1
|
Trevisan AP, Lied EB, Fuess LT, Zaiat M, de Souza WG, Gomes SD, Gomes BM. Improving the Continuous Multiple Tube Reactor: an Innovative Bioreactor Configuration with Great Potential for Dark Fermentation Processes. Appl Biochem Biotechnol 2024; 196:457-477. [PMID: 37140783 DOI: 10.1007/s12010-023-04553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
The continuous multiple tube reactor (CMTR) has been developed as a promising technology to maximize biohydrogen production (BHP) by dark fermentation (DF) by preventing excess biomass accumulation, leading to suboptimum values of specific organic loading rates (SOLR). However, previous experiences failed to achieve stable and continuous BHP in this reactor, as the low biomass retention capacity in the tube region limited controlling the SOLR. This study goes beyond the evaluation of the CMTR for DF by inserting grooves in the inner wall of the tubes to ensure better cell attachment. The CMTR was monitored in 4 assays at 25ºC using sucrose-based synthetic effluent. The hydraulic retention time (HRT) was fixed at 2 h, while the COD varied between 2-8 g L-1 to obtain organic loading rates in the 24 - 96 g COD L-1 d-1. Long-term (90 d) BHP was successfully attained in all conditions due to the improved biomass retention capacity. Optimal values for the SOLR (4.9 g COD g-1 VSS d-1) were observed when applying up to 48 g COD L-1 d-1, in which BHP was maximized. These patterns indicate a favorable balance between biomass retention and washout was naturally achieved. The CMTR looks promising for continuous BHP and is exempt from additional biomass discharge strategies.
Collapse
Affiliation(s)
- Ana Paula Trevisan
- Post-Graduation in Agricultural Engineering, Western Parana State University, 2069, Universitária St., Jardim Universitário, Cascavel, PR, 5819-110, Brazil
| | - Eduardo Borges Lied
- Department of Biological and Environmental Sciences, Federal Technological University of Paraná, Av. Brasil, 4232, Parque Independência, Medianeira, PR, 85884-000, Brazil.
| | - Lucas Tadeu Fuess
- Chemical Engineering Department, Polytechnic School, University of São Paulo (DEQ/EP/USP), Av. Prof. Lineu Prestes 580, Bloco 18 - Conjunto das Químicas, São Paulo, SP, 05508-000, Brazil
| | - Marcelo Zaiat
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Willyan Goergen de Souza
- Post-Graduation in Agricultural Engineering, Western Parana State University, 2069, Universitária St., Jardim Universitário, Cascavel, PR, 5819-110, Brazil
| | - Simone Damasceno Gomes
- Post-Graduation in Agricultural Engineering, Western Parana State University, 2069, Universitária St., Jardim Universitário, Cascavel, PR, 5819-110, Brazil
| | - Benedito Martins Gomes
- Post-Graduation in Agricultural Engineering, Western Parana State University, 2069, Universitária St., Jardim Universitário, Cascavel, PR, 5819-110, Brazil
| |
Collapse
|
2
|
Teke GM, Anye Cho B, Bosman CE, Mapholi Z, Zhang D, Pott RWM. Towards industrial biological hydrogen production: a review. World J Microbiol Biotechnol 2023; 40:37. [PMID: 38057658 PMCID: PMC10700294 DOI: 10.1007/s11274-023-03845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
Increased production of renewable energy sources is becoming increasingly needed. Amidst other strategies, one promising technology that could help achieve this goal is biological hydrogen production. This technology uses micro-organisms to convert organic matter into hydrogen gas, a clean and versatile fuel that can be used in a wide range of applications. While biohydrogen production is in its early stages, several challenges must be addressed for biological hydrogen production to become a viable commercial solution. From an experimental perspective, the need to improve the efficiency of hydrogen production, the optimization strategy of the microbial consortia, and the reduction in costs associated with the process is still required. From a scale-up perspective, novel strategies (such as modelling and experimental validation) need to be discussed to facilitate this hydrogen production process. Hence, this review considers hydrogen production, not within the framework of a particular production method or technique, but rather outlines the work (bioreactor modes and configurations, modelling, and techno-economic and life cycle assessment) that has been done in the field as a whole. This type of analysis allows for the abstraction of the biohydrogen production technology industrially, giving insights into novel applications, cross-pollination of separate lines of inquiry, and giving a reference point for researchers and industrial developers in the field of biohydrogen production.
Collapse
Affiliation(s)
- G M Teke
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - B Anye Cho
- Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - C E Bosman
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Z Mapholi
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - D Zhang
- Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - R W M Pott
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
3
|
Honarmandrad Z, Kucharska K, Gębicki J. Processing of Biomass Prior to Hydrogen Fermentation and Post-Fermentative Broth Management. Molecules 2022; 27:7658. [PMID: 36364485 PMCID: PMC9658980 DOI: 10.3390/molecules27217658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 09/10/2023] Open
Abstract
Using bioconversion and simultaneous value-added product generation requires purification of the gaseous and the liquid streams before, during, and after the bioconversion process. The effect of diversified process parameters on the efficiency of biohydrogen generation via biological processes is a broad object of research. Biomass-based raw materials are often applied in investigations regarding biohydrogen generation using dark fermentation and photo fermentation microorganisms. The literature lacks information regarding model mixtures of lignocellulose and starch-based biomass, while the research is carried out based on a single type of raw material. The utilization of lignocellulosic and starch biomasses as the substrates for bioconversion processes requires the decomposition of lignocellulosic polymers into hexoses and pentoses. Among the components of lignocelluloses, mainly lignin is responsible for biomass recalcitrance. The natural carbohydrate-lignin shields must be disrupted to enable lignin removal before biomass hydrolysis and fermentation. The matrix of chemical compounds resulting from this kind of pretreatment may significantly affect the efficiency of biotransformation processes. Therefore, the actual state of knowledge on the factors affecting the culture of dark fermentation and photo fermentation microorganisms and their adaptation to fermentation of hydrolysates obtained from biomass requires to be monitored and a state of the art regarding this topic shall become a contribution to the field of bioconversion processes and the management of liquid streams after fermentation. The future research direction should be recognized as striving to simplification of the procedure, applying the assumptions of the circular economy and the responsible generation of liquid and gas streams that can be used and purified without large energy expenditure. The optimization of pre-treatment steps is crucial for the latter stages of the procedure.
Collapse
Affiliation(s)
| | - Karolina Kucharska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
| | | |
Collapse
|
4
|
Arisht SN, Mahmod SS, Abdul PM, Indera Lutfi AA, Takriff MS, Lay CH, Silvamany H, Sittijunda S, Jahim JM. Enhancing biohydrogen gas production in anaerobic system via comparative chemical pre-treatment on palm oil mill effluent (POME). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115892. [PMID: 35988402 DOI: 10.1016/j.jenvman.2022.115892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Biological hydrogen production using palm oil mill effluent (POME) as a carbon source through dark fermentation process has been suggested to be a promising bioenergy potential and enacts as alternative renewable energy source. Results have indicated that among various 1.5% (w/v) chemical pre-treatments (sodium hydroxide, NaOH; hydrochloric acid, HCl; sulphuric acid, H2SO4; phosphoric acid, H3PO4 and nitric acid, HNO3) on POME, using H3PO4 would generate maximum biohydrogen production of 0.193 mmol/L/h, which corresponded to a yield of 1.51 mol H2/mol TCconsumed with an initial total soluble carbohydrate concentration of 23.52 g/L. Among H3PO4 concentrations (1%-10%), the soluble carbohydrate content and the biohydrogen produced was highest and increased by 1.70-fold and 2.35-fold respectively at 2.5% (w/v), as compared to untreated POME. The batch fermentation maximum hydrogen production rate and yield of 0.208 mmol/L/h and 1.69 mol H2/mol TCconsumed were achieved at optimum pre-treatment conditions of pH 5.5 and thermophilic temperature (60 °C). This study suggests that chemical pre-treatment approaches manage to produce and improve the carbohydrate utilisation process further. Continuous fermentation in CSTR at the optimum conditions produce heightened 1.5-fold biohydrogen yield for 2.5% H3PO4 at 6 h HRT as compared to batch scale. Bacterial community via next-generation sequencing analysis at optimum HRT (6 h) revealed that Thermoanaerobacterium thermosaccharolyticum registered the highest relative frequency of 20.24%. At the class level, Clostridia, Bacilli, Bacteroidia, Thermoanaerobacteria, and Gammaproteobacteria were identified as the biohydrogen-producing bacteria in the continuous system. Insightful findings from this study suggest the substantial practical utility of dilute chemical pre-treatment in improving biohydrogen production.
Collapse
Affiliation(s)
- Shalini Narayanan Arisht
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Safa Senan Mahmod
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Peer Mohamed Abdul
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Abdullah Amru Indera Lutfi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Sobri Takriff
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, United Arab Emirates
| | - Chyi-How Lay
- Master's Program of Green Energy Science and Technology, Feng Chia University, 40724, Taichung, Taiwan
| | - Hemavathi Silvamany
- Sime Darby Plantation Research (formerly Known As Sime Darby Research), R&D Centre - Carey Island, Lot 2664 Jalan Pulau Carey, 42960, Pulau Carey, Selangor, Malaysia
| | - Sureewan Sittijunda
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Jamaliah Md Jahim
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
5
|
Inhibition of hydrogen production by endogenous microorganisms from food waste. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00235-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Deseure J, Obeid J, Willison JC, Magnin JP. Reliable determination of the growth and hydrogen production parameters of the photosynthetic bacterium Rhodobacter capsulatus in fed batch culture using a combination of the Gompertz function and the Luedeking-Piret model. Heliyon 2021; 7:e07394. [PMID: 34296001 PMCID: PMC8282963 DOI: 10.1016/j.heliyon.2021.e07394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022] Open
Abstract
In this study, experimental results of hydrogen producing process based on anaerobic photosynthesis using the purple non-sulfur bacterium Rhodobacter capsulatus are scrutinized. The bacterial culture was carried out in a photo-bioreactor operated in a quasi-continuous mode, using lactate as a carbon source. The method is based on the continuous stirred tank reactors (CSTR) technique to access kinetic parameters. The dynamic evolution of hydrogen production as a function of time was accurately simulated using Luedeking-Piret model and the growth of R. capsulatus was computed using Gompertz model. The combination of both models was successfully applied to determine the relevant parameters (λ, μmax, α and β) for two R. capsulatus strains studied: the wild-type strain B10 and the H2 over-producing mutant IR3. The mathematical description indicates that the photofermentation is more promising than dark fermentation for the conversion of organic substrates into biogas.
Collapse
Affiliation(s)
- Jonathan Deseure
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
- Corresponding author.
| | - Jamila Obeid
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
- Al Baath University, Faculty of Chemical and Petroleum Engineering, Homs, Syria
| | - John C. Willison
- Laboratoire de Chimie et Biologie des Métaux (UMR 5249 CEA-CNRS-UGA), DRF/IRIG/DIESE/CBM, CEA-Grenoble, 38054, Grenoble, France
| | - Jean-Pierre Magnin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
| |
Collapse
|
7
|
Martinez-Burgos WJ, Sydney EB, de Paula DR, Medeiros ABP, de Carvalho JC, Soccol VT, de Souza Vandenberghe LP, Woiciechowski AL, Soccol CR. Biohydrogen production in cassava processing wastewater using microbial consortia: Process optimization and kinetic analysis of the microbial community. BIORESOURCE TECHNOLOGY 2020; 309:123331. [PMID: 32283484 DOI: 10.1016/j.biortech.2020.123331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Biohydrogen production was evaluated using cassava processing wastewater (CPW) and two microbial consortia (Vir and Gal) from different Brazilian environments. The biohydrogen production was optimized using a Box-Behnken design (T, pH, C/N, and % v/v inoculum). Maximum yields were obtained with hydrolyzed substrate: 4.12 and 3.80 mol H2 / for Vir and Gal, respectively. Similarly, the kinetic parameters µ, k, and q were higher with hydrolyzed CPW in both consortia. The molecular analysis of the consortia through Illumina high-throughput sequencing showed the presence of bacteria from the families Porphyromonadaceae, Clostridiaceae, Ruminococcaceae, and Enterococcaceae. The relative abundance of microbial families varies as fermentation progresses. In both consortia, Clostridiaceae reached the maximum relative abundance in the media between 16 and 24 h, interval in which approximately 90% of the biohydrogen is generated.
Collapse
Affiliation(s)
- Walter José Martinez-Burgos
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Eduardo Bittencourt Sydney
- Federal University of Technology - Paraná, Department of Bioprocess Engineering and Biotechnology, 84016-210 Ponta Grossa, Paraná, Brazil
| | - Dieggo Rodrigues de Paula
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Adriane Bianchi Pedroni Medeiros
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Julio Cesar de Carvalho
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Vanete Thomaz Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Adenise Lorenci Woiciechowski
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil.
| |
Collapse
|
8
|
Optimization of Cattle Manure and Food Waste Co-Digestion for Biohydrogen Production in a Mesophilic Semi-Continuous Process. ENERGIES 2020. [DOI: 10.3390/en13153848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biohydrogen production from organic solid waste has shown particular advantages over other methods owing to the combination of waste reduction and bioenergy production. In this study, biohydrogen production from the co-digestion of cattle manure and food waste was optimized in a mesophilic semi-continuous process. To maximize hydrogen production, the effects of the mixing ratio (the proportion of food waste in the substrate), substrate concentration, and hydraulic retention time (HRT) on the co-digestion were systematically analyzed using a Box–Behnken design. The results showed that strong interactive effects existed between the three factors, and they had a direct effect on the responses. Hydrogen was primarily produced via the butyrate pathway, which was accompanied by the competing heterolactic fermentation pathway. Propionate and valerate produced from lipids and proteins, respectively, were obtained along with butyrate. The optimal process parameters included a mixing ratio of 47% to 51%, a substrate concentration of 76 to 86 g L−1, and an HRT of 2 d. Under these optimal conditions, the hydrogen production rate and hydrogen yield were higher than 1.00 L L−1 d−1 and 30.00 mL g−1 VS, respectively, and the predicted results were consistent with the experimental data. The results indicate that the co-digestion of cattle manure and food waste is a practical and economically promising approach for biohydrogen production.
Collapse
|
9
|
|
10
|
Effectiveness of fouling mechanism for bacterial immobilization in polyvinylidene fluoride membranes for biohydrogen fermentation. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2019.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Park JH, Sim YB, Kumar G, Anburajan P, Park JH, Park HD, Kim SH. Kinetic modeling and microbial community analysis for high-rate biohydrogen production using a dynamic membrane. BIORESOURCE TECHNOLOGY 2018; 262:59-64. [PMID: 29698838 DOI: 10.1016/j.biortech.2018.04.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the kinetic parameters of high-rate continuous performance and biofilm layer formation in a H2-producing dynamic membrane bioreactor, composed of a continuously stirred tank reactor along with an external module containing polyester mesh with a pore size of 100 µm. A maximum H2 production rate of 48.9 L/L-day and hydrogen yield of 2.8 mol/mol glucoseadded were attained at a hydraulic retention time of 3 h. The maximum specific growth rate and Monod constant were estimated as 14.92 d-1 and 1.02 g COD/L, respectively. During the entire operation without backwashing, the transmembrane pressure remained below 1.7 kPa, while tightly bound extracellular polymeric substances increased as the dynamic membrane was developed. Fluorescent in situ hybridization and quantitative polymerase chain reaction assays revealed that Clostridium butyricum was dominant in all samples; however, the biofilm had a higher proportion of Prevotella spp. than the fermentation liquor.
Collapse
Affiliation(s)
- Jong-Hun Park
- Department of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Young-Bo Sim
- School of Civil and Environmental Engineering, Yonsei University, Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Parthiban Anburajan
- School of Civil and Environmental Engineering, Yonsei University, Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeong-Hoon Park
- Department of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hee-Deung Park
- Department of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
12
|
Influence of support materials on continuous hydrogen production in anaerobic packed-bed reactor with immobilized hydrogen producing bacteria at acidic conditions. Enzyme Microb Technol 2018; 111:87-96. [DOI: 10.1016/j.enzmictec.2017.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 11/23/2022]
|
13
|
Vijayaraghavan K, Ahmad D, Samson M. Biohydrogen Generation from Beer Brewery Wastewater Using an Anaerobic Contact Filter. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2007-0208-01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Krishnan Vijayaraghavan
- Department of Biological and Agricultural Engineering, Faculty of Engineering, UPM, Selangor, Malaysia
| | - Desa Ahmad
- Department of Biological and Agricultural Engineering, Faculty of Engineering, UPM, Selangor, Malaysia
| | - Marylynn Samson
- Department of Biological and Agricultural Engineering, Faculty of Engineering, UPM, Selangor, Malaysia
| |
Collapse
|
14
|
Kumar G, Sivagurunathan P, Sen B, Kim SH, Lin CY. Mesophilic continuous fermentative hydrogen production from acid pretreated de-oiled jatropha waste hydrolysate using immobilized microorganisms. BIORESOURCE TECHNOLOGY 2017; 240:137-143. [PMID: 28343860 DOI: 10.1016/j.biortech.2017.03.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
Mesophilic hydrogen production from acid pretreated hydrolysate (biomass concentration of 100g/L and 2% hydrochloric acid) of de-oiled jatropha waste was carried out in continuous system using immobilized microorganisms at various hydraulic retention times (HRTs) ranging from 48 to 12h. The experimental results of the reusability of immobilized microorganisms showed their stability up to 10 cycles with an average cumulative hydrogen production of 770mL/L. The peak hydrogen production rate and hydrogen yield were 0.9L/L*d and 86mL/greducing sugars added, respectively at 16h HRT, with butyrate as the predominant volatile fatty acid. The microbial community analysis revealed that majority of the PCR-DGGE bands were assigned to genus Clostridium and were perhaps the key drivers of the higher hydrogen production.
Collapse
Affiliation(s)
- Gopalakrishnan Kumar
- Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Periyasamy Sivagurunathan
- Center for Materials Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Sang-Hyoun Kim
- Department of Environmental Engineering, Daegu University, Gyeongsan, Republic of Korea
| | - Chiu-Yue Lin
- Green Energy Development Center, Feng Chia University, Taichung 40724, Taiwan
| |
Collapse
|
15
|
Reddy K, Nasr M, Kumari S, Kumar S, Gupta SK, Enitan AM, Bux F. Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe 2+, and magnetite nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8790-8804. [PMID: 28213710 DOI: 10.1007/s11356-017-8560-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Batch dark fermentation experiments were conducted to investigate the effects of initial pH, substrate-to-biomass (S/X) ratio, and concentrations of Fe2+ and magnetite nanoparticles on biohydrogen production from sugarcane bagasse (SCB) hydrolysate. By applying the response surface methodology, the optimum condition of steam-acid hydrolysis was 0.64% (v/v) H2SO4 for 55.7 min, which obtained a sugar yield of 274 mg g-1. The maximum hydrogen yield (HY) of 0.874 mol (mol glucose-1) was detected at the optimum pH of 5.0 and S/X ratio of 0.5 g chemical oxygen demand (COD, g VSS-1). The addition of Fe2+ 200 mg L-1 and magnetite nanoparticles 200 mg L-1 to the inoculum enhanced the HY by 62.1% and 69.6%, respectively. The kinetics of hydrogen production was estimated by fitting the experimental data to the modified Gompertz model. The inhibitory effects of adding Fe2+ and magnetite nanoparticles to the fermentative hydrogen production were examined by applying Andrew's inhibition model. COD mass balance and full stoichiometric reactions, including soluble metabolic products, cell synthesis, and H2 production, indicated the reliability of the experimental results. A qPCR-based analysis was conducted to assess the microbial community structure using Enterobacteriaceae, Clostridium spp., and hydrogenase-specific gene activity. Results from the microbial analysis revealed the dominance of hydrogen producers in the inoculum immobilized on magnetite nanoparticles, followed by the inoculum supplemented with Fe2+ concentration. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Karen Reddy
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | - Santhosh Kumar
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, 4000, South Africa
| | - Sanjay Kumar Gupta
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | - Abimbola Motunrayo Enitan
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa.
| |
Collapse
|
16
|
Yun JH, Cho KS. Effect of hydraulic retention time on suppression of methanogens during a continuous biohydrogen production process using molasses wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:37-44. [PMID: 27610651 DOI: 10.1080/10934529.2016.1221221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study was undertaken to investigate the reduction of the hydraulic retention time (HRT) to decrease methane generation and recover hydrogen production during the long-term operation of biohydrogen production in a continuous stirred tank reactor (CSTR) using molasses wastewater. Reduction of HRT can be a simple and economic method to immediately control unfavorable methane generated during continuous operation of a hydrogen production system. The steady-state performance of the CSTR showed a hydrogen content of 41.3 ± 3.30% and a hydrogen production rate (HPR) of 63.7 ± 10.01 mmol-H2L-1d-1 under an organic loading rate (OLR) of 29.7 g CODL-1 at an HRT of 24 h. Increase in the methane level above 40% during long-term operation caused decrease in the hydrogen content and HPR to 5.9 ± 1.6% and 2.1 ± 1.1 mmoL-H2L-1d-1, respectively. When methane increased to a high level over 40%, the CSTR at the HRT of 24 h was operated at the HRT of 12 h. Reduction of the HRT from 24 to 12 h led to decrease in the methane content of 12.1 ± 4.44% and recovery of the HPR value to 48.9 ± 15.37 mmol-H2L-1d-1 over a duration of 13-22 d. When methane is generated in a continuously operated reactor, reduction of the HRT can be an easy way to suppress methanogens and recover hydrogen production without any additives or extra treatments.
Collapse
Affiliation(s)
- Jeong Hee Yun
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , South Korea
| | - Kyung-Suk Cho
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , South Korea
| |
Collapse
|
17
|
Dams RI, Guilherme AA, Vale MS, Nunes VF, Leitão RC, Santaella ST. Fermentation of residual glycerol by Clostridium acetobutylicum ATCC 824 in pure and mixed cultures. ENVIRONMENTAL TECHNOLOGY 2016; 37:2984-2992. [PMID: 27230401 DOI: 10.1080/09593330.2016.1173114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of this research was to estimate the production of hydrogen, organic acids and alcohols by the strain of Clostridium acetobutylicum ATCC 824 using residual glycerol as a carbon source. The experiments were carried out in pure and mixed cultures in batch experiments. Three different sources of inocula for mixed culture were used. Ruminal liquid from goats and sludge collected from two upflow anaerobic sludge blanket reactors treating municipal wastewater and brewery effluent were tested for hydrogen, organic acids and alcohols production with or without C. acetobutylicum ATCC 824. The main detected end-products from the glycerol fermentation were hydrogen, organic acids (acetic, propionic, butyric and caproic) and alcohol (ethanol and 1,3-propanediol - 1,3PD). High hydrogen (0.44 mol H2/mol glycerol consumed) and 1,3PD (0.32 mol 1,3PD/mol glycerol consumed) yields were obtained when the strain C. acetobutylicum ATCC 824 was bioaugmented into the sludge from municipal wastewater using 5 g/L of glycerol. Significant concentrations of n-caproic acid were detected in the ruminal liquid when amended with C. acetobutylicum ATCC 824. The results suggest that glycerol can be used for the generation of H2, 1,3PD and n-caproic acid using C. acetobutylicum ATCC 824 as agent in pure or mixed cultures.
Collapse
Affiliation(s)
- Rosemeri I Dams
- a Brazilian Agricultural Research Corporation , Embrapa Tropical Agroindustry , Fortaleza , Brazil
| | - Alexandre A Guilherme
- a Brazilian Agricultural Research Corporation , Embrapa Tropical Agroindustry , Fortaleza , Brazil
| | - Maria S Vale
- b Institute of Marine Science, Federal University of Ceará , Fortaleza , Brazil
| | - Vanja F Nunes
- a Brazilian Agricultural Research Corporation , Embrapa Tropical Agroindustry , Fortaleza , Brazil
| | - Renato C Leitão
- a Brazilian Agricultural Research Corporation , Embrapa Tropical Agroindustry , Fortaleza , Brazil
| | - Sandra T Santaella
- b Institute of Marine Science, Federal University of Ceará , Fortaleza , Brazil
| |
Collapse
|
18
|
Tomar S, Gupta SK. Investigating the role of co-substrate–substrate ratio and filter media on the performance of anammox hybrid reactor treating nitrogen rich wastewater. J Biosci Bioeng 2016; 121:310-6. [DOI: 10.1016/j.jbiosc.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/02/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
|
19
|
Kumar G, Sivagurunathan P, Chen CC, Lin CY. Batch and continuous biogenic hydrogen fermentation of acid pretreated de-oiled jatropha waste (DJW) hydrolysate. RSC Adv 2016. [DOI: 10.1039/c6ra05628h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In an attempt to tailor the efficient hydrogen fermentation from hydrochloric acid-pretreated hydrolysate of de-oiled jatropha waste (DJW), batch tests were conducted to find the optimal hydrolysate concentration, temperature and pH.
Collapse
Affiliation(s)
- Gopalakrishnan Kumar
- Sustainable Management of Natural Resources and Environment Research Group
- Faculty of Environmental and Labour Safety
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
| | - Periysamy Sivagurunathan
- Department of Environmental Engineering and Science
- Feng Chia University
- Taichung 40724
- Republic of China
- Center for Materials Cycles and Waste Management Research
| | - Chin-Chao Chen
- Environmental Resources Laboratory
- Department of Landscape Architecture
- Chungchou Institute of Technology
- Changhwa 51022
- Republic of China
| | - Chiu-Yue Lin
- Department of Environmental Engineering and Science
- Feng Chia University
- Taichung 40724
- Republic of China
- Green Energy Development Center
| |
Collapse
|
20
|
Kumar A, Gautam A, Dutt D. Biotechnological Transformation of Lignocellulosic Biomass in to Industrial Products: An Overview. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/abb.2016.73014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Gomes SD, Fuess LT, Penteado ED, Lucas SDM, Gotardo JT, Zaiat M. The application of an innovative continuous multiple tube reactor as a strategy to control the specific organic loading rate for biohydrogen production by dark fermentation. BIORESOURCE TECHNOLOGY 2015; 197:201-7. [PMID: 26340028 DOI: 10.1016/j.biortech.2015.08.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 05/21/2023]
Abstract
Biohydrogen production in fixed-bed reactors often leads to unstable and decreasing patterns because the excessive accumulation of biomass in the bed negatively affects the specific organic loading rate (SOLR) applied to the reactor. In this context, an innovative reactor configuration, i.e., the continuous multiple tube reactor (CMTR), was assessed in an attempt to better control the SOLR for biohydrogen production. The CMTR provides a continuous discharge of biomass, preventing the accumulation of solids in the long-term. Sucrose was used as the carbon source and mesophilic temperature conditions (25°C) were applied in three continuous assays. The reactor showed better performance when support material was placed in the outlet chamber to enhance biomass retention within the reactor. Although the SOLR could not be effectively controlled, reaching values usually higher than 10gsucroseg(-1)VSSd(-1), the volumetric hydrogen production and molar hydrogen production rates peaked, respectively, at 1470mLH2L(-1)d(-1) and 45mmolH2d(-1), indicating that the CMTR was a suitable configuration for biohydrogen production.
Collapse
Affiliation(s)
- Simone D Gomes
- Center of Exact and Technological Sciences, State University of West Paraná (UNIOESTE), 2069 Universitária Street, 85819-210 Cascavel, PR, Brazil; Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| | - Lucas T Fuess
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil.
| | - Eduardo D Penteado
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| | - Shaiane D M Lucas
- Center of Exact and Technological Sciences, State University of West Paraná (UNIOESTE), 2069 Universitária Street, 85819-210 Cascavel, PR, Brazil
| | - Jackeline T Gotardo
- Center of Exact and Technological Sciences, State University of West Paraná (UNIOESTE), 2069 Universitária Street, 85819-210 Cascavel, PR, Brazil
| | - Marcelo Zaiat
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| |
Collapse
|
22
|
Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability. ENERGIES 2015. [DOI: 10.3390/en81112357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Gupta M, Gomez-Flores M, Nasr N, Elbeshbishy E, Hafez H, Hesham El Naggar M, Nakhla G. Performance of mesophilic biohydrogen-producing cultures at thermophilic conditions. BIORESOURCE TECHNOLOGY 2015; 192:741-7. [PMID: 26101964 DOI: 10.1016/j.biortech.2015.06.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 05/25/2023]
Abstract
In this study, batch tests were conducted to investigate the performance of mesophilic anaerobic digester sludge (ADS) at thermophilic conditions and estimate kinetic parameters for co-substrate fermentation. Starch and cellulose were used as mono-substrate and in combination as co-substrates (1:1 mass ratio) to conduct a comparative assessment between mesophilic (37 °C) and thermophilic (60 °C) biohydrogen production. Unacclimatized mesophilic ADS responded well to the temperature change. The highest hydrogen yield of 1.13 mol H2/mol hexose was observed in starch-only batches at thermophilic conditions. The thermophilic cellulose-only yield (0.42 mol H2/mol hexose) was three times the mesophilic yield (0.13 mol H2/mol hexose). Interestingly, co-fermentation of starch-cellulose at mesophilic conditions enhanced the hydrogen yield by 26% with respect to estimated mono-substrate yields, while under thermophilic conditions no enhancement in the overall yield was observed. Interestingly, the estimated overall Monod kinetic parameters showed higher rates at mesophilic than thermophilic conditions.
Collapse
Affiliation(s)
- Medhavi Gupta
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Maritza Gomez-Flores
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Noha Nasr
- Department of Civil and Environmental Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Elsayed Elbeshbishy
- Department of Civil and Environmental Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Hisham Hafez
- Department of Civil and Environmental Engineering, Western University, London, Ontario N6A 5B9, Canada; GreenField Ethanol Inc., Chatham, Ontario N7M 5J4, Canada
| | - M Hesham El Naggar
- Department of Civil and Environmental Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - George Nakhla
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada; Department of Civil and Environmental Engineering, Western University, London, Ontario N6A 5B9, Canada.
| |
Collapse
|
24
|
Yun J, Kim TG, Cho KS. Suppression of methanogenesis in hydrogen fermentation by intermittent feeding. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:1458-1467. [PMID: 26325509 DOI: 10.1080/10934529.2015.1074480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study investigated whether intermittent feeding by using a concentrated carbon source is an appropriate method for selective enrichment of hydrogenesis by means of methanogen suppression. In a conventional reactor fed continuously for 10 d, methanogens increased from 2.8 × 10(7) to 1.1 × 10(9) gene copy number (GCN)/mg-cell dry weight, and methane concentration in the resulting biogas was 5.8%. However, when a carbon source was intermittently supplied for 10 d to the reactor, the number of methanogens was reduced 98.9% from 2.77 × 10(7) to 1.2 × 10(3) GCN/mg-cell dry weight, and methane was not detected during this period of intermittent feeding. Intermittent feeding shifted the dominants in the reactor from Clostridiaceae (70.5%) and Lactobacillaceae (11.0%) to Acetobacteraceae (62.0%) and Clostridiaceae (38.0%). In the reactor operated in continuous feeding mode after intermittent feeding, methane concentration was below 0.3% and the portion of methanogens in the bacterial community was maintained below 0.2%. These results suggest that the intermittent feeding of a carbon source during hydrogen production processes is a suitable method to suppress the activity of methanogens.
Collapse
Affiliation(s)
- Jeonghee Yun
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , South Korea
| | - Tae Gwan Kim
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , South Korea
| | - Kyung-Suk Cho
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , South Korea
| |
Collapse
|
25
|
A new mathematical model for nitrogen gas production with special emphasis on the role of attached growth media in anammox hybrid reactor. Appl Microbiol Biotechnol 2015; 99:9245-54. [DOI: 10.1007/s00253-015-6793-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
|
26
|
Mohammadi P, Ibrahim S, Mohamad Annuar MS. High-rate fermentative hydrogen production from palm oil mill effluent in an up-flow anaerobic sludge blanket-fixed film reactor. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2014.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Amorim NCS, Alves I, Martins JS, Amorim ELC. Biohydrogen production from cassava wastewater in an anaerobic fluidized bed reactor. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2014. [DOI: 10.1590/0104-6632.20140313s00002458] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
| | - I. Alves
- Federal University of Alagoas, Brazil
| | | | | |
Collapse
|
28
|
Ruiz V, Ilhan ZE, Kang DW, Krajmalnik-Brown R, Buitrón G. The source of inoculum plays a defining role in the development of MEC microbial consortia fed with acetic and propionic acid mixtures. J Biotechnol 2014; 182-183:11-8. [DOI: 10.1016/j.jbiotec.2014.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/18/2014] [Accepted: 04/23/2014] [Indexed: 01/13/2023]
|
29
|
Ferraz ADN, Zaiat M, Gupta M, Elbeshbishy E, Hafez H, Nakhla G. Impact of organic loading rate on biohydrogen production in an up-flow anaerobic packed bed reactor (UAnPBR). BIORESOURCE TECHNOLOGY 2014; 164:371-379. [PMID: 24865326 DOI: 10.1016/j.biortech.2014.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/02/2014] [Accepted: 05/04/2014] [Indexed: 06/03/2023]
Abstract
This study assesses the impact of organic loading rate on biohydrogen production from glucose in an up-flow anaerobic packed bed reactor (UAnPBR). Two mesophilic UAPBRs (UAnPBR1 and 2) were tested at organic loading rates (OLRs) ranging from 6.5 to 51.4 g COD L(-1)d(-1). To overcome biomass washout, design modifications were made in the UAnPBR2 to include a settling zone to capture the detached biomass. The design modifications in UAnPBR2 increased the average hydrogen yield from 0.98 to 2.0 mol-H2 mol(-1)-glucose at an OLR of 25.7 g COD L(-1)d(-1). Although, a maximum hydrogen production rate of 23.4 ± 0.9 L H2 L(-1)d(-1) was achieved in the UAnPBR2 at an OLR of 51.4 g COD L(-1)d(-1), the hydrogen yield dropped by 50% to around 1 mol-H2 mol(-1)-glucose. The microbiological analysis (PCR/DGGE) showed that the biohydrogen production was due to the presence of the hydrogen and volatile acid producers such as Clostridium beijerinckii, Clostridium butyricum, Megasphaera elsdenii and Propionispira arboris.
Collapse
Affiliation(s)
- Antônio Djalma Nunes Ferraz
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, Av. João Dagnone, 1100, Santa Angelina, 13563-120 São Carlos, SP, Brazil; Dept. of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Marcelo Zaiat
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, Av. João Dagnone, 1100, Santa Angelina, 13563-120 São Carlos, SP, Brazil
| | - Medhavi Gupta
- Dept. of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Elsayed Elbeshbishy
- Dept. Civil and Environmental Engineering, University of Waterloo, London, Ontario N2L 3G1, Canada.
| | - Hisham Hafez
- Greenfield Ethanol, 540 Park Avenue East, Chatham, Ontario N7M 5J4, Canada
| | - George Nakhla
- Dept. of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
30
|
Mu Y, Yang HY, Wang YZ, He CS, Zhao QB, Wang Y, Yu HQ. The maximum specific hydrogen-producing activity of anaerobic mixed cultures: definition and determination. Sci Rep 2014; 4:5239. [PMID: 24912488 PMCID: PMC4050381 DOI: 10.1038/srep05239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/21/2014] [Indexed: 11/29/2022] Open
Abstract
Fermentative hydrogen production from wastes has many advantages compared to various chemical methods. Methodology for characterizing the hydrogen-producing activity of anaerobic mixed cultures is essential for monitoring reactor operation in fermentative hydrogen production, however there is lack of such kind of standardized methodologies. In the present study, a new index, i.e., the maximum specific hydrogen-producing activity (SHAm) of anaerobic mixed cultures, was proposed, and consequently a reliable and simple method, named SHAm test, was developed to determine it. Furthermore, the influences of various parameters on the SHAm value determination of anaerobic mixed cultures were evaluated. Additionally, this SHAm assay was tested for different types of substrates and bacterial inocula. Our results demonstrate that this novel SHAm assay was a rapid, accurate and simple methodology for determining the hydrogen-producing activity of anaerobic mixed cultures. Thus, application of this approach is beneficial to establishing a stable anaerobic hydrogen-producing system.
Collapse
Affiliation(s)
- Yang Mu
- Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Hou-Yun Yang
- Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Ya-Zhou Wang
- Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Chuan-Shu He
- Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Quan-Bao Zhao
- Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Yi Wang
- Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| |
Collapse
|
31
|
Wang AJ, Cao GL, Liu WZ. Biohydrogen production from anaerobic fermentation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 128:143-63. [PMID: 22089826 DOI: 10.1007/10_2011_123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Significant progress has been achieved in China for biohydrogen production from organic wastes, particularly wastewater and agricultural residues, which are abundantly available in China. This progress is reviewed with a focus on hydrogen-producing bacteria, fermentation processes, and bioreactor configurations. Although dark fermentation is more efficient for hydrogen production, by-products generated during the fermentation not only compromise hydrogen production yield but also inhibit the bacteria. Two strategies, combination of dark fermentation and photofermentation and coupling of dark fermentation with a microbial electrolysis cell, are expected to address this issue and improve hydrogen production as well as substrate utilization, which are also discussed. Finally, challenges and perspectives for biohydrogen production are highlighted.
Collapse
Affiliation(s)
- Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China,
| | | | | |
Collapse
|
32
|
Romano S, Paganin P, Varrone C, Tabacchioni S, Chiarini L. Dynamics of hydrogen-producing bacteria in a repeated batch fermentation process using lake sediment as inoculum. Arch Microbiol 2013; 196:97-107. [DOI: 10.1007/s00203-013-0947-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 11/28/2022]
|
33
|
Frascari D, Cappelletti M, Mendes JDS, Alberini A, Scimonelli F, Manfreda C, Longanesi L, Zannoni D, Pinelli D, Fedi S. A kinetic study of biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of Thermotoga neapolitana. BIORESOURCE TECHNOLOGY 2013; 147:553-561. [PMID: 24013293 DOI: 10.1016/j.biortech.2013.08.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/22/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
Batch tests of H2 production from glucose, molasses and cheese whey by suspended and immobilized cells of Thermotoga neapolitana were conducted to develop a kinetic model of the process. H2 production was inhibited by neither H2 (up to 0.7 mg L(-1)) nor O2 (up to 0.2 mg L(-1)). The H2 specific rates obtained at different substrate concentrations were successfully interpolated with Andrew's inhibition model. With glucose and molasses, biofilms performed better than suspended cells. The suspended-cell process was successfully scaled-up to a 19-L bioreactor. Assays co-fed with molasses and cheese whey led to higher H2 productivities and H2/substrate yields than the single-substrate tests. The simulation of the suspended-cell continuous-flow process indicated the potential attainment of H2 productivities higher than those of the batch tests (up to 3.6 mmol H2 h(-1) L(-1) for molasses and 0.67 mmol H2 h(-1) L(-1) for cheese whey) and allowed the identification of the optimal dilution rate.
Collapse
Affiliation(s)
- Dario Frascari
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, Bologna, Italy.
| | - Martina Cappelletti
- Department of Pharmacy and BioTechnology, University of Bologna, Via Irnerio 42, Bologna, Italy
| | - Jocelia De Sousa Mendes
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, Bologna, Italy
| | - Andrea Alberini
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, Bologna, Italy
| | - Francesco Scimonelli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, Bologna, Italy
| | - Chiara Manfreda
- Department of Pharmacy and BioTechnology, University of Bologna, Via Irnerio 42, Bologna, Italy
| | - Luca Longanesi
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and BioTechnology, University of Bologna, Via Irnerio 42, Bologna, Italy
| | - Davide Pinelli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, Bologna, Italy
| | - Stefano Fedi
- Department of Pharmacy and BioTechnology, University of Bologna, Via Irnerio 42, Bologna, Italy
| |
Collapse
|
34
|
Robledo-Narváez PN, Muñoz-Páez KM, Poggi-Varaldo HM, Ríos-Leal E, Calva-Calva G, Ortega-Clemente LA, Rinderknecht-Seijas N, Estrada-Vázquez C, Ponce-Noyola MT, Salazar-Montoya JA. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 128:126-137. [PMID: 23732191 DOI: 10.1016/j.jenvman.2013.04.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 04/04/2013] [Accepted: 04/17/2013] [Indexed: 06/02/2023]
Abstract
Hydrogen is a valuable clean energy source, and its production by biological processes is attractive and environmentally sound and friendly. In México 5 million tons/yr of agroindustrial wastes are generated; these residues are rich in fermentable organic matter that can be used for hydrogen production. On the other hand, batch, intermittently vented, solid substrate fermentation of organic waste has attracted interest in the last 10 years. Thus the objective of our work was to determine the effect of initial total solids content and initial pH on H2 production in batch fermentation of a substrate that consisted of a mixture of sugarcane bagasse, pineapple peelings, and waste activated sludge. The experiment was a response surface based on 2(2) factorial with central and axial points with initial TS (15-35%) and initial pH (6.5-7.5) as factors. Fermentation was carried out at 35 °C, with intermittent venting of minireactors and periodic flushing with inert N2 gas. Up to 5 cycles of H2 production were observed; the best treatment in our work showed cumulative H2 productions (ca. 3 mmol H2/gds) with 18% and 6.65 initial TS and pH, respectively. There was a significant effect of TS on production of hydrogen, the latter decreased with initial TS increase from 18% onwards. Cumulative H2 productions achieved in this work were higher than those reported for organic fraction of municipal solid waste (OFMSW) and mixtures of OFMSW and fruit peels waste from fruit juice industry, using the same process. Specific energetic potential due to H2 in our work was attractive and fell in the high side of the range of reported results in the open literature. Batch dark fermentation of agrowastes as practiced in our work could be useful for future biorefineries that generate biohydrogen as a first step and could influence the management of this type of agricultural wastes in México and other countries and regions as well.
Collapse
Affiliation(s)
- Paula N Robledo-Narváez
- Dept. of Biotechnology and Bioengineering, Environmental Biotechnology and Renewable Energies R and D Group, Centro de Investigación y de Estudios Avanzados del I.P.N., México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Faloye F, Gueguim Kana E, Schmidt S. Optimization of hybrid inoculum development techniques for biohydrogen production and preliminary scale up. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2013; 38:11765-11773. [DOI: 10.1016/j.ijhydene.2013.06.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
|
36
|
Biohydrogen Production Based on the Evaluation of Kinetic Parameters of a Mixed Microbial Culture Using Glucose and Fruit–Vegetable Waste as Feedstocks. Appl Biochem Biotechnol 2013; 171:279-93. [DOI: 10.1007/s12010-013-0341-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/17/2013] [Indexed: 11/27/2022]
|
37
|
Effect of Heat Pretreated Consortia on Fermentative Biohydrogen Production from Vegetable Waste. NATIONAL ACADEMY SCIENCE LETTERS-INDIA 2013. [DOI: 10.1007/s40009-013-0124-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Wu X, Zhu J, Miller C. Kinetics study of fermentative hydrogen production from liquid swine manure supplemented with glucose under controlled pH. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2013; 48:477-485. [PMID: 23452213 DOI: 10.1080/03601234.2013.761907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Kinetics of H2 production from liquid swine manure supplemented with glucose by mixed anaerobic cultures was investigated using batch experiments under four different pH conditions (4.4, 5.0, 5.6, and uncontrolled). The temperature for the experiments was controlled at 37 ± 1°C and the length of experiments varied between 50 and 120 hours, depending upon the time needed for completion of each individual experiment. The modified Gompertz model was evaluated for its suitability for describing the H2 production potential, H2 production rate, and substrate consumption rate for all the experiments. The results showed that the Gompertz model could adequately fit the experimental results. The effect of pH was significant on all kinetic parameters for H2 production including yield, production rate and lag time, and the substrate utilization rate. The optimal pH was found to be 5.0, at which a maximum H2 production rate (0.64 L H2/h) was obtained, and deviation from the optimal pH could result in substantial reductions in H2 production rate (0.32 L H2/h for pH 4.0 and 0.43 L H2/h for pH 5.6). The results also showed that if pH was not controlled for the batch fermentation process, the substrate utilization efficiency could steeply decrease from 98.8% to 33.7%.
Collapse
Affiliation(s)
- Xiao Wu
- Southern Research and Outreach Center, University of Minnesota, Waseca, Minnesota, USA
| | | | | |
Collapse
|
39
|
Villano M, Aulenta F, Majone M. Perspectives of biofuels production from renewable resources with bioelectrochemical systems. ASIA-PAC J CHEM ENG 2012. [DOI: 10.1002/apj.1643] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marianna Villano
- Department of Chemistry; Sapienza University of Rome; P.le Aldo Moro 5; 00185; Rome; Italy
| | - Federico Aulenta
- Water Research Institute (IRSA-CNR), National Research Council; Via Salaria km. 29.300; 00015; Monterotondo (RM); Italy
| | - Mauro Majone
- Department of Chemistry; Sapienza University of Rome; P.le Aldo Moro 5; 00185; Rome; Italy
| |
Collapse
|
40
|
de Amorim ELC, Sader LT, Silva EL. Effect of Substrate Concentration on Dark Fermentation Hydrogen Production Using an Anaerobic Fluidized Bed Reactor. Appl Biochem Biotechnol 2012; 166:1248-63. [DOI: 10.1007/s12010-011-9511-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
|
41
|
Abd-Alla MH, Morsy FM, El-Enany AWE. Hydrogen production from rotten dates by sequential three stages fermentation. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2011; 36:13518-13527. [DOI: 10.1016/j.ijhydene.2011.07.098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
42
|
Chu CY, Wu SY, Wu YC, Lin CY. Hydrodynamic behaviors in fermentative hydrogen bioreactors by pressure fluctuation analysis. BIORESOURCE TECHNOLOGY 2011; 102:8669-8675. [PMID: 21435862 DOI: 10.1016/j.biortech.2011.02.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 05/30/2023]
Abstract
Three bioreactor configurations were employed in these investigations, which consisted of working volumes of 10, 1.2 and 1.2L. Power spectrum diagrams of bed pressure fluctuation were used with hydraulic retention times (HRT) and geometric factors to identify the flow regimes in the bioreactors, where HRT varied from 8 to 1h. It was found that the flow regimes in the bioreactors changed from a dispersed regime to coalesced and slugging regimes, when the biogas production rate (BPR) increased, as a result of decreasing the operating HRT. The flow regime was a dispersed bubble regime when the HRT was higher than 4h in the bioreactor, whereas when the HRT was 2h the coalesced bubble phenomena occurred in the bioreactor. A slugging regime was found when the HRT was lower than 1h in thinner bioreactor.
Collapse
Affiliation(s)
- Chen Y Chu
- Green Energy Development Center, Feng Chia University, Taichung 40724, Taiwan
| | | | | | | |
Collapse
|
43
|
Zhao X, Xing D, Fu N, Liu B, Ren N. Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108. BIORESOURCE TECHNOLOGY 2011; 102:8432-8436. [PMID: 21421301 DOI: 10.1016/j.biortech.2011.02.086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/19/2011] [Accepted: 02/21/2011] [Indexed: 05/30/2023]
Abstract
A fermentative hydrogen-producing strain, RZF-1108, was isolated from a biohydrogen reactor, and identified as Clostridium beijerinckii on the basis of the 16S rRNA gene analysis and physiobiochemical characteristics. The effects of culture conditions on hydrogen production by C. beijerinckii RZF-1108 were investigated in batch cultures. The hydrogen production and growth of strain RZF-1108 were highly dependent on temperature, initial pH and substrate concentration. Yeast extract was a favorable nitrogen source for hydrogen production and growth of RZF-1108. Hydrogen production corresponded to cell biomass yield in different culture conditions. The maximum hydrogen evolution, yield and production rate of 2209ml H2/l medium, 1.97 mol H2/mol glucose and 104.20 ml H2/g CDWh(-1) were obtained at 9 g/l of glucose, initial pH of 7.0, inoculum volume of 8% and temperature of 35 °C, respectively. These results demonstrate that C. beijerinckii can efficiently produce H2, and is another model microorganism for biohydrogen investigations.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | | | | | | | | |
Collapse
|
44
|
Vijayaraghavan K, Sagar GK. Anaerobic digestion and in situ electrohydrolysis of dairy bio-sludge. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-0220-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Moreno-Dav IM, Rios-Gonza LJ, Gaona-Loza JG, Garza-Garc Y, Rodriguez- JA, Rodriguez- J. Biohydrogen Production by Anaerobic Biofilms from a Pretreated Mixed Microflora. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/rjasci.2010.376.382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Brentner LB, Peccia J, Zimmerman JB. Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:2243-54. [PMID: 20222726 DOI: 10.1021/es9030613] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The U.S. Department of Energy's Hydrogen Program aims to develop hydrogen as an energy carrier to decrease emissions of greenhouse gases and other air pollutants and reduce the use of fossil fuels. However, current hydrogen production technologies are not sustainable as they rely heavily on fossil fuels, either directly or indirectly through electricity generation. Production of hydrogen by microorganisms, biohydrogen, has potential as a renewable alternative to current technologies. The state-of-the-art for four different biohydrogen production mechanisms is reviewed, including biophotolysis, indirect biophotolysis, photofermentation, and dark fermentation. Future research challenges are outlined for bioreactor design, optimization of bioreactor conditions, and metabolic engineering. Development of biohydrogen technologies is still in the early stages, although some fermentation systems have demonstrated efficiencies reasonable for implementation. To enhance the likelihood of biohydrogen as a feasible system to meet future hydrogen demands sustainably, directed investment in a strategic research agenda will be necessary.
Collapse
Affiliation(s)
- Laura B Brentner
- Environmental Engineering Program and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA.
| | | | | |
Collapse
|
47
|
Liang DW, Shayegan SS, Ng WJ, He J. Development and characteristics of rapidly formed hydrogen-producing granules in an acidic anaerobic sequencing batch reactor (AnSBR). Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
|
49
|
Lee HS, Rittmann BE. Evaluation of metabolism using stoichiometry in fermentative biohydrogen. Biotechnol Bioeng 2009; 102:749-58. [PMID: 18828179 DOI: 10.1002/bit.22107] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We first constructed full stoichiometry, including cell synthesis, for glucose mixed-acid fermentation at different initial substrate concentrations (0.8-6 g-glucose/L) and pH conditions (final pH 4.0-8.6), based on experimentally determined electron-equivalent balances. The fermentative bioH2 reactions had good electron closure (-9.8 to +12.7% for variations in glucose concentration and -3 to +2% for variations in pH), and C, H, and O errors were below 1%. From the stoichiometry, we computed the ATP yield based on known fermentation pathways. Glucose-variation tests (final pH 4.2-5.1) gave a consistent fermentation pattern of acetate + butyrate + large H2, while pH significantly shifted the catabolic pattern: acetate + butyrate + large H2 at final pH 4.0, acetate + ethanol + modest H2 at final pH 6.8, and acetate + lactate + trivial H2 at final pH 8.6. When lactate or propionate was a dominant soluble end product, the H2 yield was very low, which is in agreement with the theory that reduced ferredoxin (Fd(red)) formation is required for proton reduction to H2. Also consistent with this hypothesis is that high H2 production correlated with a high ratio of butyrate to acetate. Biomass was not a dominant sink for electron equivalents in H2 formation, but became significant (12%) for the lowest glucose concentration (i.e., the most oligotrophic condition). The fermenting bacteria conserved energy similarly at approximately 3 mol ATP/mol glucose (except 0.8 g-glucose/L, which had approximately 3.5 mol ATP/mol glucose) over a wide range of H2 production. The observed biomass yield did not correlate with ATP conservation; low observed biomass yields probably were caused by accelerated rates of decay or production of soluble microbial products.
Collapse
Affiliation(s)
- Hyung-Sool Lee
- Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, 1001 S. McAllister Ave., Tempe, Arizona 85287-5701, USA.
| | | |
Collapse
|
50
|
Lin CN, Wu SY, Chang JS, Chang JS. Biohydrogen production in a three-phase fluidized bed bioreactor using sewage sludge immobilized by ethylene-vinyl acetate copolymer. BIORESOURCE TECHNOLOGY 2009; 100:3298-3301. [PMID: 19318247 DOI: 10.1016/j.biortech.2009.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 05/27/2023]
Abstract
Ethylene-vinyl acetate (EVA) copolymer was used to immobilize H(2)-producing sewage sludge for H(2) production in a three-phase fluidized bed reactor (FBR). The FBR with an immobilized cell packing ratio of 10% (v/v) and a liquid recycle rate of 5l/min (23% bed expansion) was optimal for dark H(2) fermentation. The performance of the FBR reactor fed with sucrose-based synthetic medium was examined under various sucrose concentration (C(so)) and hydraulic retention time (HRT). The best volumetric H(2) production rate of 1.80+/-0.02 H(2) l/h/l occurred at C(so)=40 g COD/l and 2h HRT, while the optimal H(2) yield (4.26+/-0.04 mol H(2)/mol sucrose) was obtained at C(so)=20 g COD/l and 6h HRT. The H(2) content in the biogas was stably maintained at 40% or above. The primary soluble metabolites were butyric acid and acetic acid, as both products together accounted for 74-83% of total soluble microbial products formed during dark H(2) fermentation.
Collapse
Affiliation(s)
- Chi-Neng Lin
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | | | | | | |
Collapse
|