1
|
Chen A, Zhang B, Bao J. Adaptive evolution of Paecilomyces variotii enhanced the biodetoxification of high-titer inhibitors in pretreated lignocellulosic feedstock. BIORESOURCE TECHNOLOGY 2024; 411:131351. [PMID: 39182793 DOI: 10.1016/j.biortech.2024.131351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
High inhibitor concentrations in lignocellulose feedstock negatively affect the degradation rate of biodetoxification strains. This study designed two adaptive laboratory evolutions in solid substrate and liquid medium to boost the biodetoxification capacity of P. variotii to high titers of lignocellulose-derived inhibitors, resulting in two evolved strains AC70 and ZW70. The results showed that the evolutionary adaptation in liquid medium could better boost the acetic acid assimilation compared to that on solid substrate. Transcriptional analysis revealed that the evolved strains exhibited a significant upregulation of adh, acs, ach1, and ackA directly related to the initial steps of acetate and furan aldehydes metabolisms. ZW70 strain can effectively remove the high concentration inhibitors cocktail from the hydrolysates derived from pretreated wheat straw and furfural residues. The biodetoxified hydrolysates by ZW70 were successfully used for cellulose chiral L-lactic acid production with the titers of ∼110 g/L, which were over 20 % higher than that detoxified by parental strain.
Collapse
Affiliation(s)
- Agustian Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
2
|
Chen C, Gao C, Hu G, Wei W, Wang X, Wen J, Chen X, Liu L, Song W, Wu J. Rational and Semirational Approaches for Engineering Salicylate Production in Escherichia coli. ACS Synth Biol 2024. [PMID: 39455289 DOI: 10.1021/acssynbio.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Salicylate plays a pivotal role as a pharmaceutical intermediate in drugs, such as aspirin and lamivudine. The low catalytic efficiency of key enzymes and the inherent toxicity of salicylates to cells pose significant challenges to large-scale microbial production. In this study, we introduced the salicylate synthase Irp9 into an l-phenylalanine-producing Escherichia coli, constructing the shortest salicylate biosynthetic pathway. Subsequent protein engineering increased the catalytic efficiency of Irp9 by 33.5%. Furthermore, by integrating adaptive evolution with transcriptome analysis, we elucidated the crucial mechanism of efflux proteins in salicylate tolerance. The elucidation of this mechanism guided us in the targeted modification of these transport proteins, achieving a reported maximum level of 3.72 g/L of salicylate in a shake flask. This study highlights the importance of efflux proteins for enhancing the productivity of microbial cell factories in salicylate production, which also holds potential for application in the green synthesis of other phenolic acids.
Collapse
Affiliation(s)
- Chenghu Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoge Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Qiu M, Jiang J, Jiang W, Zhang W, Jiang Y, Xin F, Jiang M. The biosynthesis of L-phenylalanine-derived compounds by engineered microbes. Biotechnol Adv 2024; 77:108448. [PMID: 39260779 DOI: 10.1016/j.biotechadv.2024.108448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
L-Phenylalanine (L-Phe) is an important aromatic amino acid, which has been widely used in food, health care products, medicine and other fields. Based on the relatively mature microbial biosynthesis process, a variety of L-phenylalanine-derived compounds have attracted more and more attentions owing to their extensively potential applications in the fields of food, medicine, spices, cosmetics, and pesticides. However, the challenge of biosynthesis of L-phenylalanine-derived compounds remains the issue of low production and productivity. With the development of metabolic engineering and synthetic biology, the biosynthesis of L-phenylalanine has reached a high level. Therefore, the synthesis of L-phenylalanine-derived compounds based on high production strains of L-phenylalanine has broad prospects. In addition, some L-phenylalanine-derived compounds are more suitable for efficient synthesis by exogenous addition of precursors due to their longer metabolic pathways and the inhibitory effects of many intermediate products. This review systematically summarized the research progress of L-phenylalanine-derived compounds, including phenylpyruvate derivatives, trans-cinnamic derivatives, p-coumaric acid derivatives and other L-phenylalanine-derived compounds (such as flavonoids). Finally, the main strategies to improve the production of L-phenylalanine-derived compounds were summarized, and the development trends of the synthesis of L-phenylalanine-derived compounds by microbial method were also prospected.
Collapse
Affiliation(s)
- Min Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jie Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
4
|
Zhou X, Zhang X, Wang D, Luo R, Qin Z, Lin F, Xia X, Liu X, Hu G. Efficient Biosynthesis of Salidroside via Artificial in Vivo enhanced UDP-Glucose System Using Cheap Sucrose as Substrate. ACS OMEGA 2024; 9:22386-22397. [PMID: 38799314 PMCID: PMC11112596 DOI: 10.1021/acsomega.4c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Salidroside, a valuable phenylethanoid glycoside, is obtained from plants belonging to the Rhodiola genus, known for its diverse biological properties. At present, salidroside is still far from large-scale industrial production due to its lower titer and higher process cost. In this study, we have for the first time increased salidroside production by enhancing UDP-glucose supply in situ. We constructed an in vivo UDP-glucose regeneration system that works in conjunction with UDP-glucose transferase from Rhodiola innovatively to improve UDP-glucose availability. And a coculture was formed in order to enable de novo salidroside synthesis. Confronted with the influence of tyrosol on strain growth, an adaptive laboratory evolution strategy was implemented to enhance the strain's tolerance. Similarly, salidroside production was optimized through refinement of the fermentation medium, the inoculation ratio of the two microbes, and the inoculation size. The final salidroside titer reached 3.8 g/L. This was the highest titer achieved at the shake flask level in the existing reports. And this marked the first successful synthesis of salidroside in an in situ enhanced UDP-glucose system using sucrose. The cost was reduced by 93% due to the use of inexpensive substrates. This accomplishment laid a robust foundation for further investigations into the synthesis of other notable glycosides and natural compounds.
Collapse
Affiliation(s)
- Xiaojie Zhou
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Xiaoxiao Zhang
- AgroParisTech, 22 place de l’Agronomie, 91120 Palaiseau, France
| | - Dan Wang
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Ruoshi Luo
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Zhao Qin
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Fanzhen Lin
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Xue Xia
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Xuemei Liu
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Ge Hu
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
5
|
Wang X, Qiu C, Chen C, Gao C, Wei W, Song W, Wu J, Liu L, Chen X. Metabolic Engineering of Escherichia coli for High-Level Production of l-Phenylalanine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11029-11040. [PMID: 38699920 DOI: 10.1021/acs.jafc.4c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
l-Phenylalanine (l-Phe) is widely used in the food and pharmaceutical industries. However, the biosynthesis of l-Phe using Escherichia coli remains challenging due to its lower tolerance to high concentration of l-Phe. In this study, to efficiently synthesize l-Phe, the l-Phe biosynthetic pathway was reconstructed by expressing the heterologous genes aroK1, aroL1, and pheA1, along with the native genes aroA, aroC, and tyrB in the shikimate-producing strain E. coli SA09, resulting in the engineered strain E. coli PHE03. Subsequently, adaptive evolution was conducted on E. coli PHE03 to enhance its tolerance to high concentrations of l-Phe, resulting in the strain E. coli PHE04, which reduced the cell mortality to 36.2% after 48 h of fermentation. To elucidate the potential mechanisms, transcriptional profiling was conducted, revealing MarA, a DNA-binding transcriptional dual regulator, as playing a crucial role in enhancing cell membrane integrity and fluidity for improving cell tolerance to high concentrations of l-Phe. Finally, the titer, yield, and productivity of l-Phe with E. coli PHE05 overexpressing marA were increased to 80.48 g/L, 0.27 g/g glucose, and 1.68 g/L/h in a 5-L fed-batch fermentation, respectively.
Collapse
Affiliation(s)
- Xiaoge Wang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chong Qiu
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chenghu Chen
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Guo Q, Peng QQ, Li YW, Yan F, Wang YT, Ye C, Shi TQ. Advances in the metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica for the production of β-carotene. Crit Rev Biotechnol 2024; 44:337-351. [PMID: 36779332 DOI: 10.1080/07388551.2023.2166809] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/20/2022] [Accepted: 12/08/2022] [Indexed: 02/14/2023]
Abstract
β-Carotene is one kind of the most important carotenoids. The major functions of β-carotene include the antioxidant and anti-cardiovascular properties, which make it a growing market. Recently, the use of metabolic engineering to construct microbial cell factories to synthesize β-carotene has become the latest model for its industrial production. Among these cell factories, yeasts including Saccharomyces cerevisiae and Yarrowia lipolytica have attracted the most attention because of the: security, mature genetic manipulation tools, high flux toward carotenoids using the native mevalonate pathway and robustness for large-scale fermentation. In this review, the latest strategies for β-carotene biosynthesis, including protein engineering, promoters engineering and morphological engineering are summarized in detail. Finally, perspectives for future engineering approaches are proposed to improve β-carotene production.
Collapse
Affiliation(s)
- Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Qian-Qian Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Fang Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
7
|
Jiang J, Luo Y, Fei P, Zhu Z, Peng J, Lu J, Zhu D, Wu H. Effect of adaptive laboratory evolution of engineered Escherichia coli in acetate on the biosynthesis of succinic acid from glucose in two-stage cultivation. BIORESOUR BIOPROCESS 2024; 11:34. [PMID: 38647614 PMCID: PMC10997558 DOI: 10.1186/s40643-024-00749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Escherichia coli MLB (MG1655 ΔpflB ΔldhA), which can hardly grow on glucose with little succinate accumulation under anaerobic conditions. Two-stage fermentation is a fermentation in which the first stage is used for cell growth and the second stage is used for product production. The ability of glucose consumption and succinate production of MLB under anaerobic conditions can be improved significantly by using acetate as the solo carbon source under aerobic condition during the two-stage fermentation. Then, the adaptive laboratory evolution (ALE) of growing on acetate was applied here. We assumed that the activities of succinate production related enzymes might be further improved in this study. E. coli MLB46-05 evolved from MLB and it had an improved growth phenotype on acetate. Interestingly, in MLB46-05, the yield and tolerance of succinic acid in the anaerobic condition of two-stage fermentation were improved significantly. According to transcriptome analysis, upregulation of the glyoxylate cycle and the activity of stress regulatory factors are the possible reasons for the elevated yield. And the increased tolerance to acetate made it more tolerant to high concentrations of glucose and succinate. Finally, strain MLB46-05 produced 111 g/L of succinic acid with a product yield of 0.74 g/g glucose. SYNOPSIS.
Collapse
Affiliation(s)
- Jiaping Jiang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Fei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhengtong Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jing Peng
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Juefeng Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Du Zhu
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
8
|
Xu L, Zhao Y, Li Y, Sun JQ. Genomic and transcriptomic analyses provide new insights into the allelochemical degradation preference of a novel Acinetobacter strain. ENVIRONMENTAL RESEARCH 2024; 246:118145. [PMID: 38191044 DOI: 10.1016/j.envres.2024.118145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
A novel n-alkane- and phenolic acid-degrading Acinetobacter strain (designated C16S1T) was isolated from rhizosphere soil. The strain was identified as a novel species named Acinetobacter suaedae sp. nov. using a polyphasic taxonomic approach. Strain C16S1T showed preferential degradation of three compounds: p-hydroxybenzoate (PHBA) > ferulic acid (FA) > n-hexadecane. In a medium containing two or three of these allelochemicals, coexisting n-hexadecane and PHBA accelerated each other's degradation and that of FA. FA typically hindered the degradation of n-hexadecane but accelerated PHBA degradation. The upregulated expression of n-hexadecane- and PHBA-degrading genes induced, by their related substrates, was mutually enhanced by coexisting PHBA or n-hexadecane; in contrast, expression of both gene types was reduced by FA. Coexisting PHBA or n-hexadecane enhanced the upregulation of FA-degrading genes induced by FA. The expressions of degrading genes affected by coexisting chemicals coincided with the observed degradation efficiencies. Iron shortage limited the degradation efficiency of all three compounds and changed the degradation preference of Acinetobacter. The present study demonstrated that the biodegradability of the chemicals, the effects of coexisting chemicals on the expression of degrading genes and the strain's growth, the shortage of essential elements, and the toxicity of the chemicals were the four major factors affecting the removal rates of the coexisting allelochemicals.
Collapse
Affiliation(s)
- Lian Xu
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China; Jiangsu Key Laboratory for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yang Zhao
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Yue Li
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Ji-Quan Sun
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China.
| |
Collapse
|
9
|
Xia K, Chen Y, Liu F, Zhao X, Sha R, Huang J. Adaptive responses of erythritol-producing Yarrowia lipolytica to thermal stress after evolution. Appl Microbiol Biotechnol 2024; 108:263. [PMID: 38489040 PMCID: PMC10943161 DOI: 10.1007/s00253-024-13103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/17/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Elucidation of the thermotolerance mechanism of erythritol-producing Yarrowia lipolytica is of great significance to breed robust industrial strains and reduce cost. This study aimed to breed thermotolerant Y. lipolytica and investigate the mechanism underlying the thermotolerant phenotype. Yarrowia lipolytica HT34, Yarrowia lipolytica HT36, and Yarrowia lipolytica HT385 that were capable of growing at 34 °C, 36 °C, and 38.5 °C, respectively, were obtained within 150 days (352 generations) by adaptive laboratory evolution (ALE) integrated with 60Co-γ radiation and ultraviolet ray radiation. Comparative genomics analysis showed that genes involved in signal transduction, transcription, and translation regulation were mutated during adaptive evolution. Further, we demonstrated that thermal stress increased the expression of genes related to DNA replication and repair, ceramide and steroid synthesis, and the degradation of branched amino acid (BCAA) and free fatty acid (FFA), while inhibiting the expression of genes involved in glycolysis and the citrate cycle. Erythritol production in thermotolerant strains was remarkably inhibited, which might result from the differential expression of genes involved in erythritol metabolism. Exogenous addition of BCAA and soybean oil promoted the growth of HT385, highlighting the importance of BCAA and FFA in thermal stress response. Additionally, overexpression of 11 out of the 18 upregulated genes individually enabled Yarrowia lipolytica CA20 to grow at 34 °C, of which genes A000121, A003183, and A005690 had a better effect. Collectively, this study provides novel insights into the adaptation mechanism of Y. lipolytica to thermal stress, which will be conducive to the construction of thermotolerant erythritol-producing strains. KEY POINTS: • ALE combined with mutagenesis is efficient for breeding thermotolerant Y. lipolytica • Genes encoding global regulators are mutated during thermal adaptive evolution • Ceramide and BCAA are critical molecules for cells to tolerate thermal stress.
Collapse
Affiliation(s)
- Kai Xia
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Yuqing Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Fangmei Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Xuequn Zhao
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| |
Collapse
|
10
|
Li M, Chu Y, Dong X, Ji H. General mechanisms of weak acid-tolerance and current strategies for the development of tolerant yeasts. World J Microbiol Biotechnol 2023; 40:49. [PMID: 38133718 DOI: 10.1007/s11274-023-03875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Yeast cells are often subjected to various types of weak acid stress in the process of industrial production, food processing, and preservation, resulting in growth inhibition and reduced fermentation performance. Under acidic conditions, weak acids enter the near-neutral yeast cytoplasm and dissociate into protons and anions, leading to cytoplasmic acidification and cell damage. Although some yeast strains have developed the ability to survive weak acids, the complexity and diversity of stresses during industrial production still require the application of appropriate strategies for phenotypes improvement. In this review, we summarized current knowledge concerning weak acid stress response and resistance, which may suggest important targets for further construction of more robust strains. We also highlight current feasible strategies for improving the weak acid resistance of yeasts, such as adaptive laboratory evolution, transcription factors engineering, and cell membrane/wall engineering. Moreover, the challenges and perspectives associated with improving the competitiveness of industrial strains are also discussed. This review provides effective strategies for improving the industrial phenotypes of yeast from multiple dimensions in future studies.
Collapse
Affiliation(s)
- Mengmeng Li
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
| | - Yunfei Chu
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
| | - Xiameng Dong
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, PR China.
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China.
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|
11
|
Chen C, Li YW, Chen XY, Wang YT, Ye C, Shi TQ. Application of adaptive laboratory evolution for Yarrowia lipolytica: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 391:129893. [PMID: 39491116 DOI: 10.1016/j.biortech.2023.129893] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Adaptive laboratory evolution is an innovative approach utilized by researchers to enhance the characteristics of microorganisms in the field of biology. With the advancement of this technology, it is now being extended to non-model strains. Yarrowia lipolytica, an oleaginous yeast with significant industrial potential, stands out among the non-conventional fungi. However, the activity of Yarrowia lipolytica is frequently affected by specific substances and environmental factors, necessitating the development of techniques to address these challenges. This manuscript provides an overview of adaptive laboratory evolution experiments conducted on Yarrowia lipolytica, and categorizes the contents into two aspects including improving lignocellulose utilization and enhancing the production in Yarrowia lipolytica. Additionally, we selected several representative examples to illustrate how adaptive laboratory evolution can be combined with other techniques to elucidate the potential mechanisms underlying strain evolution. Lastly, we anticipate a promising future for adaptive laboratory evolution technology and Yarrowia lipolytica in tandem.
Collapse
Affiliation(s)
- Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xin-Yu Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| |
Collapse
|
12
|
Sha Y, Zhou L, Wang Z, Ding Y, Lu M, Xu Z, Zhai R, Jin M. Adaptive laboratory evolution boost Yarrowia lipolytica tolerance to vanillic acid. J Biotechnol 2023; 367:42-52. [PMID: 36965629 DOI: 10.1016/j.jbiotec.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Microbial tolerance to lignocellulose-derived inhibitors, such as aromatic acids, is critical for the economical production of biofuels and biochemicals. Here, adaptive laboratory evolution was applied to improve the tolerance of Yarrowia lipolytica to a representative aromatic acid inhibitor vanillic acid. The transcriptome profiling of evolved strain suggested that the tolerance could be related to the up-regulation of RNA processing and multidrug transporting pathways. Further analysis by reverse engineering confirmed that the amplification of YALI0_F13475g coding for transcriptional coactivator and YALI0_E25201g coding for multidrug transporter conferred tolerance not only to vanillic acid but also towards ferulic acid, p-coumaric acid, p-hydroxybenzoic acid and syringic acid. These findings suggested that regulation of RNA processing and multidrug transporting pathways may be important for enhanced aromatic acid tolerance in Y. lipolytica. This study provides valuable genetic information for robust strain construction for lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Linlin Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zedi Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
13
|
Yan W, Cao Z, Ding M, Yuan Y. Design and construction of microbial cell factories based on systems biology. Synth Syst Biotechnol 2023; 8:176-185. [PMID: 36874510 PMCID: PMC9979088 DOI: 10.1016/j.synbio.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Environmental sustainability is an increasingly important issue in industry. As an environmentally friendly and sustainable way, constructing microbial cell factories to produce all kinds of valuable products has attracted more and more attention. In the process of constructing microbial cell factories, systems biology plays a crucial role. This review summarizes the recent applications of systems biology in the design and construction of microbial cell factories from four perspectives, including functional genes/enzymes discovery, bottleneck pathways identification, strains tolerance improvement and design and construction of synthetic microbial consortia. Systems biology tools can be employed to identify functional genes/enzymes involved in the biosynthetic pathways of products. These discovered genes are introduced into appropriate chassis strains to build engineering microorganisms capable of producing products. Subsequently, systems biology tools are used to identify bottleneck pathways, improve strains tolerance and guide design and construction of synthetic microbial consortia, resulting in increasing the yield of engineered strains and constructing microbial cell factories successfully.
Collapse
Affiliation(s)
- Wenlong Yan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Zhibei Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
14
|
Coleman SM, Cordova LT, Lad BC, Ali SA, Ramanan E, Collett JR, Alper HS. Evolving tolerance of Yarrowia lipolytica to hydrothermal liquefaction aqueous phase waste. Appl Microbiol Biotechnol 2023; 107:2011-2025. [PMID: 36719433 DOI: 10.1007/s00253-023-12393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Hydrothermal liquefaction (HTL) is an emerging method for thermochemical conversion of wet organic waste and biomass into renewable biocrude. HTL also produces an aqueous phase (HTL-AP) side stream containing 2-4% light organic compounds that require treatment. Although anaerobic digestion (AD) of HTL-AP has shown promise, lengthy time periods were required for AD microbial communities to adapt to metabolic inhibitors in HTL-AP. An alternative for HTL-AP valorization was recently demonstrated using two engineered strains of Yarrowia lipolytica, E26 and Diploid TAL, for the overproduction of lipids and the polyketide triacetic acid lactone (TAL) respectively. These strains tolerated up to 10% HTL-AP (v/v) in defined media and up to 25% (v/v) HTL-AP in rich media. In this work, adaptive laboratory evolution (ALE) of these strains increased the bulk population tolerance for HTL-AP to up to 30% (v/v) in defined media and up to 35% (v/v) for individual isolates in rich media. The predominate organic acids within HTL-AP (acetic, butyric, and propionic) were rapidly consumed by the evolved Y. lipolytica strains. A TAL-producing isolate (strain 144-3) achieved a nearly 3-fold increase in TAL titer over the parent strain while simultaneously reducing the chemical oxygen demand (COD) of HTL-AP containing media. Fermentation with HTL-AP as the sole nutrient source demonstrated direct conversion of waste into TAL at 10% theoretical yield. Potential genetic mutations of evolved TAL production strains that could be imparting tolerance were explored. This work advances the potential of Y. lipolytica to biologically treat and simultaneously extract value from HTL wastewater. KEY POINTS: • Adaptive evolution of two Y. lipolytica strains enhanced their tolerance to waste. • Y. lipolytica reduces chemical oxygen demand in media containing waste. • Y. lipolytica can produce triacetic acid lactone directly from wastewater.
Collapse
Affiliation(s)
- Sarah M Coleman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Lauren T Cordova
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Beena C Lad
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th Street Stop A500, Austin, TX, 78712, USA
| | - Sabah A Ali
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Esha Ramanan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - James R Collett
- Chemical and Biological Process Group, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99352, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.
- Interdisciplinary Life Sciences, The University of Texas at Austin, 100 East 24th St., Austin, TX, 78712, USA.
| |
Collapse
|
15
|
Wang G, Li Q, Zhang Z, Yin X, Wang B, Yang X. Recent progress in adaptive laboratory evolution of industrial microorganisms. J Ind Microbiol Biotechnol 2023; 50:kuac023. [PMID: 36323428 PMCID: PMC9936214 DOI: 10.1093/jimb/kuac023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/24/2022] [Indexed: 01/12/2023]
Abstract
Adaptive laboratory evolution (ALE) is a technique for the selection of strains with better phenotypes by long-term culture under a specific selection pressure or growth environment. Because ALE does not require detailed knowledge of a variety of complex and interactive metabolic networks, and only needs to simulate natural environmental conditions in the laboratory to design a selection pressure, it has the advantages of broad adaptability, strong practicability, and more convenient transformation of strains. In addition, ALE provides a powerful method for studying the evolutionary forces that change the phenotype, performance, and stability of strains, resulting in more productive industrial strains with beneficial mutations. In recent years, ALE has been widely used in the activation of specific microbial metabolic pathways and phenotypic optimization, the efficient utilization of specific substrates, the optimization of tolerance to toxic substance, and the biosynthesis of target products, which is more conducive to the production of industrial strains with excellent phenotypic characteristics. In this paper, typical examples of ALE applications in the development of industrial strains and the research progress of this technology are reviewed, followed by a discussion of its development prospects.
Collapse
Affiliation(s)
- Guanglu Wang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Qian Li
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou, Henan 450000, People's Republic of China
| | - Xianzhong Yin
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou, Henan 450000, People's Republic of China
| | - Bingyang Wang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Xuepeng Yang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
16
|
Contributions of Adaptive Laboratory Evolution towards the Enhancement of the Biotechnological Potential of Non-Conventional Yeast Species. J Fungi (Basel) 2023; 9:jof9020186. [PMID: 36836301 PMCID: PMC9964053 DOI: 10.3390/jof9020186] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Changes in biological properties over several generations, induced by controlling short-term evolutionary processes in the laboratory through selective pressure, and whole-genome re-sequencing, help determine the genetic basis of microorganism's adaptive laboratory evolution (ALE). Due to the versatility of this technique and the imminent urgency for alternatives to petroleum-based strategies, ALE has been actively conducted for several yeasts, primarily using the conventional species Saccharomyces cerevisiae, but also non-conventional yeasts. As a hot topic at the moment since genetically modified organisms are a debatable subject and a global consensus on their employment has not yet been attained, a panoply of new studies employing ALE approaches have emerged and many different applications have been exploited in this context. In the present review, we gathered, for the first time, relevant studies showing the ALE of non-conventional yeast species towards their biotechnological improvement, cataloging them according to the aim of the study, and comparing them considering the species used, the outcome of the experiment, and the employed methodology. This review sheds light on the applicability of ALE as a powerful tool to enhance species features and improve their performance in biotechnology, with emphasis on the non-conventional yeast species, as an alternative or in combination with genome editing approaches.
Collapse
|
17
|
Ji J, Zeng C, Wu P, Wang Y, Chen X, Yan X. Improved Whole-Cell Biocatalyst for the Synthesis of Vitamin E Precursor 2,3,5-Trimethylhydroquinone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1162-1169. [PMID: 36621524 DOI: 10.1021/acs.jafc.2c07768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
2,3,5-Trimethylhydroquinone (2,3,5-TMHQ) is the key precursor in the synthesis of vitamin E. It is still a major challenge to produce 2,3,5-TMHQ under mild reaction conditions by chemical methods. The monooxygenase system MpdAB can specifically catalyze the conversion of 2,3,6-trimethylphenol (2,3,6-TMP) to 2,3,5-TMHQ. However, the weak catalytic capacity of wild-type MpdA and the cytotoxicity of the substrate limited the production efficiency of 2,3,5-TMHQ. Here, homologous modeling and saturation mutation were performed to increase the catalytic activity of MpdA. Two variants, L128A and L128K, with higher activity toward 2,3,6-TMP (1.86-1.87-fold) were obtained. On the other hand, an evolved strain B5-4M-evolved with enhanced resistance to 2,3,6-TMP (8.15-fold higher for 1000 μM 2,3,6-TMP) was obtained through adaptive laboratory evolution. Subsequently, a 5.29-fold (or 4.87-fold) improvement in 2,3,5-TMHQ production was achieved by a strain B5-4M-evolved harboring L128K (or L128A) and MpdB, in comparison with that of the wild type (strain B5-4M expressing MpdAB). This study provides better genetic resources for producing 2,3,5-TMHQ and proves that the synthesis efficiency of 2,3,5-TMHQ can be improved through enzyme modification and adaptive laboratory evolution.
Collapse
Affiliation(s)
- Junbin Ji
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
- Nanjing Key Laboratory of Quality and Safety of Agricultural Products, College of Food Science, Nanjing XiaoZhuang University, Nanjing 211171, Jiangsu, People's Republic of China
| | - Caiting Zeng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Panpan Wu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Yuying Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Xueting Chen
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai 200433, People's Republic of China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| |
Collapse
|
18
|
Bigey F, Pasteur E, Połomska X, Thomas S, Crutz-Le Coq AM, Devillers H, Neuvéglise C. Insights into the Genomic and Phenotypic Landscape of the Oleaginous Yeast Yarrowia lipolytica. J Fungi (Basel) 2023; 9:jof9010076. [PMID: 36675897 PMCID: PMC9865632 DOI: 10.3390/jof9010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Although Yarrowia lipolytica is a model yeast for the study of lipid metabolism, its diversity is poorly known, as studies generally consider only a few standard laboratory strains. To extend our knowledge of this biotechnological workhorse, we investigated the genomic and phenotypic diversity of 56 natural isolates. Y. lipolytica is classified into five clades with no correlation between clade membership and geographic or ecological origin. A low genetic diversity (π = 0.0017) and a pan-genome (6528 genes) barely different from the core genome (6315 genes) suggest Y. lipolytica is a recently evolving species. Large segmental duplications were detected, totaling 892 genes. With three new LTR-retrotransposons of the Gypsy family (Tyl4, Tyl9, and Tyl10), the transposable element content of genomes appeared diversified but still low (from 0.36% to 3.62%). We quantified 34 traits with substantial phenotypic diversity, but genome-wide association studies failed to evidence any associations. Instead, we investigated known genes and found four mutational events leading to XPR2 protease inactivation. Regarding lipid metabolism, most high-impact mutations were found in family-belonging genes, such as ALK or LIP, and therefore had a low phenotypic impact, suggesting that the huge diversity of lipid synthesis and accumulation is multifactorial or due to complex regulations.
Collapse
Affiliation(s)
- Frédéric Bigey
- INRAE, Institut Agro, SPO, University Montpellier, 34060 Montpellier, France
| | - Emilie Pasteur
- Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Xymena Połomska
- Department of Biotechnology & Food Microbiology, Wroclaw University of Environmental and Life Sciences (WUELS), 50-375 Wroclaw, Poland
| | - Stéphane Thomas
- Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Anne-Marie Crutz-Le Coq
- Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
- IJPB, INRAE, 78000 Versailles, France
| | - Hugo Devillers
- INRAE, Institut Agro, SPO, University Montpellier, 34060 Montpellier, France
- Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Cécile Neuvéglise
- INRAE, Institut Agro, SPO, University Montpellier, 34060 Montpellier, France
- Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
- Correspondence:
| |
Collapse
|
19
|
Duan X, Yang H, Wang C, Liu H, Lu X, Tian Y. Microbial synthesis of cordycepin, current systems and future perspectives. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Almeida ELM, Ventorim RZ, Ferreira MAM, Costa MD, Mantovani HC, Silveira WB. New Papiliotrema laurentii UFV-1 strains with improved acetic acid tolerance selected by adaptive laboratory evolution. Fungal Genet Biol 2023; 164:103765. [PMID: 36528339 DOI: 10.1016/j.fgb.2022.103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/26/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
The production of yeast oil from lignocellulosic biomasses is impaired by inhibitors formed during the pretreatment step, mainly acetic acid. Herein, we applied Adaptive Laboratory Evolution (ALE) to select three Acetic acid Tolerant Strains (ATS) of P. laurentii UFV-1. Different phenotypes emerged alongside evolution. The ATS II presented trade-offs in the absence of acetic acid, suggesting that it displays a specialized phenotype of tolerance to growth on organic acids. On the other hand, ATS I and ATS III presented phenotypes associated with the behavior of generalists. ATS I was considered the most promising evolved strain as it displayed the oleaginous phenotype in all conditions tested. Thus, we applied whole-genome sequencing to detect the mutations that emerged in this strain during the ALE. We found alterations in genes encoding proteins involved in different cellular functions, including multidrug resistance (MDR) transporters, energy metabolism, detoxification, coenzyme recycling, and cell envelope remodeling. To evaluate acetic acid stress responses, both parental and ATS I strains were cultivated in chemostat mode in the absence and presence of acetic acid. In contrast to ATS I, the parental strain presented alterations in the cell envelope and cell size under acetic acid stress conditions. Furthermore, the parental strain and the ATS I presented differences regarding acetic acid assimilation. Contrary to the parental strain, the ATS I displayed an increase in unsaturated fatty acid content irrespective of acetic acid stress, which might be related to improved tolerance to acetic acid. Altogether, these results provided insights into the mechanisms involved with the acetic acid tolerance displayed by ATS I and the responses of P. laurentii to this stressful condition.
Collapse
Affiliation(s)
- E L M Almeida
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - R Z Ventorim
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - M A M Ferreira
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - M D Costa
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; Bolsista Pesquisador do Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasília, DF, Brazil
| | - H C Mantovani
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; Bolsista Pesquisador do Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasília, DF, Brazil
| | - W B Silveira
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; Bolsista Pesquisador do Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasília, DF, Brazil.
| |
Collapse
|
21
|
Ujor VC, Okonkwo CC. Microbial detoxification of lignocellulosic biomass hydrolysates: Biochemical and molecular aspects, challenges, exploits and future perspectives. Front Bioeng Biotechnol 2022; 10:1061667. [PMID: 36483774 PMCID: PMC9723337 DOI: 10.3389/fbioe.2022.1061667] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 08/26/2023] Open
Abstract
Valorization of lignocellulosic biomass (LB) has the potential to secure sustainable energy production without impacting food insecurity, whist relieving over reliance on finite fossil fuels. Agro-derived lignocellulosic residues such as wheat straw, switchgrass, rice bran, and miscanthus have gained relevance as feedstocks for the production of biofuels and chemicals. However, the microorganisms employed in fermentative conversion of carbohydrates to fuels and chemicals are unable to efficiently utilize the sugars derived from LB due to co-production of lignocellulose-derived microbial inhibitory compounds (LDMICs) during LB pretreatment. LDMICs impact microbial growth by inhibition of specific enzymes, cause DNA and cell membrane damage, and elicit cellular redox imbalance. Over the past decade, success has been achieved with the removal of LDMICs prior to fermentation. However, LDMICs removal by chemical processes is often accompanied by sugar losses, which negatively impacts the overall production cost. Hence, in situ removal of LDMICs by fermentative organisms during the fermentation process has garnered considerable attention as the "go-to" approach for economical LDMICs detoxification and bio-chemicals production. In situ removal of LDMICs has been pursued by either engineering more robust biocatalysts or isolating novel microbial strains with the inherent capacity to mineralize or detoxify LDMICs to less toxic compounds. While some success has been made along this line, efficient detoxification and robust production of target bio-chemicals in lignocellulosic hydrolysates (LHs) under largely anaerobic fermentative conditions remains a lingering challenge. Consequently, LB remains an underutilized substrate for bio-chemicals production. In this review, the impact of microbial LH detoxification on overall target molecule production is discussed. Further, the biochemical pathways and mechanisms employed for in situ microbial detoxification of furanic LDMICs [e.g., furfural and 5-hydroxymethylfurfural (HMF)] and phenolic LDMICs (e.g., syringaldehyde, p-coumaric acid, 4-hydroxybenzaldehyde, vanillin, and ferulic acid) are discussed. More importantly, metabolic engineering strategies for the development of LDMIC-tolerant and bio-chemicals overproducing strains and processes are highlighted.
Collapse
Affiliation(s)
- Victor C. Ujor
- Metabolic Engineering and Fermentation Science Group, Department of Food Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Christopher C. Okonkwo
- Biotechnology Program, College of Science, The Roux Institute, Northeastern University, Portland, ME, United States
| |
Collapse
|
22
|
Drzymała-Kapinos K, Mirończuk AM, Dobrowolski A. Lipid production from lignocellulosic biomass using an engineered Yarrowia lipolytica strain. Microb Cell Fact 2022; 21:226. [PMID: 36307797 PMCID: PMC9617373 DOI: 10.1186/s12934-022-01951-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The utilization of industrial wastes as feedstock in microbial-based processes is a one of the high-potential approach for the development of sustainable, environmentally beneficial and valuable bioproduction, inter alia, lipids. Rye straw hydrolysate, a possible renewable carbon source for bioconversion, contains a large amount of xylose, inaccessible to the wild-type Yarrowia lipolytica strains. Although these oleaginous yeasts possesses all crucial genes for xylose utilization, it is necessary to induce their metabolic pathway for efficient growth on xylose and mixed sugars from agricultural wastes. Either way, biotechnological production of single cell oils (SCO) from lignocellulosic hydrolysate requires yeast genome modification or adaptation to a suboptimal environment. RESULTS The presented Y. lipolytica strain was developed using minimal genome modification-overexpression of endogenous xylitol dehydrogenase (XDH) and xylulose kinase (XK) genes was sufficient to allow yeast to grow on xylose as a sole carbon source. Diacylglycerol acyltransferase (DGA1) expression remained stable and provided lipid overproduction. Obtained an engineered Y. lipolytica strain produced 5.51 g/L biomass and 2.19 g/L lipids from nitrogen-supplemented rye straw hydrolysate, which represents an increase of 64% and an almost 10 times higher level, respectively, compared to the wild type (WT) strain. Glucose and xylose were depleted after 120 h of fermentation. No increase in byproducts such as xylitol was observed. CONCLUSIONS Xylose-rich rye straw hydrolysate was exploited efficiently for the benefit of production of lipids. This study indicates that it is possible to fine-tune a newly strain with as minimally genetic changes as possible by adjusting to an unfavorable environment, thus limiting multi-level genome modification. It is documented here the use of Y. lipolytica as a microbial cell factory for lipid synthesis from rye straw hydrolysate as a low-cost feedstock.
Collapse
Affiliation(s)
- Katarzyna Drzymała-Kapinos
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland
| | - Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland.,Laboratory for Biosustainability, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Adam Dobrowolski
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland. .,Laboratory for Biosustainability, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
23
|
Gan Y, Bai M, Lin X, Liu K, Huang B, Jiang X, Liu Y, Gao C. Improvement of macrolactins production by the genetic adaptation of Bacillus siamensis A72 to saline stress via adaptive laboratory evolution. Microb Cell Fact 2022; 21:147. [PMID: 35854349 PMCID: PMC9294813 DOI: 10.1186/s12934-022-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Macrolactins, a type of macrolide antibiotic, are toxic to the producer strains. As such, its level is usually maintained below the lethal concentration during the fermentation process. To improve the production of macrolactins, we applied adaptive laboratory evolution technology to engineer a saline-resistant mutant strain. The hypothesis that strains with saline resistance show improved macrolactins production was investigated. RESULTS Using saline stress as a selective pressure, we engineered a mutant strain with saline resistance coupled with enhanced macrolactins production within 60 days using a self-made device. As compared with the parental strain, the evolved strain produced macrolactins with 11.93% improvement in non-saline stress fermentation medium containing 50 g/L glucose, when the glucose concentration increased to 70 g/L, the evolved strain produced macrolactins with 71.04% improvement. RNA sequencing and metabolomics results revealed that amino acid metabolism was involved in the production of macrolactins in the evolved strain. Furthermore, genome sequencing of the evolved strain revealed a candidate mutation, hisDD41Y, that was causal for the improved MLNs production, it was 3.42 times higher than the control in the overexpression hisDD41Y strain. Results revealed that saline resistance protected the producer strain from feedback inhibition of end-product (macrolide antibiotic), resulting in enhanced MLNs production. CONCLUSIONS In the present work, we successfully engineered a mutant strain with enhanced macrolactins production by adaptive laboratory evolution using saline stress as a selective pressure. Based on physiological, transcriptomic and genetic analysis, amino acid metabolism was found to benefit macrolactins production improvement. Our strategy might be applicable to improve the production of other kinds of macrolide antibiotics and other toxic compounds. The identification of the hisD mutation will allow for the deduction of metabolic engineering strategies in future research.
Collapse
Affiliation(s)
- Yuman Gan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| | - Meng Bai
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Xiao Lin
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Bingyao Huang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Xiaodong Jiang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| |
Collapse
|
24
|
Tan YS, Zhang RK, Liu ZH, Li BZ, Yuan YJ. Microbial Adaptation to Enhance Stress Tolerance. Front Microbiol 2022; 13:888746. [PMID: 35572687 PMCID: PMC9093737 DOI: 10.3389/fmicb.2022.888746] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 01/28/2023] Open
Abstract
Microbial cell factories have been widely used in the production of various chemicals. Although synthetic biology is useful in improving the cell factories, adaptation is still widely applied to enhance its complex properties. Adaptation is an important strategy for enhancing stress tolerance in microbial cell factories. Adaptation involves gradual modifications of microorganisms in a stressful environment to enhance their tolerance. During adaptation, microorganisms use different mechanisms to enhance non-preferred substrate utilization and stress tolerance, thereby improving their ability to adapt for growth and survival. In this paper, the progress on the effects of adaptation on microbial substrate utilization capacity and environmental stress tolerance are reviewed, and the mechanisms involved in enhancing microbial adaptive capacity are discussed.
Collapse
Affiliation(s)
- Yong-Shui Tan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Ren-Kuan Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| |
Collapse
|
25
|
Joshi A, Verma KK, D Rajput V, Minkina T, Arora J. Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels. Bioengineered 2022; 13:8135-8163. [PMID: 35297313 PMCID: PMC9161965 DOI: 10.1080/21655979.2022.2051856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 01/09/2023] Open
Abstract
Combating climate change and ensuring energy supply to a rapidly growing global population has highlighted the need to replace petroleum fuels with clean, and sustainable renewable fuels. Biofuels offer a solution to safeguard energy security with reduced ecological footprint and process economics. Over the past years, lignocellulosic biomass has become the most preferred raw material for the production of biofuels, such as fuel, alcohol, biodiesel, and biohydrogen. However, the cost-effective conversion of lignocellulose into biofuels remains an unsolved challenge at the industrial scale. Recently, intensive efforts have been made in lignocellulose feedstock and microbial engineering to address this problem. By improving the biological pathways leading to the polysaccharide, lignin, and lipid biosynthesis, limited success has been achieved, and still needs to improve sustainable biofuel production. Impressive success is being achieved by the retouring metabolic pathways of different microbial hosts. Several robust phenotypes, mostly from bacteria and yeast domains, have been successfully constructed with improved substrate spectrum, product yield and sturdiness against hydrolysate toxins. Cyanobacteria is also being explored for metabolic advancement in recent years, however, it also remained underdeveloped to generate commercialized biofuels. The bacterium Escherichia coli and yeast Saccharomyces cerevisiae strains are also being engineered to have cell surfaces displaying hydrolytic enzymes, which holds much promise for near-term scale-up and biorefinery use. Looking forward, future advances to achieve economically feasible production of lignocellulosic-based biofuels with special focus on designing more efficient metabolic pathways coupled with screening, and engineering of novel enzymes.
Collapse
Affiliation(s)
- Abhishek Joshi
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning - 530007, China
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| |
Collapse
|
26
|
Li X, Ren JN, Fan G, He J, Zhang LL, Pan SY. Genomic and Transcriptomic analysis screening key genes for (+)-valencene biotransformation to (+)-nootkatone in Yarrowia lipolytica. Microbiol Res 2022; 260:127042. [DOI: 10.1016/j.micres.2022.127042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 12/21/2022]
|
27
|
Erian AM, Sauer M. Utilizing yeasts for the conversion of renewable feedstocks to sugar alcohols - a review. BIORESOURCE TECHNOLOGY 2022; 346:126296. [PMID: 34798255 DOI: 10.1016/j.biortech.2021.126296] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Sugar alcohols are widely marketed compounds. They are useful building block chemicals and of particular value as low- or non-calorigenic sweeteners, serving as sugar substitutes in the food industry. To date most sugar alcohols are produced by chemical routes using pure sugars, but a transition towards the use of renewable, non-edible feedstocks is anticipated. Several yeasts are naturally able to convert renewable feedstocks, such as lignocellulosic substrates, glycerol and molasses, into sugar alcohols. These bioconversions often face difficulties to obtain sufficiently high yields and productivities necessary for industrialization. This review provides insight into the most recent studies on utilizing yeasts for the conversion of renewable feedstocks to diverse sugar alcohols, including xylitol, erythritol, mannitol and arabitol. Moreover, metabolic approaches are highlighted that specifically target shortcomings of sugar alcohol production by yeasts from these renewable substrates.
Collapse
Affiliation(s)
- Anna Maria Erian
- CD-Laboratory for Biotechnology of Glycerol, Muthgasse 18, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Michael Sauer
- CD-Laboratory for Biotechnology of Glycerol, Muthgasse 18, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
28
|
Strategies to increase tolerance and robustness of industrial microorganisms. Synth Syst Biotechnol 2022; 7:533-540. [PMID: 35024480 PMCID: PMC8718811 DOI: 10.1016/j.synbio.2021.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/06/2023] Open
Abstract
The development of a cost-competitive bioprocess requires that the cell factory converts the feedstock into the product of interest at high rates and yields. However, microbial cell factories are exposed to a variety of different stresses during the fermentation process. These stresses can be derived from feedstocks, metabolism, or industrial production processes, limiting production capacity and diminishing competitiveness. Improving stress tolerance and robustness allows for more efficient production and ultimately makes a process more economically viable. This review summarises general trends and updates the most recent developments in technologies to improve the stress tolerance of microorganisms. We first look at evolutionary, systems biology and computational methods as examples of non-rational approaches. Then we review the (semi-)rational approaches of membrane and transcription factor engineering for improving tolerance phenotypes. We further discuss challenges and perspectives associated with these different approaches.
Collapse
|
29
|
Sun T, Yu Y, Wang K, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: A review. BIORESOURCE TECHNOLOGY 2021; 337:125484. [PMID: 34320765 DOI: 10.1016/j.biortech.2021.125484] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The production of chemicals and fuels from lignocellulosic biomass has great potential industrial applications due to its economic feasibility and environmental attractiveness. However, the utilized microorganisms must be able to use all the sugars present in lignocellulosic hydrolysates, especially xylose, the second most plentiful monosaccharide on earth. Yarrowia lipolytica is a good candidate for producing various valuable products from biomass, but this yeast is unable to catabolize xylose efficiently. The development of metabolic engineering facilitated the application of Y. lipolytica as a platform for the bioconversion of xylose into various value-added products. Here, we reviewed the research progress on natural xylose-utilization pathways and their reconstruction in Y. lipolytica. The progress and emerging trends in metabolic engineering of Y. lipolytica for producing chemicals and fuels are further introduced. Finally, challenges and future perspectives of using lignocellulosic hydrolysate as substrate for Y. lipolytica are discussed.
Collapse
Affiliation(s)
- Tao Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yizi Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
30
|
Tran VG, Zhao H. Engineering robust microorganisms for organic acid production. J Ind Microbiol Biotechnol 2021; 49:6373449. [PMID: 34549297 PMCID: PMC9118992 DOI: 10.1093/jimb/kuab067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/11/2021] [Indexed: 11/24/2022]
Abstract
Organic acids are an important class of compounds that can be produced by microbial conversion of renewable feedstocks and have huge demands and broad applications in food, chemical, and pharmaceutical industries. An economically viable fermentation process for production of organic acids requires robust microbial cell factories with excellent tolerance to low pH conditions, high concentrations of organic acids, and lignocellulosic inhibitors. In this review, we summarize various strategies to engineer robust microorganisms for organic acid production and highlight their applications in a few recent examples.
Collapse
Affiliation(s)
- Vinh G Tran
- Department of Chemical and Biomolecular Engineering, U.S. Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, U.S. Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.,Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
31
|
Liu L, Zeng W, Yu S, Li J, Zhou J. Rapid Enabling of Gluconobacter oxydans Resistance to High D-Sorbitol Concentration and High Temperature by Microdroplet-Aided Adaptive Evolution. Front Bioeng Biotechnol 2021; 9:731247. [PMID: 34540816 PMCID: PMC8446438 DOI: 10.3389/fbioe.2021.731247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022] Open
Abstract
Gluconobacter oxydans is important in the conversion of D-sorbitol into l-sorbose, which is an essential intermediate for industrial-scale production of vitamin C. In a previous study, the strain G. oxydans WSH-004 could directly produce 2-keto-l-gulonic acid (2-KLG). However, its D-sorbitol tolerance was poor compared with that of other common industrial G. oxydans strains, which grew well in the presence of more than 200 g/L of D-sorbitol. This study aimed to use the microbial microdroplet culture (MMC) system for the adaptive evolution of G. oxydans WSH-004 so as to improve its tolerance to high substrate concentration and high temperature. A series of adaptively evolved strains, G. oxydans MMC1-MMC10, were obtained within 90 days. The results showed that the best strain MMC10 grew in a 300 g/L of D-sorbitol medium at 40°C. The comparative genomic analysis revealed that genetic changes related to increased tolerance were mainly in protein translation genes. Compared with the traditional adaptive evolution method, the application of microdroplet-aided adaptive evolution could improve the efficiency in terms of reducing time and simplifying the procedure for strain evolution. This research indicated that the microdroplet-aided adaptive evolution was an effective tool for improving the phenotypes with undemonstrated genotypes in a short time.
Collapse
Affiliation(s)
- Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
32
|
Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. J Fungi (Basel) 2021; 7:jof7070548. [PMID: 34356927 PMCID: PMC8307478 DOI: 10.3390/jof7070548] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Among non-conventional yeasts of industrial interest, the dimorphic oleaginous yeast Yarrowia lipolytica appears as one of the most attractive for a large range of white biotechnology applications, from heterologous proteins secretion to cell factories process development. The past, present and potential applications of wild-type, traditionally improved or genetically modified Yarrowia lipolytica strains will be resumed, together with the wide array of molecular tools now available to genetically engineer and metabolically remodel this yeast. The present review will also provide a detailed description of Yarrowia lipolytica strains and highlight the natural biodiversity of this yeast, a subject little touched upon in most previous reviews. This work intends to fill this gap by retracing the genealogy of the main Yarrowia lipolytica strains of industrial interest, by illustrating the search for new genetic backgrounds and by providing data about the main publicly available strains in yeast collections worldwide. At last, it will focus on exemplifying how advances in engineering tools can leverage a better biotechnological exploitation of the natural biodiversity of Yarrowia lipolytica and of other yeasts from the Yarrowia clade.
Collapse
|
33
|
Zhou L, Xu Z, Wen Z, Lu M, Wang Z, Zhang Y, Zhou H, Jin M. Combined adaptive evolution and transcriptomic profiles reveal aromatic aldehydes tolerance mechanisms in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2021; 329:124910. [PMID: 33677424 DOI: 10.1016/j.biortech.2021.124910] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Yarrowia lipolytica is an efficient oleaginous yeast, whereas its activity is typically reduced by inhibitors present in lignocellulosic hydrolysate. Understanding the response mechanism of Y. lipolytica to hydrolysate inhibitors and developing inhibitor tolerant strains are vital to lignocellulose valorization by this promising species. In this study, through adaptive laboratory evolution on three representative aromatic aldehyde inhibitors, evolved strains were obtained. Fermentation phenotype suggested that aromatic aldehydes conversion was one main reason for high tolerance of adapted strains. Transcriptome profiling analysis and reverse metabolic engineering confirmed that overexpressing the aldehyde ketone reductase gene YALI0_B07117g and aldehyde dehydrogenase gene YALI0_B01298g effectively converted aromatic aldehyde to corresponding alcohols and acids. The potential degradation pathways for aromatic aldehyde inhibitors in Y. lipolytica XYL+ were then discussed. This study provided insights to the aromatic aldehyde degradation in Y. lipolytica and a reliable basis for the development of aromatic aldehyde tolerant strains.
Collapse
Affiliation(s)
- Linlin Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Zedi Wang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Huarong Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|