1
|
Dinh VP, Tran-Vu HA, Tran T, Duong BN, Dang-Thi NM, Phan-Van HL, Tran TK, Huynh VH, Nguyen TPT, Nguyen TQ. Improving Soil Quality and Crop Yields Using Enhancing Sustainable Rice Straw Management Through Microbial Enzyme Treatments. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241283001. [PMID: 39483681 PMCID: PMC11526194 DOI: 10.1177/11786302241283001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/27/2024] [Indexed: 11/03/2024]
Abstract
This study develops a model to raise public awareness about the consequences of burning rice straw after harvest, including environmental pollution, soil degradation, and increased CO2 emissions that contribute to the greenhouse effect. The distinctive feature of the research is the introduction of a post-harvest rice straw treatment process using microbial products capable of secreting cellulase enzymes, which can break down the cellulose in the straw. This process shortens the decomposition time and produces natural organic fertilizer, thus reducing cultivation costs by 60% and increasing crop yields by 20%. The experimental model was carried out in Cam My district, Dong Nai province, Vietnam, including 4 models: no microbial products; using Bio Decomposer; using NTT-01; and using NTT-02. Each experimental field had an area of 650 m². The results showed a significant reduction in straw decomposition time after 14 days of use of the products, with a decomposition rate of up to 80%, nearly twice as fast as without the products. This helps save time, produce natural organic fertilizers, reduce care costs, and increase rice yields, resulting in more income for local residents. These findings demonstrate the effectiveness of microbial treatments in sustainable agriculture and their potential for a broader application in the management of agricultural waste.
Collapse
Affiliation(s)
- Van-Phuc Dinh
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hoai-An Tran-Vu
- Research and Development Institute Advanced Agrobiology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thanh Tran
- Research and Development Institute Advanced Agrobiology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Bich-Ngoc Duong
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Ngoc-Mai Dang-Thi
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hoai-Luan Phan-Van
- Research and Development Institute Advanced Agrobiology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Tuan-Kiet Tran
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
- Research and Development Institute Advanced Agrobiology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Van-Hieu Huynh
- Nguyen Tat Thanh HI-TECH Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thi-Phuong-Tu Nguyen
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thanh Q Nguyen
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
2
|
He S, Li L, Lv M, Wang R, Wang L, Yu S, Gao Z, Li X. PGPR: Key to Enhancing Crop Productivity and Achieving Sustainable Agriculture. Curr Microbiol 2024; 81:377. [PMID: 39325205 DOI: 10.1007/s00284-024-03893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Due to the burgeoning global population and the advancement of economies, coupled with human activities leading to the degradation of soil ecosystems and the depletion of non-renewable resources, concerns have arisen regarding food security and human survival. In order to address these adverse impacts, the spotlight has been cast upon plant growth-promoting rhizobacteria (PGPR), driven by a strong environmental consciousness. PGPR possesses the capability to foster plant growth and amplify crop yield through both direct and indirect mechanisms. By expediting plant growth, augmenting nutrient assimilation, heightening crop yield and caliber, and fortifying stress resilience, the application of PGPR can mitigate reliance on chemical fertilizers and pesticides while diminishing ecological perils. This exposition delves into the function of PGPR in modulating plant hormones, fostering nutrient solubilization, and fortifying plant resistance against biotic and abiotic stressors. This review offers valuable insights into the intricate interplay between PGPR and plants, elucidating uncertainties ripe for further investigation. Profound comprehension and judicious utilization of PGPR are indispensable for attaining sustainable agricultural progression, making substantial contributions to resolving the conundrums of global food security and environmental conservation.
Collapse
Affiliation(s)
- Shidong He
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lingli Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Minghao Lv
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Rongxin Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lujun Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shaowei Yu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zheng Gao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiang Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
3
|
Fourneau E, Pannier M, Riah W, Personeni E, Morvan-Bertrand A, Bodilis J, Pawlak B. A "love match" score to compare root exudate attraction and feeding of the plant growth-promoting rhizobacteria Bacillus subtilis, Pseudomonas fluorescens, and Azospirillum brasilense. Front Microbiol 2024; 15:1473099. [PMID: 39376706 PMCID: PMC11456545 DOI: 10.3389/fmicb.2024.1473099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction The rhizosphere is the zone of soil surrounding plant roots that is directly influenced by root exudates released by the plant, which select soil microorganisms. The resulting rhizosphere microbiota plays a key role in plant health and development by enhancing its nutrition or immune response and protecting it from biotic or abiotic stresses. In particular, plant growth-promoting rhizobacteria (PGPR) are beneficial members of this microbiota that represent a great hope for agroecology, since they could be used as bioinoculants for sustainable crop production. Therefore, it is necessary to decipher the molecular dialog between roots and PGPR in order to promote the establishment of bioinoculants in the rhizosphere, which is required for their beneficial functions. Methods Here, the ability of root exudates from rapeseed (Brassica napus), pea (Pisum sativum), and ryegrass (Lolium perenne) to attract and feed three PGPR (Bacillus subtilis, Pseudomonas fluorescens, and Azospirillum brasilense) was measured and compared, as these responses are directly involved in the establishment of the rhizosphere microbiota. Results Our results showed that root exudates differentially attracted and fed the three PGPR. For all beneficial bacteria, rapeseed exudates were the most attractive and induced the fastest growth, while pea exudates allowed the highest biomass production. The performance of ryegrass exudates was generally lower, and variable responses were observed between bacteria. In addition, P. fluorescens and A. brasilense appeared to respond more efficiently to root exudates than B. subtilis. Finally, we proposed to evaluate the compatibility of each plant-PGPR couple by assigning them a "love match" score, which reflects the ability of root exudates to enhance bacterial rhizocompetence. Discussion Taken together, our results provide new insights into the specific selection of PGPR by the plant through their root exudates and may help to select the most effective exudates to promote bioinoculant establishment in the rhizosphere.
Collapse
Affiliation(s)
- Eulalie Fourneau
- Univ Rouen Normandie, Normandie Univ, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Rouen, France
| | - Mélissa Pannier
- Univ Rouen Normandie, Normandie Univ, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Rouen, France
| | - Wassila Riah
- UniLaSalle Rouen, UR AGHYLE, UP2018.C101, SFR Normandie Végétal FED 4277, Mont-Saint-Aignan, France
| | - Emmanuelle Personeni
- Univ Caen Normandie, Normandie Univ, INRAE, UMR 950 EVA, SFR Normandie Végétal FED 4277, Caen, France
| | - Annette Morvan-Bertrand
- Univ Caen Normandie, Normandie Univ, INRAE, UMR 950 EVA, SFR Normandie Végétal FED 4277, Caen, France
| | - Josselin Bodilis
- Univ Rouen Normandie, Normandie Univ, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Rouen, France
| | - Barbara Pawlak
- Univ Rouen Normandie, Normandie Univ, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Rouen, France
| |
Collapse
|
4
|
Enagbonma BJ, Fadiji AE, Babalola OO. Anthropogenic fertilization influences a shift in barley rhizosphere microbial communities. PeerJ 2024; 12:e17303. [PMID: 39006020 PMCID: PMC11246026 DOI: 10.7717/peerj.17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/04/2024] [Indexed: 07/16/2024] Open
Abstract
Background Anthropogenic mediations contribute a significant role in stimulating positive reactions in soil-plant interactions; however, methodical reports on how anthropogenic activities impact soil microorganism-induced properties and soil health are still inadequate. In this study, we evaluated the influence of anthropogenic fertilization of farmland soil on barley rhizosphere microbial community structure and diversity, and the significant impacts on agro-ecosystem productivity. This will help validate the premise that soil amendment with prolonged synthetic fertilizers can lead to a significant reduction in bacterial abundance and diversity, while soils amended with organic fertilizers elicit the succession of the native soil microbial community and favor the growth of copiotrophic bacteria. Methods The total metagenomic DNA was extracted from soils obtained from the barley rhizosphere under chemical fertilization (CB), organic fertilization (OB), and bulk soil (NB). Subsequently, these samples were sequenced using an amplicon-based sequencing approach, and the raw sequence dataset was examined using a metagenomic rast server (MG-RAST). Results Our findings showed that all environments (CB, OB, and NB) shared numerous soil bacterial phyla but with different compositions. However, Bacteroidetes, Proteobacteria, and Actinobacteria predominated in the barley rhizosphere under chemical fertilization, organic fertilization, and bulk soils, respectively. Alpha and beta diversity analysis showed that the diversity of bacteria under organic barley rhizosphere was significantly higher and more evenly distributed than bacteria under chemical fertilization and bulk soil. Conclusion Understanding the impact of conventional and organic fertilizers on the structure, composition, and diversity of the rhizosphere microbiome will assist in soil engineering to enhance microbial diversity in the agroecosystem.
Collapse
Affiliation(s)
- Ben Jesuorsemwen Enagbonma
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, North-West Province, South Africa
| | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, North-West Province, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, North-West Province, South Africa
| |
Collapse
|
5
|
Moreno Jiménez E, Ferrol N, Corradi N, Peñalosa JM, Rillig MC. The potential of arbuscular mycorrhizal fungi to enhance metallic micronutrient uptake and mitigate food contamination in agriculture: prospects and challenges. THE NEW PHYTOLOGIST 2024; 242:1441-1447. [PMID: 37737033 DOI: 10.1111/nph.19269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/13/2023] [Indexed: 09/23/2023]
Abstract
Optimizing agroecosystems and crops for micronutrient uptake while reducing issues with inorganic contaminants (metal(loid)s) is a challenging task. One promising approach is to use arbuscular mycorrhizal fungi (AMF) and investigate the physiological, molecular and epigenetic changes that occur in their presence and that lead to changes in plant metal(loid) concentration (biofortification of micronutrients or mitigation of contaminants). Moreover, it is important to understand these mechanisms in the context of the soil microbiome, particularly those interactions of AMF with other soil microbes that can further shape crop nutrition. To address these challenges, a two-pronged approach is recommended: exploring molecular mechanisms and investigating microbiome management and engineering. Combining both approaches can lead to benefits in human health by balancing nutrition and contamination caused by metal(loid)s in the agro-ecosystem.
Collapse
Affiliation(s)
- Eduardo Moreno Jiménez
- Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Biology, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Nuria Ferrol
- Soil and Plant Microbiology Departament, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Jesús M Peñalosa
- Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| |
Collapse
|
6
|
O'Callaghan M, Shi S. A synthetic microbial community used as a bioinoculant can overcome rice production constraints in acid soils. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1085-1086. [PMID: 38324131 DOI: 10.1007/s11427-024-2533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
A customised synthetic microbial community (SynCom) composed of carefully selected rhizosphere-competent bacterial strains improved rice growth, yield and resistance to soil acidity and Al toxicity.
Collapse
Affiliation(s)
- Maureen O'Callaghan
- Resilient Agriculture Group, AgResearch, Lincoln, Christcurch, 8140, New Zealand.
| | - Shengjing Shi
- Resilient Agriculture Group, AgResearch, Lincoln, Christcurch, 8140, New Zealand
| |
Collapse
|
7
|
Zhang J, Zhang H, Luo S, Ye L, Wang C, Wang X, Tian C, Sun Y. Analysis and Functional Prediction of Core Bacteria in the Arabidopsis Rhizosphere Microbiome under Drought Stress. Microorganisms 2024; 12:790. [PMID: 38674734 PMCID: PMC11052302 DOI: 10.3390/microorganisms12040790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The effects of global warming, population growth, and economic development are increasing the frequency of extreme weather events, such as drought. Among abiotic stresses, drought has the greatest impact on soil biological activity and crop yields. The rhizosphere microbiota, which represents a second gene pool for plants, may help alleviate the effects of drought on crops. In order to investigate the structure and diversity of the bacterial communities on drought stress, this study analyzed the differences in the bacterial communities by high-throughput sequencing and bioinformatical analyses in the rhizosphere of Arabidopsis thaliana under normal and drought conditions. Based on analysis of α and β diversity, the results showed that drought stress had no significant effect on species diversity between groups, but affected species composition. Difference analysis of the treatments showed that the bacteria with positive responses to drought stress were Burkholderia-Caballeronia-Paraburkholderia (BCP) and Streptomyces. Drought stress reduced the complexity of the rhizosphere bacterial co-occurrence network. Streptomyces was at the core of the network in both the control and drought treatments, whereas the enrichment of BCP under drought conditions was likely due to a decrease in competitors. Functional prediction showed that the core bacteria metabolized a wide range of carbohydrates, such as pentose, glycans, and aromatic compounds. Our results provide a scientific and theoretical basis for the use of rhizosphere microbial communities to alleviate plant drought stress and the further exploration of rhizosphere microbial interactions under drought stress.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil, Conservation College of Life Science, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (H.Z.); (L.Y.); (X.W.)
| | - Hengfei Zhang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil, Conservation College of Life Science, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (H.Z.); (L.Y.); (X.W.)
| | - Shouyang Luo
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.L.); (C.W.); (C.T.)
| | - Libo Ye
- Key Laboratory of Straw Comprehensive Utilization and Black Soil, Conservation College of Life Science, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (H.Z.); (L.Y.); (X.W.)
| | - Changji Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.L.); (C.W.); (C.T.)
| | - Xiaonan Wang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil, Conservation College of Life Science, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (H.Z.); (L.Y.); (X.W.)
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.L.); (C.W.); (C.T.)
| | - Yu Sun
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.L.); (C.W.); (C.T.)
| |
Collapse
|
8
|
Tian Y, Liu Y, Uwaremwe C, Zhao X, Yue L, Zhou Q, Wang Y, Tran LSP, Li W, Chen G, Sha Y, Wang R. Characterization of three new plant growth-promoting microbes and effects of the interkingdom interactions on plant growth and disease prevention. PLANT CELL REPORTS 2023; 42:1757-1776. [PMID: 37674059 DOI: 10.1007/s00299-023-03060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/12/2023] [Indexed: 09/08/2023]
Abstract
KEY MESSAGE The novel interkingdom PGPM consortia enhanced the ability of plant growth promotion and disease resistance, which would be beneficial to improve plant growth in sustainable agriculture through engineering microbiome. Plant growth-promoting microbes (PGPMs) play important roles in promoting plant growth and bio-controlling of pathogens. Much information reveals that the plant growth-promoting ability of individual PGPM affects plant growth. However, the effects of the PGPM consortia properties on plant growth remain largely unexplored. Here, we characterized three new PGPM strains including Rhodotorula graminis JJ10.1 (termed as J), Pseudomonas psychrotolerans YY7 (termed as Y) and P. chlororaphis T8 (termed as T), and assessed their effects in combination with Bacillus amyloliquefaciens FZB42 (termed as F) on plant growth promotion and disease prevention in Arabidopsis thaliana and tomato (Solanum lycopersicum) plants by investigating morphological changes, whole-genome sequencing and plant growth promoting (PGP) characterization. Results revealed that the three new strains R. graminis JJ10.1, P. psychrotolerans YY7 and P. chlororaphis T8 had the potential for being combined with B. amyloliquefaciens FZB42 to form interkingdom PGPM consortia. The combinations of R. graminis JJ10.1, B. amyloliquefaciens FZB42, and P. psychrotolerans YY7, i. e. JF and JYF, exhibited the strongest ability of synergetic biofilm production. Furthermore, the growth-promotion abilities of the consortia were significantly enhanced compared with those of individual strains under both inoculation and volatile organic compounds (VOCs) treatment. Importantly, the consortia showed stronger abilities of in planta disease prevention than individual strains. Findings of our study may provide future guidance for engineering the minimal microbiome communities to improve plant growth and/or disease resistance in sustainable agriculture.
Collapse
Affiliation(s)
- Yuan Tian
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yang Liu
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Constantine Uwaremwe
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xia Zhao
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Liang Yue
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qin Zhou
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yun Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Weiqiang Li
- Jilin Da'an Agro-Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, 130102, People's Republic of China
| | - Gaofeng Chen
- Gansu Shangnong Biotechnology Co. Ltd, Baiyin, 730900, People's Republic of China
| | - Yuexia Sha
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, People's Republic of China
| | - Ruoyu Wang
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
9
|
Chen L, Han H, Wang C, Warren A, Ning Y. Exploring Microeukaryote Community Characteristics and Niche Differentiation in Arid Farmland Soil at the Northeastern Edge of the Tibetan Plateau. Microorganisms 2023; 11:2510. [PMID: 37894168 PMCID: PMC10609477 DOI: 10.3390/microorganisms11102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The northeastern edge of the Tibetan Plateau exhibits diverse climate and landform variations, and has experienced substantial recent environmental changes, which may significantly impact local agricultural practices. Understanding the microeukaryote community structure within agricultural soils is crucial for finding out the biological responses to such changes and may guide future agricultural practices. In this study, we employed high-throughput amplicon sequencing to examine 29 agricultural soil samples from seven research areas around the northeastern edge of the Tibetan Plateau. The findings revealed that the predominant biological communities in these soils were characterized by a high abundance of Alveolata, Amoebozoa, and Rhizaria. Ascomycota displayed the highest relative abundance among fungal communities. Moreover, notable distinctions in microeukaryote community composition were observed among the study sites. Co-occurrence network analysis highlighted interactions between the biological communities. Furthermore, our results elucidated that deterministic and stochastic processes exerted diverse influences on the distribution of protozoan and fungal communities. This study provides valuable insight into the microeukaryote structure in the agricultural soils of the northeastern edge of the Tibetan Plateau, shedding light on the intricate relationships between environmental factors, microeukaryote communities, and agricultural productivity.
Collapse
Affiliation(s)
- Lingyun Chen
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.C.); (H.H.); (C.W.)
| | - Haifeng Han
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.C.); (H.H.); (C.W.)
| | - Chunhui Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.C.); (H.H.); (C.W.)
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK;
| | - Yingzhi Ning
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.C.); (H.H.); (C.W.)
| |
Collapse
|
10
|
Benmrid B, Ghoulam C, Zeroual Y, Kouisni L, Bargaz A. Bioinoculants as a means of increasing crop tolerance to drought and phosphorus deficiency in legume-cereal intercropping systems. Commun Biol 2023; 6:1016. [PMID: 37803170 PMCID: PMC10558546 DOI: 10.1038/s42003-023-05399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
Ensuring plant resilience to drought and phosphorus (P) stresses is crucial to support global food security. The phytobiome, shaped by selective pressures, harbors stress-adapted microorganisms that confer host benefits like enhanced growth and stress tolerance. Intercropping systems also offer benefits through facilitative interactions, improving plant growth in water- and P-deficient soils. Application of microbial consortia can boost the benefits of intercropping, although questions remain about the establishment, persistence, and legacy effects within resident soil microbiomes. Understanding microbe- and plant-microbe dynamics in drought-prone soils is key. This review highlights the beneficial effects of rhizobacterial consortia-based inoculants in legume-cereal intercropping systems, discusses challenges, proposes a roadmap for development of P-solubilizing drought-adapted consortia, and identifies research gaps in crop-microbe interactions.
Collapse
Affiliation(s)
- Bouchra Benmrid
- Plant-Microbe Interactions Laboratory, AgroBiosciences Program, College for Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco.
| | - Cherki Ghoulam
- Plant-Microbe Interactions Laboratory, AgroBiosciences Program, College for Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco
- Agrobiotechnology & Bioengineering Center, Research Unit CNRST labeled, Cadi Ayyad University, Faculty of Sciences and Techniques, 40000, Marrakech, Morocco
| | - Youssef Zeroual
- Situation Innovation - OCP Group, Jorf Lasfar, 24025, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Adnane Bargaz
- Plant-Microbe Interactions Laboratory, AgroBiosciences Program, College for Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco.
| |
Collapse
|
11
|
Zhang XE, Liu C, Dai J, Yuan Y, Gao C, Feng Y, Wu B, Wei P, You C, Wang X, Si T. Enabling technology and core theory of synthetic biology. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1742-1785. [PMID: 36753021 PMCID: PMC9907219 DOI: 10.1007/s11427-022-2214-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 02/09/2023]
Abstract
Synthetic biology provides a new paradigm for life science research ("build to learn") and opens the future journey of biotechnology ("build to use"). Here, we discuss advances of various principles and technologies in the mainstream of the enabling technology of synthetic biology, including synthesis and assembly of a genome, DNA storage, gene editing, molecular evolution and de novo design of function proteins, cell and gene circuit engineering, cell-free synthetic biology, artificial intelligence (AI)-aided synthetic biology, as well as biofoundries. We also introduce the concept of quantitative synthetic biology, which is guiding synthetic biology towards increased accuracy and predictability or the real rational design. We conclude that synthetic biology will establish its disciplinary system with the iterative development of enabling technologies and the maturity of the core theory.
Collapse
Affiliation(s)
- Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chenli Liu
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Junbiao Dai
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Wei
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Tong Si
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Sugiyama A. Application of plant specialized metabolites to modulate soil microbiota. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:123-133. [PMID: 38250293 PMCID: PMC10797516 DOI: 10.5511/plantbiotechnology.23.0227a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/27/2023] [Indexed: 01/23/2024]
Abstract
Plant specialized metabolites (PSMs) are considerably diverse compounds with multifaceted roles in the adaptation of plants to various abiotic and biotic stresses. PSMs are frequently secreted into the rhizosphere, a small region around the roots, where they facilitate interactions between plants and soil microorganisms. PSMs shape the host-specific rhizosphere microbial communities that potentially influence plant growth and tolerance to adverse conditions. Plant mutants defective in PSM biosynthesis contribute to reveal the roles of each PSM in plant-microbiota interactions in the rhizosphere. Recently, various approaches have been used to directly supply PSMs to soil by in vitro methods or through addition in pots with plants. This review focuses on the feasibility of the direct PSM application methods to reveal rhizospheric plant-microbiota interactions and discusses the possibility of applying the knowledge gained to future engineering of rhizospheric traits.
Collapse
Affiliation(s)
- Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
13
|
Park I, Seo YS, Mannaa M. Recruitment of the rhizo-microbiome army: assembly determinants and engineering of the rhizosphere microbiome as a key to unlocking plant potential. Front Microbiol 2023; 14:1163832. [PMID: 37213524 PMCID: PMC10196466 DOI: 10.3389/fmicb.2023.1163832] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
The viable community of microorganisms in the rhizosphere significantly impacts the physiological development and vitality of plants. The assembly and functional capacity of the rhizosphere microbiome are greatly influenced by various factors within the rhizosphere. The primary factors are the host plant genotype, developmental stage and status, soil properties, and resident microbiota. These factors drive the composition, dynamics, and activity of the rhizosphere microbiome. This review addresses the intricate interplay between these factors and how it facilitates the recruitment of specific microbes by the host plant to support plant growth and resilience under stress. This review also explores current methods for engineering and manipulating the rhizosphere microbiome, including host plant-mediated manipulation, soil-related methods, and microbe-mediated methods. Advanced techniques to harness the plant's ability to recruit useful microbes and the promising use of rhizo-microbiome transplantation are highlighted. The goal of this review is to provide valuable insights into the current knowledge, which will facilitate the development of cutting-edge strategies for manipulating the rhizosphere microbiome for enhanced plant growth and stress tolerance. The article also indicates promising avenues for future research in this field.
Collapse
Affiliation(s)
- Inmyoung Park
- School of Food and Culinary Arts, Youngsan University, Busan, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
14
|
Liu Q, Cheng L, Nian H, Jin J, Lian T. Linking plant functional genes to rhizosphere microbes: a review. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:902-917. [PMID: 36271765 PMCID: PMC10106864 DOI: 10.1111/pbi.13950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 05/04/2023]
Abstract
The importance of rhizomicrobiome in plant development, nutrition acquisition and stress tolerance is unquestionable. Relevant plant genes corresponding to the above functions also regulate rhizomicrobiome construction. Deciphering the molecular regulatory network of plant-microbe interactions could substantially contribute to improving crop yield and quality. Here, the plant gene-related nutrient uptake, biotic and abiotic stress resistance, which may influence the composition and function of microbial communities, are discussed in this review. In turn, the influence of microbes on the expression of functional plant genes, and thereby plant growth and immunity, is also reviewed. Moreover, we have specifically paid attention to techniques and methods used to link plant functional genes and rhizomicrobiome. Finally, we propose to further explore the molecular mechanisms and signalling pathways of microbe-host gene interactions, which could potentially be used for managing plant health in agricultural systems.
Collapse
Affiliation(s)
- Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jian Jin
- Northeast Institute of Geography and AgroecologyChinese Academy of SciencesHarbinChina
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
15
|
Agnihotri R, Gujre N, Mitra S, Sharma MP. Decoding the PLFA profiling of microbial community structure in soils contaminated with municipal solid wastes. ENVIRONMENTAL RESEARCH 2023; 219:114993. [PMID: 36535388 DOI: 10.1016/j.envres.2022.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to assess the influence of municipal solid waste (MSW) disposal on soil microbial communities. Soil samples from 20 different locations of an MSW dumping site contaminated with toxic heavy metals (HMs) and a native forest (as control) were collected for phospholipid fatty acid (PLFA) profiling to predict microbial community responses towards unsegregated disposal of MSW. PLFA biomarkers specific to arbuscular mycorrhizal fungi (AMF), Gram-negative and Gram-positive bacteria, fungi, eukaryotes, actinomycetes, anaerobes, and microbial stress markers-fungi: bacteria (F/B) ratio, Gram-positive/Gram-negative (GP/GN) ratio, Gram-negative stress (GNStr) ratio and predator/prey ratio along with AMF spore density and the total HM content (Cu, Cr, Cd, Mn, Zn, and Ni) were assessed. The results showed that all of the PLFA microbial biomarkers and the F/B ratio were positively correlated, while HMs and microbial stress markers were negatively correlated. The significant correlation of AMF biomass with all microbial groups, the F/B ratio, and T. PLFA confirmed its significance as a key predictor of microbial biomass. With AMF and T. PLFA, Cd and Cr had a weak or negative connection. Among the toxic HMs, Zn and Cd had the greatest impact on microbial populations. Vegetation did not have any significant effect on soil microbial communities. This research will aid in the development of bioinoculants for the bioremediation of MSW-polluted sites and will improve our understanding of the soil microbial community's ability to resist, recover, and adapt to toxic waste contamination.
Collapse
Affiliation(s)
- Richa Agnihotri
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Nihal Gujre
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology, Indian Institute of Technology Guwahati (IITG), Assam 781039, India; Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology, Indian Institute of Technology Guwahati (IITG), Assam 781039, India
| | - Mahaveer P Sharma
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, Madhya Pradesh 452001, India.
| |
Collapse
|
16
|
Li L, Xia T, Yang H. Seasonal patterns of rhizosphere microorganisms suggest carbohydrate-degrading and nitrogen-fixing microbes contribute to the attribute of full-year shooting in woody bamboo Cephalostachyum pingbianense. Front Microbiol 2022; 13:1033293. [PMID: 36523824 PMCID: PMC9745117 DOI: 10.3389/fmicb.2022.1033293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/11/2022] [Indexed: 10/15/2023] Open
Abstract
Compared with the ordinary single-season shooting among woody bamboos in Poaceae, the attribute of full-year shooting in Cephalostachyum pingbianense represents a unique shooting type or mechanism. Nevertheless, except for the overall physiological mechanism, the effect of ecological factors, especially soil microorganisms, on this full-year shooting characteristic remains unclear. In this study, 16S rRNA and ITS rRNA genes were sequenced using the Illumina platform. Our aims were to detect the seasonal changes in rhizospheric microbial communities of C. pingbianense and to discover the correlations of soil microbes with soil properties and bamboo shoot productivity. The results showed that seasonal change had no significant effect on bacterial alpha diversity, but significantly affected bacterial and fungal community structures as well as fungal richness. Among all soil properties examined, soil temperature, soil moisture and organic matter were the predominant factors affecting bacterial community diversity and structure. Soil temperature and soil moisture also significantly influenced fungal community structure, while available phosphorus had the greatest effect on fungal diversity. In each season, bacterial genera Acidothermus, Roseiarcus, and Bradyrhizobium, along with fungal genera Saitozyma, Mortierella, Trichoderma, etc., were dominant in bacterial and fungal communities, respectively. Bacterial community functions in four seasons were dominated by chemoheterotrophy, cellulolysis, and nitrogen fixation. Saprotrophic fungi occupied a high proportion in soil samples of all seasons. In addition, correlation analysis revealed that the bamboo shoot productivity was positively correlated with multiple microbial taxa involved in carbon and nitrogen cycles. It is proposed that highly abundant microbes involved in carbohydrate degradation and nitrogen fixation in the rhizosphere soil may contribute to the attribute of producing bamboo shoots all year round in C. pingbianense. This study is among the few cases revealing the connection between bamboo shooting characteristics and soil microorganisms, and provides new physiological and ecological insights into the forest management of woody bamboos.
Collapse
Affiliation(s)
| | | | - Hanqi Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| |
Collapse
|
17
|
Nethery MA, Hidalgo-Cantabrana C, Roberts A, Barrangou R. CRISPR-based engineering of phages for in situ bacterial base editing. Proc Natl Acad Sci U S A 2022; 119:e2206744119. [PMID: 36343261 PMCID: PMC9674246 DOI: 10.1073/pnas.2206744119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/14/2022] [Indexed: 09/29/2023] Open
Abstract
Investigation of microbial gene function is essential to the elucidation of ecological roles and complex genetic interactions that take place in microbial communities. While microbiome studies have increased in prevalence, the lack of viable in situ editing strategies impedes experimental progress, rendering genetic knowledge and manipulation of microbial communities largely inaccessible. Here, we demonstrate the utility of phage-delivered CRISPR-Cas payloads to perform targeted genetic manipulation within a community context, deploying a fabricated ecosystem (EcoFAB) as an analog for the soil microbiome. First, we detail the engineering of two classical phages for community editing using recombination to replace nonessential genes through Cas9-based selection. We show efficient engineering of T7, then demonstrate the expression of antibiotic resistance and fluorescent genes from an engineered λ prophage within an Escherichia coli host. Next, we modify λ to express an APOBEC-1-based cytosine base editor (CBE), which we leverage to perform C-to-T point mutations guided by a modified Cas9 containing only a single active nucleolytic domain (nCas9). We strategically introduce these base substitutions to create premature stop codons in-frame, inactivating both chromosomal (lacZ) and plasmid-encoded genes (mCherry and ampicillin resistance) without perturbation of the surrounding genomic regions. Furthermore, using a multigenera synthetic soil community, we employ phage-assisted base editing to induce host-specific phenotypic alterations in a community context both in vitro and within the EcoFAB, observing editing efficiencies from 10 to 28% across the bacterial population. The concurrent use of a synthetic microbial community, soil matrix, and EcoFAB device provides a controlled and reproducible model to more closely approximate in situ editing of the soil microbiome.
Collapse
Affiliation(s)
- Matthew A. Nethery
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC 27695
- Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC 27606
| | - Claudio Hidalgo-Cantabrana
- Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC 27606
| | - Avery Roberts
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC 27695
- Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC 27606
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC 27695
- Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC 27606
| |
Collapse
|
18
|
Silva PV, Pereira LM, Mundim GDSM, Maciel GM, de Araújo Gallis RB, Mendes GDO. Field evaluation of the effect of Aspergillus niger on lettuce growth using conventional measurements and a high-throughput phenotyping method based on aerial images. PLoS One 2022; 17:e0274731. [PMID: 36121857 PMCID: PMC9484672 DOI: 10.1371/journal.pone.0274731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022] Open
Abstract
Plant microbiome engineering is a promising tool to unlock crop productivity potential and exceed the yield obtained with conventional chemical inputs. We studied the effect of Aspergillus niger inoculation on in-field lettuce (Lactuca sativa) growth in soils with limiting and non-limiting P concentrations. Lettuce plants originating from inoculated seeds showed increased plant diameter (6.9%), number of leaves (8.1%), fresh weight (23.9%), and chlorophyll content (3.8%) as compared to non-inoculated ones. Inoculation of the seedling substrate just before transplanting was equally efficient to seed inoculation, while application of a granular formulation at transplanting did not perform well. Plant response to P addition was observed only up to 150 kg P2O5 ha-1, but A. niger inoculation allowed further increments in all vegetative parameters. We also employed a high-throughput phenotyping method based on aerial images, which allowed us to detect changes in plants due to A. niger inoculation. The visible atmospherically resistant index (VARI) produced an accurate prediction model for chlorophyll content, suggesting this method might be used to large-scale surveys of croplands inoculated with beneficial microorganisms. Our findings demonstrate that A. niger inoculation surpasses the yield obtained with conventional chemical inputs, allowing productivity gains not reached by just increasing P doses.
Collapse
Affiliation(s)
- Patrick Vieira Silva
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Monte Carmelo, Minas Gerais, Brazil
| | - Lucas Medeiros Pereira
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Monte Carmelo, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
19
|
Pradhan S, Tyagi R, Sharma S. Combating biotic stresses in plants by synthetic microbial communities: Principles, applications, and challenges. J Appl Microbiol 2022; 133:2742-2759. [PMID: 36039728 DOI: 10.1111/jam.15799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Presently, agriculture worldwide is facing the major challenge of feeding the increasing population sustainably. The conventional practices have not only failed to meet the projected needs, but also led to tremendous environmental consequences. Hence, to ensure a food-secure and environmentally sound future, the major thrust is on sustainable alternatives. Due to challenges associated with conventional means of application of biocontrol agents in the management of biotic stresses in agro-ecosystems, significant transformations in this context is needed. The crucial role played by soil microbiomes in efficiently and sustainably managing the agricultural production has unfolded a newer approach of rhizospheric engineering that shows immense promise in mitigating biotic stresses in an eco-friendly manner. The strategy of generating synthetic microbial communities (SynCom), by integrating omics approaches with traditional techniques of enumeration and in-depth analysis of plant-microbe interactions, is encouraging. The review discusses the significance of the rhizospheric microbiome in plant's fitness, and its manipulation for enhancing plant attributes. The focus of the review is to critically analyze the potential tools for the design and utilization of SynCom as a sustainable approach for rhizospheric engineering to ameliorate biotic stresses in plants. Further, based on the synthesis of reports in the area, we have put forth possible solutions to some of the critical issues that impair the large-scale application of SynComs in agriculture.
Collapse
Affiliation(s)
- Salila Pradhan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi
| | - Rashi Tyagi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi
| |
Collapse
|
20
|
Li Q. Perspectives on Converting Keratin-Containing Wastes Into Biofertilizers for Sustainable Agriculture. Front Microbiol 2022; 13:918262. [PMID: 35794912 PMCID: PMC9251476 DOI: 10.3389/fmicb.2022.918262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Keratin-containing wastes become pollution to the environment if they are not treated properly. On the other hand, these wastes can be converted into value-added products applicable to many fields. Organic fertilizers and biofertilizers are important for sustainable agriculture by providing nutrients to enhance the growth speed of the plant and production. Keratin-containing wastes, therefore, will be an important resource to produce organic fertilizers. Many microorganisms exhibit capabilities to degrade keratins making them attractive to convert keratin-containing wastes into valuable products. In this review, the progress in microbial degradation of keratins is summarized. In addition, perspectives in converting keratin into bio- and organic fertilizers for agriculture are described. With proper treatment, feather wastes which are rich in keratin can be converted into high-value fertilizers to serve as nutrients for plants, reduce environmental pressure and improve the quality of the soil for sustainable agriculture.
Collapse
|
21
|
Agnihotri R, Sharma MP, Bucking H, Dames JF, Bagyaraj DJ. Methods for assessing the quality of AM fungal bio-fertilizer: Retrospect and future directions. World J Microbiol Biotechnol 2022; 38:97. [PMID: 35478267 DOI: 10.1007/s11274-022-03288-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
In the recent past, the mass production of arbuscular mycorrhizal (AM) fungi has bloomed into a large biofertilizer industry. Due to their obligate symbiotic nature, these fungi are propagated on living roots in substrate-based pot cultures and RiTDNA in in vitro or root organ culture systems. The quality assessment of AM inocula remains critical for the production and efficacy evaluation of AM fungi. The vigour of AM inocula are assessed through microscopic methods such as inoculum potential, infectivity potential/infection units, most probable number (MPN) and spore density. These methods marginally depend on the researcher's skill. The signature lipids specific to AM fungi, e.g. 16:1ω5cis ester-linked, phospholipid, and neutral lipid fatty acids provide more robustness and reproducibility. The quantitative real-time PCR of AM fungal taxa specific primers and probes analyzing gene copy number is also increasingly used. This article intends to sensitize AM fungal researchers and inoculum manufacturers to various methods of assessing the quality of AM inocula addressing their merits and demerits. This will help AM producers to fulfil the regulatory requirements ensuring the supply of high-quality AM inocula to end-users, and tap a new dimension of AM research in the commercial production of AM fungi and its application in sustainable plant production systems.
Collapse
Affiliation(s)
- R Agnihotri
- ICAR-Indian Institute of Soybean Research, 452001, Indore, India.,M S Swaminathan Research Foundation (MSSRF), Thondamanatham post, Vazhuthavoor road, 605502, Pillaiyarkuppam, Puducherry, India
| | - M P Sharma
- ICAR-Indian Institute of Soybean Research, 452001, Indore, India.
| | - H Bucking
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, 65211, Columbia, Missouri, USA
| | - J F Dames
- Department of Biochemistry and Microbiology, Rhodes University, 6140, Makhanda, Grahamstown, South Africa
| | - D J Bagyaraj
- Centre for Natural Biological Resources and Community Development, 41 RBI Colony, Anand Nagar, 560024, Bengaluru, India.
| |
Collapse
|
22
|
Jiang M, Ye F, Liu F, Brestic M, Li X. Rhizosphere melatonin application reprograms nitrogen-cycling related microorganisms to modulate low temperature response in barley. FRONTIERS IN PLANT SCIENCE 2022; 13:998861. [PMID: 36275608 PMCID: PMC9583915 DOI: 10.3389/fpls.2022.998861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/15/2022] [Indexed: 05/09/2023]
Abstract
Rhizospheric melatonin application has a positive effect on the tolerance of plants to low temperature; however, it remains unknown whether the rhizosphere microorganisms are involved in this process. The aim of this study was to investigate the effect of exogenous melatonin on the diversity and functioning of fungi and bacteria in rhizosphere of barley under low temperature. The results showed that rhizospheric melatonin application positively regulated the photosynthetic carbon assimilation and redox homeostasis in barley in response to low temperature. These effects might be associated with an altered diversity of microbial community in rhizosphere, especially the species and relative abundance of nitrogen cycling related microorganisms, as exemplified by the changes in rhizosphere metabolites in the pathways of amino acid synthesis and metabolism. Collectively, it was suggested that the altered rhizospheric microbial status upon melatonin application was associated with the response of barley to low temperature. This suggested that the melatonin induced microbial changes should be considered for its application in the crop cold-resistant cultivation.
Collapse
Affiliation(s)
- Miao Jiang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education of China, Northwest A & F University, Yangling, China
| | - Fan Ye
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fulai Liu
- Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Tåstrup, Denmark
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Nitra, Slovakia
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czechia
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Science (CAS) Engineering Laboratory for Eco-agriculture in Water Source of Liaoheyuan, Chinese Academy of Science, Changchun, China
- *Correspondence: Xiangnan Li,
| |
Collapse
|