1
|
Peng S, Duan C, Liu Q, Wang Q, Dai Y, Hao L, Li K. Biocontrol potential of Streptomyces sp. N2 against green and blue mold disease in postharvest navel orange and the action mechanism. Food Microbiol 2025; 125:104658. [PMID: 39448168 DOI: 10.1016/j.fm.2024.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
The objective of this study was to provide a promising alternative to chemical fungicides for management of postharvest citrus decay, thereby promoting sustainable citrus fruit production. The postharvest decay of citrus fruit caused by Penicillium digitatum and Penicillium italicum results in substantial economic losses in citrus industry worldwide. With growing fungal resistance issues in P. digitatum and P. italicum, there is an urgent need for searching new methods to address above problems in a safe and environmentally friendly way. Streptomyces sp. N2, a new species from Streptomyces genus, exhibits significant antagonistic activity against Rhizoctonia solani. However, its biocontrol efficacy against postharvest decay caused by P. digitatum and P. italicum and its action mechanism remain unknown. In this study, Streptomyces sp. N2 was found to have significant potential in controlling green and blue mold diseases in postharvest navel oranges. Moreover, the action mechanism of Streptomyces sp. N2 against both P. italicum and P. digitatum was elucidated. On the one hand, Streptomyces sp. N2 stimulated fruit resistance to fight against invading fungal pathogens. It significantly reduced ROS content in navel orange upon the infection of mold disease, increased the production of defense-related enzymes including peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) and pathogenesis-related proteins of chitinase and β-1,3-glucanase. On the other hand, Streptomyces sp. N2 secreted bioactive substances to inhibit the growth of P. italicum and P. digitatum so as to prevent the development of postharvest decay. The bioactive substances secreted by Streptomyces sp. N2 significantly inhibited the spore germination and mycelial growth and led to microstructural damages to the cell wall and membrane, ROS burst, and mitochondrial dysfunction in both P. italicum and P. digitatum. This study provides a theoretical reference and application potential for the biological control of Streptomyces sp. N2 on green and blue mold diseases.
Collapse
Affiliation(s)
- Shuaiying Peng
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China.
| | - Chao Duan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| | - Qun Liu
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China.
| | - Qian Wang
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China.
| | - Yuqi Dai
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China.
| | - Liwen Hao
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China.
| | - Kuntai Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, 524088, China.
| |
Collapse
|
2
|
Nguyen LTT, Park AR, Van Le V, Hwang I, Kim JC. Exploration of a multifunctional biocontrol agent Streptomyces sp. JCK-8055 for the management of apple fire blight. Appl Microbiol Biotechnol 2024; 108:49. [PMID: 38183485 DOI: 10.1007/s00253-023-12874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 01/08/2024]
Abstract
Apple fire blight, caused by the bacterium Erwinia amylovora, is a devastating disease of apple and pear trees. Biological control methods have attracted much attention from researchers to manage plant diseases as they are eco-friendly and viable alternatives to synthetic pesticides. Herein, we isolated Streptomyces sp. JCK-8055 from the root of pepper and investigated its mechanisms of action against E. amylovora. Streptomyces sp. JCK-8055 produced aureothricin and thiolutin, which antagonistically affect E. amylovora. JCK-8055 and its two active metabolites have a broad-spectrum in vitro activity against various phytopathogenic bacteria and fungi. They also effectively suppressed tomato bacterial wilt and apple fire blight in in vivo experiments. Interestingly, JCK-8055 colonizes roots as a tomato seed coating and induces apple leaf shedding at the abscission zone, ultimately halting the growth of pathogenic bacteria. Additionally, JCK-8055 can produce the plant growth regulation hormone indole-3-acetic acid (IAA) and hydrolytic enzymes, including protease, gelatinase, and cellulase. JCK-8055 treatment also triggered the expression of salicylate (SA) and jasmonate (JA) signaling pathway marker genes, such as PR1, PR2, and PR3. Overall, our findings demonstrate that Streptomyces sp. JCK-8055 can control a wide range of plant diseases, particularly apple fire blight, through a combination of mechanisms such as antibiosis and induced resistance, highlighting its excellent potential as a biocontrol agent. KEY POINTS: • JCK-8055 produces the systemic antimicrobial metabolites, aureothricin, and thiolutin. • JCK-8055 treatment upregulates PR gene expression in apple plants against E. amylovora. • JCK-8055 controls plant diseases with antibiotics and induced resistance.
Collapse
Affiliation(s)
- Loan Thi Thanh Nguyen
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Inmin Hwang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, 61186, Republic of Korea.
- JAN153 Biotech Incorporated, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
3
|
Li J, Chen S, Zhong J, Lin S, Pang S, Tu Q, Agranovski I. Removal of formaldehyde from indoor air by potted Sansevieria trifasciata plants: dynamic influence of physiological traits on the process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35366-4. [PMID: 39470907 DOI: 10.1007/s11356-024-35366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
Plant-based removal of indoor formaldehyde is a widely studied method, yet little is known about the dynamic changes in this process. In this study, potted Sansevieria trifasciata Prain plants were exposed to 5-ppm formaldehyde gas concentration for 7 days. The results showed that formaldehyde exposure led to plant stress, affected photosynthesis, and damaged membrane lipids, as evidenced by a decrease in chlorophyll content, an increase in Chl a/b ratio and malondialdehyde content. However, the formaldehyde removal ability of the plants increased over the first 5 days, peaking at 18.02 mg h-1 kg-1 dry weight on the 5th day. This trend was correlated with changes in various indicators in the plant roots, including phytohormone and antioxidant enzymes. Notably, catalase activity in the roots behaved differently from other indicators. The indicators in the leaves showed turning points around the 3rd day due to the direct exposure of the leaves to formaldehyde. The relative abundance of endophytes indicated an increase in plant growth-promoting bacteria, which helped the plant cope with formaldehyde stress. The study suggests that under formaldehyde stress, plants manage active oxygen content by increasing phytohormones and regulating redox reactions. This enhances their tolerances to formaldehyde, thereby improving their ability to remove formaldehyde and aiding recovery after formaldehyde exposure.
Collapse
Affiliation(s)
- Jian Li
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD, 4111, Australia
| | - Silan Chen
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Jiaochan Zhong
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Shujie Lin
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Shifan Pang
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Qianying Tu
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Igor Agranovski
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
4
|
Yang M, Song Y, Ma H, Li Z, Ding J, Yin T, Niu K, Sun S, Qi J, Lu G, Fazal A, Yang Y, Wen Z. Unveiling the hidden world: How arbuscular mycorrhizal fungi and its regulated core fungi modify the composition and metabolism of soybean rhizosphere microbiome. ENVIRONMENTAL MICROBIOME 2024; 19:78. [PMID: 39439005 PMCID: PMC11494790 DOI: 10.1186/s40793-024-00624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The symbiosis between arbuscular mycorrhizal fungi (AMF) and plants often stimulates plant growth, increases agricultural yield, reduces costs, thereby providing significant economic benefits. AMF can also benefit plants through affecting the rhizosphere microbial community, but the underlying mechanisms remain unclear. Using Rhizophagus intraradices as a model AMF species, we assessed how AMF influences the bacterial composition and functional diversity through 16 S rRNA gene sequencing and non-targeted metabolomics analysis in the rhizosphere of aluminum-sensitive soybean that were inoculated with pathogenic fungus Nigrospora oryzae and phosphorus-solubilizing fungus Talaromyces verruculosus in an acidic soil. RESULTS The inoculation of R. intraradices, N. oryzae and T. verruculosus didn't have a significant influence on the levels of soil C, N, and P, or various plant characteristics such as seed weight, crude fat and protein content. However, their inoculation affected the structure, function and nutrient dynamics of the resident bacterial community. The co-inoculation of T. verruculosus and R. intraradices increased the relative abundance of Pseudomonas psychrotolerans, which was capable of N-fixing and was related to cry-for-help theory (plants signal for beneficial microbes when under stress), within the rhizosphere. R. intraradices increased the expression of metabolic pathways associated with the synthesis of unsaturated fatty acids, which was known to enhance plant resistance under adverse environmental conditions. The inoculation of N. oryzae stimulated the stress response inside the soil environment by enriching the polyene macrolide antifungal antibiotic-producing bacterial genus Streptomyces in the root endosphere and upregulating two antibacterial activity metabolic pathways associated with steroid biosynthesis pathways in the rhizosphere. Although inoculation of pathogenic fungus N. oryzae enriched Bradyrhizobium and increased soil urease activity, it had no significant effects on biomass and N content of soybean. Lastly, the host niches exhibited differences in the composition of the bacterial community, with most N-fixing bacteria accumulating in the endosphere and Rhizobium vallis only detected in the endosphere. CONCLUSIONS Our findings demonstrate that intricate interactions between AMF, associated core fungi, and the soybean root-associated ecological niches co-mediate the regulation of soybean growth, the dynamics of rhizosphere soil nutrients, and the composition, function, and metabolisms of the root-associated microbiome in an acidic soil.
Collapse
Affiliation(s)
- Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuhang Song
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Hanke Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenghua Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiawei Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Kechang Niu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shucun Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
5
|
Tran DM, Nguyen DS, Nguyen TH, Tran TPH, Nguyen AD. Shotgun metagenomic dataset of root endophytic microbiome of citrus ( Citrus nobilis L.). Data Brief 2024; 56:110777. [PMID: 39211485 PMCID: PMC11357868 DOI: 10.1016/j.dib.2024.110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Citrus (Citrus nobilis L.) is one of the main fruit crops in Dak Lak Province of Vietnam; however, a dataset on the endophytic microbiome of this plant has yet to be discovered. This article presented the endophytic microbial dataset from roots of healthy Citrus nobilis L. collected in Dak Lak for the first time. We found that 4 kingdoms, 30 phyla, 58 classes, 125 orders, 242 families, 722 genera, and 1637 species of endophytic microorganisms were identified from the sample. Actinomycetota was shown to be the main phylum (64.36 %) and biosynthesis to be the most abundant function (55.64 %) of the endophytic microbial community. Data provided insights into the composition and functional diversity of the Citrus nobilis L. endophytic microbiome, especially novel microbial resources. They could be used for the next works towards applying the endophytic microbiome for sustainable citrus production.
Collapse
Affiliation(s)
- Dinh Minh Tran
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000, Vietnam
| | - Dinh Sy Nguyen
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000, Vietnam
| | - Thi Huyen Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000, Vietnam
| | - Thi Phuong Hanh Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000, Vietnam
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000, Vietnam
| |
Collapse
|
6
|
Berlow M, Mesa M, Creek M, Duarte JG, Carpenter E, Phinizy B, Andonian K, Dlugosch KM. Plant G × Microbial E: Plant Genotype Interaction with Soil Bacterial Community Shapes Rhizosphere Composition During Invasion. MICROBIAL ECOLOGY 2024; 87:113. [PMID: 39259393 PMCID: PMC11390927 DOI: 10.1007/s00248-024-02429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
It is increasingly recognized that different genetic variants of hosts can uniquely shape their microbiomes. Invasive species often evolve in their introduced ranges, but little is known about the potential for their microbial associations to change during invasion as a result. We asked whether host genotype (G), microbial environment (E), or their interaction (G × E) affected the composition and diversity of host-associated microbiomes in Centaurea solstitialis (yellow starthistle), a Eurasian plant that is known to have evolved novel genotypes and phenotypes and to have altered microbial interactions, in its severe invasion of CA, USA. We conducted an experiment in which native and invading plant genotypes were inoculated with native and invaded range soil microbial communities. We used amplicon sequencing to characterize rhizosphere bacteria in both the experiment and the field soils from which they were derived. We found that native and invading plant genotypes accumulated different microbial associations at the family level in each soil community, often counter to differences in family abundance between soil communities. Root associations with potentially beneficial Streptomycetaceae were particularly interesting, as these were more abundant in the invaded range field soil and accumulated on invading genotypes. We also found that bacterial diversity is higher in invaded soils, but that invading genotypes accumulated a lower diversity of bacteria and unique microbial composition in experimental inoculations, relative to native genotypes. Thus variation in microbial associations of invaders was driven by the interaction of plant G and microbial E, and rhizosphere microbial communities appear to change in composition in response to host evolution during invasion.
Collapse
Affiliation(s)
- Mae Berlow
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Miles Mesa
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Mikayla Creek
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Jesse G Duarte
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Elizabeth Carpenter
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Brandon Phinizy
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Krikor Andonian
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
7
|
Anjum MS, Khaliq S, Ashraf N, Anwar MA, Akhtar K. Bioactive Streptomycetes: A Powerful Tool to Synthesize Diverse Nanoparticles With Multifarious Properties. J Basic Microbiol 2024; 64:e2400129. [PMID: 38922954 DOI: 10.1002/jobm.202400129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Nanobiotechnology has gained significant attention due to its capacity to generate substantial benefits through the integration of microbial biotechnology and nanotechnology. Among microbial organisms, Actinomycetes, particularly the prominent genus Streptomycetes, have garnered attention for their prolific production of antibiotics. Streptomycetes have emerged as pivotal contributors to the discovery of a substantial number of antibiotics and play a dominant role in combating infectious diseases on a global scale. Despite the noteworthy progress achieved through the development and utilization of antibiotics to combat infectious pathogens, the prevalence of infectious diseases remains a prominent cause of mortality worldwide, particularly among the elderly and children. The emergence of antibiotic resistance among pathogens has diminished the efficacy of antibiotics in recent decades. Nevertheless, Streptomycetes continue to demonstrate their potential by producing bioactive metabolites for the synthesis of nanoparticles. Streptomycetes are instrumental in producing nanoparticles with diverse bioactive characteristics, including antiviral, antibacterial, antifungal, antioxidant, and antitumor properties. Biologically synthesized nanoparticles have exhibited a meaningful reduction in the impact of antibiotic resistance, providing resources for the development of new and effective drugs. This review succinctly outlines the significant applications of Streptomycetes as a crucial element in nanoparticle synthesis, showcasing their potential for diverse and enhanced beneficial applications.
Collapse
Affiliation(s)
- Muhammad Sultan Anjum
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Neelma Ashraf
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
- Institute of Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, Albert-Ludwig University of Freiburg, Freiburg im Breisgau, Germany
| | - Munir Ahmad Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Kalsoom Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| |
Collapse
|
8
|
Li Y, Lu J, Dong C, Wang H, Liu B, Li D, Cui Y, Wang Z, Ma S, Shi Y, Wang C, Zhu X, Sun H. Physiological and biochemical characteristics and microbial responses of Medicago sativa (Fabales: Fabaceae) varieties with different resistance to atrazine stress. Front Microbiol 2024; 15:1447348. [PMID: 39220044 PMCID: PMC11363823 DOI: 10.3389/fmicb.2024.1447348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Atrazine, a commonly employed herbicide for corn production, can leave residues in soil, resulting in photosynthetic toxicity and impeding growth in subsequent alfalfa (Medicago sativa L.) crops within alfalfa-corn rotation systems. The molecular regulatory mechanisms by which atrazine affects alfalfa growth and development, particularly its impact on the microbial communities of the alfalfa rhizosphere, are not well understood. This study carried out field experiments to explore the influence of atrazine stress on the biomass, chlorophyll content, antioxidant system, and rhizosphere microbial communities of the atrazine-sensitive alfalfa variety WL-363 and the atrazine-resistant variety JN5010. The results revealed that atrazine significantly reduced WL-363 growth, decreasing plant height by 8.58 cm and root length by 5.42 cm (p < 0.05). Conversely, JN5010 showed minimal reductions, with decreases of 1.96 cm in height and 1.26 cm in root length. Chlorophyll content in WL-363 decreased by 35% under atrazine stress, while in JN5010, it was reduced by only 10%. Reactive oxygen species (ROS) accumulation increased by 60% in WL-363, compared to a 20% increase in JN5010 (p < 0.05 for both). Antioxidant enzyme activities, such as superoxide dismutase (SOD) and catalase (CAT), were significantly elevated in JN5010 (p < 0.05), suggesting a more robust defense mechanism. Although the predominant bacterial and fungal abundances in rhizosphere soils remained generally unchanged under atrazine stress, specific microbial groups exhibited variable responses. Notably, Promicromonospora abundance declined in WL-363 but increased in JN5010. FAPROTAX functional predictions indicated shifts in the abundance of microorganisms associated with pesticide degradation, resistance, and microbial structure reconstruction under atrazine stress, displaying different patterns between the two varieties. This study provides insights into how atrazine residues affect alfalfa rhizosphere microorganisms and identifies differential microbial responses to atrazine stress, offering valuable reference data for screening and identifying atrazine-degrading bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaoyan Zhu
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hao Sun
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
9
|
Tian X, Hu L, Jia R, Cao S, Sun Y, Dong X, Wang Y. Streptomyces pratensis S10 Promotes Wheat Plant Growth and Induces Resistance in Wheat Seedlings against Fusarium graminearum. J Fungi (Basel) 2024; 10:578. [PMID: 39194904 DOI: 10.3390/jof10080578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Fusarium graminearum, a devastating fungal pathogen, causes great economic losses to crop yields worldwide. The present study investigated the potential of Streptomyces pratensis S10 to alleviate F. graminearum stress in wheat seedlings based on plant growth-promoting and resistance-inducing assays. The bioassays revealed that S10 exhibited multiple plant growth-promoting properties, including the production of siderophores, 1-aminocyclopropane-1-carboxylic acid deaminase (ACC), and indole-3-acetic acid (IAA), phosphate solubilization, and nitrogen fixation. Meanwhile, the pot experiment demonstrated that S10 improved wheat plant development, substantially enhancing wheat height, weight, root activity, and chlorophyll content. Consistently, genome mining identified abundant genes associated with plant growth promotion. S10 induced resistance against F. graminearum in wheat seedlings. The disease incidence and disease index reduced by nearly 52% and 65% in S10 pretreated wheat seedlings, respectively, compared with those infected with F. graminearum only in the non-contact inoculation assay. Moreover, S10 enhanced callose deposition and reactive oxygen species (ROS) accumulation and induced the activities of CAT, SOD, POD, PAL, and PPO. Furthermore, the quantitative real-time PCR (qRT-PCR) results indicated that S10 pretreatment increased the expression of SA- (PR1.1, PR2, PR5, and PAL1) and JA/ET-related genes (PR3, PR4a, PR9, and PDF1.2) in wheat seedlings upon F. graminearum infection. In summary, S. pratensis S10 could be an integrated biological agent and biofertilizer in wheat seedling blight management and plant productivity enhancement.
Collapse
Affiliation(s)
- Xiaoman Tian
- College of Bioengineering, Yangling Vocation & Technical College, Yangling, Xianyang 712100, China
| | - Lifang Hu
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Ruimin Jia
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Shang Cao
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yan Sun
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiaomin Dong
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yang Wang
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
10
|
Kong X, Han L, Yang L, Shi Z, Lang J, Ye M, Xiao B, Chen X, Zhou N. Effects of actinomycetes on the growth, antioxidant and genes expression in Fritillaria taipaiensis P. Y. li. Heliyon 2024; 10:e34846. [PMID: 39148993 PMCID: PMC11325351 DOI: 10.1016/j.heliyon.2024.e34846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
F. taipaiensis P. Y. Li represents a significant asset within traditional Chinese medicinal flora, though it confronts the challenge of germplasm deterioration during its cultivation phase. This study aimed to discern the implications of single strains or combinations of diverse growth-promoting actinomycetes on the growth metrics, antioxidant competence and pertinent gene expression in the leaves of F. taipaiensis. The result revealed that the malondialdehyde content within the plant's leaves notably diminished in the treatment groups compared to the CK group, with the S6 group showcasing the most pronounced malondialdehyde reduction, amounting to approximately one-third of the CK's value. Leaf area, length and width peaked in the S5 cohort, registering values 4.55, 2.46 and 1.85 times surpassing the CK group. Concurrently, plant height and stem thickness were maximal in the S6 group, being 2.29 and 1.75 times that of the CK group, whereas leaf thickness reached its zenith in the S7 group, marking a 2.17-fold elevation compared to the CK. Photosynthetic pigments, soluble sugars and soluble proteins in the leaves, exhibited augmentation across the inoculated groups to varying magnitudes. Specifically, the S5 group was superior in photosynthetic metrics and pigments, while the S6 group manifested the highest soluble sugar concentration, which was 1.35 times that of the CK. The S3 group demonstrated the pinnacle of soluble protein content, an impressive 5.86-fold increment relative to the CK group. The enzymatic activities of superoxide dismutase, peroxidase and catalase, along with their affiliated gene expressions, were observably augmented in the inoculated groups, with the S5 group standing out. To encapsulate, the actinomycete inoculation holds potential in fostering the growth and maturation of F. taipaiensis, amplifying its environmental resilience. The revelations from this study extend valuable insights for the judicious choice of microbial fertilizers in the cultivated propagation of Fritillaria taipaiensis P. Y. Li.
Collapse
Affiliation(s)
- Xiaotian Kong
- College of Pharmacy, Dali University, Dali, 671000, China
- College of Food and Biological Engineering, Chongqing Three Gorges University, Chongqing, 404020, China
| | - Liang Han
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China
| | - Liqin Yang
- Shangri La City Agriculture and Rural Bureau, Shangri La, 674499, China
| | - Zhifen Shi
- College of Food and Biological Engineering, Chongqing Three Gorges University, Chongqing, 404020, China
- College of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Jiaqi Lang
- College of Food and Biological Engineering, Chongqing Three Gorges University, Chongqing, 404020, China
| | - Mingyan Ye
- College of Food and Biological Engineering, Chongqing Three Gorges University, Chongqing, 404020, China
| | - Bo Xiao
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China
| | - Xubing Chen
- College of Pharmacy, Dali University, Dali, 671000, China
| | - Nong Zhou
- College of Pharmacy, Dali University, Dali, 671000, China
- College of Food and Biological Engineering, Chongqing Three Gorges University, Chongqing, 404020, China
- College of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| |
Collapse
|
11
|
Pintarič M, Štuhec A, Tratnik E, Langerholc T. Spent Mushroom Substrate Improves Microbial Quantities and Enzymatic Activity in Soils of Different Farming Systems. Microorganisms 2024; 12:1521. [PMID: 39203364 PMCID: PMC11356570 DOI: 10.3390/microorganisms12081521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Organic fertilizers, such as spent mushroom substrate (SMS), improve soil fertility, but studies comparing their effects on different agricultural soils are limited. In this study, the effects of standard, SMS and composed fertilizers on soils from conventional-integrated, organic and biodynamic farming were investigated. Soil samples were analyzed for microorganisms and the activity of β-glucosidase (β-GLU), β-1,4-N-acetylglucosaminidase (NAG), urease (URE), arylamidase (ARN), phosphatase (PHOS), acid phosphatase (PAC), alkaline phosphatase (PAH) and arylsulphatase (ARS). Biodynamic soil showed the highest microbial counts and enzyme activities, followed by organic and conventional soils. SMS significantly increased the number of microorganisms and enzyme activities, especially in biodynamic and organic soils. Seasonal variations affected all microorganisms and most enzymes in all soils, except NAG in conventional and organic soils. Biodynamic soil showed stable activity of enzymes and microorganisms throughout the year, indicating greater stability. This study concludes that soil microorganisms and enzyme activities respond differently to fertilization depending on the soil type, with SMS demonstrating beneficial effects in all tested soils.
Collapse
Affiliation(s)
- Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (A.Š.); (E.T.); (T.L.)
| | | | | | | |
Collapse
|
12
|
Zhu X, Li H, Cai L, Wu Y, Wang J, Xu S, Wang S, Wang H, Wang D, Chen J. ZnO nanoparticles encapsulated cellulose-lignin film for antibacterial and biodegradable food packaging. iScience 2024; 27:110008. [PMID: 38989453 PMCID: PMC11233912 DOI: 10.1016/j.isci.2024.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/01/2024] [Accepted: 05/14/2024] [Indexed: 07/12/2024] Open
Abstract
Foodborne illness caused by consuming foods contaminated by pathogens remains threating to the public health. Despite considerable efforts of using renewable source materials, it is highly demanding to fabricate food packaging with multiple properties including eco-friendliness, bactericidal effect and biocompatibility. Here, sodium lignosulfonate (SL) and ZnO nanoparticles (ZnO NPs) were used as functional filler and structure components, respectively, on the cellulose nanofibers (CNFs)-based films, which endows the produced membrane (CNF/SL-ZnO) the UV-light blocking, antioxidant, and antimicrobial characteristics. Due to the interconnected polymeric structure, the prepared CNF/SL-ZnO films possessed considerable mechanical properties, thermal stability, and good moisture barrier capability. Moreover, the tested samples exhibited an improved shelf life in food packaging. Furthermore, metagenome analysis revealed superior biodegradability of obtained films with negligible side effect on the soil microenvironment. Therefore, the biocompatible, degradable, and antibacterial CNF/SL-ZnO film holds enormous potential for sustainable uses including food packaging.
Collapse
Affiliation(s)
- Xinyi Zhu
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Taizhou Center for Disease Control and Prevention, Taizhou 318000, China
| | - Henghui Li
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Cai
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yixian Wu
- Department of Health Promotion Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Wang
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shangcheng Xu
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
| | - Shoulin Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hao Wang
- Northern Jiangsu People’s Hospital Affiliated to Nanjing Medical University, Yangzhou 225001, China
| | - Daorong Wang
- Northern Jiangsu People’s Hospital Affiliated to Nanjing Medical University, Yangzhou 225001, China
| | - Jin Chen
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
13
|
Luo Z, Wu S, Shi W, Hu H, Lin T, Zhao K, Hou G, Fan C, Li X, Chen G. Combined effects of cadmium and simulated acid rain on soil microbial communities in the early cultivation of Populus beijingensis seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116583. [PMID: 38878333 DOI: 10.1016/j.ecoenv.2024.116583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/02/2024] [Accepted: 06/09/2024] [Indexed: 06/25/2024]
Abstract
The combined cadmium (Cd) and acid rain pollution poses a significant threat to the global ecological environment. Previous studies on the combined adverse effects have predominantly focused on the aboveground plant physiological responses, with limited reports on the microbial response in the rhizosphere soil. This study employed Populus beijingensis seedlings and potting experiments to simulate the impacts of combined mild acid rain (pH=4.5, MA) or highly strong acid rain (pH=3.0, HA), and soil Cd pollution on the composition and diversity of microbial communities, as well as the physiochemical properties in the rhizosphere soil. The results showed that Cd decreased the content of inorganic nitrogen, resulting in an overall decrease of 49.10 % and 46.67 % in ammonium nitrogen and nitrate nitrogen, respectively. Conversely, acid rain was found to elevate the content of total potassium and soil organic carbon by 4.68 %-6.18 % and 8.64-19.16 %, respectively. Additionally, simulated acid rain was observed to decrease the pH level by 0.29-0.35, while Cd increased the pH level by 0.11. Moreover, Cd alone reduced the rhizosphere bacterial diversity, however, when combined with acid rain, regardless of its intensity, Cd was observed to increase the diversity. Fungal diversity was not influenced by the acid rain, but Cd increased fungal diversity to some extend under HA as observed in bacterial diversity. In addition, composition of the rhizosphere bacterial community was primarily influenced by the inorganic nitrogen components, while the fungal community was driven mainly by soil pH. Furthermore, "Metabolism" was emerged as the most significant bacterial function, which was markedly affected by the combined pollution, while Cd pollution led to a shift from symbiotroph to other trophic types for fungi. These findings suggest that simulated acid rain has a mitigating effect on the diversity of rhizosphere bacteria affected by Cd pollution, and also alters the trophic type of these microorganisms. This can be attributed to the acid rain-induced direct acidic environment, as well as the indirect changes in the availability or sources of carbon, nitrogen, or potassium.
Collapse
Affiliation(s)
- Zhili Luo
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Siying Wu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Weijin Shi
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongling Hu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Tiantian Lin
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China and Centre of Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650504, China
| | - Kuangji Zhao
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Guirong Hou
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Chuan Fan
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xianwei Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Chen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
14
|
Bandeira L, Faria C, Cavalcante F, Mesquita A, Martins C, Martins S. Metabarcoding expands knowledge on diversity and ecology of rare actinobacteria in the Brazilian Cerrado. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01184-x. [PMID: 38961050 DOI: 10.1007/s12223-024-01184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Rare and unknown actinobacteria from unexplored environments have the potential to produce new bioactive molecules. This study aimed to use 16 s rRNA metabarcoding to determine the composition of the actinobacterial community, particularly focusing on rare and undescribed species, in a nature reserve within the Brazilian Cerrado called Sete Cidades National Park. Since this is an inaccessible area without due legal authorization, it is understudied, and, therefore, its diversity and biotechnological potential are not yet fully understood, and it may harbor species with groundbreaking genetic potential. In total, 543 operational taxonomic units (OTUs) across 14 phyla were detected, with Actinobacteria (41.2%), Proteobacteria (26.5%), and Acidobacteria (14.3%) being the most abundant. Within Actinobacteria, 107 OTUs were found, primarily from the families Mycobacteriaceae, Pseudonocardiaceae, and Streptomycetaceae. Mycobacterium and Streptomyces were the predominant genera across all samples. Seventeen rare OTUs with relative abundance < 0.1% were identified, with 82.3% found in only one sample yet 25.5% detected in all units. Notable rare and transient genera included Salinibacterium, Nocardia, Actinomycetospora_01, Saccharopolyspora, Sporichthya, and Nonomuraea. The high diversity and distribution of Actinobacteria OTUs indicate the area's potential for discovering new rare species. Intensified prospection on underexplored environments and characterization of their actinobacterial diversity could lead to the discovery of new species capable of generating innovative natural products.
Collapse
Affiliation(s)
- Leonardo Bandeira
- Ecology and Natural Resources, Federal University of Ceará, Fortaleza, Brazil.
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil.
| | | | - Fernando Cavalcante
- Ecology and Natural Resources, Federal University of Ceará, Fortaleza, Brazil
| | - Ariel Mesquita
- Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Martins
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| | - Suzana Martins
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| |
Collapse
|
15
|
Mažylytė R, Kailiuvienė J, Mažonienė E, Orola L, Kaziūnienė J, Mažylytė K, Lastauskienė E, Gegeckas A. The Co-Inoculation Effect on Triticum aestivum Growth with Synthetic Microbial Communities (SynComs) and Their Potential in Agrobiotechnology. PLANTS (BASEL, SWITZERLAND) 2024; 13:1716. [PMID: 38931148 PMCID: PMC11207813 DOI: 10.3390/plants13121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The use of rhizospheric SynComs can be a new and sustainable strategy in the agrobiotechnology sector. The objective of this study was to create the most appropriate SynCom composition; examine the ability to dissolve natural rock phosphate (RP) from Morocco in liquid-modified NBRIP medium; determine organic acids, and phytohormones; and verify plant growth promoting and nutrition uptake effect in the pot experiments of winter wheat (Triticum aestivum). A total of nine different microorganisms were isolated, which belonged to three different genera: Bacillus, Pseudomonas, and Streptomyces. Out of the 21 treatments tested, four SynComs had the best phosphate-dissolving properties: IJAK-27+44+91 (129.17 mg L-1), IIBEI-32+40 (90.95 µg mL-1), IIIDEG-45+41 (122.78 mg L-1), and IIIDEG-45+41+72 (120.78 mg L-1). We demonstrate that these SynComs are capable of producing lactic, acetic, gluconic, malic, oxalic, citric acids, and phytohormones such as indole-3-acetic acid, zeatin, gibberellic acid, and abscisic acid. In pot experiments with winter wheat, we also demonstrated that the designed SynComs were able to effectively colonize the plant root rhizosphere and contributed to more abundant plant growth characteristics and nutrient uptake as uninoculated treatment or uninoculated treatment with superphosphate (NPK 0-19-0). The obtained results show that the SynCom compositions of IJAK-27+44+91, IIBEI-32+40, IIIDEG-45+41, and IIIDEG-45+41+72 can be considered as promising candidates for developing biofertilizers to facilitate P absorption and increase plant nutrition.
Collapse
Affiliation(s)
- Raimonda Mažylytė
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania; (K.M.); (E.L.); (A.G.)
| | | | - Edita Mažonienė
- Roquette Amilina, LT-35101 Panevezys, Lithuania; (J.K.); (E.M.)
| | - Liana Orola
- Faculty of Chemistry, University of Latvia, LV-1004 Riga, Latvia;
| | - Justina Kaziūnienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, LT-58344 Akademija, Lithuania;
| | - Kamilė Mažylytė
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania; (K.M.); (E.L.); (A.G.)
| | - Eglė Lastauskienė
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania; (K.M.); (E.L.); (A.G.)
| | - Audrius Gegeckas
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania; (K.M.); (E.L.); (A.G.)
| |
Collapse
|
16
|
Zhao S, Wang J. Biodegradation of atrazine and nicosulfuron by Streptomyces nigra LM01: Performance, degradative pathway, and possible genes involved. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134336. [PMID: 38640665 DOI: 10.1016/j.jhazmat.2024.134336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Microbial herbicide degradation is an efficient bioremediation method. In this study, a strain of Streptomyces nigra, LM01, which efficiently degrades atrazine and nicosulfuron, was isolated from a corn field using a direct isolation method. The degradation effects of the identified strain on two herbicides were investigated and optimized using an artificial neural network. The maximum degradation rates of S. nigra LM01 were 58.09 % and 42.97 % for atrazine and nicosulfuron, respectively. The degradation rate of atrazine in the soil reached 67.94 % when the concentration was 108 CFU/g after 5 d and was less effective than that of nicosulfuron. Whole genome sequencing of strain LM01 helped elucidate the possible degradation pathways of atrazine and nicosulfuron. The protein sequences of strain LM01 were aligned with the sequences of the degraded proteins of the two herbicides by using the National Center for Biotechnology Information platform. The sequence (GE005358, GE001556, GE004212, GE005218, GE004846, GE002487) with the highest query cover was retained and docked with the small-molecule ligands of the herbicides. The results revealed a binding energy of - 6.23 kcal/mol between GE005358 and the atrazine ligand and - 6.66 kcal/mol between GE002487 and the nicosulfuron ligand.
Collapse
Affiliation(s)
- Shengchen Zhao
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jihong Wang
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
17
|
Veilumuthu P, Nagarajan T, Magar S, Sundaresan S, Moses LJ, Theodore T, Christopher JG. Genomic insights into an endophytic Streptomyces sp. VITGV156 for antimicrobial compounds. Front Microbiol 2024; 15:1407289. [PMID: 38887720 PMCID: PMC11180775 DOI: 10.3389/fmicb.2024.1407289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024] Open
Abstract
Endophytic Streptomyces sp. are recognized as a potential resource for valuable natural products but are less explored. This study focused on exploring endophytic Streptomyces species residing within tomato plants (Solanum lycopersicum) harboring genes for the production of a novel class of antibiotics. Our research involved the isolation and characterization of Streptomyces sp. VITGV156, a newly identified endophytic Streptomyces species that produces antimicrobial products. VITGV156 harbors a genome of 8.18 mb and codes 6,512 proteins, of which 4,993 are of known function (76.67%) and 1,519 are of unknown function (23.32%). By employing genomic analysis, we elucidate the genome landscape of this microbial strain and shed light on various BGCs responsible for producing polyketide antimicrobial compounds, with particular emphasis on the antibiotic kendomycin. We extended our study by evaluating the antibacterial properties of kendomycin. Overall, this study provides valuable insights into the genome of endophytic Streptomyces species, particularly Streptomyces sp. VITGV156, which are prolific producers of antimicrobial agents. These findings hold promise for further research and exploitation of pharmaceutical compounds, offering opportunities for the development of novel antimicrobial drugs.
Collapse
Affiliation(s)
- Pattapulavar Veilumuthu
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - T. Nagarajan
- Department of Biological Sciences, SRM University-AP, Amaravathi, India
| | - Sharayu Magar
- Department of Biological Sciences, SRM University-AP, Amaravathi, India
| | - Sasikumar Sundaresan
- Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Lenus Joy Moses
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Thomas Theodore
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - John Godwin Christopher
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
18
|
Lu L, Liu N, Fan Z, Liu M, Zhang X, Tian J, Yu Y, Lin H, Huang Y, Kong Z. A novel PGPR strain, Streptomyces lasalocidi JCM 3373 T, alleviates salt stress and shapes root architecture in soybean by secreting indole-3-carboxaldehyde. PLANT, CELL & ENVIRONMENT 2024; 47:1941-1956. [PMID: 38369767 DOI: 10.1111/pce.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
While soybean (Glycine max L.) provides the most important source of vegetable oil and protein, it is sensitive to salinity, which seriously endangers the yield and quality during soybean production. The application of Plant Growth-Promoting Rhizobacteria (PGPR) to improve salt tolerance for plant is currently gaining increasing attention. Streptomycetes are a major group of PGPR. However, to date, few streptomycetes has been successfully developed and applied to promote salt tolerance in soybean. Here, we discovered a novel PGPR strain, Streptomyces lasalocidi JCM 3373T, from 36 strains of streptomycetes via assays of their capacity to alleviate salt stress in soybean. Microscopic observation showed that S. lasalocidi JCM 3373T does not colonise soybean roots. Chemical analysis confirmed that S. lasalocidi JCM 3373T secretes indole-3-carboxaldehyde (ICA1d). Importantly, IAC1d inoculation alleviates salt stress in soybean and modulates its root architecture by regulating the expression of stress-responsive genes GmVSP, GmPHD2 and GmWRKY54 and root growth-related genes GmPIN1a, GmPIN2a, GmYUCCA5 and GmYUCCA6. Taken together, the novel PGPR strain, S. lasalocidi JCM 3373T, alleviates salt stress and improves root architecture in soybean by secreting ICA1d. Our findings provide novel clues for the development of new microbial inoculant and the improvement of crop productivity under salt stress.
Collapse
Affiliation(s)
- Liang Lu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zihui Fan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Minghao Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Hou-Ji Laboratory in Shanxi province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
19
|
de Souza Rodrigues R, de Souza AQL, Feitoza MDO, Alves TCL, Barbosa AN, da Silva Santiago SRS, de Souza ADL. Biotechnological potential of actinomycetes in the 21st century: a brief review. Antonie Van Leeuwenhoek 2024; 117:82. [PMID: 38789815 DOI: 10.1007/s10482-024-01964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/07/2024] [Indexed: 05/26/2024]
Abstract
This brief review aims to draw attention to the biotechnological potential of actinomycetes. Their main uses as sources of antibiotics and in agriculture would be enough not to neglect them; however, as we will see, their biotechnological application is much broader. Far from intending to exhaust this issue, we present a short survey of the research involving actinomycetes and their applications published in the last 23 years. We highlight a perspective for the discovery of new active ingredients or new applications for the known metabolites of these microorganisms that, for approximately 80 years, since the discovery of streptomycin, have been the main source of antibiotics. Based on the collected data, we organize the text to show how the cosmopolitanism of actinomycetes and the evolutionary biotic and abiotic ecological relationships of actinomycetes translate into the expression of metabolites in the environment and the richness of biosynthetic gene clusters, many of which remain silenced in traditional laboratory cultures. We also present the main strategies used in the twenty-first century to promote the expression of these silenced genes and obtain new secondary metabolites from known or new strains. Many of these metabolites have biological activities relevant to medicine, agriculture, and biotechnology industries, including candidates for new drugs or drug models against infectious and non-infectious diseases. Below, we present significant examples of the antimicrobial spectrum of actinomycetes, which is the most commonly investigated and best known, as well as their non-antimicrobial spectrum, which is becoming better known and increasingly explored.
Collapse
Affiliation(s)
- Rafael de Souza Rodrigues
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil.
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil.
| | - Antonia Queiroz Lima de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | | | | | - Anderson Nogueira Barbosa
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Sarah Raquel Silveira da Silva Santiago
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Afonso Duarte Leão de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
20
|
Diab MK, Mead HM, Ahmad Khedr MM, Abu-Elsaoud AM, El-Shatoury SA. Actinomycetes are a natural resource for sustainable pest control and safeguarding agriculture. Arch Microbiol 2024; 206:268. [PMID: 38762847 DOI: 10.1007/s00203-024-03975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/22/2024] [Indexed: 05/20/2024]
Abstract
Actinomycetes, a diverse group of bacteria with filamentous growth characteristics, have long captivated researchers and biochemists for their prolific production of secondary metabolites. Among the myriad roles played by actinomycete secondary metabolites, their historical significance in the field of biocontrol stands out prominently. The fascinating journey begins with the discovery of antibiotics, where renowned compounds like streptomycin, tetracycline, and erythromycin revolutionized medicine and agriculture. The history of biocontrol traces its roots back to the early twentieth century, when scientists recognized the potential of naturally occurring agents to combat pests and diseases. The emergence of synthetic pesticides in the mid-twentieth century temporarily overshadowed interest in biocontrol. However, with growing environmental concerns and the realization of the negative ecological impacts of chemical pesticides, the pendulum swung back towards exploring sustainable alternatives. Beyond their historical role as antibiotics, actinomycete-produced secondary metabolites encompass a rich repertoire with biopesticide potential. The classification of these compounds based on chemical structure and mode of action is highlighted, demonstrating their versatility against both plant pathogens and insect pests. Additionally, this review provides in-depth insights into how endophytic actinomycete strains play a pivotal role in biocontrol strategies. Case studies elucidate their effectiveness in inhibiting Spodoptera spp. and nematodes through the production of bioactive compounds. By unraveling the multifunctional roles of endophytic actinomycetes, this review contributes compelling narrative knowledge to the field of sustainable agriculture, emphasizing the potential of these microbial allies in crafting effective, environmentally friendly biocontrol strategies for combating agricultural pests.
Collapse
Affiliation(s)
- Mohamed Khaled Diab
- Agricultural Research Center, Pest Physiology Department, Plant Protection Research Institute, Giza, 12311, Egypt.
| | - Hala Mohamed Mead
- Agricultural Research Center, Pest Physiology Department, Plant Protection Research Institute, Giza, 12311, Egypt
| | - Mohamad M Ahmad Khedr
- Agricultural Research Center, Cotton Leafworm Department, Plant Protection Research Institute, Giza, 12311, Egypt
| | | | - Sahar Ahmed El-Shatoury
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
21
|
Fujita H, Yoshida S, Suzuki K, Toju H. Soil prokaryotic and fungal biome structures associated with crop disease status across the Japan Archipelago. mSphere 2024; 9:e0080323. [PMID: 38567970 PMCID: PMC11036807 DOI: 10.1128/msphere.00803-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/29/2024] [Indexed: 04/24/2024] Open
Abstract
Archaea, bacteria, and fungi in the soil are increasingly recognized as determinants of agricultural productivity and sustainability. A crucial step for exploring soil microbiomes with important ecosystem functions is to perform statistical analyses on the potential relationship between microbiome structure and functions based on comparisons of hundreds or thousands of environmental samples collected across broad geographic ranges. In this study, we integrated agricultural field metadata with microbial community analyses by targeting 2,903 bulk soil samples collected along a latitudinal gradient from cool-temperate to subtropical regions in Japan (26.1-42.8 °N). The data involving 632 archaeal, 26,868 bacterial, and 4,889 fungal operational taxonomic units detected across the fields of 19 crop plant species allowed us to conduct statistical analyses (permutational analyses of variance, generalized linear mixed models, randomization analyses, and network analyses) on the relationship among edaphic factors, microbiome compositions, and crop disease prevalence. We then examined whether the diverse microbes form species sets varying in potential ecological impacts on crop plants. A network analysis suggested that the observed prokaryotes and fungi were classified into several species sets (network modules), which differed substantially in association with crop disease prevalence. Within the network of microbe-to-microbe coexistence, ecologically diverse microbes, such as an ammonium-oxidizing archaeon, an antibiotics-producing bacterium, and a potentially mycoparasitic fungus, were inferred to play key roles in shifts between crop-disease-promotive and crop-disease-suppressive states of soil microbiomes. The bird's-eye view of soil microbiome structure will provide a basis for designing and managing agroecosystems with high disease-suppressive functions.IMPORTANCEUnderstanding how microbiome structure and functions are organized in soil ecosystems is one of the major challenges in both basic ecology and applied microbiology. Given the ongoing worldwide degradation of agroecosystems, building frameworks for exploring structural diversity and functional profiles of soil microbiomes is an essential task. Our study provides an overview of cropland microbiome states in light of potential crop-disease-suppressive functions. The large data set allowed us to explore highly functional species sets that may be stably managed in agroecosystems. Furthermore, an analysis of network architecture highlighted species that are potentially used to cause shifts from disease-prevalent states of agroecosystems to disease-suppressive states. By extending the approach of comparative analyses toward broader geographic ranges and diverse agricultural practices, agroecosystem with maximized biological functions will be further explored.
Collapse
Affiliation(s)
- Hiroaki Fujita
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Shigenobu Yoshida
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kenta Suzuki
- Integrated Bioresource Information Division, BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Qiao M, Lv S, Qiao Y, Lin W, Gao Z, Tang X, Yang Z, Chen J. Exogenous Streptomyces spp. enhance the drought resistance of naked oat ( Avena nuda) seedlings by augmenting both the osmoregulation mechanisms and antioxidant capacities. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23312. [PMID: 38588711 DOI: 10.1071/fp23312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Drought is a major obstacle to the development of naked oat industry. This work investigated mechanisms by which exogenous Streptomyces albidoflavus T4 and Streptomyces rochei D74 improved drought tolerance in naked oat (Avena nuda ) seedlings. Results showed that in the seed germination experiment, germination rate, radicle and hypocotyl length of naked oat seeds treated with the fermentation filtrate of T4 or D74 under PEG induced drought stress increased significantly. In the hydroponic experiment, the shoot and root dry weights of oat seedlings increased significantly when treated with the T4 or D74 fermentation filtrate under the 15% PEG induced drought stress (S15). Simultaneously, the T4 treatment also significantly increased the surface area, volume, the number of tips and the root activity of oat seedlings. Both T4 and D74 treatments elicited significant increases in proline and soluble sugar contents, as well as the catalase and peroxidase activities in oat seedlings. The results of comprehensive drought resistance capacity (CDRC) calculation of oat plants showed that the drought resistance of oat seedlings under the T4 treatment was better than that under the D74 treatment, and the effect was better under higher drought stress (S15). Findings of this study may provide a novel and effective approach for enhancing plant defenses against drought stress.
Collapse
Affiliation(s)
- Meixia Qiao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Siyuan Lv
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yuejing Qiao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| | - Wen Lin
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| | - Xiwang Tang
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, Hebei 066102, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| | - Jie Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| |
Collapse
|
23
|
Guo H, Liu W, Xie Y, Wang Z, Huang C, Yi J, Yang Z, Zhao J, Yu X, Sibirina LA. Soil microbiome of shiro reveals the symbiotic relationship between Tricholoma bakamatsutake and Quercus mongolica. Front Microbiol 2024; 15:1361117. [PMID: 38601932 PMCID: PMC11004381 DOI: 10.3389/fmicb.2024.1361117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Tricholoma bakamatsutake is a delicious and nutritious ectomycorrhizal fungus. However, its cultivation is hindered owing to limited studies on its symbiotic relationships. The symbiotic relationship between T. bakamatsutake and its host is closely related to the shiro, a complex network composed of mycelium, mycorrhizal roots, and surrounding soil. To explore the symbiotic relationship between T. bakamatsutake and its host, soil samples were collected from T. bakamatsutake shiro (Tb) and corresponding Q. mongolica rhizosphere (CK) in four cities in Liaoning Province, China. The physicochemical properties of all the soil samples were then analyzed, along with the composition and function of the fungal and bacterial communities. The results revealed a significant increase in total potassium, available nitrogen, and sand in Tb soil compared to those in CK soil, while there was a significant decrease in pH, total nitrogen, total phosphorus, available phosphorus, and silt. The fungal community diversity in shiro was diminished, and T. bakamatsutake altered the community structure of its shiro by suppressing other fungi, such as Russula (ectomycorrhizal fungus) and Penicillium (phytopathogenic fungus). The bacterial community diversity in shiro increased, with the aggregation of mycorrhizal-helper bacteria, such as Paenibacillus and Bacillus, and plant growth-promoting bacteria, such as Solirubrobacter and Streptomyces, facilitated by T. bakamatsutake. Microbial functional predictions revealed a significant increase in pathways associated with sugar and fat catabolism within the fungal and bacterial communities of shiro. The relative genetic abundance of carboxylesterase and gibberellin 2-beta-dioxygenase in the fungal community was significantly increased, which suggested a potential symbiotic relationship between T. bakamatsutake and Q. mongolica. These findings elucidate the microbial community and relevant symbiotic environment to better understand the relationship between T. bakamatsutake and Q. mongolica.
Collapse
Affiliation(s)
- Hongbo Guo
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
- Primorye State Agricultural Academy, Ussuriysk, Russia
| | - Weiye Liu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Yuqi Xie
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Zhenyu Wang
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Chentong Huang
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Jingfang Yi
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Zhaoqian Yang
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Jiachen Zhao
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Xiaodan Yu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Lidiya Alekseevna Sibirina
- Primorye State Agricultural Academy, Ussuriysk, Russia
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
24
|
Redouane EM, Núñez A, Achouak W, Barakat M, Alex A, Martins JC, Tazart Z, Mugani R, Zerrifi SEA, Haida M, García AM, Campos A, Lahrouni M, Oufdou K, Vasconcelos V, Oudra B. Microcystin influence on soil-plant microbiota: Unraveling microbiota modulations and assembly processes in the rhizosphere of Vicia faba. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170634. [PMID: 38325456 DOI: 10.1016/j.scitotenv.2024.170634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Microcystins (MCs) are frequently detected in cyanobacterial bloom-impacted waterbodies and introduced into agroecosystems via irrigation water. They are widely known as phytotoxic cyanotoxins, which impair the growth and physiological functions of crop plants. However, their impact on the plant-associated microbiota is scarcely tackled and poorly understood. Therefore, we aimed to investigate the effect of MCs on microbiota-inhabiting bulk soil (BS), root adhering soil (RAS), and root tissue (RT) of Vicia faba when exposed to 100 μg L-1 MCs in a greenhouse pot experiment. Under MC exposure, the structure, co-occurrence network, and assembly processes of the bacterial microbiota were modulated with the greatest impact on RT-inhabiting bacteria, followed by BS and, to a lesser extent, RAS. The analyses revealed a significant decrease in the abundances of several Actinobacteriota-related taxa within the RT microbiota, including the most abundant and known genus of Streptomyces. Furthermore, MCs significantly increased the abundance of methylotrophic bacteria (Methylobacillus, Methylotenera) and other Proteobacteria-affiliated genera (e.g., Paucibacter), which are supposed to degrade MCs. The co-occurrence network of the bacterial community in the presence of MCs was less complex than the control network. In MC-exposed RT, the turnover in community composition was more strongly driven by deterministic processes, as proven by the beta-nearest taxon index. Whereas in MC-treated BS and RAS, both deterministic and stochastic processes can influence community assembly to some extent, with a relative dominance of deterministic processes. Altogether, these results suggest that MCs may reshape the structure of the microbiota in the soil-plant system by reducing bacterial taxa with potential phytobeneficial traits and increasing other taxa with the potential capacity to degrade MCs.
Collapse
Affiliation(s)
- El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Matosinhos 4450-208, Portugal
| | - Andrés Núñez
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Madrid 28006, Spain; Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia 30100, Spain
| | - Wafa Achouak
- Aix Marseille University, CEA, CNRS, BIAM, Lab of Microbial Ecology of the Rhizosphere, (LEMiRE), Saint Paul Lez Durance 13115, France.
| | - Mohamed Barakat
- Aix Marseille University, CEA, CNRS, BIAM, Lab of Microbial Ecology of the Rhizosphere, (LEMiRE), Saint Paul Lez Durance 13115, France
| | - Anoop Alex
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Matosinhos 4450-208, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - José Carlos Martins
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Matosinhos 4450-208, Portugal
| | - Zakaria Tazart
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; AgroBioSciences, Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Soukaina El Amrani Zerrifi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; Higher Institute of Nurses Professions and Health Techniques of Guelmim, Guelmim 81000, Morocco
| | - Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Ana M García
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Madrid 28006, Spain
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Matosinhos 4450-208, Portugal
| | - Majida Lahrouni
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMAgE), Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Matosinhos 4450-208, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| |
Collapse
|
25
|
Jalloh AA, Khamis FM, Yusuf AA, Subramanian S, Mutyambai DM. Long-term push-pull cropping system shifts soil and maize-root microbiome diversity paving way to resilient farming system. BMC Microbiol 2024; 24:92. [PMID: 38500045 PMCID: PMC10946131 DOI: 10.1186/s12866-024-03238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The soil biota consists of a complex assembly of microbial communities and other organisms that vary significantly across farming systems, impacting soil health and plant productivity. Despite its importance, there has been limited exploration of how different cropping systems influence soil and plant root microbiomes. In this study, we investigated soil physicochemical properties, along with soil and maize-root microbiomes, in an agroecological cereal-legume companion cropping system known as push-pull technology (PPT). This system has been used in agriculture for over two decades for insect-pest management, soil health improvement, and weed control in sub-Saharan Africa. We compared the results with those obtained from maize-monoculture (Mono) cropping system. RESULTS The PPT cropping system changed the composition and diversity of soil and maize-root microbial communities, and led to notable improvements in soil physicochemical characteristics compared to that of the Mono cropping system. Distinct bacterial and fungal genera played a crucial role in influencing the variation in microbial diversity within these cropping systems. The relative abundance of fungal genera Trichoderma, Mortierella, and Bionectria and bacterial genera Streptomyces, RB41, and Nitrospira were more enriched in PPT. These microbial communities are associated with essential ecosystem services such as plant protection, decomposition, carbon utilization, bioinsecticides production, nitrogen fixation, nematode suppression, phytohormone production, and bioremediation. Conversely, pathogenic associated bacterial genus including Bryobacter were more enriched in Mono-root. Additionally, the Mono system exhibited a high relative abundance of fungal genera such as Gibberella, Neocosmospora, and Aspergillus, which are linked to plant diseases and food contamination. Significant differences were observed in the relative abundance of the inferred metabiome functional protein pathways including syringate degradation, L-methionine biosynthesis I, and inosine 5'-phosphate degradation. CONCLUSION Push-pull cropping system positively influences soil and maize-root microbiomes and enhances soil physicochemical properties. This highlights its potential for agricultural and environmental sustainability. These findings contribute to our understanding of the diverse ecosystem services offered by this cropping system where it is practiced regarding the system's resilience and functional redundancy. Future research should focus on whether PPT affects the soil and maize-root microbial communities through the release of plant metabolites from the intercrop root exudates or through the alteration of the soil's nutritional status, which affects microbial enzymatic activities.
Collapse
Affiliation(s)
- Abdul A Jalloh
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag x20 Hatfield, Pretoria, South Africa
| | - Fathiya Mbarak Khamis
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Abdullahi Ahmed Yusuf
- Department of Zoology and Entomology, University of Pretoria, Private Bag x20 Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag x20 Hatfield, Pretoria, South Africa
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Daniel Munyao Mutyambai
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Life Sciences, South Eastern Kenya University, P.O. Box 170-90200, Kitui, Kenya.
| |
Collapse
|
26
|
Pantelic B, Siaperas R, Budin C, de Boer T, Topakas E, Nikodinovic‐Runic J. Proteomic examination of polyester-polyurethane degradation by Streptomyces sp. PU10: Diverting polyurethane intermediates to secondary metabolite production. Microb Biotechnol 2024; 17:e14445. [PMID: 38536665 PMCID: PMC10970200 DOI: 10.1111/1751-7915.14445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 10/17/2024] Open
Abstract
Global plastic waste accumulation has become omnipresent in public discourse and the focus of scientific research. Ranking as the sixth most produced polymer globally, polyurethanes (PU) significantly contribute to plastic waste and environmental pollution due to the toxicity of their building blocks, such as diisocyanates. In this study, the effects of PU on soil microbial communities over 18 months were monitored revealing that it had marginal effects on microbial diversity. However, Streptomyces sp. PU10, isolated from this PU-contaminated soil, proved exceptional in the degradation of a soluble polyester-PU (Impranil) across a range of temperatures with over 96% degradation of 10 g/L in 48 h. Proteins involved in PU degradation and metabolic changes occurring in this strain with Impranil as the sole carbon source were further investigated employing quantitative proteomics. The proposed degradation mechanism implicated the action of three enzymes: a polyester-degrading esterase, a urethane bond-degrading amidase and an oxidoreductase. Furthermore, proteome data revealed that PU degradation intermediates were incorporated into Streptomyces sp. PU10 metabolism via the fatty acid degradation pathway and subsequently channelled to polyketide biosynthesis. Most notably, the production of the tri-pyrrole undecylprodigiosin was confirmed paving the way for establishing PU upcycling strategies to bioactive metabolites using Streptomyces strains.
Collapse
Affiliation(s)
- Brana Pantelic
- Institute of Molecular Genetics and Genetic Engineering, University of BelgradeBelgradeSerbia
| | - Romanos Siaperas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical EngineeringNational Technical University of AthensAthensGreece
| | | | | | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical EngineeringNational Technical University of AthensAthensGreece
| | | |
Collapse
|
27
|
Sun W, Shahrajabian MH, Soleymani A. The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:613. [PMID: 38475460 DOI: 10.3390/plants13050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The application of biostimulants has been proven to be an advantageous tool and an appropriate form of management towards the effective use of natural resources, food security, and the beneficial effects on plant growth and yield. Plant-growth-promoting rhizobacteria (PGPR) are microbes connected with plant roots that can increase plant growth by different methods such as producing plant hormones and molecules to improve plant growth or providing increased mineral nutrition. They can colonize all ecological niches of roots to all stages of crop development, and they can affect plant growth and development directly by modulating plant hormone levels and enhancing nutrient acquisition such as of potassium, phosphorus, nitrogen, and essential minerals, or indirectly via reducing the inhibitory impacts of different pathogens in the forms of biocontrol parameters. Many plant-associated species such as Pseudomonas, Acinetobacter, Streptomyces, Serratia, Arthrobacter, and Rhodococcus can increase plant growth by improving plant disease resistance, synthesizing growth-stimulating plant hormones, and suppressing pathogenic microorganisms. The application of biostimulants is both an environmentally friendly practice and a promising method that can enhance the sustainability of horticultural and agricultural production systems as well as promote the quantity and quality of foods. They can also reduce the global dependence on hazardous agricultural chemicals. Science Direct, Google Scholar, Springer Link, CAB Direct, Scopus, Springer Link, Taylor and Francis, Web of Science, and Wiley Online Library were checked, and the search was conducted on all manuscript sections in accordance with the terms Acinetobacter, Arthrobacter, Enterobacter, Ochrobactrum, Pseudomonas, Rhodococcus, Serratia, Streptomyces, Biostimulants, Plant growth promoting rhizobactera, and Stenotrophomonas. The aim of this manuscript is to survey the effects of plant-growth-promoting rhizobacteria by presenting case studies and successful paradigms in various agricultural and horticultural crops.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali Soleymani
- Department of Agronomy and Plant Breeding, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Plant Improvement and Seed Production Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| |
Collapse
|
28
|
Dos Santos JAF, do Nascimento AF, Rempel DM, Ferreira A. Changes in bacterial communities induced by integrated production systems and the phenological stages of soybean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168626. [PMID: 38013096 DOI: 10.1016/j.scitotenv.2023.168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Plant development and productivity depend on interactions with soil microorganisms for nutrient availability, promotion of growth and protection against phytopathogens. Although the influence of the phenological stages of soybean crops and their environmental conditions on the soil bacterial communities have already been reported, no studies have focused on the influence of integrated agrosilvopastoral systems on bacterial consortia. In this study, we evaluated the influence of the phenological stages of soybean cultivated under conventional full sunlight (CFS) and integrated crop-livestock-forestry (ICLF) systems on bacterial communities in the rhizosphere and in bulk soil using high-throughput sequencing techniques. Proteobacteria, Actinobacteriota and Acidobacteriota were the most abundant phyla in both the rhizosphere and the bulk soil at all growth stages. The results support our hypotheses that the richness and diversity of soil bacterial communities are influenced by different cultivation systems, and that the structure of the bacterial communities in the rhizosphere and the bulk soil are modulated by the phenological stages of the soybean crop.
Collapse
Affiliation(s)
| | | | | | - Anderson Ferreira
- Embrapa Agrossilvipastoril, Sinop, MT, Brazil; Embrapa Trigo, Passo Fundo, RS, Brazil.
| |
Collapse
|
29
|
Díaz-Díaz M, Antón-Domínguez BI, Raya MC, Bernal-Cabrera A, Medina-Marrero R, Trapero A, Agustí-Brisach C. Streptomyces spp. Strains as Potential Biological Control Agents against Verticillium Wilt of Olive. J Fungi (Basel) 2024; 10:138. [PMID: 38392810 PMCID: PMC10890128 DOI: 10.3390/jof10020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Verticillium wilt of olive (VWO) caused by Verticillium dahliae is considered a major olive (Olea europaea) disease in Mediterranean-type climate regions. The lack of effective chemical products against VWO makes it necessary to search for alternatives such as biological control. The main goal of this study was to evaluate the effect of six Streptomyces spp. strains as biological control agents (BCAs) against VWO. All of them were molecularly characterized by sequencing 16S or 23S rRNA genes and via phylogenetic analysis. Their effect was evaluated in vitro on the mycelial growth of V. dahliae (isolates V004 and V323) and on microsclerotia (MS) viability using naturally infested soils. Bioassays in olive plants inoculated with V. dahliae were also conducted to evaluate their effect against disease progress. In all the experiments, the reference BCAs Fusarium oxysporum FO12 and Aureobasidium pullulans AP08 were included for comparative purposes. The six strains were identified as Streptomyces spp., and they were considered as potential new species. All the BCAs, including Streptomyces strains, showed a significant effect on mycelial growth inhibition for both V. dahliae isolates compared to the positive control, with FO12 being the most effective, followed by AP08, while the Streptomyces spp. strains showed an intermediate effect. All the BCAs tested also showed a significant effect on the inhibition of germination of V. dahliae MS compared to the untreated control, with FO12 being the most effective treatment. Irrigation treatments with Streptomyces strain CBQ-EBa-21 or FO12 were significantly more effective in reducing disease severity and disease progress in olive plants inoculated with V. dahliae compared to the remaining treatments. This study represents the first approach to elucidating the potential effect of Streptomyces strains against VWO.
Collapse
Affiliation(s)
- Miriam Díaz-Díaz
- Centro de Bioactivos Químicos (CBQ), Universidad Central "Marta Abreu" de Las Villas (UCLV), Carretera Camajuaní km 5 1/2, Santa Clara 54830, Villa Clara, Cuba
| | - Begoña I Antón-Domínguez
- Departamento de Agronomía, (Unit of Excellence 'María de Maeztu' 2020-2024), Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| | - María Carmen Raya
- Departamento de Agronomía, (Unit of Excellence 'María de Maeztu' 2020-2024), Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| | - Alexander Bernal-Cabrera
- Centro de Investigaciones Agropecuarias (CIAP), Facultad de Ciencias Agropecuarias, Universidad Central "Marta Abreu" de Las Villas (UCLV), Carretera Camajuaní km 5 1/2, Santa Clara 54830, Villa Clara, Cuba
- Departamento de Agronomía, Facultad de Ciencias Agropecuarias, Universidad Central "Marta Abreu" de Las Villas (UCLV), Carretera Camajuaní km 5 1/2, Santa Clara 54830, Villa Clara, Cuba
| | - Ricardo Medina-Marrero
- Centro de Bioactivos Químicos (CBQ), Universidad Central "Marta Abreu" de Las Villas (UCLV), Carretera Camajuaní km 5 1/2, Santa Clara 54830, Villa Clara, Cuba
| | - Antonio Trapero
- Departamento de Agronomía, (Unit of Excellence 'María de Maeztu' 2020-2024), Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| | - Carlos Agustí-Brisach
- Departamento de Agronomía, (Unit of Excellence 'María de Maeztu' 2020-2024), Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| |
Collapse
|
30
|
Gao C, Wang Z, Wang C, Yang J, Du R, Bing H, Xiang W, Wang X, Liu C. Endophytic Streptomyces sp. NEAU-DD186 from Moss with Broad-Spectrum Antimicrobial Activity: Biocontrol Potential Against Soilborne Diseases and Bioactive Components. PHYTOPATHOLOGY 2024; 114:340-347. [PMID: 38349678 DOI: 10.1094/phyto-06-23-0204-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Soilborne diseases cause significant economic losses in agricultural production around the world. They are difficult to control because a host plant is invaded by multiple pathogens, and chemical control often does not work well. In this study, we isolated and identified an endophytic Streptomyces sp. NEAU-DD186 from moss, which showed broad-spectrum antifungal activity against 17 soilborne phytopathogenic fungi, with Bipolaris sorokiniana being the most prominent. The strain also exhibited strong antibacterial activity against soilborne phytopathogenic bacteria Ralstonia solanacearum. To evaluate its biocontrol potential, the strain was prepared into biofertilizer by solid-state fermentation. Response surface methodology was employed to optimize the fermentation conditions for maximizing spore production and revealed that the 1:1 ratio of vermicompost to wheat bran, a temperature of 28°C, and 50% water content with an inoculation amount of 15% represented the optimal parameters. Pot experiments showed that the application of biofertilizer with a spore concentration of 108 CFU/g soil could effectively suppress the occurrence of tomato bacterial wilt caused by R. solanacearum and wheat root rot caused by B. sorokiniana, and the biocontrol efficacy was 81.2 and 72.2%, respectively. Chemical analysis of strain NEAU-DD186 extracts using nuclear magnetic resonance spectrometry and mass analysis indicated that 25-O-malonylguanidylfungin A and 23-O-malonylguanidylfungin A were the main active constituents, which showed high activity against R. solanacearum (EC50 of 2.46 and 2.58 µg ml-1) and B. sorokiniana (EC50 of 3.92 and 3.95 µg ml-1). In conclusion, this study demonstrates that Streptomyces sp. NEAU-DD186 can be developed as biofertilizer to control soilborne diseases.
Collapse
Affiliation(s)
- Congting Gao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Baoding 071000, China
| | - Zhiyan Wang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300072, China
| | - Chengqin Wang
- Gaomi City Inspection and Testing Center, Gaomi 261500, China
| | - Jingquan Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Rui Du
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Hui Bing
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Chongxi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Baoding 071000, China
| |
Collapse
|
31
|
Du X, Liu N, Yan B, Li Y, Liu M, Huang Y. Proximity-based defensive mutualism between Streptomyces and Mesorhizobium by sharing and sequestering iron. THE ISME JOURNAL 2024; 18:wrad041. [PMID: 38366066 PMCID: PMC10881299 DOI: 10.1093/ismejo/wrad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/25/2023] [Accepted: 12/26/2024] [Indexed: 02/18/2024]
Abstract
Microorganisms living in soil maintain intricate interactions among themselves, forming the soil microbiota that influences the rhizosphere microbiome and plant growth. However, the mechanisms underlying the soil microbial interactions remain unclear. Streptomyces and Mesorhizobium are commonly found in soil and serve as plant growth-promoting rhizobacteria (PGPR). Here, we identified an unprecedented interaction between the colonies of red-soil-derived Streptomyces sp. FXJ1.4098 and Mesorhizobium sp. BAC0120 and referred to it as "proximity-based defensive mutualism (PBDM)." We found that metabolite-mediated iron competition and sharing between the two microorganisms were responsible for PBDM. Streptomyces sp. FXJ1.4098 produced a highly diffusible siderophore, desferrioxamine, which made iron unavailable to co-cultured Mesorhizobium sp. BAC0120, thereby inhibiting its growth. Streptomyces sp. FXJ1.4098 also released poorly diffusible iron-porphyrin complexes, which could be utilized by Mesorhizobium sp. BAC0120, thereby restoring the growth of nearby Mesorhizobium sp. BAC0120. Furthermore, in ternary interactions, the PBDM strategy contributed to the protection of Mesorhizobium sp. BAC0120 close to Streptomyces sp. FXJ1.4098 from other microbial competitors, resulting in the coexistence of these two PGPR. A scale-up pairwise interaction screening suggested that the PBDM strategy may be common between Mesorhizobium and red-soil-derived Streptomyces. These results demonstrate the key role of iron in complex microbial interactions and provide novel insights into the coexistence of PGPR in soil.
Collapse
Affiliation(s)
- Xueyuan Du
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, P. R. China
- College of Life Sciences, University of Chinese Academy of Sciences , Beijing 101408, P. R. China
- National Engineering Laboratory for Site Remediation Technologies, BCEG Environmental Remediation Co., Ltd., Beijing 100015, P. R. China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, P. R. China
| | - Bingfa Yan
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, P. R. China
- College of Life Sciences, University of Chinese Academy of Sciences , Beijing 101408, P. R. China
| | - Yisong Li
- School of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Minghao Liu
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, P. R. China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, P. R. China
- College of Life Sciences, University of Chinese Academy of Sciences , Beijing 101408, P. R. China
| |
Collapse
|
32
|
Park JW, Braswell WE, Kunta M. Co-Occurrence Analysis of Citrus Root Bacterial Microbiota under Citrus Greening Disease. PLANTS (BASEL, SWITZERLAND) 2023; 13:80. [PMID: 38202388 PMCID: PMC10781011 DOI: 10.3390/plants13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/12/2024]
Abstract
Candidatus Liberibacter asiaticus (CLas) is associated with Citrus Huanglongbing (HLB), a devastating disease in the US. Previously, we conducted a two-year-long monthly HLB survey by quantitative real-time PCR using root DNA fractions prepared from 112 field grapefruit trees grafted on sour orange rootstock. Approximately 10% of the trees remained CLas-free during the entire survey period. This study conducted 16S metagenomics using the time-series root DNA fractions, monthly prepared during twenty-four consecutive months, followed by microbial co-occurrence network analysis to investigate the microbial factors contributing to the CLas-free phenotype of the aforementioned trees. Based on the HLB status and the time when the trees were first diagnosed as CLas-positive during the survey, the samples were divided into four groups, Stage H (healthy), Stage I (early), II (mid), and III (late) samples. The 16S metagenomics data using Silva 16S database v132 revealed that HLB compromised the diversity of rhizosphere microbiota. At the phylum level, Actinobacteria and Proteobacteria were the predominant bacterial phyla, comprising >93% of total bacterial phyla, irrespective of HLB status. In addition, a temporal change in the rhizosphere microbe population was observed during a two-year-long survey, from which we confirmed that some bacterial families differently responded to HLB disease status. The clustering of the bacterial co-occurrence network data revealed the presence of a subnetwork composed of Streptomycetaceae and bacterial families with plant growth-promoting activity in Stage H and III samples. These data implicated that the Streptomycetaceae subnetwork may act as a functional unit against HLB.
Collapse
Affiliation(s)
- Jong-Won Park
- Citrus Center, Texas A&M University-Kingsville, 312 N. International Blvd., Weslaco, TX 78599, USA
| | - W. Evan Braswell
- Insect Management and Molecular Diagnostic Laboratory, USDA APHIS PPQ S&T, Edinburg, TX 78541, USA
| | - Madhurababu Kunta
- Citrus Center, Texas A&M University-Kingsville, 312 N. International Blvd., Weslaco, TX 78599, USA
| |
Collapse
|
33
|
Zhang F, Wen S, Wang B, Zhang Z, Liu F, Ye T, Wang K, Hu H, Yang X, Fang W. Biocontrol Potential of Streptomyces odonnellii SZF-179 toward Alternaria alternata to Control Pear Black Spot Disease. Int J Mol Sci 2023; 24:17515. [PMID: 38139343 PMCID: PMC10744222 DOI: 10.3390/ijms242417515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Pear black spot disease, caused by Alternaria alternata, is a devastating disease in pears and leads to enormous economic losses worldwide. In this investigation, we isolated a Streptomyces odonnellii SZF-179 from the rhizosphere soil of pear plants in China. Indoor confrontation experiments results showed that both SZF-179 and its aseptic filtrate had excellent inhibitory effects against A. alternata. Afterwards, the main antifungal compound of SZF-179 was identified as polyene, with thermal and pH stability in the environment. A microscopic examination of A. alternata mycelium showed severe morphological abnormalities caused by SZF-179. Protective studies showed that SZF-179 fermentation broth could significantly reduce the diameter of the necrotic lesions on pear leaves by 42.25%. Furthermore, the potential of fermentation broth as a foliar treatment to control black leaf spot was also evaluated. Disease indexes of 'Hosui' and 'Wonwhang' pear plants treated with SZF-179 fermentation broth were lower than that of control plants. Overall, SZF-179 is expected to be developed into a safe and broad-spectrum biocontrol agent. No studies to date have evaluated the utility of S. odonnellii for the control of pear black spot disease; our study fills this research gap. Collectively, our findings provide new insights that will aid the control of pear black spot disease, as well as future studies of S. odonnellii strains.
Collapse
Affiliation(s)
- Fei Zhang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Z.); (S.W.)
| | - Shaohua Wen
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Z.); (S.W.)
| | - Beibei Wang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Z.); (S.W.)
| | - Zhe Zhang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Z.); (S.W.)
| | - Fang Liu
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Z.); (S.W.)
| | - Ting Ye
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Z.); (S.W.)
| | - Kaimei Wang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Z.); (S.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hongju Hu
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Xiaoping Yang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Wei Fang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Z.); (S.W.)
| |
Collapse
|
34
|
Jiang H, Luo J, Liu Q, Ogunyemi SO, Ahmed T, Li B, Yu S, Wang X, Yan C, Chen J, Li B. Rice bacterial leaf blight drives rhizosphere microbial assembly and function adaptation. Microbiol Spectr 2023; 11:e0105923. [PMID: 37846986 PMCID: PMC10715139 DOI: 10.1128/spectrum.01059-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/27/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE Our results suggest that rhizosphere bacteria are more sensitive to bacterial leaf blight (BLB) than fungi. BLB infection decreased the diversity of the rhizosphere bacterial community but increased the complexity and size of the rhizosphere microbial community co-occurrence networks. In addition, the relative abundance of the genera Streptomyces, Chitinophaga, Sphingomonas, and Bacillus increased significantly. Finally, these findings contribute to the understanding of plant-microbiome interactions by providing critical insight into the ecological mechanisms by which rhizosphere microbes respond to phyllosphere diseases. In addition, it also lays the foundation and provides data to support the use of plant microbes to promote plant health in sustainable agriculture, providing critical insight into ecological mechanisms.
Collapse
Affiliation(s)
- Hubiao Jiang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai, China
| | - Quanhong Liu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Bing Li
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Shanhong Yu
- Taizhou Academy of Agricultural Sciences, Taizhou, China
| | - Xiao Wang
- Ningbo Jiangbei District Agricultural Technology Extension Service Station, Ningbo , China
| | - Chenqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| |
Collapse
|
35
|
Khan S, Srivastava S, Karnwal A, Malik T. Streptomyces as a promising biological control agents for plant pathogens. Front Microbiol 2023; 14:1285543. [PMID: 38033592 PMCID: PMC10682734 DOI: 10.3389/fmicb.2023.1285543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Plant diseases caused by pathogenic microorganisms in agriculture present a considerable obstacle, resulting in approximately 30-40% crop damage. The use of conventional techniques to manage these microorganisms, i.e., applying chemical pesticides and antimicrobials, has been discovered to have adverse effects on human health and the environment. Furthermore, these methods have contributed to the emergence of resistance among phytopathogens. Consequently, it has become imperative to investigate natural alternatives to address this issue. The Streptomyces genus of gram-positive bacteria is a potentially viable natural alternative that has been extensively researched due to its capacity to generate diverse antimicrobial compounds, such as metabolites and organic compounds. Scientists globally use diverse approaches and methodologies to extract new bioactive compounds from these bacteria. The efficacy of bioactive compounds in mitigating various phytopathogens that pose a significant threat to crops and plants has been demonstrated. Hence, the Streptomyces genus exhibits potential as a biological control agent for combating plant pathogens. This review article aims to provide further insight into the Streptomyces genus as a source of antimicrobial compounds that can potentially be a biological control against plant pathogens. The investigation of various bioactive compounds synthesized by this genus can enhance our comprehension of their prospective utilization in agriculture.
Collapse
Affiliation(s)
- Shaista Khan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Seweta Srivastava
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Arun Karnwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tabarak Malik
- Department of Biomedical sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
36
|
Chen C, Zhao YY, Wang D, Ren YH, Liu HL, Tian Y, Geng YF, Tang YR, Chen XF. Effects of nanoscale zinc oxide treatment on growth, rhizosphere microbiota, and metabolism of Aconitum carmichaelii. PeerJ 2023; 11:e16177. [PMID: 37868063 PMCID: PMC10590109 DOI: 10.7717/peerj.16177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023] Open
Abstract
Trace elements play a crucial role in the growth and bioactive substance content of medicinal plants, but their utilization efficiency in soil is often low. In this study, soil and Aconitum carmichaelii samples were collected and measured from 22 different locations, followed by an analysis of the relationship between trace elements and the yield and alkaloid content of the plants. The results indicated a significant positive correlation between zinc, trace elements in the soil, and the yield and alkaloid content of A. carmichaelii. Subsequent treatment of A. carmichaelii with both bulk zinc oxide (ZnO) and zinc oxide nanoparticles (ZnO NPs) demonstrated that the use of ZnO NPs significantly enhanced plant growth and monoester-type alkaloid content. To elucidate the underlying mechanisms responsible for these effects, metabolomic analysis was performed, resulting in the identification of 38 differentially expressed metabolites in eight metabolic pathways between the two treatments. Additionally, significant differences were observed in the rhizosphere bacterial communities, with Bacteroidota and Actinobacteriota identified as valuable biomarkers for ZnO NP treatment. Covariation analysis further revealed significant correlations between specific microbial communities and metabolite expression levels. These findings provide compelling evidence that nanoscale zinc exhibits much higher utilization efficiency compared to traditional zinc fertilizer.
Collapse
Affiliation(s)
- Cun Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China
| | - Yu-yang Zhao
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Duo Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Ying-hong Ren
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China
| | - Hong-ling Liu
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China
| | - Ye Tian
- Sichuan Jianengda Panxi Pharmaceutical Co. LTD, Xichang, Sichuan, China
| | - Yue-fei Geng
- Sichuan Jianengda Panxi Pharmaceutical Co. LTD, Xichang, Sichuan, China
| | - Ying-rui Tang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China
| | - Xing-fu Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
37
|
Oyedoh OP, Yang W, Dhanasekaran D, Santoyo G, Glick BR, Babalola OO. Rare rhizo-Actinomycetes: A new source of agroactive metabolites. Biotechnol Adv 2023; 67:108205. [PMID: 37356598 DOI: 10.1016/j.biotechadv.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Numerous biotic and abiotic stress in some geographical regions predisposed their agricultural matrix to challenges threatening plant productivity, health, and quality. In curbing these threats, different customary agrarian principles have been created through research and development, ranging from chemical inputs and genetic modification of crops to the recently trending smart agricultural technology. But the peculiarities associated with these methods have made agriculturists rely on plant rhizospheric microbiome services, particularly bacteria. Several bacterial resources like Proteobacteria, Firmicutes, Acidobacteria, and Actinomycetes (Streptomycetes) are prominent as bioinoculants or the application of their by-products in alleviating biotic/abiotic stress have been extensively studied, with a dearth in the application of rare Actinomycetes metabolites. Rare Actinomycetes are known for their colossal genome, containing well-preserved genes coding for prolific secondary metabolites with many agroactive functionalities that can revolutionize the agricultural industry. Therefore, the imperativeness of this review to express the occurrence and distributions of rare Actinomycetes diversity, plant and soil-associated habitats, successional track in the rhizosphere under diverse stress, and their agroactive metabolite characteristics and functionalities that can remediate the challenges associated with agricultural productivity.
Collapse
Affiliation(s)
- Oghoye Priscilla Oyedoh
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Wei Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dharumadurai Dhanasekaran
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biolόgicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
38
|
Duan M, Yang C, Bao L, Han D, Wang H, Zhang Y, Liu H, Yang S. Morchella esculenta cultivation in fallow paddy fields and drylands affects the diversity of soil bacteria and soil chemical properties. Front Genet 2023; 14:1251695. [PMID: 37772255 PMCID: PMC10523323 DOI: 10.3389/fgene.2023.1251695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
The properties of paddy field (DT) and dry land (HD) soil and food production can be enhanced by the cultivation of Morchella esculenta (ME) during the fallow period. However, whether ME cultivation affects the soil health and microbial diversity of paddy fields and drylands during the cultivation period remains unclear, and this has greatly limited the wider use of this cultivation model. Here, we analyzed the soil chemical properties and bacterial diversity (via metabarcoding sequencing) of DT and HD soils following ME cultivation. Our findings indicated that ME cultivation could enhance soil health. The content of soil phosphorus and potassium (K) was increased in DT soil under ME cultivation, and the K content was significantly higher in HD soil than in DT soil under ME cultivation. ME cultivation had a weak effect on alpha diversity, and ME cultivation affected the abundance of some genera of soil bacteria. The cultivation of ME might reduce the methane production capacity of DT soil and enhance the nitrogen cycling process of HD soil based on the results of functional annotation analysis. Network analysis and correlation analysis showed that Gemmatimonas, Bryobacter, and Anaeromyxobacter were the key bacterial genera regulating soil chemical properties in DT soil under ME cultivation, and Bryobacter, Bacillus, Streptomyces, and Paenarthrobacter were the key taxa associated with the accumulation of K in HD soil. The results of our study will aid future efforts to further improve this cultivation model.
Collapse
Affiliation(s)
- Mingzheng Duan
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia Elata, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Chengcui Yang
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia Elata, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Liuyuan Bao
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia Elata, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Duo Han
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia Elata, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Huaizheng Wang
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia Elata, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Yongzhi Zhang
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia Elata, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Honggao Liu
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia Elata, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Shunqiang Yang
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia Elata, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| |
Collapse
|
39
|
Angamarca E, Castillejo P, Tenea GN. Microbiota and its antibiotic resistance profile in avocado Guatemalan fruits ( Persea nubigena var. guatemalensis) sold at retail markets of Ibarra city, northern Ecuador. Front Microbiol 2023; 14:1228079. [PMID: 37744909 PMCID: PMC10513466 DOI: 10.3389/fmicb.2023.1228079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/11/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Avocados are typically sold in unsanitary conditions at the retail markets in Ecuador, which can raise the risk of microbial contamination. These microorganisms could exhibit multi-antibiotic resistance (MAR), being a serious threat concern to human health. In this study, we aimed to evaluate the microbiota and its antibiotic resistance profile in avocado Guatemalan fruits (Persea nubigena var. guatemalensis), at ripe stage: immature, firm light green (ready to eat in 4 days), peel (AFPE) and pulp (AFPU), and mature intense green (ready to eat) peel (AMPE) and pulp (AMPU), to gain baseline information on the prevalence of MAR bacteria. Methods Culture-independent (16S rRNA metagenomics) and culture-dependent approach (to detect specific indicator microorganisms) were used. Moreover, antibiotic susceptibility of selected target indicator bacteria was assessed providing information about the antibiotic resistance (AR) among the groups. Results Based on 16S rRNA gene metagenomic analysis, over 99.78% of reads were classified as bacteria in all samples. Shannon diversity index varies from 1.22 to 2.22, with the highest bacterial population assigned to AFPE samples (1327 species). The highest microbial counts of indicator Staphylococcus spp. (STAPHY), Enterobacter spp. (ENT), and Listeria spp. (LIST), were detected in AMPE samples. Thirty percent of the selected STAPHYs, and 20.91% of Enterobacter (ENT) clones were resistant to various classes of antibiotics. The MAR index varies between 0.25 to 0.88 and was clone-, and fruit ripe stage-dependent. Conclusions The results indicated that ready to eat avocados contained detectable levels of MAR bacteria, including methicillin resistant (MR)-STAPHY, which may act as a potential vector for the spread of antibiotic resistance. To achieve the increase of the production and marketing of Fuerte cultivar in Ecuador, it is vitally important to consider valuable strategies to protect the fruits at the early ripe stage in future. Thus, it is crucial to set up efficient control measures and develop coordinated strategies to guarantee the microbiological quality of the food.
Collapse
Affiliation(s)
- Evelyn Angamarca
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Ibarra, Ecuador
| | - Pablo Castillejo
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Ibarra, Ecuador
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud, Universidad de Las Américas, Quito, Ecuador
| | - Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Ibarra, Ecuador
| |
Collapse
|
40
|
Vailleau F, Genin S. Ralstonia solanacearum: An Arsenal of Virulence Strategies and Prospects for Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:25-47. [PMID: 37506349 DOI: 10.1146/annurev-phyto-021622-104551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The group of strains constituting the Ralstonia solanacearum species complex (RSSC) is a prominent model for the study of plant-pathogenic bacteria because of its impact on agriculture, owing to its wide host range, worldwide distribution, and long persistence in the environment. RSSC strains have led to numerous studies aimed at deciphering the molecular bases of virulence, and many biological functions and mechanisms have been described to contribute to host infection and pathogenesis. In this review, we put into perspective recent advances in our understanding of virulence in RSSC strains, both in terms of the inventory of functions that participate in this process and their evolutionary dynamics. We also present the different strategies that have been developed to combat these pathogenic strains through biological control, antimicrobial agents, plant genetics, or microbiota engineering.
Collapse
Affiliation(s)
- Fabienne Vailleau
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France; ,
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France; ,
| |
Collapse
|
41
|
He H, Huang J, Zhao Z, Du P, Li J, Xin J, Xu H, Feng W, Zheng X. Whole genome analysis of Streptomyces sp. RerS4, a Rehmannia glutinosa rhizosphere microbe producing a new lipopeptide. Heliyon 2023; 9:e19543. [PMID: 37681179 PMCID: PMC10480658 DOI: 10.1016/j.heliyon.2023.e19543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/06/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Rehmannia glutinosa, a valuable medicinal plant, is threatened by ring rot, a condition that greatly affects its yield and quality. Interactions between plant and the rhizosphere soil microbiome in the context of pathogen invasion are generally more specific, with recruitment of specialized microbes potentially antagonistic to a certain pathogen. Isolation of microorganisms from rhizosphere soil of healthy and ring rot-infected R. glutinosa was carried out to screen antifungal microbes. A strain designated RerS4 isolated from ring rot-infected R. glutinosa rhizosphere soil with strong antifungal activities was selected for further study. RerS4 was taxonomically characterized as the genus Streptomyces according to its morphology and 16S rRNA sequences that were most closely related to Streptomyces racemochromogenes NRRL B-5430T (99.72%) and Streptomyces polychromogenes NBRC 13072T (99.72%). A new lipopeptide isolated from RerS4 showed restrained proliferation, but was devoid of significant antibacterial and antioxidant activity with minimum inhibitory concentration (MIC) values of 20.3 ± 2.5 and 70.8 ± 3.7 μg/mL and half-maximal inhibitory concentration (IC50) values of 23.3 ± 0.8 and 58.8 ± 2.9 μg/mL, respectively. In addition, we report the complete genome sequence of Streptomyces sp. RerS4, which consists of a 7,301,482 bp linear chromosome and a 242,139 bp plasmid. Genome analysis revealed that Streptomyces sp. RerS4 contained 25 biosynthetic gene clusters (BGCs) for secondary metabolites, among which 68% had low similarities with known BGCs, leading us to believe that Streptomyces sp. RerS4 could produce valuable bioactive compounds.
Collapse
Affiliation(s)
- Hairong He
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jiarui Huang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhenzhu Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Pengqiang Du
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jiansong Li
- Institute of Applied Biotechnology, School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, 318000, China
| | - Jile Xin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Huifang Xu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
42
|
Fuller E, Germaine KJ, Rathore DS. The Good, the Bad, and the Useable Microbes within the Common Alder ( Alnus glutinosa) Microbiome-Potential Bio-Agents to Combat Alder Dieback. Microorganisms 2023; 11:2187. [PMID: 37764031 PMCID: PMC10535473 DOI: 10.3390/microorganisms11092187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Common Alder (Alnus glutinosa (L.) Gaertn.) is a tree species native to Ireland and Europe with high economic and ecological importance. The presence of Alder has many benefits including the ability to adapt to multiple climate types, as well as aiding in ecosystem restoration due to its colonization capabilities within disturbed soils. However, Alder is susceptible to infection of the root rot pathogen Phytophthora alni, amongst other pathogens associated with this tree species. P. alni has become an issue within the forestry sector as it continues to spread across Europe, infecting Alder plantations, thus affecting their growth and survival and altering ecosystem dynamics. Beneficial microbiota and biocontrol agents play a crucial role in maintaining the health and resilience of plants. Studies have shown that beneficial microbes promote plant growth as well as aid in the protection against pathogens and abiotic stress. Understanding the interactions between A. glutinosa and its microbiota, both beneficial and pathogenic, is essential for developing integrated management strategies to mitigate the impact of P. alni and maintain the health of Alder trees. This review is focused on collating the relevant literature associated with Alder, current threats to the species, what is known about its microbial composition, and Common Alder-microbe interactions that have been observed worldwide to date. It also summarizes the beneficial fungi, bacteria, and biocontrol agents, underpinning genetic mechanisms and secondary metabolites identified within the forestry sector in relation to the Alder tree species. In addition, biocontrol mechanisms and microbiome-assisted breeding as well as gaps within research that require further attention are discussed.
Collapse
Affiliation(s)
- Emma Fuller
- EnviroCore, Dargan Research Centre, Department of Applied Science, South East Technological University, Kilkenny Road, R93 V960 Carlow, Ireland; (E.F.); (K.J.G.)
- Teagasc, Forestry Development Department, Oak Park Research Centre, R93 XE12 Carlow, Ireland
| | - Kieran J. Germaine
- EnviroCore, Dargan Research Centre, Department of Applied Science, South East Technological University, Kilkenny Road, R93 V960 Carlow, Ireland; (E.F.); (K.J.G.)
| | - Dheeraj Singh Rathore
- Teagasc, Forestry Development Department, Oak Park Research Centre, R93 XE12 Carlow, Ireland
| |
Collapse
|
43
|
Wang Z, Gao C, Yang J, Du R, Zeng F, Bing H, Xia B, Shen Y, Liu C. Endophytic Streptomyces sp. NEAU-ZSY13 from the leaf of Perilla frutescens, as a promising broad-spectrum biocontrol agent against soil-borne diseases. Front Microbiol 2023; 14:1243610. [PMID: 37692391 PMCID: PMC10483227 DOI: 10.3389/fmicb.2023.1243610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Soil-borne diseases cause significant economic losses in global agricultural production. These diseases are challenging to control due to the invasion of multiple pathogens into host plants, and traditional chemical control methods often yield unsatisfactory results. In this study, we isolated and identified an endophytic Streptomyces, designated as NEAU-ZSY13, from the leaf of Perilla frutescens. This isolate exhibited broad-spectrum antifungal activity against 17 soil-borne phytopathogenic fungi, with Bipolaris sorokiniana being the most prominent. Additionally, it displayed strong antibacterial activity against the soil-borne phytopathogenic bacterium Ralstonia solanacearum. To assess its biocontrol potential, the isolate was utilized to produce a biofertilizer through solid-state fermentation. The fermentation conditions were optimized using response surface methodology to maximize the spore production. The results revealed that more abundant spores were produced with a 1:2 ratio of vermicompost to wheat bran, 60% water content, 20% inoculation amount and 28°C. Subsequent pot experiments demonstrated that the application of the biofertilizer with a spore concentration of 108 CFU/g soil effectively suppressed the occurrence of tomato bacterial wilt caused by R. solanacearum and wheat root rot caused by B. sorokiniana, with biocontrol efficacies of 72.2 and 78.3%, respectively. Chemical analysis of NEAU-ZSY13 extracts, using nuclear magnetic resonance spectrometry and mass analysis, identified niphimycin C and niphimycin A as the primary active constituents. These compounds exhibited high activity against R. solanacearum (EC50 of 3.6 and 2.4 μg mL-1) and B. sorokiniana (EC50 of 3.9 and 3.4 μg mL-1). In conclusion, this study demonstrates the potential of Streptomyces sp. NEAU-ZSY13 as a biofertilizer for the control of soil-borne diseases.
Collapse
Affiliation(s)
- Zhiyan Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Congting Gao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Baoding, China
| | - Jingquan Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Rui Du
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Fanli Zeng
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Hui Bing
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Banghua Xia
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Yue Shen
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Chongxi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Baoding, China
| |
Collapse
|
44
|
Yang D, Lin X, Wei Y, Li Z, Zhang H, Liang T, Yang S, Tan H. Can endophytic microbial compositions in cane roots be shaped by different propagation methods. PLoS One 2023; 18:e0290167. [PMID: 37582116 PMCID: PMC10427008 DOI: 10.1371/journal.pone.0290167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
In practical production, cane stems with buds are generally used as seed for propagation. However, long-terms cane stems only easily lead to some problems such as disease sensitivity, quality loss, etc. Recently, cane seedings, which are produced by tissue culture were used in sugarcane production, but few studies on cane health related to tissue culture seedings. Therefore, to evaluate the immunity and health of sugarcanes growing from different reproduction modes, the endophytic microbial compositions in cane roots between stem and tissue culture seedlings were analyzed using high-throughput techniques. The results showed that the endophytic microbial compositions in cane roots were significant differences between stem and tissue culture seedlings. At the genus level, Pantoea, Bacillus, Streptomyces, Lechevalieria, Pseudomonas, Nocardioides, unclassified_f__Comamonadaceae enriched as the dominant endophytic bacterial genera, and Rhizoctonia, Sarocladium, Scytalidium, Wongia, Fusarium, unclassified_f__Phaeosphaer, unclassified_c__Sordariom, unclassified_f__Stachybot, Poaceascoma, Microdochium, Arnium, Echria, Mycena and Exophiala enriched as the dominant endophytic fungal genera in cane roots growing from the tissue culture seedlings. In contrast, Mycobacterium, Massilia, Ralstonia, unclassified_f__Pseudonocardiacea, norank_f__Micropepsaceae, Leptothrix and Bryobacter were the dominant endophytic bacterial genera, and unclassified_k__Fungi, unclassified_f__Marasmiaceae, Talaromyces, unclassified_c__Sordariomycetes and Trichocladium were the dominant endophytic fungal genera in cane roots growing from stem seedlings. Additionally, the numbers of bacterial and fungal operational taxonomic units (OTUs) in cane roots growing from tissue culture seedlings were significantly higher than those of stem seedlings. It indicates that not only the endophytic microbial compositions in cane roots can be shaped by different propagation methods, but also the stress resistance of sugarcanes can be improved by the tissue culture propagation method.
Collapse
Affiliation(s)
- Da Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Xinru Lin
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Yufei Wei
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Zujian Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Haodong Zhang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Tian Liang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shangdong Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Hongwei Tan
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
45
|
Zou L, Zhang Y, Wang Q, Wang S, Li M, Huang J. Genetic diversity, plant growth promotion potential, and antimicrobial activity of culturable endophytic actinobacteria isolated from Aconitum carmichaelii Debeaux. J Appl Microbiol 2023; 134:lxad185. [PMID: 37580141 DOI: 10.1093/jambio/lxad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 08/16/2023]
Abstract
AIM This study evaluated the phylogenetic diversity, plant growth promotion capacity, antifungal activity, and biocontrol potential of culturable actinobacterial endophytes isolated from the medicinal plant Aconitum carmichaelii Debeaux. METHODS AND RESULTS Isolation of actinobacteria from healthy A. carmichaelii plants was carried out on six different media. Full-length 16S rRNA gene was amplified by PCR from the genomic DNA of each strain. Indole-3-acetic acid and siderophore production were quantitatively assessed by the Salkowski and Chrome Azurol S methods, respectively. Rice seeds germination and seedling growth were employed to evaluate plant growth promotion capacities of candidate strains. Dual-culture assay and pot experiments were performed to investigate the antifungal and biocontrol potential of isolates. We obtained 129 actinobacterial isolates from A. carmichaelii, and they belonged to 49 species in 7 genera. These strains exhibited diverse plant growth promotion ability, among which one strain significantly enhanced rice seeds germination, while 31 strains significantly facilitated rice seedling growth. SWUST-123 showed strong antifungal activity against four pathogens in vitro and was most compatible with Qingchuan cultivar. SWUST-123 reduced around 40% of southern blight disease occurrence compared to blank control treatment. . CONCLUSION Aconitum carmichaelii harbored genetically diverse actinobacterial endophytes exhibiting diverse plant growth promotion and antifungal potential, some of which can be served as good candidates for biofertilizers and biocontrol agents.
Collapse
Affiliation(s)
- Lan Zou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yaopeng Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qian Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Siyu Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Muyi Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
46
|
de Lima Júnior AA, de Sousa EC, de Oliveira THB, de Santana RCF, da Silva SKR, Coelho LCBB. Genus Streptomyces: Recent advances for biotechnological purposes. Biotechnol Appl Biochem 2023; 70:1504-1517. [PMID: 36924211 DOI: 10.1002/bab.2455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/06/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
Actinomycetes are a distinct group of filamentous bacteria. The Streptomyces genus within this group has been extensively studied over the years, with substantial contributions to society and science. This genus is known for its antimicrobial production, as well as antitumor, biopesticide, and immunomodulatory properties. Therefore, the extraordinary plasticity of the Streptomyces genus has inspired new research techniques. The newest way of exploring Streptomyces has comprised the discovery of new natural metabolites and the application of emerging tools such as CRISPR technology in drug discovery. In this narrative review, we explore relevant published literature concerning the ongoing novelties of the Streptomyces genus.
Collapse
Affiliation(s)
- Apolonio Alves de Lima Júnior
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco, Brazil
| | | | - Thales Henrique Barbosa de Oliveira
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco, Brazil
| | | | | | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco, Brazil
| |
Collapse
|
47
|
Liu Q, Li L, Chen Y, Wang S, Xue L, Meng W, Jiang J, Cao X. Diversity of Endophytic Microbes in Taxus yunnanensis and Their Potential for Plant Growth Promotion and Taxane Accumulation. Microorganisms 2023; 11:1645. [PMID: 37512818 PMCID: PMC10383522 DOI: 10.3390/microorganisms11071645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Taxus spp. are ancient tree species that have survived from the Quaternary glacier period, and their metabolites, such as taxol, have been used as anticancer drugs globally. Plant-endophytic microbial interaction plays a crucial role in exerting a profound impact on host growth and secondary metabolite synthesis. In this study, high-throughput sequencing was employed to explore endophytic microbial diversity in the roots, stems, and leaves of the Taxus yunnanensis (T. yunnanensis). The analysis revealed some dominant genera of endophytic bacteria, such as Pseudomonas, Neorhizobium, Acidovorax, and Flavobacterium, with Cladosporium, Phyllosticta, Fusarium, and Codinaeopsis as prominent endophytic fungi genera. We isolated 108 endophytic bacteria and 27 endophytic fungi from roots, stems, and leaves. In vitro assays were utilized to screen for endophytic bacteria with growth-promoting capabilities, including IAA production, cellulase, siderophore production, protease and ACC deaminase activity, inorganic phosphate solubilization, and nitrogen fixation. Three promising strains, Kocuria sp. TRI2-1, Micromonospora sp. TSI4-1, and Sphingomonas sp. MG-2, were selected based on their superior growth-promotion characteristics. These strains exhibited preferable plant growth promotion when applied to Arabidopsis thaliana growth. Fermentation broths of these three strains were also found to significantly promote the accumulation of taxanes in T. yunnanensis stem cells, among which strain TSI4-1 demonstrated outstanding increase potentials, with an effective induction of taxol, baccatin III, and 10-DAB contents. After six days of treatment, the contents of these metabolites were 3.28 times, 2.23 times, and 2.17 times the initial amounts, reaching 8720, 331, and 371 ng/g of dry weight of stem cells, respectively. These findings present new insight into the industrialization of taxol production through Taxus stem cell fermentation, thereby promoting the conservation of wild Taxus resources by maximizing their potential economic benefits.
Collapse
Affiliation(s)
- Qiao Liu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Ludan Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yujie Chen
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Sai Wang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Lina Xue
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Weiying Meng
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Jihong Jiang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiaoying Cao
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
48
|
Jiao L, Cao X, Wang C, Chen F, Zou H, Yue L, Wang Z. Crosstalk between in situ root exudates and rhizobacteria to promote rice growth by selenium nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163175. [PMID: 37003329 DOI: 10.1016/j.scitotenv.2023.163175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Maximizing the potential of plant-microbe systems offers great opportunities to confront sustainability issues in agroecosystems. However, the dialog between root exudates and rhizobacteria remains largely unknown. As a novel nanofertilizer, nanomaterials (NMs) have significant potential to improve agricultural productivity due to their unique properties. Here, soil amendment with 0.1 mg·kg-1 selenium (Se) NMs (30-50 nm) significantly promoted rice seedling growth. Differences in root exudates and rhizobacteria were evident. At an earlier time point (3rd week), Se NMs increased the relative content of malic and citric acid by 15.4- and 8.1-fold, respectively. Meanwhile, the relative abundances of Streptomyces and Sphingomonas were increased by 164.6 % and 38.3 %, respectively. As the exposure time increased, succinic acid (40.5-fold) at the 4th week and salicylic acid (4.7-fold) and indole-3-acetic (7.0-fold) at the 5th week were enhanced, while Pseudomonas and Bacillus increased at the 4th (112.3 % and 50.2 %) and 5th weeks (190.8 % and 53.1 %), respectively. Further analysis indicated that (1) Se NMs directly enhanced the synthesis and secretion of malic and citric acids by upregulating their biosynthesis and transporter genes and then recruited Bacillus and Pseudomonas; (2) Se NMs upregulated the chemotaxis and flagellar genes of Sphingomonas for more interaction with rice plants, thereby promoting rice growth and stimulating root exudate secretion. This crosstalk of root exudates and rhizobacteria enhanced nutrient uptake, resulting in promoted rice growth. Our study offers insights into the crosstalk between root exudates and rhizobacteria by NMs and provides new insights into rhizosphere regulation in nano-enabled agriculture.
Collapse
Affiliation(s)
- Liya Jiao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| |
Collapse
|
49
|
González F, Santander C, Ruiz A, Pérez R, Moreira J, Vidal G, Aroca R, Santos C, Cornejo P. Inoculation with Actinobacteria spp. Isolated from a Hyper-Arid Environment Enhances Tolerance to Salinity in Lettuce Plants ( Lactuca sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2018. [PMID: 37653935 PMCID: PMC10222102 DOI: 10.3390/plants12102018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 08/31/2023]
Abstract
Irrigated agriculture is responsible for a third of global agricultural production, but the overuse of water resources and intensification of farming practices threaten its sustainability. The use of saline water in irrigation has become an alternative in areas subjected to frequent drought, but this practice affects plant growth due to osmotic impact and excess of ions. Plant-growth-promoting rhizobacteria (PGPR) can mitigate the negative impacts of salinity and other abiotic factors on crop yields. Actinobacteria from the hyper-arid Atacama Desert could increase the plant tolerance to salinity, allowing their use as biofertilizers for lettuce crops using waters with high salt contents. In this work, rhizosphere samples of halophytic Metharme lanata were obtained from Atacama Desert, and actinobacteria were isolated and identified by 16S gene sequencing. The PGPR activities of phosphate solubilization, nitrogen fixation, and the production of siderophore and auxin were assessed at increasing concentrations of NaCl, as well as the enhancement of salt tolerance in lettuce plants irrigated with 100 mM of NaCl. Photosynthesis activity and chlorophyll content, proline content, lipid peroxidation, cation and P concentration, and the identification and quantification of phenolic compounds were assessed. The strains S. niveoruber ATMLC132021 and S. lienomycini ATMLC122021 were positive for nitrogen fixation and P solubilization activities and produced auxin up to 200 mM NaCl. In lettuce plants, both strains were able to improve salt stress tolerance by increasing proline contents, carotenoids, chlorophyll, water use efficiency (WUE), stomatal conductance (gs), and net photosynthesis (A), concomitantly with the overproduction of the phenolic compound dicaffeoylquinic acid. All these traits were positively correlated with the biomass production under saltwater irrigation, suggesting its possible use as bioinoculants for the agriculture in areas where the water resources are scarce and usually with high salt concentrations.
Collapse
Affiliation(s)
- Felipe González
- Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile;
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
| | - Christian Santander
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
- Grupo de Ingeniería Ambiental y Biotecnología, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción 4070411, Chile;
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
| | - Rodrigo Pérez
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
| | - Jorge Moreira
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
| | - Gladys Vidal
- Grupo de Ingeniería Ambiental y Biotecnología, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción 4070411, Chile;
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain;
| | - Cledir Santos
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| |
Collapse
|
50
|
Orouji E, Fathi Ghare Baba M, Sadeghi A, Gharanjik S, Koobaz P. Specific Streptomyces strain enhances the growth, defensive mechanism, and fruit quality of cucumber by minimizing its fertilizer consumption. BMC PLANT BIOLOGY 2023; 23:246. [PMID: 37170247 PMCID: PMC10173507 DOI: 10.1186/s12870-023-04259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND The required amounts of chemical fertilizers (NPK) are determined by plant yield, and product quality is given less consideration. The use of PGPRs is an environmentally friendly approach that, in addition to increasing yield, also improves fruit quality. This study examined the role of specific Streptomyces strains in aiding cucumber plants to 1) use fewer NPK fertilizers in the same quantity 2) improve the quality of cucumber fruit, and 3) promote growth and defense system. RESULTS In this study, the effect of 17 Streptomyces strains on the vegetative traits of cucumber seedlings of the Sultan cultivar was evaluated as the first test. Four strains of Streptomyces with the highest root and shoot dry weight were selected from the strains. This experiment was performed to determine the interaction effect of selected strains and different amounts of NPK on cucumber yield, quality, physiological and biochemical responses of plants. The first experiment's results revealed that strains IC6, Y7, SS12, and SS14 increased significantly in all traits compared to the control, while the other strains dramatically improved several characteristics. Analysis of variance (ANOVA) revealed significant differences between the effect of strains, NPK concentrations, and their interactions on plant traits. The treatments containing 75% NPK + SS12, yielded the most fruit (40% more than the inoculated control). Antioxidant enzymes assay showed that SS12 substantially increased the activity of POX, PPO, and the expression of the genes related to these two enzymes. Hormone assay utilizing HPLC analysis revealed that various strains employ a specific mechanism to improve the immune system of plants. CONCLUSIONS Treatment with strain SS12 led to the production of cucumbers with the highest quality by reducing the amount of nitrate, and soluble sugars and increasing the amount of antioxidants and firmness compared to other treatments. A specific Streptomyces strain could reduce 25% of NPK fertilizer during the vegetative and reproductive growth period. Moreover, this strain protected plants against possible pathogens and adverse environmental factors through the ISR and SAR systems.
Collapse
Affiliation(s)
- Elham Orouji
- Department of Plant Breeding and Biotechnology, Faculty of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Mohammad Fathi Ghare Baba
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Shahrokh Gharanjik
- Department of Plant Breeding and Biotechnology, Faculty of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Parisa Koobaz
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|