1
|
Oh DK, Lee TE, Lee J, Shin KC, Park JB. Biocatalytic oxyfunctionalization of unsaturated fatty acids to oxygenated chemicals via hydroxy fatty acids. Biotechnol Adv 2024; 79:108510. [PMID: 39732442 DOI: 10.1016/j.biotechadv.2024.108510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The selective oxyfunctionalization of unsaturated fatty acids is difficult in chemical reactions, whereas regio- and stereoselective oxyfunctionalization is often performed in biocatalytic synthesis. Fatty acid oxygenases, including hydratases, lipoxygenases, dioxygenases, diol synthases, cytochrome P450 monooxygenases, peroxygenases, and 12-hydroxylases, are used to convert C16 and C18 unsaturated fatty acids to diverse regio- and stereoselective mono-, di-, and trihydroxy fatty acids via selective oxyfunctionalization. The formed hydroxy fatty acids or hydroperoxy fatty acids are metabolized to industrially important oxygenated chemicals such as lactones, green leaf volatiles, and bioplastic monomers, including ω-hydroxy fatty acids, α,ω-dicarboxylic acids, and fatty alcohols, by biocatalysts. For increased oxyfunctionalization of unsaturated fatty acids, enzyme engineering, functional and balanced expression in recombinant cells, selection of suitable catalyst types, and reaction engineering have been suggested. This review describes biocatalysts involved in the oxyfunctionalization of unsaturated fatty acids and the production of hydroxy fatty acids and oxygenated chemicals.
Collapse
Affiliation(s)
- Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| | - Tae-Eui Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Hankuk University of Foreign, Mohyein-Eup, Cheoin-Gu, Yongin-Si, Gyeonggi-do 17035, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-Gu, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Zhang Q, Wang B. Mechanistic Perspective on Oxygen Activation Chemistry by Flavoenzymes. Chembiochem 2024:e202400750. [PMID: 39424594 DOI: 10.1002/cbic.202400750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/21/2024]
Abstract
Flavin-dependent enzymes catalyze a panoply of chemical transformations essential for living organisms. Through oxygen activation, flavoenzymes could generate diverse flavin-oxygen species that mediate numerous redox and non-redox transformations. In this review, we highlight the extensive oxygen activation chemistry at two sites of the flavin cofactor: C4a and N5 sites. Oxygen activation at the C4a site generates flavin-C4aOO(H) species for various monooxygenation reactions, while activation at the N5 site produces negatively charged flavin-N5OOH species, which act as highly reactive nucleophiles or bases. The selective oxygen activation at either the C4a or N5 site depends on the nature of substrates and is controlled by the active site architecture. These insights have expanded our understanding of oxygen activation chemistry in flavoenzymes and will serve as a foundation for future efforts in enzyme engineering and redesign.
Collapse
Affiliation(s)
- Qiaoyu Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
3
|
Zago M, Branduardi P, Serra I. Towards biotechnological production of bio-based low molecular weight esters: a patent review. RSC Adv 2024; 14:29472-29489. [PMID: 39297040 PMCID: PMC11409443 DOI: 10.1039/d4ra04131c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024] Open
Abstract
Low molecular weight (LMW) esters, like ethyl acetate, methyl formate or butyl acetate, are widespread bulk chemicals in many industries. Each of them is currently produced in huge amounts (millions of tons per year scale) starting from fossil-based feedstock and they are used mainly because of their low toxicity and complete biodegradability. Energy transition is just half of the story on the path of fighting climate change: 45% of the global greenhouse gas emissions are caused by the production and use of all the products, materials and food necessary for modern human life. If the world is to reach its climate goals, there is the need to leave underground a significant proportion of the fossil feedstock and minimize environmental impacts of chemical manufacturing. This is the reason why a lot of efforts have been made to find novel routes for LMW esters production starting from renewable raw materials (e.g. biomasses or off-gases) and exploiting low-impact manufacturing, such as microbial fermentation or enzymatic reactions. This review reports the most significant patents, in the field of white biotechnology, that will hopefully lead to the commercialization of bio-based LMW esters as well as novel strategies, current problems to be solved, newer technologies, and some patent applications aiming at possible future developments.
Collapse
Affiliation(s)
- Mirko Zago
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Piazza della Scienza 2 Milano 20126 Italy +390264484140
- Soft Chemicals S.r.l., ASTROBIO™ Division Via Sandro Pertini 14, Arsago Seprio Varese 21010 Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Piazza della Scienza 2 Milano 20126 Italy +390264484140
| | - Immacolata Serra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Piazza della Scienza 2 Milano 20126 Italy +390264484140
| |
Collapse
|
4
|
Wu J, Anselmi S, Carvalho ATP, Caswell J, Quinn DJ, Moody TS, Castagnolo D. Expanding the toolbox of Baeyer-Villiger and flavin monooxygenase biocatalysts for the enantiodivergent green synthesis of sulfoxides. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:8685-8693. [PMID: 39081496 PMCID: PMC11284623 DOI: 10.1039/d4gc02657h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
Two new monooxygenase biocatalysts, the Baeyer-Villiger monooxygenase BVMO145 and the flavin monooxygenase FMO401 from Almac library, have been found to catalyse the enantiodivergent oxidation of sulfides bearing N-heterocyclic substituents into sulfoxides under mild and green conditions. The biocatalyst BVMO145 provides (S)-sulfoxides while the flavin monooxygenase FMO401 affords (R)-sulfoxides with good conversions and high ee.
Collapse
Affiliation(s)
- Jingyue Wu
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Silvia Anselmi
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Alexandra T P Carvalho
- Department of Biocatalysis & Isotope Chemistry Almac 20 Seagoe Industrial Estate Craigavon BT63 5QD UK
| | - Jill Caswell
- Department of Biocatalysis & Isotope Chemistry Almac 20 Seagoe Industrial Estate Craigavon BT63 5QD UK
| | - Derek J Quinn
- Department of Biocatalysis & Isotope Chemistry Almac 20 Seagoe Industrial Estate Craigavon BT63 5QD UK
| | - Thomas S Moody
- Department of Biocatalysis & Isotope Chemistry Almac 20 Seagoe Industrial Estate Craigavon BT63 5QD UK
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate Athlone Co. Roscommon Ireland
| | - Daniele Castagnolo
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| |
Collapse
|
5
|
Fatima S, Zahoor AF, Khan SG, Naqvi SAR, Hussain SM, Nazeer U, Mansha A, Ahmad H, Chaudhry AR, Irfan A. Baeyer-Villiger oxidation: a promising tool for the synthesis of natural products: a review. RSC Adv 2024; 14:23423-23458. [PMID: 39055269 PMCID: PMC11270005 DOI: 10.1039/d4ra03914a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Baeyer-Villiger oxidation is a well-known reaction utilized for the synthesis of lactones and ester functionalities from ketones. Chiral lactones can be synthesized from chiral or racemic ketones by employing asymmetric Baeyer-Villiger oxidation. These lactones act as key intermediates in the synthesis of most of the biologically active natural products, their analogues, and derivatives. Various monooxygenases and oxidizing agents facilitate BV oxidation, providing a broad range of synthetic applications in organic chemistry. The variety of enzymatic and chemoselective Baeyer-Villiger oxidations and their substantial role in the synthesis of natural products i.e., alkaloids, polyketides, fatty acids, terpenoids, etc. (reported since 2018) have been summarized in this review article.
Collapse
Affiliation(s)
- Summaya Fatima
- Department of Chemistry, Government College University Faisalabad 38000 Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000 Faisalabad Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Government College University Faisalabad 38000 Faisalabad Pakistan
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University Faisalabad 38000 Faisalabad Pakistan
| | - Syed Makhdoom Hussain
- Department of Zoology, Government College University Faisalabad 38000 Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad 38000 Faisalabad Pakistan
| | - Hamad Ahmad
- Department of Chemistry, University of Management and Technology Lahore 54000 Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha PO Box 551 Bisha 61922 Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University PO Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
6
|
Zubova E, Pokluda A, Dvořáková H, Krupička M, Cibulka R. Exploring the Reactivity of Flavins with Nucleophiles Using a Theoretical and Experimental Approach. Chempluschem 2024; 89:e202300547. [PMID: 38064649 DOI: 10.1002/cplu.202300547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/30/2023] [Indexed: 01/13/2024]
Abstract
Covalent adducts of flavin cofactors with nucleophiles play an important role in non-canonical function of flavoenzymes as well as in flavin-based catalysis. Herein, the interaction of flavin derivatives including substituted flavins (isoalloxazines), 1,10-ethylene-bridged flavinium salts, and non-substituted alloxazine and deazaflavin with selected nucleophiles was investigated using an experimental and computational approach. Triphenylphosphine or trimethylphosphine, 1-nitroethan-1-ide, and methoxide were selected as representatives of neutral soft, anionic soft, and hard nucleophiles, respectively. The interactions were investigated using UV/Vis and 1H NMR spectroscopy as well as by DFT calculations. The position of nucleophilic attack estimated using the calculated Gibbs free energy values was found to correspond with the experimental data, favouring the addition of phosphine and 1-nitroethan-1-ide into position N(5) and methoxide into position C(10a) of 1,10-ethylene-bridged flavinium salts. The calculated Gibbs free energy values were found to correlate with the experimental redox potentials of the flavin derivatives tested. These findings can be utilized as valuable tools for the design of artificial flavin-based catalytic systems or investigating the mechanism of flavoenzymes.
Collapse
Affiliation(s)
- Ekaterina Zubova
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Adam Pokluda
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Hana Dvořáková
- Central Laboratories, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Martin Krupička
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| |
Collapse
|
7
|
Wei S, Xu G, Zhou J, Ni Y. Structure-Guided Evolution of Cyclohexanone Monooxygenase Toward Bulky Omeprazole Sulfide: Substrate Migration and Stereoselectivity Inversion. Chemphyschem 2024; 25:e202400008. [PMID: 38514394 DOI: 10.1002/cphc.202400008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024]
Abstract
Structure-guided engineering of a CHMO from Amycolatopsis methanolica (AmCHMO) was performed for asymmetric sulfoxidation activity and stereoselectivity toward omeprazole sulfide. Initially, combinatorial active-site saturation test (CASTing) and iteratively saturation mutagenesis (ISM) were performed on 5 residues at the "bottleneck" of substrate tunnel, and MT3 was successfully obtained with a specific activity of 46.19 U/g and R-stereoselectivity of 99 % toward OPS. Then, 4 key mutations affecting the stereoselectivity were identified through multiple rounds of ISM on residues at the substrate binding pocket region, resulting MT8 with an inversed stereoselectivity from 99 % (R) to 97 % (S). MT8 has a greatly compromised specific activity of 0.08 U/g. By introducing additional beneficial mutations, MT11 was constructed with significantly increased specific activity of 2.29 U/g and stereoselectivity of 97 % (S). Enlarged substrate tunnel is critical to the expanded substrate spectrum of AmCHMO, while reshaping of substrate binding pocket is important for stereoselective inversion. Based on MD simulation, pre-reaction states of MT3-OPSproR, MT8-OPSproS, and MT11-OPSproS were calculated to be 45.56 %, 17.94 %, and 28.65 % respectively, which further confirm the experimental data on activity and stereoselectivity. Our results pave the way for engineering distinct activity and stereoselectivity of BVMOs toward bulky prazole thioethers.
Collapse
Affiliation(s)
- Shiyu Wei
- Institution: School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Address, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
- Department: Key laboratory of industrial Biotechnology. Institution: Ministry of Education, School of Biotechnology, Address, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Guochao Xu
- Department: Key laboratory of industrial Biotechnology. Institution: Ministry of Education, School of Biotechnology, Address, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jieyu Zhou
- Department: Key laboratory of industrial Biotechnology. Institution: Ministry of Education, School of Biotechnology, Address, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ye Ni
- Department: Key laboratory of industrial Biotechnology. Institution: Ministry of Education, School of Biotechnology, Address, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
8
|
Weber F, Weber A, Schmitt L, Lechtenberg I, Greb J, Henßen B, Wesselborg S, Pietruszka J. From the Total Synthesis of Semi-Viriditoxin, Semi-Viriditoxic Acid and Dimeric Naphthopyranones to their Biological Activities in Burkitt B Cell Lymphoma. Chemistry 2024; 30:e202400559. [PMID: 38411573 DOI: 10.1002/chem.202400559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 02/28/2024]
Abstract
Dimeric naphthopyranones are known to be biologically active, however, for the corresponding monomeric naphthopyranones this information is still elusive. Here the first enantioselective total synthesis of semi-viriditoxic acid as well as the synthesis of semi-viriditoxin and derivatives is reported. The key intermediate in the synthesis of naphthopyranones is an α,β-unsaturated δ-lactone, which we synthesized in two different ways (Ghosez-cyclization and Grubbs ring-closing metathesis), while the domino-Michael-Dieckmann reaction of the α,β-unsaturated δ-lactone with an orsellinic acid derivative is the key reaction. A structure-activity relationship study was performed measuring the cytotoxicity in Burkitt B lymphoma cells (Ramos). The dimeric structure was found to be crucial for biological activity: Only the dimeric naphthopyranones showed cytotoxic and apoptotic activity, whereas the monomers did not display any activity at all.
Collapse
Affiliation(s)
- Frederike Weber
- Institute for Bioorganic Chemistry, Heinrich Heine University Düsseldorf in, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Anja Weber
- Institute for Bioorganic Chemistry, Heinrich Heine University Düsseldorf in, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Laura Schmitt
- Institute for Molecular Medicine I, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Ilka Lechtenberg
- Institute for Molecular Medicine I, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Julian Greb
- Institute for Bioorganic Chemistry, Heinrich Heine University Düsseldorf in, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Birgit Henßen
- Institute for Bioorganic Chemistry, Heinrich Heine University Düsseldorf in, Forschungszentrum Jülich, 52426, Jülich, Germany
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Sebastian Wesselborg
- Institute for Molecular Medicine I, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jörg Pietruszka
- Institute for Bioorganic Chemistry, Heinrich Heine University Düsseldorf in, Forschungszentrum Jülich, 52426, Jülich, Germany
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich, 52426, Jülich, Germany
| |
Collapse
|
9
|
Valotta A, Stelzer D, Reiter T, Kroutil W, Gruber-Woelfler H. A multistep (semi)-continuous biocatalytic setup for the production of polycaprolactone. REACT CHEM ENG 2024; 9:713-727. [PMID: 38433980 PMCID: PMC10903532 DOI: 10.1039/d3re00536d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 03/05/2024]
Abstract
Biocatalysis has gained increasing importance as an eco-friendly alternative for the production of bulk and fine chemicals. Within this paradigm, Baeyer Villiger monoxygenases (BVMOs) serve as enzymatic catalysts that provide a safe and sustainable route to the conventional synthesis of lactones, such as caprolactone, which is employed for the production of polycaprolactone (PCL), a biocompatible polymer for medicinal applications. In this work, we present a three-step, semi-continuous production of PCL using an entirely biocatalytic process, highlighting the merits of continuous manufacturing for enhancing biocatalysis. First, caprolactone is produced in batch from cyclohexanol using a coenzymatic cascade involving an alcohol dehydrogenase (ADH) and BVMO. Different process parameters and aeration modes were explored to optimize the cascade's productivity. Secondly, the continuous extraction of caprolactone into an organic solvent, needed for the polymerization step, was optimized. 3D-printed mixers were applied to enhance the mass transfer between the organic and the aqueous phases. Lastly, we investigated the ring-opening polymerization of caprolactone to PCL catalyzed by Candida antarctica lipase B (CAL-B), with a focus on eco-friendly solvents like cyclopentyl-methyl-ether (CPME). Space-time-yields up to 58.5 g L-1 h-1 were achieved with our overall setup. By optimizing the individual process steps, we present an efficient and sustainable pathway for PCL production.
Collapse
Affiliation(s)
- Alessia Valotta
- Institute of Process and Particle Engineering, Graz University of Technology Inffeldgasse 13 8010 Graz Austria
| | - Daniela Stelzer
- Institute of Process and Particle Engineering, Graz University of Technology Inffeldgasse 13 8010 Graz Austria
| | - Tamara Reiter
- Department of Chemistry, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Wolfgang Kroutil
- Department of Chemistry, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Heidrun Gruber-Woelfler
- Institute of Process and Particle Engineering, Graz University of Technology Inffeldgasse 13 8010 Graz Austria
| |
Collapse
|
10
|
Terholsen H, Schmidt S. Cell-free chemoenzymatic cascades with bio-based molecules. Curr Opin Biotechnol 2024; 85:103058. [PMID: 38154324 DOI: 10.1016/j.copbio.2023.103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
For the valorization of various bio-based feedstocks, the combination of different catalytic systems with biocatalysis in chemoenzymatic cascades has been shown to have high potential. However, the development of such integrated catalytic systems is often limited by catalyst incompatibility. Therefore, incorporating novel catalytic concepts into the chemoenzymatic valorization of bio-based feedstocks is currently of great interest. This article provides an overview of the methods/approaches used to advance the development of chemoenzymatic cascades for the catalytic upgrading of bio-based feedstocks. It specifically focuses on recent developments in the combination of enzymes with organo- and chemocatalysis. Furthermore, current applications and future perspectives of integrating novel catalytic systems such as photo- and electrocatalysis toward new synthetic routes for the utilization of the often highly functionalized bio-based compounds are reviewed.
Collapse
Affiliation(s)
- Henrik Terholsen
- University of Groningen, Groningen Research Institute of Pharmacy, Dept. of Chemical and Pharmaceutical Biology, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands
| | - Sandy Schmidt
- University of Groningen, Groningen Research Institute of Pharmacy, Dept. of Chemical and Pharmaceutical Biology, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands.
| |
Collapse
|
11
|
Verma S, Paliwal S. Recent Developments and Applications of Biocatalytic and Chemoenzymatic Synthesis for the Generation of Diverse Classes of Drugs. Curr Pharm Biotechnol 2024; 25:448-467. [PMID: 37885105 DOI: 10.2174/0113892010238984231019085154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/26/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Biocatalytic and chemoenzymatic biosynthesis are powerful methods of organic chemistry that use enzymes to execute selective reactions and allow the efficient production of organic compounds. The advantages of these approaches include high selectivity, mild reaction conditions, and the ability to work with complex substrates. The utilization of chemoenzymatic techniques for the synthesis of complicated compounds has lately increased dramatically in the area of organic chemistry. Biocatalytic technologies and modern synthetic methods are utilized synergistically in a multi-step approach to a target molecule under this paradigm. Chemoenzymatic techniques are promising for simplifying access to essential bioactive compounds because of the remarkable regio- and stereoselectivity of enzymatic transformations and the reaction diversity of modern organic chemistry. Enzyme kits may include ready-to-use, reproducible biocatalysts. Its use opens up new avenues for the synthesis of active therapeutic compounds and aids in drug development by synthesizing active components to construct scaffolds in a targeted and preparative manner. This study summarizes current breakthroughs as well as notable instances of biocatalytic and chemoenzymatic synthesis. To assist organic chemists in the use of enzymes for synthetic applications, it also provides some basic guidelines for selecting the most appropriate enzyme for a targeted reaction while keeping aspects like cofactor requirement, solvent tolerance, use of whole cell or isolated enzymes, and commercial availability in mind.
Collapse
Affiliation(s)
- Swati Verma
- Department of Pharmacy, ITS College of Pharmacy, Muradnagar, Ghaziabad, India
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| |
Collapse
|
12
|
Matysik J, Gerhards L, Theiss T, Timmermann L, Kurle-Tucholski P, Musabirova G, Qin R, Ortmann F, Solov'yov IA, Gulder T. Spin Dynamics of Flavoproteins. Int J Mol Sci 2023; 24:ijms24098218. [PMID: 37175925 PMCID: PMC10179055 DOI: 10.3390/ijms24098218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
This short review reports the surprising phenomenon of nuclear hyperpolarization occurring in chemical reactions, which is called CIDNP (chemically induced dynamic nuclear polarization) or photo-CIDNP if the chemical reaction is light-driven. The phenomenon occurs in both liquid and solid-state, and electron transfer systems, often carrying flavins as electron acceptors, are involved. Here, we explain the physical and chemical properties of flavins, their occurrence in spin-correlated radical pairs (SCRP) and the possible involvement of flavin-carrying SCRPs in animal magneto-reception at earth's magnetic field.
Collapse
Affiliation(s)
- Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Luca Gerhards
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Tobias Theiss
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Lisa Timmermann
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | | | - Guzel Musabirova
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Ruonan Qin
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Frank Ortmann
- TUM School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Ilia A Solov'yov
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Tanja Gulder
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Lipase-mediated Baeyer-Villiger oxidation of benzylcyclopentanones in ester solvents and deep eutectic solvents. Sci Rep 2022; 12:14795. [PMID: 36042323 PMCID: PMC9427991 DOI: 10.1038/s41598-022-18913-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
This work presents the chemo-enzymatic Baeyer-Villiger oxidation of α-benzylcyclopentanones in ester solvents as well as deep eutectic solvents (DES). In the first part of the work the effect of selected reaction conditions on the reaction rate was determined. The oxidation process was most effective in ethyl acetate at 55 °C, with the use of lipase B from Candida antarctica immobilized on acrylic resin and UHP as oxidant. Ultimately, these preliminary studies prompted the development of an effective method for the implementation of lipase-mediated Baeyer-Villiger oxidation of benzylcyclopentanones in DES. The highest conversion was indicated when the oxidizing agent was a component of DESs (minimal DESs). The fastest conversion of ketones to lactones was observed in a mixture of choline chloride with urea hydrogen peroxide. In this case, after 3 days, the conversion of the ketones to lactones products exceeded 92% for all substrates. As a result, two new lactones were obtained and fully characterized by spectroscopic data.
Collapse
|
14
|
A novel 4-hydroxyacetophenone monooxygenase featuring aromatic substrates preference for enantioselective access to sulfoxides. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
“Nonpolarity paving” in substrate tunnel of a Limnobacter sp. Phenylacetone monooxygenase for efficient single whole-cell synthesis of esomeprazole. Bioorg Chem 2022; 125:105867. [DOI: 10.1016/j.bioorg.2022.105867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022]
|
16
|
Zhu J, Geng Q, Liu YY, Pan J, Yu HL, Xu JH. Co-Cross-Linked Aggregates of Baeyer–Villiger Monooxygenases and Formate Dehydrogenase for Repeated Use in Asymmetric Biooxidation. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Geng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuan-Yang Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
17
|
Seo E, Kim M, Park S, Park S, Oh D, Bornscheuer U, Park J. Enzyme Access Tunnel Engineering in Baeyer‐Villiger Monooxygenases to Improve Oxidative Stability and Biocatalyst Performance. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eun‐Ji Seo
- Department of Food Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Myeong‐Ju Kim
- Department of Food Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - So‐Yeon Park
- Department of Food Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Seongsoon Park
- Department of Chemistry, Center for NanoBio Applied Technology Sungshin Women's University Seoul 01133 Republic of Korea
| | - Deok‐Kun Oh
- Department of Bioscience and Biotechnology Konkuk University Seoul 05029 Republic of Korea
| | - Uwe Bornscheuer
- Institute of Biochemistry, Department of Biotechnology & Enzyme Catalysis Greifswald University Greifswald 17487 Germany
| | - Jin‐Byung Park
- Department of Food Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
18
|
Two enantiocomplementary Baeyer-Villiger monooxygenases newly identified for asymmetric oxyfunctionalization of thioether. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Zhu K, Jiang M, Ye B, Zhang GT, Li W, Tang P, Huang Z, Chen F. A unified strategy to prostaglandins: chemoenzymatic total synthesis of cloprostenol, bimatoprost, PGF 2α, fluprostenol, and travoprost guided by biocatalytic retrosynthesis. Chem Sci 2021; 12:10362-10370. [PMID: 34377422 PMCID: PMC8336452 DOI: 10.1039/d1sc03237b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022] Open
Abstract
Development of efficient and stereoselective synthesis of prostaglandins (PGs) is of utmost importance, owing to their valuable medicinal applications and unique chemical structures. We report here a unified synthesis of PGs cloprostenol, bimatoprost, PGF2α, fluprostenol, and travoprost from the readily available dichloro-containing bicyclic ketone 6a guided by biocatalytic retrosynthesis, in 11-12 steps with 3.8-8.4% overall yields. An unprecedented Baeyer-Villiger monooxygenase (BVMO)-catalyzed stereoselective oxidation of 6a (99% ee), and a ketoreductase (KRED)-catalyzed diastereoselective reduction of enones 12 (87 : 13 to 99 : 1 dr) were utilized in combination for the first time to set the critical stereochemical configurations under mild conditions. Another key transformation was the copper(ii)-catalyzed regioselective p-phenylbenzoylation of the secondary alcohol of diol 10 (9.3 : 1 rr). This study not only provides an alternative route to the highly stereoselective synthesis of PGs, but also showcases the usefulness and great potential of biocatalysis in construction of complex molecules.
Collapse
Affiliation(s)
- Kejie Zhu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China .,Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 P. R. China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China .,Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 P. R. China
| | - Baijun Ye
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China .,Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 P. R. China
| | - Guo-Tai Zhang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 P. R. China
| | - Weijian Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 P. R. China
| | - Pei Tang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 P. R. China
| | - Zedu Huang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China .,Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 P. R. China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China .,Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 P. R. China.,Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
20
|
Abstract
Baeyer–Villiger monooxygenases (BVMOs) are flavin-dependent oxidative enzymes capable of catalyzing the insertion of an oxygen atom between a carbonylic Csp2 and the Csp3 at the alpha position, therefore transforming linear and cyclic ketones into esters and lactones. These enzymes are dependent on nicotinamides (NAD(P)H) for the flavin reduction and subsequent reaction with molecular oxygen. BVMOs can be included in cascade reactions, coupled to other redox enzymes, such as alcohol dehydrogenases (ADHs) or ene-reductases (EREDs), so that the direct conversion of alcohols or α,β-unsaturated carbonylic compounds to the corresponding esters can be achieved. In the present review, the different synthetic methodologies that have been performed by employing multienzymatic strategies with BVMOs combining whole cells or isolated enzymes, through sequential or parallel methods, are described, with the aim of highlighting the advantages of performing multienzymatic systems, and show the recent advances for overcoming the drawbacks of using BVMOs in these techniques.
Collapse
|
21
|
Paul CE, Eggerichs D, Westphal AH, Tischler D, van Berkel WJH. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnol Adv 2021; 51:107712. [PMID: 33588053 DOI: 10.1016/j.biotechadv.2021.107712] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Flavoprotein monooxygenases (FPMOs) are single- or two-component enzymes that catalyze a diverse set of chemo-, regio- and enantioselective oxyfunctionalization reactions. In this review, we describe how FPMOs have evolved from model enzymes in mechanistic flavoprotein research to biotechnologically relevant catalysts that can be applied for the sustainable production of valuable chemicals. After a historical account of the development of the FPMO field, we explain the FPMO classification system, which is primarily based on protein structural properties and electron donor specificities. We then summarize the most appealing reactions catalyzed by each group with a focus on the different types of oxygenation chemistries. Wherever relevant, we report engineering strategies that have been used to improve the robustness and applicability of FPMOs.
Collapse
Affiliation(s)
- Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Daniel Eggerichs
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
22
|
Advances in enzymatic oxyfunctionalization of aliphatic compounds. Biotechnol Adv 2021; 51:107703. [PMID: 33545329 DOI: 10.1016/j.biotechadv.2021.107703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022]
Abstract
Selective oxyfunctionalizations of aliphatic compounds are difficult chemical reactions, where enzymes can play an important role due to their stereo- and regio-selectivity and operation under mild reaction conditions. P450 monooxygenases are well-known biocatalysts that mediate oxyfunctionalization reactions in different living organisms (from bacteria to humans). Unspecific peroxygenases (UPOs), discovered in fungi, have arisen as "dream biocatalysts" of great biotechnological interest because they catalyze the oxyfunctionalization of aliphatic and aromatic compounds, avoiding the necessity of expensive cofactors and regeneration systems, and only depending on H2O2 for their catalysis. Here, we summarize recent advances in aliphatic oxyfunctionalization reactions by UPOs, as well as the molecular determinants of the enzyme structures responsible for their activities, emphasizing the differences found between well-known P450s and the novel fungal peroxygenases.
Collapse
|
23
|
Röllig R, Paul CE, Claeys-Bruno M, Duquesne K, Kara S, Alphand V. Divorce in the two-component BVMO family: the single oxygenase for enantioselective chemo-enzymatic Baeyer-Villiger oxidations. Org Biomol Chem 2021; 19:3441-3450. [PMID: 33899864 DOI: 10.1039/d1ob00015b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two-component flavoprotein monooxygenases consist of a reductase and an oxygenase enzyme. The proof of functionality of the latter without its counterpart as well as the mechanism of flavin transfer remains unanswered beyond doubt. To tackle this question, we utilized a reductase-free reaction system applying purified 2,5-diketocamphane-monooxygenase I (2,5-DKCMO), a FMN-dependent type II Baeyer-Villiger monooxygenase, and synthetic nicotinamide analogues (NCBs) as dihydropyridine derivatives for FMN reduction. This system demonstrated the stand-alone quality of the oxygenase, as well as the mechanism of FMNH2 transport by free diffusion. The efficiency of this reductase-free system strongly relies on the balance of FMN reduction and enzymatic (re)oxidation, since reduced FMN in solution causes undesired side reactions, such as hydrogen peroxide formation. Design of experiments allowed us to (i) investigate the effect of various reaction parameters, underlining the importance to balance the FMN/FMNH2 cycle, (ii) optimize the reaction system for the enzymatic Baeyer-Villiger oxidation of rac-bicyclo[3.2.0]hept-2-en-6-one, rac-camphor, and rac-norcamphor. Finally, this study not only demonstrates the reductase-independence of 2,5-DKCMO, but also revisits the terminology of two-component flavoprotein monooxygenases for this specific case.
Collapse
Affiliation(s)
- Robert Röllig
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France. and Aarhus University, Denmark
| | | | | | - Katia Duquesne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France.
| | | | - Véronique Alphand
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France.
| |
Collapse
|
24
|
Immobilized Cell Physiology Imaging and Stabilization of Enzyme Cascade Reaction Using Recombinant Cells Escherichia coli Entrapped in Polyelectrolyte Complex Beads by Jet Break-Up Encapsulator. Catalysts 2020. [DOI: 10.3390/catal10111288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A novel, high performance, and scalable immobilization protocol using a laminar jet break-up technique was developed for the production of polyelectrolyte complex beads with entrapped viable Escherichia coli cells expressing an enzyme cascade of alcohol dehydrogenase, enoate reductase, and cyclohexanone monooxygenase. A significant improvement of operational stability was achieved by cell immobilization, which was manifested as an almost two-fold higher summative product yield of 63% after five cascade reaction cycles as compared to the yield using free cells of 36% after the maximum achievable number of three cycles. Correspondingly, increased metabolic activity was observed by multimodal optical imaging in entrapped cells, which was in contrast to a complete suppression of cell metabolism in free cells after five reaction cycles. Additionally, a high density of cells entrapped in beads had a negligible effect on bead permeability for low molecular weight substrates and products of cascade reaction.
Collapse
|
25
|
Grimm C, Lazzarotto M, Pompei S, Schichler J, Richter N, Farnberger JE, Fuchs M, Kroutil W. Oxygen-Free Regioselective Biocatalytic Demethylation of Methyl-phenyl Ethers via Methyltransfer Employing Veratrol- O-demethylase. ACS Catal 2020; 10:10375-10380. [PMID: 32974079 PMCID: PMC7506938 DOI: 10.1021/acscatal.0c02790] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/17/2020] [Indexed: 11/28/2022]
Abstract
![]()
The cleavage of aryl
methyl ethers is a common reaction in chemistry requiring rather harsh
conditions; consequently, it is prone to undesired reactions and lacks
regioselectivity. Nevertheless, O-demethylation of
aryl methyl ethers is a tool to valorize natural and pharmaceutical
compounds by deprotecting reactive hydroxyl moieties. Various oxidative
enzymes are known to catalyze this reaction at the expense of molecular
oxygen, which may lead in the case of phenols/catechols to undesired
side reactions (e.g., oxidation, polymerization). Here an oxygen-independent
demethylation via methyl transfer is presented employing a cobalamin-dependent
veratrol-O-demethylase (vdmB). The biocatalytic demethylation
transforms a variety of aryl methyl ethers with two functional methoxy
moieties either in 1,2-position or in 1,3-position. Biocatalytic reactions
enabled, for instance, the regioselective monodemethylation of substituted
3,4-dimethoxy phenol as well as the monodemethylation of 1,3,5-trimethoxybenzene.
The methyltransferase vdmB was also successfully applied for the regioselective
demethylation of natural compounds such as papaverine and rac-yatein. The approach presented here represents an alternative
to chemical and enzymatic demethylation concepts and allows performing
regioselective demethylation in the absence of oxygen under mild conditions,
representing a valuable extension of the synthetic repertoire to modify
pharmaceuticals and diversify natural products.
Collapse
Affiliation(s)
- Christopher Grimm
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Mattia Lazzarotto
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Simona Pompei
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Johanna Schichler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Nina Richter
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria, c/o Institute of Chemistry, Heinrichstraße 28, 8010 Graz, Austria
| | - Judith E. Farnberger
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria, c/o Institute of Chemistry, Heinrichstraße 28, 8010 Graz, Austria
| | - Michael Fuchs
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
26
|
Silva ALP, da Silva Caridade TN, Magalhães RR, de Sousa KT, de Sousa CC, Vale JA. Biocatalytic production of Ɛ-caprolactone using Geotrichum candidum cells immobilized on functionalized silica. Appl Microbiol Biotechnol 2020; 104:8887-8895. [PMID: 32902680 DOI: 10.1007/s00253-020-10875-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022]
Abstract
Immobilization of the Geotrichum candidum (CCT 1205) cell with functionalized silica creates promising biocatalysts for production of ɛ-caprolactone. The results obtained by immobilization of the whole cell on SiO2-NH2 and SiO2-SH supports indicate that the presence of reactive functional groups on the support may promote effective chemical bonds with the cell walls resulting the decreased dehydrogenases enzyme activity (5% yield in less than 2h) and consequently, increased Baeyer-Villiger monooxygenases enzyme activity with redacting of 25% of time reaction when is used SiO2-NH2 as support and 50% through use of SiO2-SH as support relative to free cells when cyclohexanone is used as a substrate. The catalysts SiO2-NH2-Geotrichum candidum and SiO2-SH-Geotrichum candidum were recycling and reused in the ɛ-caprolactone synthesis from cyclohexanone, and the biocatalysts promoted a quantitative conversion up to the eighth reaction cycle. KEY POINTS: • Immobilized microorganism is more efficient than free cell in the caprolactone synthesis. • The reaction times for amino and thiol groups in support were 3 h and 2 h, respectively. • These catalysts showed higher ɛ-caprolactone conversion at higher concentrations.
Collapse
Affiliation(s)
| | | | | | | | | | - Juliana Alves Vale
- Department of Chemistry, Federal University of Paraíba, João Pessoa, PB, 58051-970, Brazil.
| |
Collapse
|
27
|
Mansouri HR, Mihovilovic MD, Rudroff F. Investigation of a New Type I Baeyer-Villiger Monooxygenase from Amycolatopsis thermoflava Revealed High Thermodynamic but Limited Kinetic Stability. Chembiochem 2020; 21:971-977. [PMID: 31608538 PMCID: PMC7187199 DOI: 10.1002/cbic.201900501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/11/2019] [Indexed: 12/11/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are remarkable biocatalysts, but, due to their low stability, their application in industry is hampered. Thus, there is a high demand to expand on the diversity and increase the stability of this class of enzyme. Starting from a known thermostable BVMO sequence from Thermocrispum municipale (TmCHMO), a novel BVMO from Amycolaptosis thermoflava (BVMOFlava ), which was successfully expressed in Escherichia coli BL21(DE3), was identified. The activity and stability of the purified enzyme was investigated and the substrate profile for structurally different cyclohexanones and cyclobutanones was assigned. The enzyme showed a lower activity than that of cyclohexanone monooxygenase (CHMOAcineto ) from Acinetobacter sp., as the prototype BVMO, but indicated higher kinetic stability by showing a twofold longer half-life at 30 °C. The thermodynamic stability, as represented by the melting temperature, resulted in a Tm value of 53.1 °C for BVMOFlava , which was comparable to the Tm of TmCHMO (ΔTm =1 °C) and significantly higher than the Tm value for CHMOAcineto ((ΔTm =14.6 °C)). A strong deviation between the thermodynamic and kinetic stabilities of BVMOFlava was observed; this might have a major impact on future enzyme discovery for BVMOs and their synthetic applications.
Collapse
Affiliation(s)
- Hamid R. Mansouri
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 91060ViennaAustria
| | | | - Florian Rudroff
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 91060ViennaAustria
| |
Collapse
|
28
|
Sheldon RA, Brady D, Bode ML. The Hitchhiker's guide to biocatalysis: recent advances in the use of enzymes in organic synthesis. Chem Sci 2020; 11:2587-2605. [PMID: 32206264 PMCID: PMC7069372 DOI: 10.1039/c9sc05746c] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enzymes are excellent catalysts that are increasingly being used in industry and academia. This perspective is primarily aimed at synthetic organic chemists with limited experience using enzymes and provides a general and practical guide to enzymes and their synthetic potential, with particular focus on recent applications.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
- Department of Biotechnology , Delft University of Technology , Delft , The Netherlands
| | - Dean Brady
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
| | - Moira L Bode
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
| |
Collapse
|
29
|
Neděla V, Tihlaříková E, Maxa J, Imrichová K, Bučko M, Gemeiner P. Simulation-based optimisation of thermodynamic conditions in the ESEM for dynamical in-situ study of spherical polyelectrolyte complex particles in their native state. Ultramicroscopy 2020; 211:112954. [PMID: 32018072 DOI: 10.1016/j.ultramic.2020.112954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 11/18/2022]
Abstract
We present a complex analysis and optimisation of dynamic conditions in the environmental scanning electron microscope (ESEM) to allow in-situ observation of extremely delicate wet bio-polymeric spherical particles in their native state. According to the results of gas flow and heat transfer simulations, we were able to develop an improved procedure leading to thermodynamic equilibrium between the sample and chamber environment. To quantify and hence minimise the extent of any sample deformation during specimen chamber pumping, a strength-stress analysis is used. Monte Carlo simulations of beam-gas, -water, and -sample interactions describe beam scattering, absorbed energy, interaction volume and the emission of signal electrons in the ESEM. Finally, we discuss sample damage as a result of drying and the production of beam-induced free radicals. Based on all experimental and simulation results we introduce a Delicate Sample Observation Strategy for the ESEM. We show how this strategy can be applied to the characterization of polyelectrolyte complex spherical particles containing immobilized recombinant cells E. coli overexpressing cyclohexanone monooxygenase, used as a model biocatalyst. We present the first native-state electron microscopy images of the viscous core of a halved polyelectrolyte complex capsule containing living cells.
Collapse
Affiliation(s)
- Vilém Neděla
- Environmental electron microscopy group, Institute of Scientific Instruments of ASCR, Královopolská 147, 61264 Brno, Czech Republic.
| | - Eva Tihlaříková
- Environmental electron microscopy group, Institute of Scientific Instruments of ASCR, Královopolská 147, 61264 Brno, Czech Republic
| | - Jiří Maxa
- Environmental electron microscopy group, Institute of Scientific Instruments of ASCR, Královopolská 147, 61264 Brno, Czech Republic
| | - Kamila Imrichová
- Environmental electron microscopy group, Institute of Scientific Instruments of ASCR, Královopolská 147, 61264 Brno, Czech Republic
| | - Marek Bučko
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia
| | - Peter Gemeiner
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia
| |
Collapse
|
30
|
Chenprakhon P, Wongnate T, Chaiyen P. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases. Protein Sci 2020; 28:8-29. [PMID: 30311986 DOI: 10.1002/pro.3525] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Many flavoenzymes catalyze hydroxylation of aromatic compounds especially phenolic compounds have been isolated and characterized. These enzymes can be classified as either single-component or two-component flavin-dependent hydroxylases (monooxygenases). The hydroxylation reactions catalyzed by the enzymes in this group are useful for modifying the biological properties of phenolic compounds. This review aims to provide an in-depth discussion of the current mechanistic understanding of representative flavin-dependent monooxygenases including 3-hydroxy-benzoate 4-hydroxylase (PHBH, a single-component hydroxylase), 3-hydroxyphenylacetate 4-hydroxylase (HPAH, a two-component hydroxylase), and other monooxygenases which catalyze reactions in addition to hydroxylation, including 2-methyl-3-hydroxypyridine-5-carboxylate oxygenase (MHPCO, a single-component enzyme that catalyzes aromatic-ring cleavage), and HadA monooxygenase (a two-component enzyme that catalyzes additional group elimination reaction). These enzymes have different unique structural features which dictate their reactivity toward various substrates and influence their ability to stabilize flavin intermediates such as C4a-hydroperoxyflavin. Understanding the key catalytic residues and the active site environments important for governing enzyme reactivity will undoubtedly facilitate future work in enzyme engineering or enzyme redesign for the development of biocatalytic methods for the synthesis of valuable compounds.
Collapse
Affiliation(s)
- Pirom Chenprakhon
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 14000, Thailand
| |
Collapse
|
31
|
Schmidt S, Bornscheuer UT. Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:231-281. [DOI: 10.1016/bs.enz.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Song JW, Seo JH, Oh DK, Bornscheuer UT, Park JB. Design and engineering of whole-cell biocatalytic cascades for the valorization of fatty acids. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01802f] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review presents the key factors to construct a productive whole-cell biocatalytic cascade exemplified for the biotransformation of renewable fatty acids.
Collapse
Affiliation(s)
- Ji-Won Song
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - Joo-Hyun Seo
- Department of Bio and Fermentation Convergence Technology
- Kookmin University
- Seoul 02707
- Republic of Korea
| | - Doek-Kun Oh
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 143-701
- Republic of Korea
| | - Uwe T. Bornscheuer
- Institute of Biochemistry
- Department of Biotechnology & Enzyme Catalysis
- Greifswald University
- 17487 Greifswald
- Germany
| | - Jin-Byung Park
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
- Institute of Molecular Microbiology and Biosystems Engineering
| |
Collapse
|
33
|
Hu Y, Zhang Y, Xu W, Xu J, Lin X, Wu Q. Dual-Enzyme-Catalyzed Synthesis of Enantiocomplementary Polyesters. ACS Macro Lett 2019; 8:1432-1436. [PMID: 35651193 DOI: 10.1021/acsmacrolett.9b00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, a series of enantiocomplementary polyesters with either (S)- or (R)-configurations were successfully prepared by applying a dual-enzyme biocatalytic system. In the step of Baeyer-Villiger oxidation, cyclohexanone monooxygenase from Acinetobacter sp. NCIMB 9871 (CHMOAcineto) was engineered rationally to tailor the enantiopreference of mutants, providing (S)- and (R)-lactones, respectively, with high optical purities (up to 99% ee) as polymeric precursors. By subsequent enzymatic ring-opening polymerization of the enantiopure monomers, enantiocomplementary polyesters with high molecular weight (up to 21.8 kDa Mn) were synthesized by lipase CALB/MML. Our research offers an environmentally friendly synthesis route for the production of optically pure lactones and chiral polyesters, which are of particular significance for their application in organic syntheis or biomedical materials.
Collapse
Affiliation(s)
- Yujing Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yu Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Weihua Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Jian Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xianfu Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
34
|
Fürst MJLJ, Gran-Scheuch A, Aalbers FS, Fraaije MW. Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03396] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maximilian J. L. J. Fürst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Alejandro Gran-Scheuch
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Friso S. Aalbers
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| |
Collapse
|
35
|
Biocatalysis as Useful Tool in Asymmetric Synthesis: An Assessment of Recently Granted Patents (2014–2019). Catalysts 2019. [DOI: 10.3390/catal9100802] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The broad interdisciplinary nature of biocatalysis fosters innovation, as different technical fields are interconnected and synergized. A way to depict that innovation is by conducting a survey on patent activities. This paper analyses the intellectual property activities of the last five years (2014–2019) with a specific focus on biocatalysis applied to asymmetric synthesis. Furthermore, to reflect the inventive and innovative steps, only patents that were granted during that period are considered. Patent searches using several keywords (e.g., enzyme names) have been conducted by using several patent engine servers (e.g., Espacenet, SciFinder, Google Patents), with focus on granted patents during the period 2014–2019. Around 200 granted patents have been identified, covering all enzyme types. The inventive pattern focuses on the protection of novel protein sequences, as well as on new substrates. In some other cases, combined processes, multi-step enzymatic reactions, as well as process conditions are the innovative basis. Both industries and academic groups are active in patenting. As a conclusion of this survey, we can assert that biocatalysis is increasingly recognized as a useful tool for asymmetric synthesis and being considered as an innovative option to build IP and protect synthetic routes.
Collapse
|
36
|
Solé J, Brummund J, Caminal G, Álvaro G, Schürmann M, Guillén M. Enzymatic Synthesis of Trimethyl-ε-caprolactone: Process Intensification and Demonstration on a 100 L Scale. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jordi Solé
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Jan Brummund
- InnoSyn B.V., Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Gloria Caminal
- Institut de Química Avançada de Catalunya (IQAC), 08034 Barcelona, Spain
| | - Gregorio Álvaro
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | | | - Marina Guillén
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
37
|
Sheldon RA, Brady D. Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. CHEMSUSCHEM 2019; 12:2859-2881. [PMID: 30938093 DOI: 10.1002/cssc.201900351] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 05/21/2023]
Abstract
This Review is aimed at synthetic organic chemists who may be familiar with organometallic catalysis but have no experience with biocatalysis, and seeks to provide an answer to the perennial question: if it is so attractive, why wasn't it extensively used in the past? The development of biocatalysis in industrial organic synthesis is traced from the middle of the last century. Advances in molecular biology in the last two decades, in particular genome sequencing, gene synthesis and directed evolution of proteins, have enabled remarkable improvements in scope and substantially reduced biocatalyst development times and cost contributions. Additionally, improvements in biocatalyst recovery and reuse have been facilitated by developments in enzyme immobilization technologies. Biocatalysis has become eminently competitive with chemocatalysis and the biocatalytic production of important pharmaceutical intermediates, such as enantiopure alcohols and amines, has become mainstream organic synthesis. The synthetic space of biocatalysis has significantly expanded and is currently being extended even further to include new-to-nature biocatalytic reactions.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
38
|
Multi-level engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the production of C9 chemicals from oleic acid. Metab Eng 2019; 54:137-144. [DOI: 10.1016/j.ymben.2019.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 12/12/2022]
|
39
|
Dockrey SB, Suh CE, Benítez AR, Wymore T, Brooks CL, Narayan ARH. Positioning-Group-Enabled Biocatalytic Oxidative Dearomatization. ACS CENTRAL SCIENCE 2019; 5:1010-1016. [PMID: 31263760 PMCID: PMC6598382 DOI: 10.1021/acscentsci.9b00163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 05/21/2023]
Abstract
Biocatalysts have the potential to perform reactions with exceptional selectivity and high catalytic efficiency while utilizing safe and sustainable reagents. Despite these positive attributes, the utility of a biocatalyst can be limited by the breadth of substrates that can be accommodated in the active site in a reactive pose. Proven strategies exist for optimizing the performance of a biocatalyst toward unnatural substrates, including protein engineering; however, these methods can be time intensive and require specialized equipment that renders these approaches inaccessible to synthetic chemists. Strategies accessible to chemists for the expansion of a natural enzyme's substrate scope, while maintaining high levels of site- and stereoselectivity, remain elusive. Here, we employ a computationally guided substrate engineering strategy to expand the synthetic utility of a flavin-dependent monooxygenase. Specifically, experimental observations and computational modeling led to the identification of a critical interaction between the substrate and protein which is responsible for orienting the substrate in a pose productive for catalysis. The fundamental hypothesis for this positioning group strategy is supported by binding and kinetic assays as well as computational studies with a panel of compounds. Further, incorporation of this positioning group into substrates through a cleavable ester linkage transformed compounds not oxidized by the biocatalyst SorbC into substrates efficiently oxidatively dearomatized by the wild-type enzyme with the highest levels of site- and stereoselectivity known for this transformation.
Collapse
Affiliation(s)
- Summer
A. Baker Dockrey
- Department
of Chemistry, Life Sciences Institute, Program in Chemical Biology, and Department of
Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolyn E. Suh
- Department
of Chemistry, Life Sciences Institute, Program in Chemical Biology, and Department of
Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Attabey Rodríguez Benítez
- Department
of Chemistry, Life Sciences Institute, Program in Chemical Biology, and Department of
Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Troy Wymore
- Department
of Chemistry, Life Sciences Institute, Program in Chemical Biology, and Department of
Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L. Brooks
- Department
of Chemistry, Life Sciences Institute, Program in Chemical Biology, and Department of
Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R. H. Narayan
- Department
of Chemistry, Life Sciences Institute, Program in Chemical Biology, and Department of
Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
40
|
Fürst MJLJ, Boonstra M, Bandstra S, Fraaije MW. Stabilization of cyclohexanone monooxygenase by computational and experimental library design. Biotechnol Bioeng 2019; 116:2167-2177. [PMID: 31124128 PMCID: PMC6836875 DOI: 10.1002/bit.27022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 12/23/2022]
Abstract
Enzymes often by far exceed the activity, selectivity, and sustainability achieved with chemical catalysts. One of the main reasons for the lack of biocatalysis in the chemical industry is the poor stability exhibited by many enzymes when exposed to process conditions. This dilemma is exemplified in the usually very temperature‐sensitive enzymes catalyzing the Baeyer–Villiger reaction, which display excellent stereo‐ and regioselectivity and offer a green alternative to the commonly used, explosive peracids. Here we describe a protein engineering approach applied to cyclohexanone monooxygenase from Rhodococcus sp. HI‐31, a substrate‐promiscuous enzyme that efficiently catalyzes the production of the nylon‐6 precursor ε‐caprolactone. We used a framework for rapid enzyme stabilization by computational libraries (FRESCO), which predicts protein‐stabilizing mutations. From 128 screened point mutants, approximately half had a stabilizing effect, albeit mostly to a small degree. To overcome incompatibility effects observed upon combining the best hits, an easy shuffled library design strategy was devised. The most stable and highly active mutant displayed an increase in unfolding temperature of 13°C and an approximately 33x increase in half‐life at 30°C. In contrast to the wild‐type enzyme, this thermostable 8x mutant is an attractive biocatalyst for biotechnological applications.
Collapse
Affiliation(s)
| | - Marjon Boonstra
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Selle Bandstra
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Highly efficient asymmetric reduction of 2-octanone in biphasic system by immobilized Acetobacter sp. CCTCC M209061 cells. J Biotechnol 2019; 299:37-43. [DOI: 10.1016/j.jbiotec.2019.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/12/2019] [Accepted: 04/27/2019] [Indexed: 11/22/2022]
|
42
|
Nguyen TD, Choi GE, Gu DH, Seo PW, Kim JW, Park JB, Kim JS. Structural basis for the selective addition of an oxygen atom to cyclic ketones by Baeyer-Villiger monooxygenase from Parvibaculum lavamentivorans. Biochem Biophys Res Commun 2019; 512:564-570. [PMID: 30914200 DOI: 10.1016/j.bbrc.2019.03.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 11/17/2022]
Abstract
Baeyer-Villiger monooxygenase (BVMO) catalyzes insertion of an oxygen atom into aliphatic or cyclic ketones with high regioselectivity. The BVMOs from Parvibaculum lavamentivorans (BVMOParvi) and Oceanicola batsensis (BVMOOcean) are interesting because of their homologies, with >40% sequence identity, and reaction with the same cyclic ketones with a methyl moiety to give different products. The revealed BVMOParvi structure shows that BVMOParvi forms a two-domain structure like other BVMOs. It has two inserted residues, compared with BVMOOcean, that form a bulge near the bound flavin adenine dinucleotide in the active site. Furthermore, this bulge is linked to a nearby α-helix via a disulfide bond, probably restricting access of the bulky methyl group of the substrate to this bulge. Another sequence motif at the entrance of the active site (Ala-Ser in BVMOParvi and Ser-Thr in BVMOOcean) allows a large volume in BVMOParvi. These minute differences may discriminate a substrate orientation in both BVMOs from the initial substrate binding pocket to the final oxygenation site, resulting in the inserted oxygen atom being in different positions of the same substrate.
Collapse
Affiliation(s)
- Tien Duc Nguyen
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Go-Eun Choi
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Do-Heon Gu
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Pil-Won Seo
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ji-Won Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
43
|
Richter N, Farnberger JE, Pompei S, Grimm C, Skibar W, Zepeck F, Kroutil W. Biocatalytic Methyl Ether Cleavage: Characterization of the Corrinoid‐Dependent Methyl Transfer System from Desulfitobacterium hafniense. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nina Richter
- Austrian Centre of Industrial BiotechnologyACIB GmbHc/o University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Judith E. Farnberger
- Austrian Centre of Industrial BiotechnologyACIB GmbHc/o University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Simona Pompei
- Institute of ChemistryUniversity of GrazNAWI GrazBioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Christopher Grimm
- Institute of ChemistryUniversity of GrazNAWI GrazBioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Wolfgang Skibar
- Sandoz GmbHBiocatalysis Lab Biochemiestrasse 10 6250 Kundl Austria
| | - Ferdinand Zepeck
- Sandoz GmbHBiocatalysis Lab Biochemiestrasse 10 6250 Kundl Austria
| | - Wolfgang Kroutil
- Institute of ChemistryUniversity of GrazNAWI GrazBioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
44
|
Expanding the substrate scope of phenylacetone monooxygenase from Thermobifida fusca towards cyclohexanone by protein engineering. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2018.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
Tolmie C, Smit MS, Opperman DJ. Native roles of Baeyer–Villiger monooxygenases in the microbial metabolism of natural compounds. Nat Prod Rep 2019; 36:326-353. [DOI: 10.1039/c8np00054a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Baeyer–Villiger monooxygenases function in the primary metabolism of atypical carbon sources, as well as the synthesis of complex microbial metabolites.
Collapse
Affiliation(s)
- Carmien Tolmie
- Department of Biotechnology
- University of the Free State
- Bloemfontein
- South Africa
| | - Martha S. Smit
- Department of Biotechnology
- University of the Free State
- Bloemfontein
- South Africa
| | | |
Collapse
|
46
|
On-pot and cell-free biocatalysis using coimmobilized enzymes on advanced materials. Methods Enzymol 2019; 617:385-411. [DOI: 10.1016/bs.mie.2018.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Willetts A. Characterised Flavin-Dependent Two-Component Monooxygenases from the CAM Plasmid of Pseudomonas putida ATCC 17453 (NCIMB 10007): ketolactonases by Another Name. Microorganisms 2018; 7:E1. [PMID: 30577535 PMCID: PMC6352141 DOI: 10.3390/microorganisms7010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/15/2018] [Accepted: 12/16/2018] [Indexed: 11/17/2022] Open
Abstract
The CAM plasmid-coded isoenzymic diketocamphane monooxygenases induced in Pseudomonas putida ATCC 17453 (NCIMB 10007) by growth of the bacterium on the bicyclic monoterpene (rac)-camphor are notable both for their interesting history, and their strategic importance in chemoenzymatic syntheses. Originally named 'ketolactonase-an enzyme system for cyclic lactonization' because of its characterised mode of action, (+)-camphor-induced 2,5-diketocamphane 1,2-monooxygenase was the first example of a Baeyer-Villiger monooxygenase activity to be confirmed in vitro. Both this enzyme and the enantiocomplementary (-)-camphor-induced 3,6-diketocamphane 1,6-monooxygenase were mistakenly classified and studied as coenzyme-containing flavoproteins for nearly 40 years before being correctly recognised and reinvestigated as FMN-dependent two-component monooxygenases. As has subsequently become evident, both the nature and number of flavin reductases able to supply the requisite reduced flavin co-substrate for the monooxygenases changes progressively throughout the different phases of camphor-dependent growth. Highly purified preparations of the enantiocomplementary monooxygenases have been exploited successfully for undertaking both nucleophilic and electrophilic biooxidations generating various enantiopure lactones and sulfoxides of value as chiral synthons and auxiliaries, respectively. In this review the chequered history, current functional understanding, and scope and value as biocatalysts of the diketocamphane monooxygenases are discussed.
Collapse
Affiliation(s)
- Andrew Willetts
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, UK.
- Curnow Consultancies, Helston TR13 9PQ, UK.
| |
Collapse
|
48
|
Novel concurrent redox cascades of (R)- and (S)-carvones enables access to carvo-lactones with distinct regio- and enantioselectivity. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
Dithugoe CD, van Marwijk J, Smit MS, Opperman DJ. An Alcohol Dehydrogenase from the Short-Chain Dehydrogenase/Reductase Family of Enzymes for the Lactonization of Hexane-1,6-diol. Chembiochem 2018; 20:96-102. [PMID: 30252998 DOI: 10.1002/cbic.201800533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Indexed: 01/20/2023]
Abstract
Biocatalytic production of lactones, and in particular ϵ-caprolactone (CL), have gained increasing interest as a greener route to polymer building blocks, especially through the use of Baeyer-Villiger monooxygenases (BVMOs). Despite several advances in the field, BVMOs, however, still suffer several practical limitations. Alcohol dehydrogenase (ADH)-mediated lactonization of diols in turn has received far less attention and very few enzymes have been identified for the conversion of diols to lactones, with horse-liver ADH (HLADH) remaining the catalyst of choice. Screening of a diverse panel of ADHs, AaSDR-1, a member of the short-chain dehydrogenase/reductase family, was found to produce ϵ-caprolactone from hexane-1,6-diol. Moreover, cofactor regeneration by an NADH oxidase eliminated the requirement of co-substrates, yielding water as the sole by-product. Despite lower turnover frequencies as compared to HLADH, higher selectivity was found for the production of CL, with HLADH forming significant amounts of 6-hydroxyhexanoic acid and adipic acid through aldehyde dehydrogenation/oxidation of the gem-diol intermediates. Also, CL yield were shown to be dependent on buffer choice, as structural elucidation of a Tris adduct confirmed the buffer amine to react with aliphatic aldehydes forming a Schiff-base intermediate which through further ADH oxidation, forms a tricyclic acetal product.
Collapse
Affiliation(s)
- Choaro D Dithugoe
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Jacqueline van Marwijk
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Martha S Smit
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Diederik J Opperman
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| |
Collapse
|
50
|
Hollmann F, Kara S, Opperman DJ, Wang Y. Biocatalytic synthesis of lactones and lactams. Chem Asian J 2018; 13:3601-3610. [PMID: 30256534 PMCID: PMC6348383 DOI: 10.1002/asia.201801180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/26/2018] [Indexed: 01/15/2023]
Abstract
Cyclic esters and amides (lactones and lactams) are important active ingredients and polymer building blocks. In recent years, numerous biocatalytic methods for their preparation have been developed including enzymatic and chemoenzymatic Baeyer-Villiger oxidations, oxidative lactonisation of diols, and reductive lactonisation and lactamisation of ketoesters. The current state of the art of these methods is reviewed.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology, Delft University of Technology, The Netherlands
| | - Selin Kara
- Department of Engineering, Biological and Chemical Engineering, Aarhus University, Denmark
| | | | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|