1
|
Saini AK, Kumar M, Singh K, Bhambhu MK, Nain R, Garima, Aakash, Mandhania S, Saini S. Pioneering Nit Gene Exploitation to Develop Molecular Diagnostic Assay for Rapid Detection of Cotton Root Rot Incitant, Macrophomina phaseolina (Tassi) Goid, in Field Soil. J Basic Microbiol 2024; 64:e2400325. [PMID: 39091014 DOI: 10.1002/jobm.202400325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 08/04/2024]
Abstract
Cotton root rot caused by Macrophomina phaseolina pose a significant threat to cotton production, leading to substantial yield and quality losses. Early and accurate diagnosis of this pathogen in soil is crucial for effective disease management. This study presents a pioneering investigation into the utilization of the nit gene encoding nitrilase for the development of a molecular diagnostic assay aimed at the rapid detection of M. phaseolina in field soils. The methodology involved the design and validation of primers targeting the Nit gene sequence, followed by the optimization of PCR conditions for efficient amplification. Leveraging state-of-the-art molecular techniques, the assay offers a novel protocol to accurately identify the presence of M. phaseolina in soil with high sensitivity and specificity. The specificity of the designed primers was confirmed through PCR amplification using DNA from M. phaseolina and other related fungi. Sensitivity tests demonstrated that the PCR assay reliably detected M. phaseolina DNA at concentrations as low as 1 ng. Furthermore, the performance of the diagnostic assay was rigorously evaluated using field soil samples with a known status of M. phaseolina infection, demonstrating its reliability and efficacy in real-world scenarios. This study introduces a novel molecular marker for the detection of M. phaseolina and offers a rapid and efficient means for screening M. phaseolina in large soil samples with minimal time and manpower.
Collapse
Affiliation(s)
- Anil Kumar Saini
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, Haryana, India
- Department of Plant Pathology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Mukesh Kumar
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Karmal Singh
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Mukul Kumar Bhambhu
- Department of Nematology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Rohit Nain
- Department of Soil Science, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Garima
- Department of Plant Pathology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Aakash
- Department of Plant Pathology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Shiwani Mandhania
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Shubham Saini
- Department of Plant Pathology, CCS Haryana Agricultural University, Hisar, Haryana, India
| |
Collapse
|
2
|
Sharma G, Dwibedi V, Seth CS, Singh S, Ramamurthy PC, Bhadrecha P, Singh J. Direct and indirect technical guide for the early detection and management of fungal plant diseases. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100276. [PMID: 39345949 PMCID: PMC11428012 DOI: 10.1016/j.crmicr.2024.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Fungal plant diseases are a major threat to plants and vegetation worldwide. Recent technological advancements in biotechnological tools and techniques have made it possible to identify and manage fungal plant diseases at an early stage. These techniques include direct methods, such as ELISA, immunofluorescence, PCR, flow cytometry, and in-situ hybridization, as well as indirect methods, such as fluorescence imaging, hyperspectral techniques, thermography, biosensors, nanotechnology, and nano-enthused biosensors. Early detection of fungal plant diseases can help to prevent major losses to plantations. This is because early detection allows for the implementation of control measures, such as the use of fungicides or resistant varieties. Early detection can also help to minimize the spread of the disease to other plants. The techniques discussed in this review provide a valuable resource for researchers and farmers who are working to prevent and manage fungal plant diseases. These techniques can help to ensure food security and protect our valuable plant resources.
Collapse
Affiliation(s)
- Gargi Sharma
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, 140413, Punjab, India
| | - Vagish Dwibedi
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, 140413, Punjab, India
- Agriculture Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | | | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012
| | - Pooja Bhadrecha
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, 140413, Punjab, India
| | - Joginder Singh
- Department of Botany, Nagaland University, Lumami, Nagaland, India
| |
Collapse
|
3
|
Paul SK, Gupta DR, Ino M, Ueno M. Development of a PCR-based assay for specific and sensitive detection of Fusarium buharicum from infected okra plant. PLoS One 2024; 19:e0302256. [PMID: 38626135 PMCID: PMC11020393 DOI: 10.1371/journal.pone.0302256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2024] Open
Abstract
Fusarium wilt, caused by the fungus Fusarium buharicum, is an emerging disease of okra in Japan. The disease was first reported in Japan in 2015, causing significant damage to okra seedlings. Due to the potential threat in okra cultivation, the development of an accurate detection method for F. buharicum is needed for the surveillance and management of the disease. In this study, we designed a primer set and developed conventional and nested PCR assays for the specific detection of F. buharicum in infected okra plants and contaminated soil, respectively. We compared the diversity of the translation elongation factor 1 alpha (EF-1α) gene of F. buharicum with 103 other fungal species/isolates to design a species-specific primer. This primer pair successfully amplified approximately 400 bp of PCR product that was only detected in the F. buharicum isolate, not in the other fungal isolates. The developed nested PCR method was highly sensitive and could detect the fungus from a 0.01 fg DNA sample. The primer successfully detected the pathogen in artificially infected plants and soil by conventional and nested PCR, respectively. This is the first report of the development of the F. buharicum-specific primer set and detection assays, which can be used for the specific and sensitive detection of F. buharicum in field samples and for taking early control measures.
Collapse
Affiliation(s)
- Swapan Kumar Paul
- Laboratory of Plant Pathology, Faculty of Life and Environmental Sciences, Shimane University, Shimane, Japan
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Dipali Rani Gupta
- Laboratory of Plant Pathology, Faculty of Life and Environmental Sciences, Shimane University, Shimane, Japan
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Masatoshi Ino
- Laboratory of Plant Pathology, Faculty of Life and Environmental Sciences, Shimane University, Shimane, Japan
| | - Makoto Ueno
- Laboratory of Plant Pathology, Faculty of Life and Environmental Sciences, Shimane University, Shimane, Japan
| |
Collapse
|
4
|
Sykes JR, Denby KJ, Franks DW. Computer vision for plant pathology: A review with examples from cocoa agriculture. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11559. [PMID: 38638617 PMCID: PMC11022223 DOI: 10.1002/aps3.11559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 04/20/2024]
Abstract
Plant pathogens can decimate crops and render the local cultivation of a species unprofitable. In extreme cases this has caused famine and economic collapse. Timing is vital in treating crop diseases, and the use of computer vision for precise disease detection and timing of pesticide application is gaining popularity. Computer vision can reduce labour costs, prevent misdiagnosis of disease, and prevent misapplication of pesticides. Pesticide misapplication is both financially costly and can exacerbate pesticide resistance and pollution. Here, we review the application and development of computer vision and machine learning methods for the detection of plant disease. This review goes beyond the scope of previous works to discuss important technical concepts and considerations when applying computer vision to plant pathology. We present new case studies on adapting standard computer vision methods and review techniques for acquiring training data, the use of diagnostic tools from biology, and the inspection of informative features. In addition to an in-depth discussion of convolutional neural networks (CNNs) and transformers, we also highlight the strengths of methods such as support vector machines and evolved neural networks. We discuss the benefits of carefully curating training data and consider situations where less computationally expensive techniques are advantageous. This includes a comparison of popular model architectures and a guide to their implementation.
Collapse
Affiliation(s)
- Jamie R. Sykes
- Department of Computer ScienceUniversity of YorkDeramore Lane, YorkYO10 5GHYorkshireUnited Kingdom
| | - Katherine J. Denby
- Centre for Novel Agricultural Products, Department of BiologyUniversity of YorkWentworth Way, YorkYO10 5DDYorkshireUnited Kingdom
| | - Daniel W. Franks
- Department of Computer ScienceUniversity of YorkDeramore Lane, YorkYO10 5GHYorkshireUnited Kingdom
- Department of BiologyUniversity of YorkWentworth Way, YorkYO10 5DDYorkshireUnited Kingdom
| |
Collapse
|
5
|
Trippa D, Scalenghe R, Basso MF, Panno S, Davino S, Morone C, Giovino A, Oufensou S, Luchi N, Yousefi S, Martinelli F. Next-generation methods for early disease detection in crops. PEST MANAGEMENT SCIENCE 2024; 80:245-261. [PMID: 37599270 DOI: 10.1002/ps.7733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
Plant pathogens are commonly identified in the field by the typical disease symptoms that they can cause. The efficient early detection and identification of pathogens are essential procedures to adopt effective management practices that reduce or prevent their spread in order to mitigate the negative impacts of the disease. In this review, the traditional and innovative methods for early detection of the plant pathogens highlighting their major advantages and limitations are presented and discussed. Traditional techniques of diagnosis used for plant pathogen identification are focused typically on the DNA, RNA (when molecular methods), and proteins or peptides (when serological methods) of the pathogens. Serological methods based on mainly enzyme-linked immunosorbent assay (ELISA) are the most common method used for pathogen detection due to their high-throughput potential and low cost. This technique is not particularly reliable and sufficiently sensitive for many pathogens detection during the asymptomatic stage of infection. For non-cultivable pathogens in the laboratory, nucleic acid-based technology is the best choice for consistent pathogen detection or identification. Lateral flow systems are innovative tools that allow fast and accurate results even in field conditions, but they have sensitivity issues to be overcome. PCR assays performed on last-generation portable thermocyclers may provide rapid detection results in situ. The advent of portable instruments can speed pathogen detection, reduce commercial costs, and potentially revolutionize plant pathology. This review provides information on current methodologies and procedures for the effective detection of different plant pathogens. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Daniela Trippa
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Riccardo Scalenghe
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | | | - Stefano Panno
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Salvatore Davino
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Chiara Morone
- Regione Piemonte - Phytosanitary Division, Torino, Italy
| | - Antonio Giovino
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Palermo, Italy
| | - Safa Oufensou
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Nicola Luchi
- National Research Council, Institute for Sustainable Plant Protection, (CNR-IPSP), Florence, Italy
| | - Sanaz Yousefi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Federico Martinelli
- Department of Biology, University of Florence, Florence, Italy
- National Research Council, Institute for Sustainable Plant Protection, (CNR-IPSP), Florence, Italy
| |
Collapse
|
6
|
Dahlsjö CAL. Strategies to manage tree pest and disease outbreaks: a balancing act. BMC Ecol Evol 2023; 23:70. [PMID: 38053066 PMCID: PMC10698881 DOI: 10.1186/s12862-023-02184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
Tree diseases are one of the major threats to forests worldwide. As the frequency and severity of disease outbreaks increase, effective prevention and mitigation strategies are urgently needed. Emerging methods are available to tackle this issue, however, trade-offs and potential ecological consequences should be considered for successful forest preservation.
Collapse
|
7
|
Meinecke CD, Vos LD, Yilmaz N, Steenkamp ET, Wingfield MJ, Wingfield BD, Villari C. A LAMP Assay for Rapid Detection of the Pitch Canker Pathogen Fusarium circinatum. PLANT DISEASE 2023; 107:2916-2923. [PMID: 36867583 DOI: 10.1094/pdis-04-22-0972-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The pine pitch canker pathogen Fusarium circinatum is endemic in the southeastern United States and Central America and represents an invasive threat globally. This ecologically adaptable fungus readily infects all parts of its pine hosts, leading to widespread mortality of nursery seedlings and decline in the health and productivity of forest stands. Because trees infected by F. circinatum can remain asymptomatic for long periods of time, accurate and rapid tools are needed for real-time diagnostics and surveillance at ports, in nurseries, and in plantations. To meet this need and to limit the spread and impact of the pathogen, we developed a molecular test using loop-mediated isothermal amplification (LAMP), a technology that allows for the rapid detection of pathogen DNA on portable, field-capable devices. LAMP primers were designed and validated to amplify a gene region unique to F. circinatum. Using a globally representative collection of F. circinatum isolates and other closely related species, we have demonstrated that the assay can be used to identify F. circinatum across its genetic diversity and that it is sensitive to as few as 10 cells from purified DNA extracts. The assay can also be used with a simple, pipette-free DNA extraction method and is compatible with testing symptomatic pine tissues in the field. This assay has the potential to facilitate diagnostic and surveillance efforts both in the laboratory and in the field and, thus, to reduce the spread and impact of pitch canker worldwide.
Collapse
Affiliation(s)
- Colton D Meinecke
- D. B. Warnell School of Forestry of Natural Resources, University of Georgia, Athens, GA 30602, U.S.A
| | - Lieschen De Vos
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Neriman Yilmaz
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Emma T Steenkamp
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Brenda D Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Caterina Villari
- D. B. Warnell School of Forestry of Natural Resources, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
8
|
Achilonu CC, Gryzenhout M, Marais GJ, Madisha MT, Ghosh S. Random amplified microsatellites (RAMS) analysis ascertains genetic variation of Alternaria alternata causing black spot disease on Carya illinoinensis in South Africa. Front Genet 2023; 14:1213102. [PMID: 37842646 PMCID: PMC10569608 DOI: 10.3389/fgene.2023.1213102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Limited information regarding the occurrence of black spot disease of pecan (Carya illinoinensis), caused by A. alternata, in South Africa is known. The pecan industry is growing rapidly, so it is essential to understand the impact of the fungal pathogen to pecan health. In this study, the genetic variation of 364 A. alternata isolates was investigated by two RAMS primers (CCA5 and CGA5). In total, 6,525 alleles were produced, with a minimum of 3,182 alleles on the CGA5 primer and maximum of 3,343 alleles for CCA5 primer. Further analysis of the primers showed relatively low genetic diversity of A. alternata isolate populations, with mean values; (H = 0.12) and Shannon's information index (I = 0.20). The analysis of molecular variance (AMOVA) revealed significant differences between populations, with 88% of the genetic variation was found within populations (Nm = 3.59, PhiPT = 0.12), and were not significantly different (p > 0.001). While 12% variation was observed among populations (Nm = 2.89, PhiPT = 0.08) and the estimates were statistically significant (p < 0.001). STRUCTURE HARVESTER output showed that K value is K = 8, where ΔK cannot find the true number of populations because of less variation. The dendrogram cluster tree generated by Ward's analysis unveiled two main distinct clades and 10 sub-clades, revealing similar findings as those of PCoA analysis clusters. Therefore, it was evident that these analyses depicted no distinct relationship between the A. alternata isolates and their geographic locations or the prevalence of distribution among the populations.
Collapse
Affiliation(s)
- Conrad Chibunna Achilonu
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Marieka Gryzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Gert Johannes Marais
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | | | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
9
|
Williams GM, Ginzel MD, Ma Z, Adams DC, Campbell F, Lovett GM, Pildain MB, Raffa KF, Gandhi KJK, Santini A, Sniezko RA, Wingfield MJ, Bonello P. The Global Forest Health Crisis: A Public-Good Social Dilemma in Need of International Collective Action. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:377-401. [PMID: 37253697 DOI: 10.1146/annurev-phyto-021722-024626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Society is confronted by interconnected threats to ecological sustainability. Among these is the devastation of forests by destructive non-native pathogens and insects introduced through global trade, leading to the loss of critical ecosystem services and a global forest health crisis. We argue that the forest health crisis is a public-good social dilemma and propose a response framework that incorporates principles of collective action. This framework enables scientists to better engage policymakers and empowers the public to advocate for proactive biosecurity and forest health management. Collective action in forest health features broadly inclusive stakeholder engagement to build trust and set goals; accountability for destructive pest introductions; pooled support for weakest-link partners; and inclusion of intrinsic and nonmarket values of forest ecosystems in risk assessment. We provide short-term and longer-term measures that incorporate the above principles to shift the societal and ecological forest health paradigm to a more resilient state.
Collapse
Affiliation(s)
- Geoffrey M Williams
- International Programs, US Forest Service, US Department of Agriculture, Lansing, Michigan, USA;
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Matthew D Ginzel
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| | - Zhao Ma
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Damian C Adams
- Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Faith Campbell
- Center for Invasive Species Prevention, Bethesda, Maryland, USA
| | - Gary M Lovett
- Cary Institute of Ecosystem Studies, Millbrook, New York, USA
| | - María Belén Pildain
- Centro de Investigación y Extensión Forestal Andino Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, Esquel, Chubut, Argentina
| | - Kenneth F Raffa
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kamal J K Gandhi
- D. B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - Alberto Santini
- Institute for Sustainable Plant Protection, National Research Council, Sesto Fiorentino, Italy
| | - Richard A Sniezko
- Dorena Genetic Resource Center, US Forest Service, US Department of Agriculture, Cottage Grove, Oregon, USA
| | - Michael J Wingfield
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
10
|
Aladhadh M. A Review of Modern Methods for the Detection of Foodborne Pathogens. Microorganisms 2023; 11:1111. [PMID: 37317085 DOI: 10.3390/microorganisms11051111] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 06/16/2023] Open
Abstract
Despite the recent advances in food preservation techniques and food safety, significant disease outbreaks linked to foodborne pathogens such as bacteria, fungi, and viruses still occur worldwide indicating that these pathogens still constitute significant risks to public health. Although extensive reviews of methods for foodborne pathogens detection exist, most are skewed towards bacteria despite the increasing relevance of other pathogens such as viruses. Therefore, this review of foodborne pathogen detection methods is holistic, focusing on pathogenic bacteria, fungi, and viruses. This review has shown that culture-based methods allied with new approaches are beneficial for the detection of foodborne pathogens. The current application of immunoassay methods, especially for bacterial and fungal toxins detection in foods, are reviewed. The use and benefits of nucleic acid-based PCR methods and next-generation sequencing-based methods for bacterial, fungal, and viral pathogens' detection and their toxins in foods are also reviewed. This review has, therefore, shown that different modern methods exist for the detection of current and emerging foodborne bacterial, fungal, and viral pathogens. It provides further evidence that the full utilization of these tools can lead to early detection and control of foodborne diseases, enhancing public health and reducing the frequency of disease outbreaks.
Collapse
Affiliation(s)
- Mohammed Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
11
|
Thakur R, Devi R, Lal MK, Tiwari RK, Sharma S, Kumar R. Morphological, ultrastructural and molecular variations in susceptible and resistant genotypes of chickpea infected with Botrytis grey mould. PeerJ 2023; 11:e15134. [PMID: 37009149 PMCID: PMC10064989 DOI: 10.7717/peerj.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Biotic stress due to fungal infection is detrimental to the growth and development of chickpea. In our study, two chickpea genotypes viz Cicer pinnatifidum (resistant) and PBG5 (susceptible) were inoculated with (1 × 104 spore mL−1) of nectrotrophic fungus Botrytis cinerea at seedling stage. These seedlings were evaluated for morphological, ultrastructural, and molecular differences after 3, 5 and 7 days post inoculation (dpi). Visual symptoms were recorded in terms of water-soaked lesions, rotten pods and twigs with fungal colonies. Light and scanning electron microscopy (SEM) revealed the differences in number of stomata, hyphal network and extent of topographical damage in resistant (C. pinnatifidum) and susceptible (PBG5) genotypes, which were validated by stomatal index studies done by using fluorescence microscopy in the infection process of B. cinerea in leaves of both chickpea genotypes. In case of control (water inoculated) samples, there were differences in PCR analysis done using five primers for screening the genetic variations between two genotypes. The presence of a Botrytis responsive gene (LrWRKY) of size ~300 bp was observed in uninoculated resistant genotype which might have a role in resistance against Botrytis grey mould. The present investigation provides information about the variation in the infection process of B. cinerea in two genotypes which can be further exploited to develop robust and effective strategies to manage grey mould disease.
Collapse
Affiliation(s)
- Richa Thakur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Sucheta Sharma
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ravinder Kumar
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
12
|
Tripathi A, Dubey SC, Akhtar J, Kumar P. Development of PCR-based assays to diagnose the major fungal pathogens infecting pulse crops, potential for germplasm health certification and quarantine processing. World J Microbiol Biotechnol 2023; 39:74. [PMID: 36637583 DOI: 10.1007/s11274-023-03519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Abstract
Plant diseases cause serious economic losses of agriculture production worldwide. Rapid, accurate and reliable diagnostic methods are required to alleviate the detection of fungal plant pathogens to prevent their spread and achieve effective management. This study was aimed to develop fast, reliable and highly sensitive diagnostics to detect fungal plant pathogens for quarantine processing, safe exchange and conservation of germplasms of pulse crops. Multiplex and real time PCR assays were developed for detection of Rhizoctonia solani, Macrophomina phaseolina, Ascochyta rabiei, Alternaria alternata, A. tenuissima, Fusarium oxysporum f. sp. ciceris, Sclerotium (Athelia) rolfsii, Sclerotinia sclerotiorum, Pseudocercospora cruenta and Cercospora canescens causing various diseases in pulse crops. Twenty-two sets of primers from various genomic regions such as cytochrome oxidase subunit (COX 1), internal transcribed spacer region (ITS), translation elongation factor-1 alpha (TEF-1α), large subunit (LSU), small subunit (SSU) and β-tubulin as well as two SCAR primers from RAPD profile were designed. The developed markers proved to be species-specific and validated against other fungal plant pathogens associated with pulses for cross-reactivity. The markers proved highly sensitive during conventional and qPCR analysis. Duplex PCR assays for R. solani and M. phaseolina; C. canescens and P. cruenta; A. alternata and A. tenuissima; and a quadruplex PCR assay for A. rabiei, S. sclerotiorum, S. rolfsii and F. oxysporum f. sp. ciceris were developed and validated for simultaneous detection of these pathogens in a single reaction. The assays developed in the present study were able to detect and identify major fungal plant pathogens causing disease in pulse crops.
Collapse
Affiliation(s)
- Aradhika Tripathi
- Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| | - Sunil C Dubey
- Plant Protection Section, Crop Science Division, Indian Council of Agricultural Research, New Delhi, 110001, India.
| | - Jameel Akhtar
- Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| | - Pardeep Kumar
- Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| |
Collapse
|
13
|
de Moraes Pontes JG, da Silva Pinheiro MS, Fill TP. Unveiling Chemical Interactions Between Plants and Fungi Using Metabolomics Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:1-20. [PMID: 37843803 DOI: 10.1007/978-3-031-41741-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Metabolomics has been extensively used in clinical studies in the search for new biomarkers of human diseases. However, this approach has also been highlighted in agriculture and biological sciences, once metabolomics studies have been assisting researchers to deduce new chemical mechanisms involved in biological interactions that occur between microorganisms and plants. In this sense, the knowledge of the biological role of each metabolite (virulence factors, signaling compounds, antimicrobial metabolites, among others) and the affected biochemical pathways during the interaction contribute to a better understand of different ecological relationships established in nature. The current chapter addresses five different applications of the metabolomics approach in fungal-plant interactions research: (1) Discovery of biomarkers in pathogen-host interactions, (2) plant diseases diagnosis, (3) chemotaxonomy, (4) plant defense, and (5) plant resistance; using mass spectrometry and/or nuclear magnetic resonance spectroscopy, which are the techniques most used in metabolomics.
Collapse
Affiliation(s)
- João Guilherme de Moraes Pontes
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil
| | - Mayra Suelen da Silva Pinheiro
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil
| | - Taícia Pacheco Fill
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil.
| |
Collapse
|
14
|
Luchi N, Migliorini D, Pecori F, Santini A. Real-Time Portable LAMP Assay for a Rapid Detection of Xylella fastidiosa In-Field. Methods Mol Biol 2023; 2659:51-60. [PMID: 37249884 DOI: 10.1007/978-1-0716-3159-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Early diagnosis is part of a decision-making process which in the case of plant diseases may prevent the spread of invasive plant pathogens and assist in their eradication. Significant advantages could be obtained from moving testing technology closer to the sampling site, thereby reducing the detection time. This chapter describes a portable real-time LAMP assay for a specific detection of Xylella fastidiosa in-field. The LAMP assay, including DNA extraction, allows a complete and specific in-field analysis in just 40 minutes, enabling the detection of pathogen DNA in host tissues.
Collapse
Affiliation(s)
- Nicola Luchi
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Florence, Italy.
| | - Duccio Migliorini
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Florence, Italy
| | - Francesco Pecori
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Florence, Italy
| | - Alberto Santini
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Florence, Italy
| |
Collapse
|
15
|
Bollmann-Giolai A, Malone JG, Arora S. Diversity, detection and exploitation: linking soil fungi and plant disease. Curr Opin Microbiol 2022; 70:102199. [PMID: 36108394 DOI: 10.1016/j.mib.2022.102199] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023]
Abstract
Plant-associated fungi are incredibly diverse, comprising over a million species of mycorrhiza, endophytes, saprophytes and pathogens worldwide. This diverse fungal community is highly important for plant health. Many fungi are effective biocontrol agents that can kill or suppress fungal pathogens, with pathogen biocontrol found for both individual microorganisms and plant-associated fungal consortia. Meanwhile, increased plant community diversity aboveground corresponds to an increase in below-ground fungal community diversity, which contributes in turn to improved rhizosphere soil health and pathogen suppression. In this review, we discuss the role of fungal diversity in soil health and plant disease suppression and the various mechanisms by which mycorrhizal and endophytic fungi combat plant pathogenic fungi. We also discuss the array of diagnostic tools, both well-established and newly developed, which are revolutionising fungal pathogen detection and rhizosphere community analysis.
Collapse
Affiliation(s)
- Anita Bollmann-Giolai
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8006 Zurich, Switzerland
| | - Jacob G Malone
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Sanu Arora
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
16
|
Moo-Koh FA, Cristóbal-Alejo J, Tun-Suárez JM, Medina-Baizabal IL, Arjona-Cruz AA, Gamboa-Angulo M. Activity of Aqueous Extracts from Native Plants of the Yucatan Peninsula against Fungal Pathogens of Tomato In Vitro and from Croton chichenensis against Corynespora cassiicola on Tomato. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212821. [PMID: 36365274 PMCID: PMC9654290 DOI: 10.3390/plants11212821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 05/29/2023]
Abstract
Plant extracts are a valuable alternative to control pathogens of horticultural crops. In the present study, four species of pathogenic fungi were isolated from leaf spots on Solanum lycopersicum and identified by traditional and molecular techniques as Alternaria alternata ITC24, Corynespora cassiicola ITC23, Curvularia lunata ITC22, and Fusarium equiseti ITC32. When 11 aqueous extracts from eight native plants of the Yucatan Peninsula were tested against the four fungi in vitro, the extract from Croton chichenensis roots was most active, inhibiting mycelial growth (79-100%), sporulation (100%), and conidial germination (71-100%) at 3% (w/v). A logarithmic-diagrammatic scale of the pathosystem C. cassiicola-S. lycopersicum was established and used to assess disease severity on inoculated tomato plants in a greenhouse after treatment with the aqueous extract from C. chichenensis roots at 12% (w/v). After 21 days, the disease severity was 57% lower than on the control without extract applied. This dose of the extract was not phytotoxic to tomato leaves and was compatible with the beneficial organisms Bacillus subtilis CBCK47 and Trichodema asperellum Ta13-17. The antifungal efficacy of C. chichenensis is highly promising for incorporation into integrated disease management of tomato crops.
Collapse
Affiliation(s)
- Felicia Amalia Moo-Koh
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Yucatán, Mérida 97205, Mexico
- Tecnológico Nacional de México, Campus Conkal, Avenida Tecnológico s/n, Yucatán, Conkal 97345, Mexico
| | - Jairo Cristóbal-Alejo
- Tecnológico Nacional de México, Campus Conkal, Avenida Tecnológico s/n, Yucatán, Conkal 97345, Mexico
| | - José María Tun-Suárez
- Tecnológico Nacional de México, Campus Conkal, Avenida Tecnológico s/n, Yucatán, Conkal 97345, Mexico
| | - Irma Leticia Medina-Baizabal
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Yucatán, Mérida 97205, Mexico
| | | | - Marcela Gamboa-Angulo
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Yucatán, Mérida 97205, Mexico
| |
Collapse
|
17
|
Liu L, Ma L, Feng J, Lu X. Dynamic Fluctuation and Niche Differentiation of Fungal Pathogens Infecting Bell Pepper Plants. Appl Environ Microbiol 2022; 88:e0100322. [PMID: 36036572 PMCID: PMC9499033 DOI: 10.1128/aem.01003-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
The plant microbiome is shaped by plant development and microbial interaction. Fungal pathogens infecting bell pepper plants may fluctuate across the growing seasons. Dynamic fluctuation of the microbiome and fungal pathogens in bell pepper plants is poorly understood, and the origin of fungal pathogens causing fruit rot and leaf wilt has been barely investigated. In this study, we used amplicon sequencing (i.e., 16S rRNA and internal transcribed spacer [ITS] sequencing) to explore the compositional variations of the microbiome in bell pepper plants and studied the fluctuation of fungal pathogens across the growing seasons. Co-occurrence network analysis was applied to track the origin and dissemination route of fungal pathogens that infected bell pepper plants. ITS and 16S rRNA sequencing analyses demonstrated that fungal pathogens infecting fruits and leaves probably belonged to the Penicillium, Cladosporium, Fusarium, and unclassified_Sclerotiniaceae genera rather than one specific genus. The dominant fungal pathogens were different, along with the development of bell pepper plants. Both plant development and fungal pathogens shaped microbial communities in bell pepper plants across the growing seasons. Fungal pathogens decreased species richness and diversity of fungal communities in fungus-infected fruit and leaf tissues but not the uninfected stem tissues. Bacterial metabolic functions of xenobiotics increased in fungus-infected leaves at a mature developmental stage. Competitive interaction was present between fungal and bacterial communities in leaves. Co-occurrence network analysis revealed that the origins of fungal pathogens included the greenhouse, packing house, and storage room. Niche differentiation of microbes was discovered among these locations. IMPORTANCE Bell peppers are widely consumed worldwide. Fungal pathogen infections of bell peppers lead to enormous economic loss. To control fungal pathogens and increase economic benefit, it is essential to investigate the shifting patterns of the microbiome and fungal pathogens in bell pepper plants across the growing seasons. In this study, bell pepper plant diseases observed in fruits and leaves were caused by different fungal pathogens. Fungal pathogens originated from the greenhouse, packing house, and storage room, and niche differentiation existed among microbes. This study improves the understanding of dynamic fluctuation and source of fungal pathogens infecting bell pepper plants in the farming system. It also facilitates precise management of fungal pathogens in the greenhouse.
Collapse
Affiliation(s)
- Lixue Liu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Luyao Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Jinsong Feng
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
18
|
Characterization of Colletotrichum Isolates from Strawberry and Other Hosts with Reference to Cross-Inoculation Potential. PLANTS 2022; 11:plants11182373. [PMID: 36145774 PMCID: PMC9500779 DOI: 10.3390/plants11182373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Colletotrichum is an important phytopathogenic fungus that causes anthracnose disease in diverse agronomically important tropical food crops. Accurate pathogen identification is critical for early diagnosis and efficient management of anthracnose. ITS is not a reliable marker for this fungal genus due to its failure to phylogenetically resolve cryptic species. In this study, 36 Colletotrichum isolates belonging to the Acutatum, Boninense and Gloeosporioides species complexes were characterized using multigene phylogenetic analyses, morphology and pathogenicity assays. Additionally, the cross-inoculation potential of a representative subset of isolates was evaluated revealing that cross-infection potential is possible among the isolates belonging to the same species complex.
Collapse
|
19
|
Dalcin MS, Dias BL, Viteri Jumbo LO, Oliveira ACSS, Araújo SHC, Moura WS, Mourão DSC, Ferreira TPS, Campos FS, Cangussu ASR, Alves MVG, Andrade BS, Mantilla-Afanador JG, Aguiar RWA, Oliveira EE, Santos GR. Potential Action Mechanism and Inhibition Efficacy of Morinda citrifolia Essential Oil and Octanoic Acid against Stagonosporopsis cucurbitacearum Infestations. Molecules 2022; 27:5173. [PMID: 36014413 PMCID: PMC9414982 DOI: 10.3390/molecules27165173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The use of plant-based products has been shown to efficiently inhibit fungi-mediated diseases in agricultural crops. Here, we extracted and evaluated the composition of noni, Morinda citrifolia L., essential oil and assessed its activities against Stagonosporopsis cucurbitacearum in Cucumis melo L. Using in silico molecular approaches, potential interactions between the essential oil major components and S. cucurbitacearum tyrosine-tRNA ligase were predicted. Finally, we also measured the potential interference of plant physiology (the stomatal conductance and net photosynthesis) mediated by the application of the M. citrifolia essential oil. Chromatographic analysis revealed that octanoic acid (75.8%), hexanoic acid (12.8%), and isobutyl pent-4-enyl carbonate (3.1%) were the major essential oil compounds. Octanoic acid and noni essential oil, when used as preventive measures, reduce fungal mycelial growth at a concentration of 5 mg/mL without causing significant damage to the treated leaves, which reinforces their efficacies as preventive tools against S. cucurbitacearum. Molecular docking analyses predicted very stable interactions between the major essential oil constituents and S. cucurbitacearum tyrosine-tRNA ligase, suggesting the interference of these plant-based molecules upon enzyme activation. Octanoic acid and M. citrifolia essential oil at concentrations of 20 mg/mL decreased the stomatal conductance and net photosynthesis rate of melon plants, resulting in robust phytotoxicity. Collectively, our findings indicated that despite the phytotoxicity risks at higher concentrations, M. citrifolia essential oil and octanoic acid, have potential as alternative tools for the integrative management of S. cucurbitacearum.
Collapse
Affiliation(s)
- Mateus S. Dalcin
- Programa de Pós-Graduação Produção Vegetal, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil
| | - Bruna L. Dias
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia—Rede Bionorte, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil
| | - Luis O. Viteri Jumbo
- Carrera de Agronomia, Universidad Nacional de Loja (UNL), Loja 110103, Ecuador
- Programa de Pós-Graduação Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77410-530, TO, Brazil
| | - Ana C. S. S. Oliveira
- Programa de Pós-Graduação Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77410-530, TO, Brazil
| | - Sabrina H. C. Araújo
- Programa de Pós-Graduação Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil
- Departamento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Wellington S. Moura
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia—Rede Bionorte, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil
| | - Dalmarcia S. C. Mourão
- Programa de Pós-Graduação Produção Vegetal, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil
| | - Talita P. S. Ferreira
- Programa de Pós-Graduação Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77410-530, TO, Brazil
| | - Fabricio S. Campos
- Programa de Pós-Graduação Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77410-530, TO, Brazil
| | - Alex Sander R. Cangussu
- Programa de Pós-Graduação Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77410-530, TO, Brazil
| | - Marcos V. G. Alves
- Programa de Pós-Graduação Produção Vegetal, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil
| | - Bruno S. Andrade
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié 45206-190, BA, Brazil
| | - Javier G. Mantilla-Afanador
- Departamento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
- Research Institute in Microbiology and Agroindustrial Biotechnology, Universidad Católica de Manizales, Carrera 23 No. 60-63, Manizales 170002, Colombia
| | - Raimundo W. A. Aguiar
- Programa de Pós-Graduação Produção Vegetal, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil
- Programa de Pós-Graduação Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77410-530, TO, Brazil
| | - Eugênio E. Oliveira
- Programa de Pós-Graduação Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77410-530, TO, Brazil
- Departamento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Gil R. Santos
- Programa de Pós-Graduação Produção Vegetal, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil
- Programa de Pós-Graduação Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77410-530, TO, Brazil
| |
Collapse
|
20
|
Avenot HF, Jaime-Frias R, Travadon R, Holland LA, Lawrence DP, Trouillas FP. Development of PCR-Based Assays for Rapid and Reliable Detection and Identification of Canker-Causing Pathogens from Symptomatic Almond Trees. PHYTOPATHOLOGY 2022; 112:1710-1722. [PMID: 35240867 DOI: 10.1094/phyto-08-21-0351-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Trunk and scaffold canker diseases (TSCDs) of almond cause significant yield and tree losses and reduce the lifespan of orchards. In California, several pathogens cause TSCDs, including Botryosphaeriaceae, Ceratocystis destructans, Eutypa lata, Collophorina hispanica, Pallidophorina paarla, Cytospora, Diaporthe, and Phytophthora spp. Field diagnosis of TSCDs is challenging because symptom delineation among the diseases is not clear. Accurate diagnosis of the causal species requires detailed examination of symptoms and subsequent isolation on medium and identification using morphological criteria and subsequent confirmation using molecular tools. The process is time-consuming and difficult, particularly as morphological characteristics are variable and overlap among species. To facilitate diagnosis of TSCD, we developed PCR assays using 23 species-specific primers designed by exploiting sequence differences in the translation elongation factor, β-tubulin, or internal transcribed spacer gene. Using genomic DNA from pure cultures of each fungal and oomycete species, each primer pair successfully amplified a single DNA fragment from the target pathogen but not from selected nontarget pathogens or common endophytes. Although 10-fold serial dilution of fungal DNA extracted from either pure cultures or infected wood samples detected as little as 0.1 pg of DNA sample, consistent detection required 10 ng of pathogen DNA from mycelial samples or from wood chips or drill shavings from artificially or naturally infected almond wood samples with visible symptoms. The new PCR assay represents an improved tool for diagnostic laboratories and will be critical to implement effective disease surveillance and control measures.
Collapse
Affiliation(s)
- Herve F Avenot
- Kearney Agricultural Research & Extension Center, Parlier, CA 93648
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Rosa Jaime-Frias
- Kearney Agricultural Research & Extension Center, Parlier, CA 93648
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Leslie A Holland
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706
| | - Daniel P Lawrence
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Florent P Trouillas
- Kearney Agricultural Research & Extension Center, Parlier, CA 93648
- Department of Plant Pathology, University of California, Davis, CA 95616
| |
Collapse
|
21
|
de Carvalho JA, Monteiro RC, Hagen F, de Camargo ZP, Rodrigues AM. Trends in Molecular Diagnostics and Genotyping Tools Applied for Emerging Sporothrix Species. J Fungi (Basel) 2022; 8:jof8080809. [PMID: 36012797 PMCID: PMC9409836 DOI: 10.3390/jof8080809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Sporotrichosis is the most important subcutaneous mycosis that affects humans and animals worldwide. The mycosis is caused after a traumatic inoculation of fungal propagules into the host and may follow an animal or environmental transmission route. The main culprits of sporotrichosis are thermodimorphic Sporothrix species embedded in a clinical clade, including S. brasiliensis, S. schenckii, S. globosa, and S. luriei. Although sporotrichosis occurs worldwide, the etiological agents are not evenly distributed, as exemplified by ongoing outbreaks in Brazil and China, caused by S. brasiliensis and S. globosa, respectively. The gold standard for diagnosing sporotrichosis has been the isolation of the fungus in vitro. However, with the advance in molecular techniques, molecular assays have complemented and gradually replaced the classical mycological tests to quickly and accurately detect and/or differentiate molecular siblings in Sporothrix. Nearly all techniques available for molecular diagnosis of sporotrichosis involve PCR amplification, which is currently moving towards detecting Sporothrix DNA directly from clinical samples in multiplex qPCR assays. From an epidemiological perspective, genotyping is key to tracing back sources of Sporothrix infections, detecting diversity in outbreak areas, and thus uncovering finer-scale epidemiological patterns. Over the past decades, molecular epidemiological studies have provided essential information to policymakers regarding outbreak management. From high-to-low throughput genotyping methods, MLSA, AFLP, SSR, RAPD, PCR-RFLP, and WGS are available to assess the transmission dynamics and sporotrichosis expansion. This review discusses the trends in the molecular diagnosis of sporotrichosis, genotyping techniques applied in molecular epidemiological studies, and perspectives for the near future.
Collapse
Affiliation(s)
- Jamile Ambrósio de Carvalho
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (J.A.d.C.); (R.C.M.); (Z.P.d.C.)
| | - Ruan Campos Monteiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (J.A.d.C.); (R.C.M.); (Z.P.d.C.)
| | - Ferry Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (J.A.d.C.); (R.C.M.); (Z.P.d.C.)
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (J.A.d.C.); (R.C.M.); (Z.P.d.C.)
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- Correspondence: ; Tel.: +55-1155764551 (ext. 1540)
| |
Collapse
|
22
|
Patil PG, Sharma J, Nanjundappa M, Singh NV, Bohra A, Gunnaiah R, Jamma SM, Vinayaka J, Sangnure VR, Marathe RA. Identification and validation of SSR markers for Xanthomonas axonopodis pv. punicae an incitant of bacterial blight of pomegranate. 3 Biotech 2022; 12:153. [PMID: 35755801 DOI: 10.1007/s13205-022-03209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/22/2022] [Indexed: 11/01/2022] Open
Abstract
This study reports genome wide characterization and development of first set of microsatellite markers through in silico analysis of eight sequenced Xanthomonas axonopodis pv. punicae strains available in the public database. SSR survey resulted in identification of ~ 4638 perfect SSRs, with mean marker frequency 901 SSRs/Mb and densitiy of 11,006 bp/Mb aross the eight genomes. Frequency distribution graphs revealed hexa-nucleotide repeats were more prominent fowllowed by tri-, tetra-, di- and penta-nucleotides in the analysed genomes. We desinged 2927 SSR primers that are specific to the strain LMG 859 and ePCR confirmed on seven other Xap genomes. This resulted in identification of 542 informative SSRs that are producing single amplicons, from which 66 primers were successfully validated through wet lab experiments on eight Xap isolates of pomegranate. Furthermore, utility of these SSRs were demostrated by analysing molecular diversity among 22 Xap isolates using 20 Xap_SSR primers. SSRs revealed moderate genetic diversity among Xap isolates (61%) and grouped 11 isolates that are repersenting six different states into one cluster. This proved the earlier evidence of wider spread of ST3 type Xap acoss India using Multi locus Sequence Typing (MLST) technique. In summary, Xap_SSR will serve as powerful genomics tools that would helps in monitoring of population dynamics, taxonomy, epidomology and quarantine aspects in bacterial blight pathogen through development of microsatellite based Multilocus Variable number of Tandem repeat analysis (MLVA) in future. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03209-z.
Collapse
Affiliation(s)
- Prakash G Patil
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Jyotsana Sharma
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Manjunatha Nanjundappa
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - N V Singh
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Abhishek Bohra
- State Agriculture Biotechnology, Centre, Centre for Crop & Food Innovation, Murdoch University, Perth, Western Australia
| | - Raghavendra Gunnaiah
- Department of Biotechnology and Crop Improvement, University of Horticultural Sciences (UHS), Bagalkot, 587104 India
| | - Shivani M Jamma
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Jeer Vinayaka
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Vipul R Sangnure
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - R A Marathe
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| |
Collapse
|
23
|
Li Y, Bateman C, Skelton J, Wang B, Black A, Huang YT, Gonzalez A, Jusino MA, Nolen ZJ, Freeman S, Mendel Z, Kolařík M, Knížek M, Park JH, Sittichaya W, Pham TH, Ito SI, Torii M, Gao L, Johnson AJ, Lu M, Sun J, Zhang Z, Adams DC, Hulcr J. Preinvasion Assessment of Exotic Bark Beetle-Vectored Fungi to Detect Tree-Killing Pathogens. PHYTOPATHOLOGY 2022; 112:261-270. [PMID: 34261341 DOI: 10.1094/phyto-01-21-0041-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exotic diseases and pests of trees have caused continental-scale disturbances in forest ecosystems and industries, and their invasions are considered largely unpredictable. We tested the concept of preinvasion assessment of not yet invasive organisms, which enables empirical risk assessment of potential invasion and impact. Our example assesses fungi associated with Old World bark and ambrosia beetles and their potential to impact North American trees. We selected 55 Asian and European scolytine beetle species using host use, economic, and regulatory criteria. We isolated 111 of their most consistent fungal associates and tested their effect on four important southeastern American pine and oak species. Our test dataset found no highly virulent pathogens that should be classified as an imminent threat. Twenty-two fungal species were minor pathogens, which may require context-dependent response for their vectors at North American borders, while most of the tested fungi displayed no significant impact. Our results are significant in three ways; they ease the concerns over multiple overseas fungus vectors suspected of heightened potential risk, they provide a basis for the focus on the prevention of introduction and establishment of species that may be of consequence, and they demonstrate that preinvasion assessment, if scaled up, can support practical risk assessment of exotic pathogens.
Collapse
Affiliation(s)
- You Li
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
- Fujian Province Key Laboratory of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Craig Bateman
- Florida Museum of Natural History, University of Florida, Gainesville 32611, U.S.A
| | - James Skelton
- Department of Biology, William and Mary, Williamsburg 23185, U.S.A
| | - Bo Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Adam Black
- Peckerwood Garden Conservation Foundation, Hempstead 77445, U.S.A
| | - Yin-Tse Huang
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| | - Allan Gonzalez
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| | | | | | - Stanley Freeman
- Plant Protection Institute, The Volcani Center, Rishon LeZion, Israel
| | - Zvi Mendel
- Plant Protection Institute, The Volcani Center, Rishon LeZion, Israel
| | - Miroslav Kolařík
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Miloš Knížek
- Forestry and Game Management Research Institute, 156 04 Prague 5-Zbraslav, Czech Republic
| | - Ji-Hyun Park
- National Institute of Forest Science, Seoul, South Korea
| | - Wisut Sittichaya
- Department of Pest Management, Faculty of Natural Resources, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thai-Hong Pham
- Mientrung Institute for Scientific Research, VNMN and Graduate School of Science and Technology, Vietnam Academy of Science and Technology, Hue, Vietnam
| | | | - Masato Torii
- Department of Mushroom Science and Forest Microbiology, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
| | - Lei Gao
- Shanghai Academy of Landscape Architecture Science and Planning, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| | - Andrew J Johnson
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| | - Min Lu
- School of Life Sciences, Hubei University, Wuhan, China
| | - Jianghua Sun
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Damian C Adams
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| | - Jiri Hulcr
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| |
Collapse
|
24
|
Mansotra R, Vakhlu J. Comprehensive account of present techniques for in-field plant disease diagnosis. Arch Microbiol 2021; 203:5309-5320. [PMID: 34410444 DOI: 10.1007/s00203-021-02529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/19/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022]
Abstract
The early detection of plant pathogens is an appropriate preventive strategy for the management of crop yield and quality. For this reason, effective diagnostic techniques and tools, which are simple, specific, rapid and economic, are needed to be developed. Although several such technologies have been developed still most of them suffer one or the other limitation. Major limitations of the widely used diagnostic methods are requirement of trained staff and laboratory setup. Development of point-of-care diagnostic devices (handy portable devices) that require no specialized staff and can directly be used in fields is need of the hour. The aim of this review is to compile the information on current promising techniques that are in use for plant-pathogen diagnosis. Additionally, it focuses on the latest in-field pathogen diagnostic techniques with associated advantages and limitations.
Collapse
Affiliation(s)
- Ritika Mansotra
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| | - Jyoti Vakhlu
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, India.
| |
Collapse
|
25
|
Wyrębek J, Molcan T, Myszczyński K, van Diepeningen AD, Stakheev AA, Żelechowski M, Bilska K, Kulik T. Uncovering Diagnostic Value of Mitogenome for Identification of Cryptic Species Fusarium graminearum Sensu Stricto. Front Microbiol 2021; 12:714651. [PMID: 34531839 PMCID: PMC8439580 DOI: 10.3389/fmicb.2021.714651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Fungal complexes are often composed of morphologically nearly indistinguishable species with high genetic similarity. However, despite their close relationship, they can exhibit distinct phenotypic differences in pathogenicity and production of mycotoxins. Many plant pathogenic and toxigenic fungi have been shown to consist of such cryptic species. Identification of cryptic species in economically important pathogens has added value in epidemiologic studies and provides opportunities for better control. Analysis of mitochondrial genomes or mitogenomics opens up dimensions for improved diagnostics of fungi, especially when efficient recovery of DNA is problematic. In comparison to nuclear DNA, mitochondrial DNA (mtDNA) can be amplified with improved efficacy due to its multi-copy nature. However, to date, only a few studies have demonstrated the usefulness of mtDNA for identification of cryptic species within fungal complexes. In this study, we explored the value of mtDNA for identification of one of the most important cereal pathogens Fusarium graminearum sensu stricto (F.g.). We found that homing endonucleases (HEGs), which are widely distributed in mitogenomes of fungi, display small indel polymorphism, proven to be potentially species specific. The resulting small differences in their lengths may facilitate further differentiation of F.g. from the other cryptic species belonging to F. graminearum species complex. We also explored the value of SNP analysis of the mitogenome for typing F.g. The success in identifying F.g. strains was estimated at 96%, making this tool an attractive complement to other techniques for identification of F.g.
Collapse
Affiliation(s)
- Joanna Wyrębek
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Molcan
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Myszczyński
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Alexander A Stakheev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
26
|
Magyar D, Tischner Z, Páldy A, Kocsubé S, Dancsházy Z, Halász Á, Kredics L. Impact of global megatrends on the spread of microscopic fungi in the Pannonian Biogeographical Region. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Manawasinghe IS, Phillips AJL, Xu J, Balasuriya A, Hyde KD, Stępień Ł, Harischandra DL, Karunarathna A, Yan J, Weerasinghe J, Luo M, Dong Z, Cheewangkoon R. Defining a species in fungal plant pathology: beyond the species level. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00481-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
McDougal RL, Cunningham L, Hunter S, Caird A, Flint H, Lewis A, Ganley RJ. Molecular detection of Phytophthora pluvialis, the causal agent of red needle cast in Pinus radiata. J Microbiol Methods 2021; 189:106299. [PMID: 34370997 DOI: 10.1016/j.mimet.2021.106299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Phytophthora pluvialis was first described in 2013 and is the causal agent of red needle cast (RNC) in Pinus radiata as well as infection in Douglas fir (Pseudotsuga menziesii). A species-specific PCR is necessary for detection of this pathogen and diagnosis of RNC. OBJECTIVE To design and validate a species-specific molecular assay for P. pluvialis using isolates from infected pine needles. METHODS Species-specific PCR primers were generated from the ras-related GTP-binding protein 1 gene (ypt1) gene sequence, concentrating on DNA regions unique to P. pluvialis, and real-time and quantitative polymerase chain reaction (qPCR) were used to detect P. pluvialis from both artificially inoculated and naturally infected samples. RESULTS The species-specific PCR assay was generated following P. pluvialis DNA sequence analysis. In vitro tests of the specificity of the probe-based, quantitative, polymerase chain reaction (qPCR) assay showed that no amplification was observed with other Phytophthora species including other closely-related clade 3 species, or with fungal species associated with pine or with pine DNA. The limit of detection of the qPCR assay was 2 pg/μl. When the qPCR assay was used to detect P. pluvialis in artificially-inoculated and naturally infected P. radiata needles, a PCR product was detected in all inoculated samples; the mean concentration ranges of P. pluvialis DNA in the inoculated and naturally infected samples tested were 5.9-124.5 pg/μl and 8.1-340.2 pg/μl, respectively. The assays described herein were used with serological diagnostic strips, providing the ability to identify to species level. CONCLUSIONS The assay described herein detects P. pluvialis with high specificity and sensitivity from a range of DNA samples, including those extracted from infected plant material and serological diagnostic strips. The ability to detect and identify P. pluvialis, from infected tissues directly, provides value and practicality to diagnostics, biosecurity and research.
Collapse
Affiliation(s)
- R L McDougal
- Scion, New Zealand Forest Research Institute Ltd., Private Bag 3020, Rotorua 3046, New Zealand.
| | - L Cunningham
- Scion, New Zealand Forest Research Institute Ltd., Private Bag 3020, Rotorua 3046, New Zealand
| | - S Hunter
- Scion, New Zealand Forest Research Institute Ltd., Private Bag 3020, Rotorua 3046, New Zealand; The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Sandringham, Auckland 1025, New Zealand
| | - A Caird
- Scion, New Zealand Forest Research Institute Ltd., Private Bag 3020, Rotorua 3046, New Zealand
| | - H Flint
- Scion, New Zealand Forest Research Institute Ltd., Private Bag 3020, Rotorua 3046, New Zealand
| | - A Lewis
- Scion, New Zealand Forest Research Institute Ltd., Private Bag 3020, Rotorua 3046, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - R J Ganley
- Scion, New Zealand Forest Research Institute Ltd., Private Bag 3020, Rotorua 3046, New Zealand; The New Zealand Institute for Plant and Food Research Limited, 416 No.1 Road, Te Puke, New Zealand
| |
Collapse
|
29
|
Vettraino AM, Luchi N, Rizzo D, Pepori AL, Pecori F, Santini A. Rapid diagnostics for Gnomoniopsis smithogilvyi (syn. Gnomoniopsis castaneae) in chestnut nuts: new challenges by using LAMP and real-time PCR methods. AMB Express 2021; 11:105. [PMID: 34251538 PMCID: PMC8275702 DOI: 10.1186/s13568-021-01266-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/05/2021] [Indexed: 01/20/2023] Open
Abstract
Nuts of the sweet chestnut (Castanea sativa) are a widely appreciated traditional food in Europe. In recent years producers and consumers reported a drop of nut quality due to the presence of rot diseases caused by Gnomoniopsis smithogilvyi. Early detection of this pathogen is fundamental to the economic viability of the chestnut industry. In the present study, we developed three molecular methods based on real-time portable LAMP, visual LAMP and qPCR assays for G. smithogilvyi. The molecular assays were specific for G. smithogilvyi and did not amplify the other 11 Gnomoniopsis species and 11 other fungal species commonly associated with chestnuts. The detection limit of both the qPCR and real-time portable LAMP (P-LAMP) assays was 0.128 pg/µL, while the visual LAMP (V-LAMP) assay enabled the detection up to 0.64 pg/µL. By using these newly developed molecular tools, the pathogen was detected in symptomatic and asymptomatic nuts, but not in leaves. The reliability of these molecular methods, including the P-LAMP assay, was particularly useful in detecting G. smithogilvyi of harvested nuts in field, even in the absence of rot symptoms.![]()
Collapse
|
30
|
Rizzo D, Moricca S, Bracalini M, Benigno A, Bernardo U, Luchi N, Da Lio D, Nugnes F, Cappellini G, Salemi C, Cacciola SO, Panzavolta T. Rapid Detection of Pityophthorus juglandis (Blackman) (Coleoptera, Curculionidae) with the Loop-Mediated Isothermal Amplification (LAMP) Method. PLANTS 2021; 10:plants10061048. [PMID: 34067342 PMCID: PMC8224600 DOI: 10.3390/plants10061048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
The walnut twig beetle Pityophthorus juglandis is a phloem-boring bark beetle responsible, in association with the ascomycete Geosmithia morbida, for the Thousand Cankers Disease (TCD) of walnut trees. The recent finding of TCD in Europe prompted the development of effective diagnostic protocols for the early detection of members of this insect/fungus complex. Here we report the development of a highly efficient, low-cost, and rapid method for detecting the beetle, or even just its biological traces, from environmental samples: the loop-mediated isothermal amplification (LAMP) assay. The method, designed on the 28S ribosomal RNA gene, showed high specificity and sensitivity, with no cross reactivity to other bark beetles and wood-boring insects. The test was successful even with very small amounts of the target insect’s nucleic acid, with limit values of 0.64 pg/µL and 3.2 pg/µL for WTB adults and frass, respectively. A comparison of the method (both in real time and visual) with conventional PCR did not display significant differences in terms of LoD. This LAMP protocol will enable quick, low-cost, and early detection of P. juglandis in areas with new infestations and for phytosanitary inspections at vulnerable sites (e.g., seaports, airports, loading stations, storage facilities, and wood processing companies).
Collapse
Affiliation(s)
- Domenico Rizzo
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Plant Protection Service of Tuscany, Via Ciliegiole 99, 51100 Pistoia, Italy; (D.R.); (G.C.)
| | - Salvatore Moricca
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy; (M.B.); (A.B.); (T.P.)
- Correspondence:
| | - Matteo Bracalini
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy; (M.B.); (A.B.); (T.P.)
| | - Alessandra Benigno
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy; (M.B.); (A.B.); (T.P.)
| | - Umberto Bernardo
- Portici Unit, Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), P. le Enrico Fermi 1, 80055 Portici, Italy; (U.B.); (F.N.)
| | - Nicola Luchi
- Florence Unit, Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| | - Daniele Da Lio
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (D.D.L.); (C.S.)
| | - Francesco Nugnes
- Portici Unit, Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), P. le Enrico Fermi 1, 80055 Portici, Italy; (U.B.); (F.N.)
| | - Giovanni Cappellini
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Plant Protection Service of Tuscany, Via Ciliegiole 99, 51100 Pistoia, Italy; (D.R.); (G.C.)
| | - Chiara Salemi
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (D.D.L.); (C.S.)
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Tiziana Panzavolta
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy; (M.B.); (A.B.); (T.P.)
| |
Collapse
|
31
|
Krivitsky V, Granot E, Avidor Y, Borberg E, Voegele RT, Patolsky F. Rapid Collection and Aptamer-Based Sensitive Electrochemical Detection of Soybean Rust Fungi Airborne Urediniospores. ACS Sens 2021; 6:1187-1198. [PMID: 33507747 PMCID: PMC8023804 DOI: 10.1021/acssensors.0c02452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Plants are the central source of food for humans around the world. Unfortunately, plants can be negatively affected by diverse kinds of diseases that are responsible for major economic losses worldwide. Thus, monitoring plant health and early detection of pathogens are essential to reduce disease spread and facilitate effective management practices. Various detection approaches are currently practiced. These methods mainly include visual inspection and laboratory tests. Nonetheless, these methods are labor-intensive, time-consuming, expensive, and inefficient in the early stages of infection. Thus, it is extremely important to detect diseases at the early stages of the epidemic. Here, we would like to present a fast, sensitive, and reliable electrochemical sensing platform for the detection of airborne soybean rust spores. The suspected airborne soybean rust spores are first collected and trapped inside a carbon 3D electrode matrix by high-capacity air-sampling means. Then, a specific biotinylated aptamer, suitable to target specific sites of soybean rust spores is applied. This aptamer agent binds to the surface of the collected spores on the electrode. Finally, spore-bound aptamer units are incubated with a streptavidin-alkaline phosphatase agent leading to the enzymatic formation of p-nitrophenol, which is characterized by its unique electrochemical properties. Our method allows for the rapid (ca. 2 min), selective, and sensitive collection and detection of soybean rust spores (down to the limit of 100-200 collected spores per cm2 of electrode area). This method could be further optimized for its sensitivity and applied to the future multiplex early detection of various airborne plant diseases.
Collapse
Affiliation(s)
- Vadim Krivitsky
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eran Granot
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Ella Borberg
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ralf T. Voegele
- Institute
of Phytomedicine, University of Hohenheim, Stuttgart 70599, Germany
| | - Fernando Patolsky
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department
of Materials Science and Engineering, the Iby and Aladar Fleischman
Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
32
|
Precision Agriculture Digital Technologies for Sustainable Fungal Disease Management of Ornamental Plants. SUSTAINABILITY 2021. [DOI: 10.3390/su13073707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ornamental plant production constitutes an important sector of the horticultural industry worldwide and fungal infections, that dramatically affect the aesthetic quality of plants, can cause serious economic and crop losses. The need to reduce the use of pesticides for controlling fungal outbreaks requires the development of new sustainable strategies for pathogen control. In particular, early and accurate large-scale detection of occurring symptoms is critical to face the ambitious challenge of an effective, energy-saving, and precise disease management. Here, the new trends in digital-based detection and available tools to treat fungal infections are presented in comparison with conventional practices. Recent advances in molecular biology tools, spectroscopic and imaging technologies and fungal risk models based on microclimate trends are examined. The revised spectroscopic and imaging technologies were tested through a case study on rose plants showing important fungal diseases (i.e., spot spectroscopy, hyperspectral, multispectral, and thermal imaging, fluorescence sensors). The final aim was the examination of conventional practices and current e-tools to gain the early detection of plant diseases, the identification of timing and spacing for their proper management, reduction in crop losses through environmentally friendly and sustainable production systems. Moreover, future perspectives for enhancing the integration of all these approaches are discussed.
Collapse
|
33
|
Tripathi A, Rai A, Dubey SC, Akhtar J, Kumar P. DNA barcode, multiplex PCR and qPCR assay for diagnosis of pathogens infecting pulse crops to facilitate safe exchange and healthy conservation of germplasm. Arch Microbiol 2021; 203:2575-2589. [PMID: 33683395 DOI: 10.1007/s00203-021-02259-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/06/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
The DNA barcodes were developed from ITS region for the identification of fungal plant pathogens namely, Alternaria alternata and A. tenuissima both causing leaf spots, Ascochyta rabiei causing Ascochyta blight, Fusarium oxysporum f. sp. ciceris causing wilt, Macrophomina phaseolina causing dry root rot, Rhizoctonia solani causing web blight and wet root rot, Sclerotium (Athelia) rolfsii causing collar rot, Sclerotinia sclerotiorum causing stem rot and Cercospora canescens and Pseudocercospora cruenta both causing leaf spots in pulse crops. Barcode compliance for A. alternata (DBTPQ001-18), A. tenuissima (DBTPQ002-18), A. rabiei (DBTPQ003-18), F. oxysporum f. sp. ciceris (DBTPQ004-18), M. phaseolina (DBTPQ005-18), R. solani (DBTPQ006-18), S. rolfsii (DBTPQ007-18), S. sclerotiorum (DBTPQ008-18), C. canescens (DBTPQ009-18) and P. cruenta (DBTPQ029-20) have been generated based on the Barcode of Life Data System (BOLD) system. In addition to ITS, other genomic regions were also explored and on the basis of sequence variation they were ranked as TEF-α > SSU > LSU > β-tubulin. These genes could be considered for secondary barcode and phylogenetic relatedness. ITS-based markers for the detection of A. alternata (BAA2aF and BAA2aR) and R. solani (BRS17cF and BRS17cR) were developed which provided 400 bp and 220 bp amplicons, respectively. While, for F. oxysporum f. sp. ciceris, COX1-based marker (FOCox1F and FOCox3R) was developed which amplified 150 bp. The markers proved highly specific and sensitive with detection limit of 0.0001 ng of template DNA using qPCR and simultaneously detected these three pathogens. The DNA barcodes and diagnostics developed are suitable for quick and reliable detection of these pathogens during quarantine processing and field diagnostics.
Collapse
Affiliation(s)
- Aradhika Tripathi
- Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| | - Anjali Rai
- Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| | - Sunil Chandra Dubey
- Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India.
| | - Jameel Akhtar
- Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| | - Pardeep Kumar
- Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| |
Collapse
|
34
|
Choudhary P, Singh BN, Chakdar H, Saxena AK. DNA barcoding of phytopathogens for disease diagnostics and bio-surveillance. World J Microbiol Biotechnol 2021; 37:54. [PMID: 33604719 DOI: 10.1007/s11274-021-03019-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
DNA barcoding has proven to be a versatile tool for plant disease diagnostics in the genomics era. As the mass parallel and next generation sequencing techniques gained importance, the role of specific barcodes came under immense scrutiny. Identification and accurate classification of phytopathogens need a universal approach which has been the main application area of the concept of barcode. The present review entails a detailed description of the present status of barcode application in plant disease diagnostics. A case study on the application of Internal Transcribed Spacer (ITS) as barcode for Aspergillus and Fusarium spp. sheds light on the requirement of other potential candidates as barcodes for accurate identification. The challenges faced while barcoding novel pathogens have also been discussed with a comprehensive outline of integrating more recent technologies like meta-barcoding and genome skimming for detecting plant pathogens.
Collapse
Affiliation(s)
- Prassan Choudhary
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Bansh Narayan Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India.
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| |
Collapse
|
35
|
Rizzo D, Luchi N, Da Lio D, Bartolini L, Nugnes F, Cappellini G, Bruscoli T, Salemi C, Griffo RV, Garonna AP, Rossi E. Development of a loop-mediated isothermal amplification (LAMP) assay for the identification of the invasive wood borer Aromia bungii (Coleoptera: Cerambycidae) from frass. 3 Biotech 2021; 11:85. [PMID: 33500873 PMCID: PMC7815857 DOI: 10.1007/s13205-020-02602-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/17/2020] [Indexed: 11/24/2022] Open
Abstract
The red-necked longhorn beetle Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae) is native to east Asia, where it is a major pest of cultivated and ornamental species of the genus Prunus. Morphological or molecular discrimination of adults or larval specimens is required to identify this invasive wood borer. However, recovering larval stages of the pest from trunks and branches causes extensive damage to plants and is timewasting. An alternative approach consists in applying non-invasive molecular diagnostic tools to biological traces (i.e., fecal pellets, frass). In this way, infestations in host plants can be detected without destructive methods. This paper presents a protocol based on both real-time and visual loop-mediated isothermal amplification (LAMP), using DNA of A. bungii extracted from fecal particles in larval frass. Laboratory validations demonstrated the robustness of the protocols adopted and their reliability was confirmed performing an inter-lab blind panel. The LAMP assay and the qPCR SYBR Green method using the F3/B3 LAMP external primers were equally sensitive, and both were more sensitive than the conventional PCR (sensitivity > 103 to the same starting matrix). The visual LAMP protocol, due to the relatively easy performance of the method, could be a useful tool to apply in rapid monitoring of A. bungii and in the management of its outbreaks.
Collapse
Affiliation(s)
- Domenico Rizzo
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Plant Protection Service of Tuscany, Via Ciliegiole 99, 51100 Pistoia, Italy
| | - Nicola Luchi
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy
| | - Daniele Da Lio
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Linda Bartolini
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Plant Protection Service of Tuscany, Via Ciliegiole 99, 51100 Pistoia, Italy
| | - Francesco Nugnes
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), P.le Enrico Fermi 1, 80055 Portici, Italy
| | - Giovanni Cappellini
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Plant Protection Service of Tuscany, Via Ciliegiole 99, 51100 Pistoia, Italy
| | - Tommaso Bruscoli
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Plant Protection Service of Tuscany, Via Ciliegiole 99, 51100 Pistoia, Italy
| | - Chiara Salemi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Raffaele V. Griffo
- Plant Protection Service of Campania, Centro Direzionale, Isola A6, 80124 Naples, Italy
| | - Antonio P. Garonna
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Elisabetta Rossi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
36
|
Hariharan G, Prasannath K. Recent Advances in Molecular Diagnostics of Fungal Plant Pathogens: A Mini Review. Front Cell Infect Microbiol 2021; 10:600234. [PMID: 33505921 PMCID: PMC7829251 DOI: 10.3389/fcimb.2020.600234] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Phytopathogenic fungal species can cause enormous losses in quantity and quality of crop yields and this is a major economic issue in the global agricultural sector. Precise and rapid detection and identification of plant infecting fungi are essential to facilitate effective management of disease. DNA-based methods have become popular methods for accurate plant disease diagnostics. Recent developments in standard and variant polymerase chain reaction (PCR) assays including nested, multiplex, quantitative, bio and magnetic-capture hybridization PCR techniques, post and isothermal amplification methods, DNA and RNA based probe development, and next-generation sequencing provide novel tools in molecular diagnostics in fungal detection and differentiation fields. These molecular based detection techniques are effective in detecting symptomatic and asymptomatic diseases of both culturable and unculturable fungal pathogens in sole and co-infections. Even though the molecular diagnostic approaches have expanded substantially in the recent past, there is a long way to go in the development and application of molecular diagnostics in plant diseases. Molecular techniques used in plant disease diagnostics need to be more reliable, faster, and easier than conventional methods. Now the challenges are with scientists to develop practical techniques to be used for molecular diagnostics of plant diseases. Recent advancement in the improvement and application of molecular methods for diagnosing the widespread and emerging plant pathogenic fungi are discussed in this review.
Collapse
Affiliation(s)
- Ganeshamoorthy Hariharan
- Department of Agricultural Biology, Faculty of Agriculture, Eastern University, Chenkalady, Sri Lanka
| | - Kandeeparoopan Prasannath
- Department of Agricultural Biology, Faculty of Agriculture, Eastern University, Chenkalady, Sri Lanka
| |
Collapse
|
37
|
Rizzo D, Taddei A, Da Lio D, Bruscoli T, Cappellini G, Bartolini L, Salemi C, Luchi N, Pennacchio F, Rossi E. Molecular Identification of Anoplophora glabripennis (Coleoptera: Cerambycidae) From Frass by Loop-Mediated Isothermal Amplification. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2911-2919. [PMID: 32949143 DOI: 10.1093/jee/toaa206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Anoplophora glabripennis (Motschulsky, 1853), native to eastern Asia, is a destructive woodborer of many ornamental species, leading to the decline and the death of the attacked trees. In outbreak areas as Europe or North America, this pest is usually identified using morphological or molecular analyses of adult or larval specimens. However, the procedures for collecting A. glabripennis specimens from infested plants are too expensive and time consuming for routine screening. A noninvasive diagnostic tool based on frass discrimination is therefore crucial for the rapid identification of A. glabripennis at different development stages in the host. This article describes a rapid diagnostic protocol based on loop-mediated isothermal amplification (LAMP). DNA extracted from A. glabripennis frass was amplified with both visual and real-time LAMP and compared with those of nontarget species. The results show that the method is reliable and accurate and therefore could be a promising diagnostic tool in phytosanitary surveys.
Collapse
Affiliation(s)
- Domenico Rizzo
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Plant Protection Service of Tuscany, Via Ciliegiole, Pistoia, Italy
| | - Andrea Taddei
- Plant Health Laboratory ANSES, Avenue du Campus, Agropolis, Montferrier sur Lez, France
| | - Daniele Da Lio
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| | - Tommaso Bruscoli
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Plant Protection Service of Tuscany, Via Ciliegiole, Pistoia, Italy
| | - Giovanni Cappellini
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Plant Protection Service of Tuscany, Via Ciliegiole, Pistoia, Italy
| | - Linda Bartolini
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Plant Protection Service of Tuscany, Via Ciliegiole, Pistoia, Italy
| | - Chiara Salemi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| | - Nicola Luchi
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino, Florence, Italy
| | - Fabrizio Pennacchio
- CREA-Research Centre for Plant Protection and Certification, via Lanciola, Florence, Italy
| | - Elisabetta Rossi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| |
Collapse
|
38
|
Hamilton JL, Workman JN, Nairn CJ, Fraedrich SW, Villari C. Rapid Detection of Raffaelea lauricola Directly from Host Plant and Beetle Vector Tissues Using Loop-Mediated Isothermal Amplification. PLANT DISEASE 2020; 104:3151-3158. [PMID: 33079016 DOI: 10.1094/pdis-02-20-0422-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Since its introduction in 2002, laurel wilt disease has devastated indigenous lauraceous species in the southeastern United States. The causal agent is a fungal pathogen, Raffaelea lauricola, which, after being introduced into the xylem of trees by its vector beetle, Xyleborus glabratus, results in a fatal vascular wilt. Rapid detection and accurate diagnosis of infections is paramount to the successful implementation of disease management strategies. Current management operations to prevent the spread of laurel wilt disease are largely delayed by time-consuming laboratory procedures to confirm the diagnosis. In order to greatly speed up the operations, we developed a loop-mediated isothermal amplification (LAMP) species-specific assay that targets the β-tubulin gene region of R. lauricola, and allows for the rapid detection of the pathogen directly from host plant and beetle tissues. The assay is capable of amplifying as little as 0.5 pg of fungal DNA and as few as 50 conidia. The assay is also capable of detecting R. lauricola directly from wood tissue of artificially inoculated redbay saplings as early as 10 and 12 days postinoculation, when testing high-quality and crude DNA extracts, respectively. Finally, crude DNA extracts of individual adult female X. glabratus beetles were assayed and the pathogen was detected from all specimens. This assay greatly reduces the time required to confirm a laurel wilt diagnosis and, because LAMP technology is well suited to provide point-of-care testing, it has the potential to expedite and facilitate implementation of management operations in response to disease outbreaks.
Collapse
Affiliation(s)
- Jeffrey L Hamilton
- Warnell School of Forestry & Natural Resources, University of Georgia, Athens, GA 30602, U.S.A
| | - J Noah Workman
- Warnell School of Forestry & Natural Resources, University of Georgia, Athens, GA 30602, U.S.A
- Department of Genetics, Harvard Medical School, Boston, MA 02115, U.S.A
| | - Campbell J Nairn
- Warnell School of Forestry & Natural Resources, University of Georgia, Athens, GA 30602, U.S.A
| | - Stephen W Fraedrich
- United States Forest Service, Southern Research Station, Athens, GA 30602, U.S.A
| | - Caterina Villari
- Warnell School of Forestry & Natural Resources, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
39
|
Pinheiro BG, Hahn RC, de Camargo ZP, Rodrigues AM. Molecular Tools for Detection and Identification of Paracoccidioides Species: Current Status and Future Perspectives. J Fungi (Basel) 2020; 6:E293. [PMID: 33217898 PMCID: PMC7711936 DOI: 10.3390/jof6040293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a mycotic disease caused by the Paracoccidioides species, a group of thermally dimorphic fungi that grow in mycelial form at 25 °C and as budding yeasts when cultured at 37 °C or when parasitizing the host tissues. PCM occurs in a large area of Latin America, and the most critical regions of endemicity are in Brazil, Colombia, and Venezuela. The clinical diagnosis of PCM needs to be confirmed through laboratory tests. Although classical laboratory techniques provide valuable information due to the presence of pathognomonic forms of Paracoccidioides spp., nucleic acid-based diagnostics gradually are replacing or complementing culture-based, biochemical, and immunological assays in routine microbiology laboratory practice. Recently, taxonomic changes driven by whole-genomic sequencing of Paracoccidioides have highlighted the need to recognize species boundaries, which could better ascertain Paracoccidioides taxonomy. In this scenario, classical laboratory techniques do not have significant discriminatory power over cryptic agents. On the other hand, several PCR-based methods can detect polymorphisms in Paracoccidioides DNA and thus support species identification. This review is focused on the recent achievements in molecular diagnostics of paracoccidioidomycosis, including the main advantages and pitfalls related to each technique. We discuss these breakthroughs in light of taxonomic changes in the Paracoccidioides genus.
Collapse
Affiliation(s)
- Breno Gonçalves Pinheiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (Z.P.d.C.)
| | - Rosane Christine Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso 78060900, Brazil;
- Federal University of Mato Grosso, Júlio Muller University Hospital, Mato Grosso 78048902, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (Z.P.d.C.)
- Department of Medicine, Discipline of infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (Z.P.d.C.)
| |
Collapse
|
40
|
Paap T, Wingfield MJ, Burgess TI, Hulbert JM, Santini A. Harmonising the fields of invasion science and forest pathology. NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.52991] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive alien species are widely recognised as significant drivers of global environmental change, with far reaching ecological and socio-economic impacts. The trend of continuous increases in first records, with no apparent sign of saturation, is consistent across all taxonomic groups. However, taxonomic biases exist in the extent to which invasion processes have been studied. Invasive forest pathogens have caused, and they continue to result in dramatic damage to natural forests and woody ecosystems, yet their impacts are substantially underrepresented in the invasion science literature. Conversely, most studies of forest pathogens have been undertaken in the absence of a connection to the frameworks developed and used to study biological invasions. We believe this is, in part, a consequence of the mechanistic approach of the discipline of forest pathology; one that has been inherited from the broader discipline of plant pathology. Rather than investigating the origins of, and the processes driving the arrival of invasive microorganisms, the focus of pathologists is generally to investigate specific interactions between hosts and pathogens, with an emphasis on controlling the resulting disease problems. In contrast, central to the field of invasion science, which finds its roots in ecology, is the development and testing of general concepts and frameworks. The lack of knowledge of microbial biodiversity and ecology, speciation and geographic origin present challenges in understanding invasive forest pathogens under existing frameworks, and there is a need to address this shortfall. Advances in molecular technologies such as gene and genome sequencing and metagenomics studies have increased the “visibility” of microorganisms. We consider whether these technologies are being adequately applied to address the gaps between forest pathology and invasion science. We also interrogate the extent to which the two fields stand to gain by becoming more closely linked.
Collapse
|
41
|
Real-time loop-mediated isothermal amplification assay for rapid detection of Fusarium circinatum. Biotechniques 2020; 69:369-375. [PMID: 32336113 DOI: 10.2144/btn-2019-0168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fusarium circinatum is the causal agent of pitch canker, a lethal disease of pine and other conifers. Since F. circinatum is a quarantine organism, its timely detection could efficiently prevent its introduction into new areas or facilitate spread management in already infected sites. In this study, we developed a sequence-specific probe loop-mediated isothermal amplification (LAMP) assay for F. circinatum using a field-deployable portable instrument. The assay was able to recognize the pathogen in host tissues in just 30 min, and the sensitivity of the assay made it possible to detect even small amounts of F. circinatum DNA (as low as 0.5 pg/μl). The high efficiency of this method suggests its use as a standard diagnostic tool during phytosanitary controls.
Collapse
|
42
|
Kulik T, Bilska K, Żelechowski M. Promising Perspectives for Detection, Identification, and Quantification of Plant Pathogenic Fungi and Oomycetes through Targeting Mitochondrial DNA. Int J Mol Sci 2020; 21:E2645. [PMID: 32290169 PMCID: PMC7177237 DOI: 10.3390/ijms21072645] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Fungi and oomycetes encompass many pathogens affecting crops worldwide. Their effective control requires screening pathogens across the local and international trade networks along with the monitoring of pathogen inocula in the field. Fundamentals to all of these concerns are their efficient detection, identification, and quantification. The use of molecular markers showed the best promise in the field of plant pathogen diagnostics. However, despite the unquestionable benefits of DNA-based methods, two significant limitations are associated with their use. The first limitation concerns the insufficient level of sensitivity due to the very low and uneven distribution of pathogens in plant material. The second limitation pertains to the inability of widely used diagnostic assays to detect cryptic species. Targeting mtDNA appears to provide a solution to these challenges. Its high copy number in microbial cells makes mtDNA an attractive target for developing highly sensitive assays. In addition, previous studies on different pathogen taxa indicated that mitogenome sequence variation could improve cryptic species delimitation accuracy. This review sheds light on the potential application of mtDNA for pathogen diagnostics. This paper covers a brief description of qPCR and DNA barcoding as two major strategies enabling the diagnostics of plant pathogenic fungi and oomycetes. Both strategies are discussed along with the potential use of mtDNA, including their strengths and weaknesses.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| |
Collapse
|