1
|
Salerno S, Viviano M, Baglini E, Poggetti V, Giorgini D, Castagnoli J, Barresi E, Castellano S, Da Settimo F, Taliani S. TSPO Radioligands for Neuroinflammation: An Overview. Molecules 2024; 29:4212. [PMID: 39275061 PMCID: PMC11397380 DOI: 10.3390/molecules29174212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
The translocator protein (TSPO) is predominately localized on the outer mitochondrial membrane in steroidogenic cells. In the brain, TSPO expression, low under normal conditions, results upregulated in response to glial cell activation, that occurs in neuroinflammation. As a consequence, TSPO has been extensively studied as a biomarker of such conditions by means of TSPO-targeted radiotracers. Although [11C]-PK11195, the prototypical TSPO radioligand, is still widely used for in vivo studies, it is endowed with severe limitations, mainly low sensitivity and poor amenability to quantification. Consequently, several efforts have been focused on the design of new radiotracers for the in vivo imaging of TSPO. The present review will provide an outlook on the latest advances in TSPO radioligands for neuroinflammation imaging. The final goal is to pave the way for (radio)chemists in the future design and development of novel effective and sensitive radiopharmaceuticals targeting TSPO.
Collapse
Affiliation(s)
- Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Monica Viviano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Doralice Giorgini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Jacopo Castagnoli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| |
Collapse
|
2
|
Viviano M, Barresi E, Siméon FG, Costa B, Taliani S, Da Settimo F, Pike VW, Castellano S. Essential Principles and Recent Progress in the Development of TSPO PET Ligands for Neuroinflammation Imaging. Curr Med Chem 2022; 29:4862-4890. [PMID: 35352645 PMCID: PMC10080361 DOI: 10.2174/0929867329666220329204054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The translocator protein 18kDa (TSPO) is expressed in the outer mitochondrial membrane and is implicated in several functions, including cholesterol transport and steroidogenesis. Under normal physiological conditions, TSPO is present in very low concentrations in the human brain but is markedly upregulated in response to brain injury and inflammation. This upregulation is strongly associated with activated microglia. Therefore, TSPO is particularly suited for assessing active gliosis associated with brain lesions following injury or disease. For over three decades, TSPO has been studied as a biomarker. Numerous radioligands for positron emission tomography (PET) that target TSPO have been developed for imaging inflammatory progression in the brain. Although [11C]PK11195, the prototypical first-generation PET radioligand, is still widely used for in vivo studies, mainly now as its single more potent R-enantiomer, it has severe limitations, including low sensitivity and poor amenability to quantification. Second-generation radioligands are characterized by higher TSPO specific signals but suffer from other drawbacks, such as sensitivity to the TSPO single nucleotide polymorphism (SNP) rs6971. Therefore, their applications in human studies have the burden of needing to genotype subjects. Consequently, recent efforts are focused on developing improved radioligands that combine the optimal features of the second generation with the ability to overcome the differences in binding affinities across the population. This review presents essential principles in the design and development of TSPO PET ligands and discusses prominent examples among the main chemotypes.
Collapse
Affiliation(s)
- Monica Viviano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | | | - Fabrice G. Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| |
Collapse
|
3
|
Singh P, Adhikari A, Singh D, Gond C, Tiwari AK. The 18-kDa Translocator Protein PET Tracers as a Diagnostic Marker for Neuroinflammation: Development and Current Standing. ACS OMEGA 2022; 7:14412-14429. [PMID: 35557664 PMCID: PMC9089361 DOI: 10.1021/acsomega.2c00588] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 05/13/2023]
Abstract
Translocator protein (TSPO, 18 kDa) is an evolutionary, well-preserved, and tryptophan-rich 169-amino-acid protein which localizes on the contact sites between the outer and inner mitochondrial membranes of steroid-synthesizing cells. This mitochondrial protein is implicated in an extensive range of cellular activities, including steroid synthesis, cholesterol transport, apoptosis, mitochondrial respiration, and cell proliferation. The upregulation of TSPO is well documented in diverse disease conditions including neuroinflammation, cancer, brain injury, and inflammation in peripheral organs. On the basis of these outcomes, TSPO has been assumed to be a fascinating subcellular target for early stage imaging of the diseased state and for therapeutic purposes. The main outline of this Review is to give an update on dealing with the advances made in TSPO PET tracers for neuroinflammation, synchronously emphasizing the approaches applied for the design and advancement of new tracers with reference to their structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Priya Singh
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Anupriya Adhikari
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Deepika Singh
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Chandraprakash Gond
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Anjani Kumar Tiwari
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
- Address:
Department of Chemistry,
Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh. Tel.: +91-7503381343. Fax: +91-522-2440821. E-mail:
| |
Collapse
|
4
|
Ramakrishnan NK, Hird M, Thompson S, Williamson DJ, Qiao L, Owen DR, Brooks AF, Scott PJH, Bacallado S, O'Brien JT, Aigbirhio FI. Preclinical evaluation of (S)-[ 18F]GE387, a novel 18-kDa translocator protein (TSPO) PET radioligand with low binding sensitivity to human polymorphism rs6971. Eur J Nucl Med Mol Imaging 2021; 49:125-136. [PMID: 34405276 PMCID: PMC8712295 DOI: 10.1007/s00259-021-05495-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Positron emission tomography (PET) studies with radioligands for 18-kDa translocator protein (TSPO) have been instrumental in increasing our understanding of the complex role neuroinflammation plays in disorders affecting the brain. However, (R)-[11C]PK11195, the first and most widely used TSPO radioligand has limitations, while the next-generation TSPO radioligands have suffered from high interindividual variability in binding due to a genetic polymorphism in the TSPO gene (rs6971). Herein, we present the biological evaluation of the two enantiomers of [18F]GE387, which we have previously shown to have low sensitivity to this polymorphism. METHODS Dynamic PET scans were conducted in male Wistar rats and female rhesus macaques to investigate the in vivo behaviour of (S)-[18F]GE387 and (R)-[18F]GE387. The specific binding of (S)-[18F]GE387 to TSPO was investigated by pre-treatment with (R)-PK11195. (S)-[18F]GE387 was further evaluated in a rat model of lipopolysaccharide (LPS)-induced neuroinflammation. Sensitivity to polymorphism of (S)-GE387 was evaluated in genotyped human brain tissue. RESULTS (S)-[18F]GE387 and (R)-[18F]GE387 entered the brain in both rats and rhesus macaques. (R)-PK11195 blocked the uptake of (S)-[18F]GE387 in healthy olfactory bulb and peripheral tissues constitutively expressing TSPO. A 2.7-fold higher uptake of (S)-[18F]GE387 was found in the inflamed striatum of LPS-treated rodents. In genotyped human brain tissue, (S)-GE387 was shown to bind similarly in low affinity binders (LABs) and high affinity binders (HABs) with a LAB to HAB ratio of 1.8. CONCLUSION We established that (S)-[18F]GE387 has favourable kinetics in healthy rats and non-human primates and that it can distinguish inflamed from normal brain regions in the LPS model of neuroinflammation. Crucially, we have reconfirmed its low sensitivity to the TSPO polymorphism on genotyped human brain tissue. Based on these factors, we conclude that (S)-[18F]GE387 warrants further evaluation with studies on human subjects to assess its suitability as a TSPO PET radioligand for assessing neuroinflammation.
Collapse
Affiliation(s)
- Nisha K Ramakrishnan
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK.
| | - Matthew Hird
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Stephen Thompson
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - David J Williamson
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Luxi Qiao
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - David R Owen
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Allen F Brooks
- Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Peter J H Scott
- Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Sergio Bacallado
- Statistical Laboratory, Centre for the Mathematical Sciences, University of Cambridge, Wilberforce Rd., Cambridge, CB3 0WB, UK
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Franklin I Aigbirhio
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| |
Collapse
|
5
|
Hermes DJ, Jacobs IR, Key MC, League AF, Yadav-Samudrala BJ, Xu C, McLane VD, Nass SR, Jiang W, Meeker RB, Ignatowska-Jankowska BM, Lichtman AH, Li Z, Wu Z, Yuan H, Knapp PE, Hauser KF, Fitting S. Escalating morphine dosing in HIV-1 Tat transgenic mice with sustained Tat exposure reveals an allostatic shift in neuroinflammatory regulation accompanied by increased neuroprotective non-endocannabinoid lipid signaling molecules and amino acids. J Neuroinflammation 2020; 17:345. [PMID: 33208151 PMCID: PMC7672881 DOI: 10.1186/s12974-020-01971-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type-1 (HIV-1) and opiates cause long-term inflammatory insult to the central nervous system (CNS) and worsen disease progression and HIV-1-related neuropathology. The combination of these proinflammatory factors reflects a devastating problem as opioids have high abuse liability and continue to be prescribed for certain patients experiencing HIV-1-related pain. METHODS Here, we examined the impact of chronic (3-month) HIV-1 transactivator of transcription (Tat) exposure to short-term (8-day), escalating morphine in HIV-1 Tat transgenic mice that express the HIV-1 Tat protein in a GFAP promoter-regulated, doxycycline (DOX)-inducible manner. In addition to assessing morphine-induced tolerance in nociceptive responses organized at spinal (i.e., tail-flick) and supraspinal (i.e., hot-plate) levels, we evaluated neuroinflammation via positron emission tomography (PET) imaging using the [18F]-PBR111 ligand, immunohistochemistry, and cytokine analyses. Further, we examined endocannabinoid (eCB) levels, related non-eCB lipids, and amino acids via mass spectrometry. RESULTS: Tat-expressing [Tat(+)] transgenic mice displayed antinociceptive tolerance in the tail withdrawal and hot-plate assays compared to control mice lacking Tat [Tat(-)]. This tolerance was accompanied by morphine-dependent increases in Iba-1 ± 3-nitrotryosine immunoreactive microglia, and alterations in pro- and anti-inflammatory cytokines, and chemokines in the spinal cord and striatum, while increases in neuroinflammation were absent by PET imaging of [18F]-PBR111 uptake. Tat and morphine exposure differentially affected eCB levels, non-eCB lipids, and specific amino acids in a region-dependent manner. In the striatum, non-eCB lipids were significantly increased by short-term, escalating morphine exposure, including peroxisome proliferator activator receptor alpha (PPAR-α) ligands N-oleoyl ethanolamide (OEA) and N-palmitoyl ethanolamide (PEA), as well as the amino acids phenylalanine and proline. In the spinal cord, Tat exposure increased amino acids leucine and valine, while morphine decreased levels of tyrosine and valine but did not affect eCBs or non-eCB lipids. CONCLUSION Overall results demonstrate that 3 months of Tat exposure increased morphine tolerance and potentially innate immune tolerance evidenced by reductions in specific cytokines (e.g., IL-1α, IL-12p40) and microglial reactivity. In contrast, short-term, escalating morphine exposure acted as a secondary stressor revealing an allostatic shift in CNS baseline inflammatory responsiveness from sustained Tat exposure.
Collapse
Affiliation(s)
- Douglas J Hermes
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Ian R Jacobs
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Megan C Key
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Alexis F League
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | | | - Changqing Xu
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Virginia D McLane
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sara R Nass
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Aron H Lichtman
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zibo Li
- Department of Radiology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Zhanhong Wu
- Department of Radiology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Hong Yuan
- Department of Radiology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kurt F Hauser
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Bonsack F, Foss CA, Arbab AS, Alleyne CH, Pomper MG, Sukumari-Ramesh S. [ 125 I]IodoDPA-713 Binding to 18 kDa Translocator Protein (TSPO) in a Mouse Model of Intracerebral Hemorrhage: Implications for Neuroimaging. Front Neurosci 2018. [PMID: 29520214 PMCID: PMC5826955 DOI: 10.3389/fnins.2018.00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a fatal stroke subtype with significant public health impact. Although neuroinflammation is a leading cause of neurological deficits after ICH, no imaging tool is currently available to monitor brain inflammation in ICH patients. Given the role of TSPO in neuroinflammation, herein we investigate whether a second-generation TSPO ligand, [125 I]IodoDPA-713 can be used to monitor the changes in TSPO expression in a preclinical model of intracerebral hemorrhage. Male CD1 mice were subjected to ICH/Sham. The brain sections, collected at different time points were incubated with [125 I]IodoDPA-713 and the brain uptake of [125 I]IodoDPA-713 was estimated using autoradiography. The specificity of [125 I]IodoDPA-713 binding was confirmed by a competitive displacement study with an unlabeled TSPO ligand, PK11195. [125 I]IodoDPA-713 binding was higher in the ipsilateral striatum with an enhanced binding observed in the peri-hematomal brain region after ICH, whereas the brain sections from sham as well as contralateral brain areas of ICH exhibited marginal binding of [125 I]IodoDPA-713. PK11195 completely reversed the [125 I] IodoDPA-713 binding to brain sections suggesting a specific TSPO-dependent binding of [125 I]IodoDPA-713 after ICH. This was further confirmed with immunohistochemistry analysis of adjacent sections, which revealed a remarkable expression of TSPO in the areas of high [125 I]IodoDPA-713 binding after ICH. The specific as well as enhanced binding of [125 I]IodoDPA-713 to the ipsilateral brain areas after ICH as assessed by autoradiography analysis provides a strong rationale for testing the applicability of [125 I]IodoDPA-713 for non-invasive neuroimaging in preclinical models of ICH.
Collapse
Affiliation(s)
- Frederick Bonsack
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Catherine A Foss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ali S Arbab
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, United States
| | - Cargill H Alleyne
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Sangeetha Sukumari-Ramesh
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
7
|
|
8
|
A Novel PET Imaging Probe for the Detection and Monitoring of Translocator Protein 18 kDa Expression in Pathological Disorders. Sci Rep 2016; 6:20422. [PMID: 26853260 PMCID: PMC4745082 DOI: 10.1038/srep20422] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/04/2016] [Indexed: 11/16/2022] Open
Abstract
A new fluorine-substituted ligand, compound 1 (CB251), with a very high affinity (Ki = 0.27 ± 0.09 nM) and selectivity for the 18-kDa translocator protein (TSPO), is presented as an attractive biomarker for the diagnosis of neuroinflammation, neurodegeneration and tumour progression. To test compound 1 as a TSPO PET imaging agent in vivo, 2-(2-(4-(2-[18F]fluoroethoxy)phenyl)-6,8-dichloroimidazo[1,2-a]pyridin-3-yl)-N,N-dipropylacetamide ([18F]1; [18F]CB251) was synthesized by nucleophilic aliphatic substitution in a single-step radiolabelling procedure with a 11.1 ± 3.5% (n = 14, decay corrected) radiochemical yield and over 99% radiochemical purity. In animal PET imaging studies, [18F]CB251 provided a clearly visible image of the inflammatory lesion with the binding potential of the specifically bound radioligand relative to the non-displaceable radioligand in tissue (BPND 1.83 ± 0.18), in a neuroinflammation rat model based on the unilateral stereotaxic injection of lipopolysaccharide (LPS), comparable to that of [11C]PBR28 (BPND 1.55 ± 0.41). [18F]CB251 showed moderate tumour uptake (1.96 ± 0.11%ID/g at 1 h post injection) in human glioblastoma U87-MG xenografts. These results suggest that [18F]CB251 is a promising TSPO PET imaging agent for neuroinflammation and TSPO-rich cancers.
Collapse
|
9
|
Poulos M, Felekis T, Poulou A. Towards a histological depiction in 3D imaging PET. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2015. [DOI: 10.1016/j.jmhi.2016.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Janssen B, Vugts DJ, Funke U, Molenaar GT, Kruijer PS, van Berckel BNM, Lammertsma AA, Windhorst AD. Imaging of neuroinflammation in Alzheimer's disease, multiple sclerosis and stroke: Recent developments in positron emission tomography. Biochim Biophys Acta Mol Basis Dis 2015; 1862:425-41. [PMID: 26643549 DOI: 10.1016/j.bbadis.2015.11.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is thought to play a pivotal role in many diseases affecting the brain, including Alzheimer's disease, multiple sclerosis and stroke. Neuroinflammation is characterised predominantly by microglial activation, which can be visualised using positron emission tomography (PET). Traditionally, translocator protein 18kDa (TSPO) is the target for imaging of neuroinflammation using PET. In this review, recent preclinical and clinical research using PET in Alzheimer's disease, multiple sclerosis and stroke is summarised. In addition, new molecular targets for imaging of neuroinflammation, such as monoamine oxidases, adenosine receptors and cannabinoid receptor type 2, are discussed. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Bieneke Janssen
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| | - Danielle J Vugts
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Uta Funke
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; BV Cyclotron VU, Amsterdam, The Netherlands
| | - Ger T Molenaar
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; BV Cyclotron VU, Amsterdam, The Netherlands
| | | | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Gounis MJ, van der Marel K, Marosfoi M, Mazzanti ML, Clarençon F, Chueh JY, Puri AS, Bogdanov AA. Imaging Inflammation in Cerebrovascular Disease. Stroke 2015; 46:2991-7. [PMID: 26351362 DOI: 10.1161/strokeaha.115.008229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/07/2015] [Indexed: 02/01/2023]
Abstract
Imaging inflammation in large intracranial artery pathology may play an important role in the diagnosis of and risk stratification for a variety of cerebrovascular diseases. Looking beyond the lumen has already generated widespread excitement in the stroke community, and the potential to unveil molecular processes in the vessel wall is a natural evolution to develop a more comprehensive understanding of the pathogenesis of diseases, such as ICAD and brain aneurysms.
Collapse
Affiliation(s)
- Matthew J Gounis
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester.
| | - Kajo van der Marel
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Miklos Marosfoi
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Mary L Mazzanti
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Frédéric Clarençon
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Ju-Yu Chueh
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Ajit S Puri
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Alexei A Bogdanov
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| |
Collapse
|