti L. and its non-target impact against the aquatic predator Toxorhynchitessplendens. Lethal concentrations (LC50 and LC90) of My-It were observed in 2.27 and 2.93 log ppm dosages, respectively. The sub-lethal dosage (My-It-1 × 104 conidia/mL) displayed a significant oviposition deterrence index and also blocked the fecundity rate of dengue mosquitos in a dose-dependent manner. The level of major detoxifying enzymes, such as carboxylesterase (α-and β-) and SOD, significantly declined in both third and fourth instar larvae at the maximum dosage of My-It 1 × 105 conidia/mL. However, the level of glutathione S-transferase (GST) and cytochrome P-450 (CYP450) declined steadily when the sub-lethal dosage was increased and attained maximum reduction in the enzyme level at the dosage of My-It (1 × 105 conidia/mL). Correspondingly, the gut-histology and photomicrography results made evident that My-It (1 × 105 conidia/mL) heavily damaged the internal gut cells and external physiology of the dengue larvae compared to the control. Moreover, the non-target toxicity against the beneficial predator revealed that My-It at the maximum dosage (1 × 1020 conidia/mL) was found to be less toxic with <45% larval toxicity against Tx.splendens. Thus, the present toxicological research on Isaria tenuipes showed that it is target-specific and a potential agent for managing medically threatening arthropods.
Collapse
Affiliation(s)
- Sengodan Karthi
- Division of Bio Pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli 627412, Tamil Nadu, India; (S.K.); (S.S.-N.)
| | - Prabhakaran Vasantha-Srinivasan
- Department of Biotechnology, Peter’s Institute of Higher Education and Research, Avadi, Chennai 600054, Tamil Nadu, India; (P.V.-S.); (K.A.)
| | - Raja Ganesan
- Department of Biological Science, Pusan National University, Busan 46241, Korea; (R.G.); (T.-J.K.)
| | - Venkatachalam Ramasamy
- PG and Research Department of Zoology, J.K.K. Nataraja College of Arts and Science, Komarapalayam-638183, Tamil Nadu, India;
| | - Sengottayan Senthil-Nathan
- Division of Bio Pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli 627412, Tamil Nadu, India; (S.K.); (S.S.-N.)
| | - Hanem F. Khater
- Department of Parasitology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt;
| | - Narayanaswamy Radhakrishnan
- Department of Biochemistry, St. Peter’s Institute of Higher Education and Research, Avadi, Chennai 600054, Tamil Nadu, India;
| | - Kesavan Amala
- Department of Biotechnology, Peter’s Institute of Higher Education and Research, Avadi, Chennai 600054, Tamil Nadu, India; (P.V.-S.); (K.A.)
| | - Tae-Jin Kim
- Department of Biological Science, Pusan National University, Busan 46241, Korea; (R.G.); (T.-J.K.)
| | - Mohamed A. El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
18
|
Zhang L, Fasoyin OE, Molnár I, Xu Y. Secondary metabolites from hypocrealean entomopathogenic fungi: novel bioactive compounds. Nat Prod Rep 2020; 37:1181-1206. [PMID: 32211639 PMCID: PMC7529686 DOI: 10.1039/c9np00065h] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2014 up to the third quarter of 2019 Entomopathogens constitute a unique, specialized trophic subgroup of fungi, most of whose members belong to the order Hypocreales (class Sordariomycetes, phylum Ascomycota). These Hypocrealean Entomopathogenic Fungi (HEF) produce a large variety of secondary metabolites (SMs) and their genomes rank highly for the number of predicted, unique SM biosynthetic gene clusters. SMs from HEF have diverse roles in insect pathogenicity as virulence factors by modulating various interactions between the producer fungus and its insect host. In addition, these SMs also defend the carcass of the prey against opportunistic microbial invaders, mediate intra- and interspecies communication, and mitigate abiotic and biotic stresses. Thus, these SMs contribute to the role of HEF as commercial biopesticides in the context of integrated pest management systems, and provide lead compounds for the development of chemical pesticides for crop protection. These bioactive SMs also underpin the widespread use of certain HEF as nutraceuticals and traditional remedies, and allowed the modern pharmaceutical industry to repurpose some of these molecules as life-saving human medications. Herein, we survey the structures and biological activities of SMs described from HEF, and summarize new information on the roles of these metabolites in fungal virulence.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| | - Opemipo Esther Fasoyin
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| |
Collapse
|
19
|
Lukša J, Vepštaitė-Monstavičė I, Apšegaitė V, Blažytė-Čereškienė L, Stanevičienė R, Strazdaitė-Žielienė Ž, Ravoitytė B, Aleknavičius D, Būda V, Mozūraitis R, Servienė E. Fungal Microbiota of Sea Buckthorn Berries at Two Ripening Stages and Volatile Profiling of Potential Biocontrol Yeasts. Microorganisms 2020; 8:microorganisms8030456. [PMID: 32210172 PMCID: PMC7143951 DOI: 10.3390/microorganisms8030456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/08/2020] [Accepted: 03/21/2020] [Indexed: 01/26/2023] Open
Abstract
Sea buckthorn, Hippophae rhamnoides L., has considerable potential for landscape reclamation, food, medicinal, and cosmetics industries. In this study, we analyzed fungal microorganism populations associated with carposphere of sea buckthorn harvested in Lithuania. An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to reveal the ripening-affected fungal community alterations on sea buckthorn berries. According to alpha and beta diversity analyses, depending on the ripening stage, sea buckthorn displayed significantly different fungal communities. Unripe berries were shown to be prevalent by Aureobasidium, Taphrina, and Cladosporium, while ripe berries were dominated by Aureobasidium and Metschnikowia. The selected yeast strains from unripe and mature berries were applied for volatile organic compounds identification by gas chromatography and mass spectrometry techniques. It was demonstrated that the patterns of volatiles of four yeast species tested were distinct from each other. The current study for the first time revealed the alterations of fungal microorganism communities colonizing the surface of sea buckthorn berries at different ripening stages. The novel information on specific volatile profiles of cultivable sea buckthorn-associated yeasts with a potential role in biocontrol is important for the development of the strategies for plant cultivation and disease management, as well as for the improvement of the quality and preservation of the postharvest berries. Management of the fungal microorganisms present on the surface of berries might be a powerful instrument for control of phytopathogenic and potentially antagonistic microorganisms affecting development and quality of the berries.
Collapse
Affiliation(s)
- Juliana Lukša
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
| | - Iglė Vepštaitė-Monstavičė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
| | - Violeta Apšegaitė
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (L.B.-Č.); (D.A.); (V.B.); (R.M.)
| | - Laima Blažytė-Čereškienė
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (L.B.-Č.); (D.A.); (V.B.); (R.M.)
| | - Ramunė Stanevičienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
| | - Živilė Strazdaitė-Žielienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
| | - Bazilė Ravoitytė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
| | - Dominykas Aleknavičius
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (L.B.-Č.); (D.A.); (V.B.); (R.M.)
| | - Vincas Būda
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (L.B.-Č.); (D.A.); (V.B.); (R.M.)
| | - Raimondas Mozūraitis
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (L.B.-Č.); (D.A.); (V.B.); (R.M.)
| | - Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
- Correspondence: ; Tel.: +370-5-272-93-63
| |
Collapse
|
20
|
Khoja S, Eltayef KM, Baxter I, Bull JC, Loveridge EJ, Butt T. Fungal volatile organic compounds show promise as potent molluscicides. PEST MANAGEMENT SCIENCE 2019; 75:3392-3404. [PMID: 31392825 PMCID: PMC6899572 DOI: 10.1002/ps.5578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Slugs and snails constitute major crop pests. Withdrawal of metaldehyde has prompted a search for more environmentally friendly yet fast acting molluscicides. This study investigated the response of representative molluscs to conidia and volatile organic compounds (VOCs) of the insect pathogenic fungus Metarhizium brunneum Petch. RESULTS Conidia of M. brunneum had antifeedant/repellent properties with repellency being dependent upon the fungal strain and conidia concentration. Three commonly produced fungal VOCs, 1-octene, 3-octanone and 1-octen-3-ol, were repellent at low doses (1-5 μL) but could kill slugs and snails on contact or fumigation. At the highest dose tested (10 μL), 100% mortality was achieved for Cornu aspersum Muller (garden snail) and Derocerus reticulatum Muller (grey field slug) within 1 h post-treatment with the first deaths being recorded in <11 min. Aqueous formulations (20% v/v) of the most potent VOCs, 3-octanone and 1-octen-3-ol, could be sprayed onto plants to kill or drive the pest of the crop with no phytotoxic effects. CONCLUSION The sensitivity of terrestrial molluscs to 3-octanone and 1-octen-3-ol and the ephemeral nature of these compounds makes these excellent candidates for development as mollusc repellents or molluscicides. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Salim Khoja
- Department of BiosciencesSwansea UniversitySwanseaUK
| | | | | | - James C Bull
- Department of BiosciencesSwansea UniversitySwanseaUK
| | | | - Tariq Butt
- Department of BiosciencesSwansea UniversitySwanseaUK
| |
Collapse
|
21
|
Mozūraitis R, Aleknavičius D, Vepštaitė-Monstavičė I, Stanevičienė R, Emami SN, Apšegaitė V, Radžiutė S, Blažytė-Čereškienė L, Servienė E, Būda V. Hippophae rhamnoides berry related Pichia kudriavzevii yeast volatiles modify behaviour of Rhagoletis batava flies. J Adv Res 2019; 21:71-77. [PMID: 32071775 PMCID: PMC7015468 DOI: 10.1016/j.jare.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/15/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
Pichia kudriavzevii yeasts were isolated from ripe Hippophae rhamnoides berries. Thirty-five yeast volatiles were identified from the headspace of P. kudriavzevii. Esters and alcohols contributed by 32% and 66% to the total blend amount. Ten of those volatiles elicited antenna responses of Rhagoletis batava flies. Mixture of synthetic olfactory active compounds attracted R. batava males and females.
Olfactory cues have a large impact on insect behaviour and fitness consequently showing potential in pest management. Yeast released volatiles are used by insects as olfactory cues for finding feeding and oviposition sites. The yeast strain SB-16-15 was isolated from spontaneous fermentation of Hippophae rhamnoides berries and identified as Pichia kudriavzevii. Thirty-nine volatiles were sampled from the headspace of P. kudriavzevii yeasts by solid phase micro extraction and identified by gas chromatography and mass spectrometry techniques. Ten of those volatiles elicited antennal responses of Rhagoletis batava flies, one of the most serious pest of H. rhamnoides berries. In the two-choice experiments, R. batava flies preferred the mixture composed of nine synthetic compounds analogous to electroanntenographic active volatiles released by the yeasts compare to the solvent control. Female flies were significantly attracted to the mixture at the concentration 0.1 µL mL−1 and showed no preference to the mixture at the concentration 1 µL mL−1 versus control while males reacted positively to the synthetic blend at the concentration 1 µL mL−1. Herein, for the first time, behaviour modifying effect of H. rhamnoides berry related yeast volatiles was shown suggesting these semiochemicals have potential in use for monitoring R. batava flies.
Collapse
Affiliation(s)
- Raimondas Mozūraitis
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Dominykas Aleknavičius
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Iglė Vepštaitė-Monstavičė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Ramunė Stanevičienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Seyedeh Noushin Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE 106 91 Stockholm, Sweden
| | - Violeta Apšegaitė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Sandra Radžiutė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Laima Blažytė-Čereškienė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Vincas Būda
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| |
Collapse
|
22
|
|
23
|
Holighaus G, Rohlfs M. Volatile and non-volatile fungal oxylipins in fungus-invertebrate interactions. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
|
25
|
Berlinck RGS, Monteiro AF, Bertonha AF, Bernardi DI, Gubiani JR, Slivinski J, Michaliski LF, Tonon LAC, Venancio VA, Freire VF. Approaches for the isolation and identification of hydrophilic, light-sensitive, volatile and minor natural products. Nat Prod Rep 2019; 36:981-1004. [DOI: 10.1039/c9np00009g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water-soluble, volatile, minor and photosensitive natural products are yet poorly known, and this review discusses the literature reporting the isolation strategies for some of these metabolites.
Collapse
Affiliation(s)
| | - Afif F. Monteiro
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Ariane F. Bertonha
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Darlon I. Bernardi
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Juliana R. Gubiani
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Juliano Slivinski
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | | | | | - Victor A. Venancio
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Vitor F. Freire
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| |
Collapse
|
26
|
Volatile organic compounds from Hypoxylon anthochroum endophytic strains as postharvest mycofumigation alternative for cherry tomatoes. Food Microbiol 2018; 76:363-373. [DOI: 10.1016/j.fm.2018.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 11/23/2022]
|
27
|
Green PWC, Kooij PW. The role of chemical signalling in maintenance of the fungus garden by leaf-cutting ants. CHEMOECOLOGY 2018. [DOI: 10.1007/s00049-018-0260-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
28
|
Piper AM, Farnier K, Linder T, Speight R, Cunningham JP. Two Gut-Associated Yeasts in a Tephritid Fruit Fly have Contrasting Effects on Adult Attraction and Larval Survival. J Chem Ecol 2017; 43:891-901. [PMID: 28836040 DOI: 10.1007/s10886-017-0877-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 11/28/2022]
Abstract
Yeast-insect interactions have been well characterized in drosophilid flies, but not in tephritid fruit flies, which include many highly polyphagous pest species that attack ripening fruits. Using the Queensland fruit fly (Bactrocera tryoni) as our model tephritid species, we identified yeast species present in the gut of wild-collected larvae and found two genera, Hanseniaspora and Pichia, were the dominant isolates. In behavioural trials using adult female B. tryoni, a fruit-agar substrate inoculated with Pichia kluyveri resulted in odour emissions that increased the attraction of flies, whereas inoculation with Hanseniaspora uvarum, produced odours that strongly deterred flies, and both yeasts led to decreased oviposition. Larval development trials showed that the fruit-agar substrate inoculated with the 'deterrent odour' yeast species, H. uvarum, resulted in significantly faster larval development and a greater number of adult flies, compared to a substrate inoculated with the 'attractive odour' yeast species, P. kluyveri, and a yeast free control substrate. GC-MS analysis of volatiles emitted by H. uvarum and P. kluyveri inoculated substrates revealed significant quantitative differences in ethyl-, isoamyl-, isobutyl-, and phenethyl- acetates, which may be responsible for the yeast-specific olfactory responses of adult flies. We discuss how our seemingly counterintuitive finding that female B. tryoni flies avoid a beneficial yeast fits well with our understanding of female choice of oviposition sites, and how the contrasting behavioural effects of H. uvarum and P. kluyveri raises interesting questions regarding the role of yeast-specific volatiles as cues to insect vectors. A better understanding of yeast-tephritid interactions could assist in the future management of tephritid fruit fly pests through the formulation of new "attract and kill" lures, and the development of probiotics for mass rearing of insects in sterile insect control programs.
Collapse
Affiliation(s)
- Alexander M Piper
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Kevin Farnier
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Tomas Linder
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Robert Speight
- Queensland University of Technology, Gardens Point, Brisbane, QLD, 4001, Australia
| | - John Paul Cunningham
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
29
|
Beck JJ, Vannette RL. Harnessing Insect-Microbe Chemical Communications To Control Insect Pests of Agricultural Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:23-28. [PMID: 28073253 DOI: 10.1021/acs.jafc.6b04298] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Insect pests cause serious economic, yield, and food safety problems to managed crops worldwide. Compounding these problems, insect pests often vector pathogenic or toxigenic microbes to plants. Previous work has considered plant-insect and plant-microbe interactions separately. Although insects are well-understood to use plant volatiles to locate hosts, microorganisms can produce distinct and abundant volatile compounds that in some cases strongly attract insects. In this paper, we focus on the microbial contribution to plant volatile blends, highlighting the compounds emitted and the potential for variation in microbial emission. We suggest that these aspects of microbial volatile emission may make these compounds ideal for use in agricultural applications, as they may be more specific or enhance methods currently used in insect control or monitoring. Our survey of microbial volatiles in insect-plant interactions suggests that these emissions not only signal host suitability but may indicate a distinctive time frame for optimal conditions for both insect and microbe. Exploitation of these host-specific microbe semiochemicals may provide important microbe- and host-based attractants and a basis for future plant-insect-microbe chemical ecology investigations.
Collapse
Affiliation(s)
- John J Beck
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture , 1700 S.W. 23rd Drive, Gainesville, Florida 32608, United States
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|