1
|
Zhong AY, Lui AJ, Kuznetsova S, Kallis K, Conlin C, Do DD, Domingo MR, Manger R, Hua P, Karunamuni R, Kuperman J, Dale AM, Rakow-Penner R, Hahn ME, van der Heide UA, Ray X, Seibert TM. Clinical Impact of Contouring Variability for Prostate Cancer Tumor Boost. Int J Radiat Oncol Biol Phys 2024; 120:1024-1031. [PMID: 38925224 DOI: 10.1016/j.ijrobp.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE The focal radiation therapy (RT) boost technique was shown in a phase III randomized controlled trial (RCT) to improve prostate cancer outcomes without increasing toxicity. This technique relies on the accurate delineation of prostate tumors on MRI. A recent prospective study evaluated radiation oncologists' accuracy when asked to delineate prostate tumors on MRI and demonstrated high variability in tumor contours. We sought to evaluate the impact of contour variability and inaccuracy on predicted clinical outcomes. We hypothesized that radiation oncologists' contour inaccuracies would yield meaningfully worse clinical outcomes. METHODS AND MATERIALS Forty-five radiation oncologists and 2 expert radiologists contoured prostate tumors on 30 patient cases. Of these cases, those with CT simulation or diagnostic CT available were selected for analysis. A knowledge-based planning model was developed to generate focal RT boost plans for each contour per the RCT protocol. The probability of biochemical failure (BF) was determined using a model from the RCT. The primary metric evaluated was delta BF (DBF = Participant BF - Expert BF). An absolute increase in BF ≥5% was considered clinically meaningful. RESULTS Eight patient cases and 394 target volumes for focal RT boost planning were included in this analysis. In general, participant plans were associated with worse predicted clinical outcomes compared to the expert plan, with an average absolute increase in BF of 4.3%. Of participant plans, 37% were noted to have an absolute increase in BF of 5% or more. CONCLUSIONS Radiation oncologists' attempts to contour tumor targets for focal RT boost are frequently inaccurate enough to yield meaningfully inferior clinical outcomes for patients.
Collapse
Affiliation(s)
- Allison Y Zhong
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California
| | - Asona J Lui
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California
| | - Svetlana Kuznetsova
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California
| | - Karoline Kallis
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California
| | - Christopher Conlin
- Department of Radiology, UC San Diego School of Medicine, La Jolla, California
| | - Deondre D Do
- Department of Bioengineering, UC San Diego Jacobs School of Engineering, La Jolla, California
| | - Mariluz Rojo Domingo
- Department of Bioengineering, UC San Diego Jacobs School of Engineering, La Jolla, California
| | - Ryan Manger
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California
| | - Patricia Hua
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California
| | - Joshua Kuperman
- Department of Radiology, UC San Diego School of Medicine, La Jolla, California
| | - Anders M Dale
- Department of Radiology, UC San Diego School of Medicine, La Jolla, California; Department of Neurosciences, UC San Diego School of Medicine, La Jolla, California; Halıcıoğlu Data Science Institute, UC San Diego School of Medicine, La Jolla, California
| | - Rebecca Rakow-Penner
- Department of Radiology, UC San Diego School of Medicine, La Jolla, California; Department of Bioengineering, UC San Diego Jacobs School of Engineering, La Jolla, California
| | - Michael E Hahn
- Department of Radiology, UC San Diego School of Medicine, La Jolla, California
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute (NKI-AVL), Amsterdam, The Netherlands
| | - Xenia Ray
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California
| | - Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California; Department of Radiology, UC San Diego School of Medicine, La Jolla, California; Department of Bioengineering, UC San Diego Jacobs School of Engineering, La Jolla, California.
| |
Collapse
|
2
|
Patel KR, van der Heide UA, Kerkmeijer LGW, Schoots IG, Turkbey B, Citrin DE, Hall WA. Target Volume Optimization for Localized Prostate Cancer. Pract Radiat Oncol 2024; 14:522-540. [PMID: 39019208 PMCID: PMC11531394 DOI: 10.1016/j.prro.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE To provide a comprehensive review of the means by which to optimize target volume definition for the purposes of treatment planning for patients with intact prostate cancer with a specific emphasis on focal boost volume definition. METHODS Here we conduct a narrative review of the available literature summarizing the current state of knowledge on optimizing target volume definition for the treatment of localized prostate cancer. RESULTS Historically, the treatment of prostate cancer included a uniform prescription dose administered to the entire prostate with or without coverage of all or part of the seminal vesicles. The development of prostate magnetic resonance imaging (MRI) and positron emission tomography (PET) using prostate-specific radiotracers has ushered in an era in which radiation oncologists are able to localize and focally dose-escalate high-risk volumes in the prostate gland. Recent phase 3 data has demonstrated that incorporating focal dose escalation to high-risk subvolumes of the prostate improves biochemical control without significantly increasing toxicity. Still, several fundamental questions remain regarding the optimal target volume definition and prescription strategy to implement this technique. Given the remaining uncertainty, a knowledge of the pathological correlates of radiographic findings and the anatomic patterns of tumor spread may help inform clinical judgement for the definition of clinical target volumes. CONCLUSION Advanced imaging has the ability to improve outcomes for patients with prostate cancer in multiple ways, including by enabling focal dose escalation to high-risk subvolumes. However, many questions remain regarding the optimal target volume definition and prescription strategy to implement this practice, and key knowledge gaps remain. A detailed understanding of the pathological correlates of radiographic findings and the patterns of local tumor spread may help inform clinical judgement for target volume definition given the current state of uncertainty.
Collapse
Affiliation(s)
- Krishnan R Patel
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute (NKI-AVL), Amsterdam, The Netherlands
| | - Linda G W Kerkmeijer
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ivo G Schoots
- Department of Radiation Oncology, The Netherlands Cancer Institute (NKI-AVL), Amsterdam, The Netherlands
| | - Baris Turkbey
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Deborah E Citrin
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William A Hall
- Froedtert and the Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
3
|
Yang J, Xiao L, Zhou M, Li Y, Cai Y, Gan Y, Tang Y, Hu S. [ 68Ga]Ga‑PSMA‑617 PET-based radiomics model to identify candidates for active surveillance amongst patients with GGG 1-2 prostate cancer at biopsy. Cancer Imaging 2024; 24:86. [PMID: 38965552 PMCID: PMC11229016 DOI: 10.1186/s40644-024-00735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
PURPOSE To develop a radiomics-based model using [68Ga]Ga-PSMA PET/CT to predict postoperative adverse pathology (AP) in patients with biopsy Gleason Grade Group (GGG) 1-2 prostate cancer (PCa), assisting in the selection of patients for active surveillance (AS). METHODS A total of 75 men with biopsy GGG 1-2 PCa who underwent radical prostatectomy (RP) were enrolled. The patients were randomly divided into a training group (70%) and a testing group (30%). Radiomics features of entire prostate were extracted from the [68Ga]Ga-PSMA PET scans and selected using the minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator regression model. Logistic regression analyses were conducted to construct the prediction models. Receiver operating characteristic (ROC) curve, decision curve analysis (DCA), and calibration curve were employed to evaluate the diagnostic value, clinical utility, and predictive accuracy of the models, respectively. RESULTS Among the 75 patients, 30 had AP confirmed by RP. The clinical model showed an area under the curve (AUC) of 0.821 (0.695-0.947) in the training set and 0.795 (0.603-0.987) in the testing set. The radiomics model achieved AUC values of 0.830 (0.720-0.941) in the training set and 0.829 (0.624-1.000) in the testing set. The combined model, which incorporated the Radiomics score (Radscore) and free prostate-specific antigen (FPSA)/total prostate-specific antigen (TPSA), demonstrated higher diagnostic efficacy than both the clinical and radiomics models, with AUC values of 0.875 (0.780-0.970) in the training set and 0.872 (0.678-1.000) in the testing set. DCA showed that the net benefits of the combined model and radiomics model exceeded those of the clinical model. CONCLUSION The combined model shows potential in stratifying men with biopsy GGG 1-2 PCa based on the presence of AP at final pathology and outperforms models based solely on clinical or radiomics features. It may be expected to aid urologists in better selecting suitable patients for AS.
Collapse
Affiliation(s)
- Jinhui Yang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Ming Zhou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Yujia Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Yi Cai
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Gan
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland.
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory of Biological, Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Li T, Xu M, Yang S, Wang G, Liu Y, Liu K, Zhao K, Su X. Development and validation of [18 F]-PSMA-1007 PET-based radiomics model to predict biochemical recurrence-free survival following radical prostatectomy. Eur J Nucl Med Mol Imaging 2024; 51:2806-2818. [PMID: 38691111 DOI: 10.1007/s00259-024-06734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
PURPOSE Biochemical recurrence (BCR) following radical prostatectomy (RP) is a significant concern for patients with prostate cancer. Reliable prediction models are needed to identify patients at risk for BCR and facilitate appropriate management. This study aimed to develop and validate a clinical-radiomics model based on preoperative [18 F]PSMA-1007 PET for predicting BCR-free survival (BRFS) in patients who underwent RP for prostate cancer. MATERIALS AND METHODS A total of 236 patients with histologically confirmed prostate cancer who underwent RP were retrospectively analyzed. All patients had a preoperative [18 F]PSMA-1007 PET/CT scan. Radiomics features were extracted from the primary tumor region on PET images. A radiomics signature was developed using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The performance of the radiomics signature in predicting BRFS was assessed using Harrell's concordance index (C-index). The clinical-radiomics nomogram was constructed using the radiomics signature and clinical features. The model was externally validated in an independent cohort of 98 patients. RESULTS The radiomics signature comprised three features and demonstrated a C-index of 0.76 (95% CI: 0.60-0.91) in the training cohort and 0.71 (95% CI: 0.63-0.79) in the validation cohort. The radiomics signature remained an independent predictor of BRFS in multivariable analysis (HR: 2.48, 95% CI: 1.47-4.17, p < 0.001). The clinical-radiomics nomogram significantly improved the prediction performance (C-index: 0.81, 95% CI: 0.66-0.95, p = 0.007) in the training cohort and (C-index: 0.78 95% CI: 0.63-0.89, p < 0.001) in the validation cohort. CONCLUSION We developed and validated a novel [18 F]PSMA-1007 PET-based clinical-radiomics model that can predict BRFS following RP in prostate cancer patients. This model may be useful in identifying patients with a higher risk of BCR, thus enabling personalized risk stratification and tailored management strategies.
Collapse
Affiliation(s)
- Tiancheng Li
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Mimi Xu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Shuye Yang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Guolin Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yinuo Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Kaifeng Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Kui Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
5
|
Dornisch AM, Zhong AY, Poon DMC, Tree AC, Seibert TM. Focal radiotherapy boost to MR-visible tumor for prostate cancer: a systematic review. World J Urol 2024; 42:56. [PMID: 38244059 PMCID: PMC10799816 DOI: 10.1007/s00345-023-04745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 01/22/2024] Open
Abstract
PURPOSE The FLAME trial provides strong evidence that MR-guided external beam radiation therapy (EBRT) focal boost for localized prostate cancer increases biochemical disease-free survival (bDFS) without increasing toxicity. Yet, there are many barriers to implementation of focal boost. Our objectives are to systemically review clinical outcomes for MR-guided EBRT focal boost and to consider approaches to increase implementation of this technique. METHODS We conducted literature searches in four databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guideline. We included prospective phase II/III trials of patients with localized prostate cancer underdoing definitive EBRT with MR-guided focal boost. The outcomes of interest were bDFS and acute/late gastrointestinal and genitourinary toxicity. RESULTS Seven studies were included. All studies had a median follow-up of greater than 4 years. There were heterogeneities in fractionation, treatment planning, and delivery. Studies demonstrated effectiveness, feasibility, and tolerability of focal boost. Based on the Phoenix criteria for biochemical recurrence, the reported 5-year biochemical recurrence-free survival rates ranged 69.7-100% across included studies. All studies reported good safety profiles. The reported ranges of acute/late grade 3 + gastrointestinal toxicities were 0%/1-10%. The reported ranges of acute/late grade 3 + genitourinary toxicities were 0-13%/0-5.6%. CONCLUSIONS There is strong evidence that it is possible to improve oncologic outcomes without substantially increasing toxicity through MR-guided focal boost, at least in the setting of a 35-fraction radiotherapy regimen. Barriers to clinical practice implementation are addressable through additional investigation and new technologies.
Collapse
Affiliation(s)
- Anna M Dornisch
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Allison Y Zhong
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, CA, USA
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Darren M C Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Special Administrative Region of China
| | - Alison C Tree
- The Royal Marsden NHS Foundation Trust, Sutton, UK
- Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, UK
| | - Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, CA, USA.
- Department of Bioengineering, UC San Diego Jacobs School of Engineering, La Jolla, CA, USA.
- Department of Radiology, UC San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
6
|
Yazdani E, Geramifar P, Karamzade-Ziarati N, Sadeghi M, Amini P, Rahmim A. Radiomics and Artificial Intelligence in Radiotheranostics: A Review of Applications for Radioligands Targeting Somatostatin Receptors and Prostate-Specific Membrane Antigens. Diagnostics (Basel) 2024; 14:181. [PMID: 38248059 PMCID: PMC10814892 DOI: 10.3390/diagnostics14020181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Radiotheranostics refers to the pairing of radioactive imaging biomarkers with radioactive therapeutic compounds that deliver ionizing radiation. Given the introduction of very promising radiopharmaceuticals, the radiotheranostics approach is creating a novel paradigm in personalized, targeted radionuclide therapies (TRTs), also known as radiopharmaceuticals (RPTs). Radiotherapeutic pairs targeting somatostatin receptors (SSTR) and prostate-specific membrane antigens (PSMA) are increasingly being used to diagnose and treat patients with metastatic neuroendocrine tumors (NETs) and prostate cancer. In parallel, radiomics and artificial intelligence (AI), as important areas in quantitative image analysis, are paving the way for significantly enhanced workflows in diagnostic and theranostic fields, from data and image processing to clinical decision support, improving patient selection, personalized treatment strategies, response prediction, and prognostication. Furthermore, AI has the potential for tremendous effectiveness in patient dosimetry which copes with complex and time-consuming tasks in the RPT workflow. The present work provides a comprehensive overview of radiomics and AI application in radiotheranostics, focusing on pairs of SSTR- or PSMA-targeting radioligands, describing the fundamental concepts and specific imaging/treatment features. Our review includes ligands radiolabeled by 68Ga, 18F, 177Lu, 64Cu, 90Y, and 225Ac. Specifically, contributions via radiomics and AI towards improved image acquisition, reconstruction, treatment response, segmentation, restaging, lesion classification, dose prediction, and estimation as well as ongoing developments and future directions are discussed.
Collapse
Affiliation(s)
- Elmira Yazdani
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Najme Karamzade-Ziarati
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Mahdi Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Payam Amini
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
7
|
Jeganathan T, Salgues E, Schick U, Tissot V, Fournier G, Valéri A, Nguyen TA, Bourbonne V. Inter-Rater Variability of Prostate Lesion Segmentation on Multiparametric Prostate MRI. Biomedicines 2023; 11:3309. [PMID: 38137530 PMCID: PMC10741937 DOI: 10.3390/biomedicines11123309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
INTRODUCTION External radiotherapy is a major treatment for localized prostate cancer (PCa). Dose escalation to the whole prostate gland increases biochemical relapse-free survival but also acute and late toxicities. Dose escalation to the dominant index lesion (DIL) only is of growing interest. It requires a robust delineation of the DIL. In this context, we aimed to evaluate the inter-observer variability of DIL delineation. MATERIAL AND METHODS Two junior radiologists and a senior radiation oncologist delineated DILs on 64 mpMRIs of patients with histologically confirmed PCa. For each mpMRI and each reader, eight individual DIL segmentations were delineated. These delineations were blindly performed from one another and resulted from the individual analysis of the T2, apparent diffusion coefficient (ADC), b2000, and dynamic contrast enhanced (DCE) sequences, as well as the analysis of combined sequences (T2ADC, T2ADCb2000, T2ADCDCE, and T2ADCb2000DCE). Delineation variability was assessed using the DICE coefficient, Jaccard index, Hausdorff distance measure, and mean distance to agreement. RESULTS T2, ADC, T2ADC, b2000, T2 + ADC + b2000, T2 + ADC + DCE, and T2 + ADC + b2000 + DCE sequences obtained DICE coefficients of 0.51, 0.50, 0.54, 0.52, 0.54, 0.55, 0.53, respectively, which are significantly higher than the perfusion sequence alone (0.35, p < 0.001). The analysis of other similarity metrics lead to similar results. The tumor volume and PI-RADS classification were positively correlated with the DICE scores. CONCLUSION Our study showed that the contours of prostatic lesions were more reproducible on certain sequences but confirmed the great variability of prostatic contours with a maximum DICE coefficient calculated at 0.55 (joint analysis of T2, ADC, and perfusion sequences).
Collapse
Affiliation(s)
- Thibaut Jeganathan
- Radiology Department, University Hospital, 29200 Brest, France; (T.J.); (E.S.); (V.T.)
| | - Emile Salgues
- Radiology Department, University Hospital, 29200 Brest, France; (T.J.); (E.S.); (V.T.)
| | - Ulrike Schick
- Radiation Oncology Department, University Hospital, 29200 Brest, France;
- INSERM, LaTIM UMR 1101, University of Western Brittany, 29238 Brest, France; (G.F.); (A.V.); (T.-A.N.)
| | - Valentin Tissot
- Radiology Department, University Hospital, 29200 Brest, France; (T.J.); (E.S.); (V.T.)
| | - Georges Fournier
- INSERM, LaTIM UMR 1101, University of Western Brittany, 29238 Brest, France; (G.F.); (A.V.); (T.-A.N.)
- Urology Department, University Hospital, 29200 Brest, France
| | - Antoine Valéri
- INSERM, LaTIM UMR 1101, University of Western Brittany, 29238 Brest, France; (G.F.); (A.V.); (T.-A.N.)
- Urology Department, University Hospital, 29200 Brest, France
| | - Truong-An Nguyen
- INSERM, LaTIM UMR 1101, University of Western Brittany, 29238 Brest, France; (G.F.); (A.V.); (T.-A.N.)
- Urology Department, University Hospital, 29200 Brest, France
| | - Vincent Bourbonne
- Radiation Oncology Department, University Hospital, 29200 Brest, France;
- INSERM, LaTIM UMR 1101, University of Western Brittany, 29238 Brest, France; (G.F.); (A.V.); (T.-A.N.)
| |
Collapse
|
8
|
Floberg JM, Wells SA, Ojala D, Bayliss RA, Hill PM, Morris BA, Morris ZS, Ritter M, Cho SY. Using 18F-DCFPyL Prostate-Specific Membrane Antigen-Directed Positron Emission Tomography/Magnetic Resonance Imaging to Define Intraprostatic Boosts for Prostate Stereotactic Body Radiation Therapy. Adv Radiat Oncol 2023; 8:101241. [PMID: 37250282 PMCID: PMC10209128 DOI: 10.1016/j.adro.2023.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/29/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose The recently reported FLAME trial demonstrated a biochemical disease-free survival benefit to using a focal intraprostatic boost to multiparametric magnetic resonance imaging (mpMRI)-identified lesions in men with localized prostate cancer treated with definitive radiation therapy. Prostate-specific membrane antigen (PSMA)-directed positron emission tomography (PET) may identify additional areas of disease. In this work, we investigated using both PSMA PET and mpMRI in planning focal intraprostatic boosts using stereotactic body radiation therapy (SBRT). Methods and Materials We evaluated a cohort of patients (n = 13) with localized prostate cancer who were imaged with 2-(3-(1-carboxy-5-[(6-[18F]fluoro-pyridine-2-carbonyl)-amino]-pentyl)-ureido)-pentanedioic acid (18F-DCFPyL) PET/MRI on a prospective imaging trial before undergoing definitive therapy. The number of lesions concordant (overlapping) and discordant (no overlap) on PET and MRI was assessed. Overlap between concordant lesions was evaluated using the Dice and Jaccard similarity coefficients. Prostate SBRT plans were created fusing the PET/MRI imaging to computed tomography scans acquired the same day. Plans were created using only MRI-identified lesions, only PET-identified lesions, and the combined PET/MRI lesions. Coverage of the intraprostatic lesions and doses to the rectum and urethra were assessed for each of these plans. Results The majority of lesions (21/39, 53.8%) were discordant between MRI and PET, with more lesions seen by PET alone (12) than MRI alone (9). Of lesions that were concordant between PET and MRI, there were still areas that did not overlap between scans (average Dice coefficient, 0.34). Prostate SBRT planning using all lesions to define a focal intraprostatic boost provided the best coverage of all lesions without compromising constraints on the rectum and urethra. Conclusions Using both mpMRI and PSMA-directed PET may better identify all areas of gross disease within the prostate. Using both imaging modalities could improve the planning of focal intraprostatic boosts.
Collapse
Affiliation(s)
| | | | - Diane Ojala
- Radiation Oncology, UW Health, Madison, Wisconsin
| | | | | | | | | | | | - Steve Y. Cho
- Radiology, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
9
|
A Systematic Review of the Variability in Performing and Reporting Intraprostatic Prostate-specific Membrane Antigen Positron Emission Tomography in Primary Staging Studies. EUR UROL SUPPL 2023; 50:91-105. [PMID: 37101769 PMCID: PMC10123424 DOI: 10.1016/j.euros.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 03/06/2023] Open
Abstract
Context Prostate cancer (PCa) remains one of the leading causes of cancer-related deaths in men worldwide. Men at risk are typically offered multiparametric magnetic resonance imaging and, if suspicious, a targeted biopsy. However, false-negative rates of magnetic resonance imaging are consistently 18%; therefore, there is growing interest in improving the diagnostic performance of imaging through novel technologies. Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) is being utilised for PCa staging and, more recently, for intraprostatic tumour localisation. However, significant variability has been observed in how PSMA PET is performed and reported. Objective In this review, we aim to evaluate how pervasive this variability is in trials investigating the performance of PSMA PET in primary PCa workup. Evidence acquisition Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines, we performed an optimal search in five different databases. After removing duplicates, 65 studies were included in our review. Evidence synthesis Studies dated back as early as 2016, with numerous different source countries. There was variation in the reference standard for PSMA PET, with some using biopsy specimens or surgical specimens, and in some cases, a combination of the two. Similar inconsistencies were noted when studies selected histological definitions of clinically significant PCa, while some omitted their definition altogether. The most significant variations in performing PSMA PET were the radiotracer type, dose, acquisition time after injection, and the PET camera being utilised. Substantial variation in the reporting of PSMA PET was noted, with no consistency in defining what constitutes a positive intraprostatic lesion. Across 65 studies, four different definitions were used. Conclusions This systematic review has highlighted considerable variation in obtaining and performing a PSMA PET study in the context of primary PCa diagnosis. Given the discrepancy in how PSMA PET was performed and reported, it questions the homogony of studies from centre to centre. Standardisation of PSMA PET is required for this to become a consistently useful and reproducible modality in the diagnosis of PCa. Patient summary Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) is being utilised for staging and localisation of prostate cancer (PCa); however, there is significant variability in performing and reporting PSMA PET. Standardisation of PSMA PET is required for results to be consistently useful and reproducible for the diagnosis of PCa.
Collapse
|
10
|
Zhang YN, Lu ZG, Wang SD, Lu X, Zhu LL, Yang X, Fu LP, Zhao J, Wang HF, Xiang ZL. Gross tumor volume delineation in primary prostate cancer on 18F-PSMA-1007 PET/MRI and 68Ga-PSMA-11 PET/MRI. Cancer Imaging 2022; 22:36. [PMID: 35869521 PMCID: PMC9308314 DOI: 10.1186/s40644-022-00475-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
We aimed to assess the clinical value of 18F-PSMA-1007 and 68Ga-PSMA-11 PET/MRI in the gross tumor volume (GTV) delineation of radiotherapy for prostate cancer (PCa).
Methods
Sixty-nine patients were retrospectively enrolled (57 in the 18F subgroup and 12 in the 68Ga subgroup). Three physicians delineated the GTV and tumor length by the visual method and threshold method with thresholds of 30%, 40%, 50%, and 60% SUVmax. The volume correlation and differences in GTVs were assessed. The dice similarity coefficient (DSC) was applied to estimate the spatial overlap between GTVs. For 51 patients undergoing radical prostatectomy, the tumor length (Lpath) of the maximum area was measured, and compared with the longest tumor length obtained based on the images (LMRI, LPET/MRI, LPET, LPET30%, LPET40%, LPET50%, LPET60%) to determine the best delineation method.
Results
In the 18F subgroup, (1) GTV-PET/MRI (p < 0.001) was significantly different from the reference GTV-MRI. DSC between them was > 0.7. (2) GTV-MRI (R2 = 0.462, p < 0.05) was the influencing factor of DSC. In the 68Ga subgroup, (1) GTV-PET/MRI (p < 0.05) was significantly different from the reference GTV-MRI. DSC between them was > 0.7. (2) There was a significant correlation between GTV-MRI (r = 0.580, p < 0.05) and DSC. The longest tumor length measured by PET/MRI was in good agreement with that measured by histopathological analysis in both subgroups.
Conclusion
It is feasible to visually delineate GTV on PSMA PET/MRI in PCa radiotherapy, and we emphasize the utility of PET/MRI fusion images in GTV delineation. In addition, the overlap degree was the highest between GTV-MRI and GTV-PET/MRI, and it increased with increasing volume.
Collapse
|
11
|
Lau YC, Chen S, Ho CL, Cai J. Reliability of gradient-based segmentation for measuring metabolic parameters influenced by uptake time on 18F-PSMA-1007 PET/CT for prostate cancer. Front Oncol 2022; 12:897700. [PMID: 36249043 PMCID: PMC9559596 DOI: 10.3389/fonc.2022.897700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeTo determine an optimal setting for functional contouring and quantification of prostate cancer lesions with minimal variation by evaluating metabolic parameters on 18F-PSMA-1007 PET/CT measured by threshold-based and gradient-based methods under the influence of varying uptake time.Methods and materialsDual time point PET/CT was chosen to mimic varying uptake time in clinical setting. Positive lesions of patients who presented with newly diagnosed disease or biochemical recurrence after total prostatectomy were reviewed retrospectively. Gradient-based and threshold-based tools at 40%, 50% and 60% of lesion SUVmax (MIM 6.9) were used to create contours on PET. Contouring was considered completed if the target lesion, with its hottest voxel, was delineated from background tissues and nearby lesions under criteria specific to their operations. The changes in functional tumour volume (FTV) and metabolic tumour burden (MTB, defined as the product of SUVmean and FTV) were analysed. Lesion uptake patterns (increase/decrease/stable) were determined by the percentage change in tumour SUVmax at ±10% limit.ResultsA total of 275 lesions (135 intra-prostatic lesions, 65 lymph nodes, 45 bone lesions and 30 soft tissue lesions in pelvic region) in 68 patients were included. Mean uptake time of early and delayed imaging were 94 and 144 minutes respectively. Threshold-based method using 40% to 60% delineated only 85 (31%), 110 (40%) and 137 (50%) of lesions which all were contoured by gradient-based method. Although the overall percentage change using threshold at 50% was the smallest among other threshold levels in FTV measurement, it was still larger than gradient-based method (median: 50%=-7.6% vs gradient=0%). The overall percentage increase in MTB of gradient-based method (median: 6.3%) was compatible with the increase in tumour SUVmax. Only a small proportion of intra-prostatic lesions (<2%), LN (<4%), bone lesions (0%) and soft tissue lesions (<4%) demonstrated decrease uptake patterns.ConclusionsWith a high completion rate, gradient-based method is reliable for prostate cancer lesion contouring on 18F-PSMA-1007 PET/CT. Under the influence of varying uptake time, it has smaller variation than threshold-based method for measuring volumetric parameters. Therefore, gradient-based method is recommended for tumour delineation and quantification on 18F-PSMA-1007 PET/CT.
Collapse
Affiliation(s)
- Yu Ching Lau
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Nuclear Medicine and Positron Emission Tomography, Hong Kong Sanatorium and Hospital, Hong Kong, Hong Kong SAR, China
| | - Sirong Chen
- Department of Nuclear Medicine and Positron Emission Tomography, Hong Kong Sanatorium and Hospital, Hong Kong, Hong Kong SAR, China
| | - Chi Lai Ho
- Department of Nuclear Medicine and Positron Emission Tomography, Hong Kong Sanatorium and Hospital, Hong Kong, Hong Kong SAR, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- *Correspondence: Jing Cai,
| |
Collapse
|
12
|
Machine learning-based radiomics for multiple primary prostate cancer biological characteristics prediction with 18F-PSMA-1007 PET: comparison among different volume segmentation thresholds. Radiol Med 2022; 127:1170-1178. [DOI: 10.1007/s11547-022-01541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
|
13
|
Feasibility of biology-guided radiotherapy using PSMA-PET to boost to dominant intraprostatic tumour. Clin Transl Radiat Oncol 2022; 35:84-89. [PMID: 35662883 PMCID: PMC9156937 DOI: 10.1016/j.ctro.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022] Open
Abstract
Biology-guided radiation therapy (BGRT) uses PET imaging for online image guidance. PSMA PET uptake is abundant in the dominant intraprostatic lesion (DIL). BgRT boost to PSMA-avid subvolume in the prostate region may be feasible. Suitable targets for BgRT were identified in the ProPSMA clinical trial.
Background Methods Results Conclusions
Collapse
|
14
|
Zschaeck S, Andela SB, Amthauer H, Furth C, Rogasch JM, Beck M, Hofheinz F, Huang K. Correlation Between Quantitative PSMA PET Parameters and Clinical Risk Factors in Non-Metastatic Primary Prostate Cancer Patients. Front Oncol 2022; 12:879089. [PMID: 35530334 PMCID: PMC9074726 DOI: 10.3389/fonc.2022.879089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background PSMA PET is frequently used for staging of prostate cancer patients. Furthermore, there is increasing interest to use PET information for personalized local treatment approaches in surgery and radiotherapy, especially for focal treatment strategies. However, it is not well established which quantitative imaging parameters show highest correlation with clinical and histological tumor aggressiveness. Methods This is a retrospective analysis of 135 consecutive patients with non-metastatic prostate cancer and PSMA PET before any treatment. Clinical risk parameters (PSA values, Gleason score and D'Amico risk group) were correlated with quantitative PET parameters maximum standardized uptake value (SUVmax), mean SUV (SUVmean), tumor asphericity (ASP) and PSMA tumor volume (PSMA-TV). Results Most of the investigated imaging parameters were highly correlated with each other (correlation coefficients between 0.20 and 0.95). A low to moderate, however significant, correlation of imaging parameters with PSA values (0.19 to 0.45) and with Gleason scores (0.17 to 0.31) was observed for all parameters except ASP which did not show a significant correlation with Gleason score. Receiver operating characteristics for the detection of D'Amico high-risk patients showed poor to fair sensitivity and specificity for all investigated quantitative PSMA PET parameters (Areas under the curve (AUC) between 0.63 and 0.73). Comparison of AUC between quantitative PET parameters by DeLong test showed significant superiority of SUVmax compared to SUVmean for the detection of high-risk patients. None of the investigated imaging parameters significantly outperformed SUVmax. Conclusion Our data confirm prior publications with lower number of patients that reported moderate correlations of PSMA PET parameters with clinical risk factors. With the important limitation that Gleason scores were only biopsy-derived in this study, there is no indication that the investigated additional parameters deliver superior information compared to SUVmax.
Collapse
Affiliation(s)
- Sebastian Zschaeck
- Department of Radiation Oncology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - Stephanie Bela Andela
- Department of Radiation Oncology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Holger Amthauer
- Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian M. Rogasch
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
- Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Hofheinz
- PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Kai Huang
- Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
15
|
Spohn SKB, Adebahr S, Huber M, Jenkner C, Wiehle R, Nagavci B, Schmucker C, Carl EG, Chen RC, Weber WA, Mix M, Rühle A, Sprave T, Nicolay NH, Gratzke C, Benndorf M, Wiegel T, Weis J, Baltas D, Grosu AL, Zamboglou C. Feasibility, pitfalls and results of a structured concept-development phase for a randomized controlled phase III trial on radiotherapy in primary prostate cancer patients. BMC Cancer 2022; 22:337. [PMID: 35351058 PMCID: PMC8960686 DOI: 10.1186/s12885-022-09434-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/09/2022] [Indexed: 11/15/2022] Open
Abstract
Objective Failure rate in randomized controlled trials (RCTs) is > 50%, includes safety-problems, underpowered statistics, lack of efficacy, lack of funding or insufficient patient recruitment and is even more pronounced in oncology trials. We present results of a structured concept-development phase (CDP) for a phase III RCT on personalized radiotherapy (RT) in primary prostate cancer (PCa) patients implementing prostate specific membrane antigen targeting positron emission tomography (PSMA-PET). Materials and methods The 1 yr process of the CDP contained five main working packages: (i) literature search and scoping review, (ii) involvement of individual patients, patients’ representatives and patients’ self-help groups addressing the patients’ willingness to participate in the preparation process and the conduct of RCTs as well as the patient informed consent (PIC), (iii) involvement of national and international experts and expert panels (iv) a phase II pilot study investigating the safety of implementation of PSMA-PET for focal dose escalation RT and (v) in-silico RT planning studies assessing feasibility of envisaged dose regimens and effects of urethral sparing in focal dose escalation. Results (i) Systematic literature searches confirmed the high clinical relevance for more evidence on advanced RT approaches, in particular stereotactic body RT, in high-risk PCa patients. (ii) Involvement of patients, patient representatives and randomly selected males relevantly changed the PIC and initiated a patient empowerment project for training of bladder preparation. (iii) Discussion with national and international experts led to adaptions of inclusion and exclusion criteria. (iv) Fifty patients were treated in the pilot trial and in- and exclusion criteria as well as enrollment calculations were adapted accordingly. Parallel conduction of the pilot trial revealed pitfalls on practicability and broadened the horizon for translational projects. (v) In-silico planning studies confirmed feasibility of envisaged dose prescription. Despite large prostate- and boost-volumes of up to 66% of the prostate, adherence to stringent anorectal dose constraints was feasible. Urethral sparing increased the therapeutic ratio. Conclusion The dynamic framework of interdisciplinary working programs in CDPs enhances robustness of RCT protocols and may be associated with decreased failure rates. Structured recommendations are warranted to further define the process of such CDPs in radiation oncology trials. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09434-2.
Collapse
|
16
|
Mapelli P, Ghezzo S, Samanes Gajate AM, Preza E, Palmisano A, Cucchiara V, Brembilla G, Bezzi C, Rigamonti R, Magnani P, Toninelli E, Bettinardi V, Suardi N, Gianolli L, Scifo P, Briganti A, De Cobelli F, Esposito A, Picchio M. 68Ga-PSMA and 68Ga-DOTA-RM2 PET/MRI in Recurrent Prostate Cancer: Diagnostic Performance and Association with Clinical and Histopathological Data. Cancers (Basel) 2022; 14:cancers14020334. [PMID: 35053499 PMCID: PMC8773792 DOI: 10.3390/cancers14020334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Prostate cancer (PCa) relapse occurs in up to 50% of patients after radical treatment. Once PCa recurrence is detected, a precise identification of the number and sites of recurrence is necessary to tailor the treatment on the patient’s needs. Positron emission tomography (PET) plays a pivotal role in this clinical setting and new radiotracers have been developed to improve its performance. While 68Ga-PSMA is a well-established radiotracer for PCa recurrence detection, 68Ga-DOTA-RM2 is a recently proposed tracer that targets the gastrin-releasing peptide receptors that are overexpressed in prostate cancer. In this work, the performance of 68Ga-PSMA and 68Ga-DOTA-RM2 PET/MRI in identifying recurrent disease were compared on the same cohort, using the same study protocol, as this is the only way to assess whether one outperforms the other and therefore should be preferred in clinical practice. Furthermore, the association between PET findings and clinical and histopathological characteristics was investigated to find potential biomarkers. Abstract The aim of the present study is to investigate and compare the performances of 68Ga-PSMA and 68Ga-DOTA-RM2 PET/MRI in identifying recurrent prostate cancer (PCa) after primary treatment and to explore the association of dual-tracer PET findings with clinical and histopathological characteristics. Thirty-five patients with biochemical relapse (BCR) of PCa underwent 68Ga PSMA PET/MRI for restaging purpose, with 31/35 also undergoing 68Ga-DOTA-RM2 PET/MRI scan within 16 days (mean: 3 days, range: 2–16 days). Qualitative and quantitative image analysis has been performed by comparing 68Ga-PSMA and 68Ga-DOTA-RM2 PET/MRI findings both on a patient and lesion basis. Clinical and instrumental follow-up was used to validate PET findings. Fisher’s exact test and Mann-Whitney U test were used to investigate the association between dual-tracer PET findings, clinical and histopathological data. p-value significance was defined below the 0.05 level. Patients’ mean age was 70 years (range: 49–84) and mean PSA at time of PET/MR scans was 1.88 ng/mL (range: 0.21–14.4). A higher detection rate was observed for 68Ga-PSMA PET/MRI, with more lesions being detected compared to 68Ga-DOTA-RM2 PET/MRI (26/35 patients, 95 lesions vs. 15/31 patients, 41 lesions; p = 0.016 and 0.002). 68Ga-PSMA and 68Ga-DOTA-RM2 PET/MRI findings were discordant in 11/31 patients; among these, 10 were 68Ga-PSMA positive (9/10 confirmed as true positive and 1/10 as false positive by follow-up examination). Patients with higher levels of PSA and shorter PSA doubling time (DT) presented more lesions on 68Ga-PSMA PET/MRI (p = 0.006 and 0.044), while no association was found between PET findings and Gleason score. 68Ga-PSMA has a higher detection rate than 68Ga-DOTA-RM2 in detecting PCa recurrence. The number of 68Ga-PSMA PET positive lesions is associated with higher levels of PSA and shorter PSA DT, thus representing potential prognostic factors.
Collapse
Affiliation(s)
- Paola Mapelli
- Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; (P.M.); (S.G.); (A.P.); (V.C.); (G.B.); (C.B.); (E.T.); (A.B.); (F.D.C.); (A.E.)
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (A.M.S.G.); (E.P.); (R.R.); (P.M.); (V.B.); (L.G.); (P.S.)
| | - Samuele Ghezzo
- Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; (P.M.); (S.G.); (A.P.); (V.C.); (G.B.); (C.B.); (E.T.); (A.B.); (F.D.C.); (A.E.)
| | - Ana Maria Samanes Gajate
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (A.M.S.G.); (E.P.); (R.R.); (P.M.); (V.B.); (L.G.); (P.S.)
| | - Erik Preza
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (A.M.S.G.); (E.P.); (R.R.); (P.M.); (V.B.); (L.G.); (P.S.)
| | - Anna Palmisano
- Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; (P.M.); (S.G.); (A.P.); (V.C.); (G.B.); (C.B.); (E.T.); (A.B.); (F.D.C.); (A.E.)
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Vito Cucchiara
- Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; (P.M.); (S.G.); (A.P.); (V.C.); (G.B.); (C.B.); (E.T.); (A.B.); (F.D.C.); (A.E.)
- Department of Urology, Division of Experimental Oncology, URI, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Giorgio Brembilla
- Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; (P.M.); (S.G.); (A.P.); (V.C.); (G.B.); (C.B.); (E.T.); (A.B.); (F.D.C.); (A.E.)
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Carolina Bezzi
- Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; (P.M.); (S.G.); (A.P.); (V.C.); (G.B.); (C.B.); (E.T.); (A.B.); (F.D.C.); (A.E.)
| | - Riccardo Rigamonti
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (A.M.S.G.); (E.P.); (R.R.); (P.M.); (V.B.); (L.G.); (P.S.)
| | - Patrizia Magnani
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (A.M.S.G.); (E.P.); (R.R.); (P.M.); (V.B.); (L.G.); (P.S.)
| | - Elisa Toninelli
- Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; (P.M.); (S.G.); (A.P.); (V.C.); (G.B.); (C.B.); (E.T.); (A.B.); (F.D.C.); (A.E.)
| | - Valentino Bettinardi
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (A.M.S.G.); (E.P.); (R.R.); (P.M.); (V.B.); (L.G.); (P.S.)
| | - Nazareno Suardi
- IRCCS Ospedale Policlinico San Martino, University of Genoa, Via Benzi 10, 16132 Genoa, Italy;
| | - Luigi Gianolli
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (A.M.S.G.); (E.P.); (R.R.); (P.M.); (V.B.); (L.G.); (P.S.)
| | - Paola Scifo
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (A.M.S.G.); (E.P.); (R.R.); (P.M.); (V.B.); (L.G.); (P.S.)
| | - Alberto Briganti
- Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; (P.M.); (S.G.); (A.P.); (V.C.); (G.B.); (C.B.); (E.T.); (A.B.); (F.D.C.); (A.E.)
- Department of Urology, Division of Experimental Oncology, URI, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Francesco De Cobelli
- Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; (P.M.); (S.G.); (A.P.); (V.C.); (G.B.); (C.B.); (E.T.); (A.B.); (F.D.C.); (A.E.)
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Antonio Esposito
- Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; (P.M.); (S.G.); (A.P.); (V.C.); (G.B.); (C.B.); (E.T.); (A.B.); (F.D.C.); (A.E.)
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Maria Picchio
- Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; (P.M.); (S.G.); (A.P.); (V.C.); (G.B.); (C.B.); (E.T.); (A.B.); (F.D.C.); (A.E.)
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (A.M.S.G.); (E.P.); (R.R.); (P.M.); (V.B.); (L.G.); (P.S.)
- Correspondence: ; Tel.: +39-02-2643-6117
| |
Collapse
|
17
|
Zamboglou C, Spohn SKB, Adebahr S, Huber M, Kirste S, Sprave T, Gratzke C, Chen RC, Carl EG, Weber WA, Mix M, Benndorf M, Wiegel T, Baltas D, Jenkner C, Grosu AL. PSMA-PET/MRI-Based Focal Dose Escalation in Patients with Primary Prostate Cancer Treated with Stereotactic Body Radiation Therapy (HypoFocal-SBRT): Study Protocol of a Randomized, Multicentric Phase III Trial. Cancers (Basel) 2021; 13:cancers13225795. [PMID: 34830950 PMCID: PMC8616152 DOI: 10.3390/cancers13225795] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Technical advances in radiotherapy (RT) treatment planning and delivery have substantially changed RT concepts for primary prostate cancer (PCa) by (i) enabling a reduction of treatment time, and by (ii) enabling safe delivery of high RT doses. Several studies proposed a dose-response relationship for patients with primary PCa and especially in patients with high-risk features, as dose escalation leads to improved tumor control. In parallel to the improvements in RT techniques, diagnostic imaging techniques like multiparametric magnetic resonance imaging (mpMRI) and positron-emission tomography targeting prostate-specific-membrane antigen (PSMA-PET) evolved and enable an accurate depiction of the intraprostatic tumor mass for the first time. The HypoFocal-SBRT study combines ultra-hypofractionated RT/stereotactic body RT, with focal RT dose escalation on intraprostatic tumor sides by applying state of the art diagnostic imaging and most modern RT concepts. This novel strategy will be compared with moderate hypofractionated RT (MHRT), one option for the curative primary treatment of PCa, which has been proven by several prospective trials and is recommended and carried out worldwide. We suspect an increase in relapse-free survival (RFS), and we will assess quality of life in order to detect potential changes.
Collapse
Affiliation(s)
- Constantinos Zamboglou
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.Z.); (S.A.); (S.K.); (T.S.); (A.L.G.)
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- German Oncology Center, European University of Cyprus, Limassol 4108, Cyprus
| | - Simon K. B. Spohn
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.Z.); (S.A.); (S.K.); (T.S.); (A.L.G.)
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- Correspondence:
| | - Sonja Adebahr
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.Z.); (S.A.); (S.K.); (T.S.); (A.L.G.)
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Maria Huber
- Clinical Trials Unit, Faculty of Medicine, Medical Center, University of Freiburg, 79110 Freiburg, Germany; (M.H.); (C.J.)
| | - Simon Kirste
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.Z.); (S.A.); (S.K.); (T.S.); (A.L.G.)
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Tanja Sprave
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.Z.); (S.A.); (S.K.); (T.S.); (A.L.G.)
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany;
| | - Ronald C. Chen
- Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, KS 66160, USA;
| | | | - Wolfgang A. Weber
- Department of Nuclear Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany;
| | - Matthias Benndorf
- Department of Radiology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany;
| | - Thomas Wiegel
- Department of Radiation Oncology, University Hospital Ulm, 89081 Ulm, Germany;
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Carolin Jenkner
- Clinical Trials Unit, Faculty of Medicine, Medical Center, University of Freiburg, 79110 Freiburg, Germany; (M.H.); (C.J.)
| | - Anca L. Grosu
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.Z.); (S.A.); (S.K.); (T.S.); (A.L.G.)
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
18
|
Mittlmeier LM, Brendel M, Beyer L, Albert NL, Todica A, Zacherl MJ, Wenter V, Herlemann A, Kretschmer A, Ledderose ST, Schmidt-Hegemann NS, Kunz WG, Ricke J, Bartenstein P, Ilhan H, Unterrainer M. Feasibility of Different Tumor Delineation Approaches for 18F-PSMA-1007 PET/CT Imaging in Prostate Cancer Patients. Front Oncol 2021; 11:663631. [PMID: 34094956 PMCID: PMC8176856 DOI: 10.3389/fonc.2021.663631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Background Delineation of PSMA-positive tumor volume on PET using PSMA-ligands is of highest clinical interest as changes of PSMA-PET/CT-derived whole tumor volume (WTV) have shown to correlate with treatment response in metastatic prostate cancer patients. So far, WTV estimation was performed on PET using 68Ga-labeled ligands; nonetheless, 18F-labeled PET ligands are gaining increasing importance due to advantages over 68Ga-labeled compounds. However, standardized tumor delineation methods for 18F-labeled PET ligands have not been established so far. As correlation of PET-based information and morphological extent in osseous and visceral metastases is hampered by morphological delineation, low contrast in liver tissue and movement artefacts, we correlated CT-based volume of lymph node metastases (LNM) and different PET-based delineation approaches for thresholding on 18F-PSMA-1007 PET. Methods Fifty patients with metastatic prostate cancer, 18F-PSMA-1007 PET/CT and non-bulky LNM (short-axis diameter ≥10mm) were included. Fifty LNM were volumetrically assessed on contrast-enhanced CT (volumetric reference standard). Different approaches for tumor volume delineation were applied and correlated with the reference standard: I) fixed SUV threshold, II) isocontour thresholding relative to SUVmax (SUV%), and thresholds relative to III) liver (SUVliver), IV) parotis (SUVparotis) and V) spleen (SUVspleen). Results A fixed SUV of 4.0 (r=0.807, r2 = 0.651, p<0.001) showed the best overall association with the volumetric reference. 55% SUVmax (r=0.627, r2 = 0.393, p<0.001) showed highest association using an isocontour-based threshold. Best background-based approaches were 60% SUVliver (r=0.715, r2 = 0.511, p<0.001), 80% SUVparotis (r=0.762, r2 = 0.581, p<0.001) and 60% SUVspleen (r=0.645, r2 = 0.416, p<0.001). Background tissues SUVliver, SUVparotis & SUVspleen did not correlate (p>0.05 each). Recently reported cut-offs for intraprostatic tumor delineation (isocontour 44% SUVmax, 42% SUVmax and 20% SUVmax) revealed inferior association for LNM delineation. Conclusions A threshold of SUV 4.0 for tumor delineation showed highest association with volumetric reference standard irrespective of potential changes in PSMA-avidity of background tissues (e. g. parotis). This approach is easily applicable in clinical routine without specific software requirements. Further studies applying this approach for total tumor volume delineation are initiated.
Collapse
Affiliation(s)
- Lena M Mittlmeier
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Andrei Todica
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Mathias J Zacherl
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Vera Wenter
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Annika Herlemann
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | | | | | | | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
19
|
Spohn SKB, Sachpazidis I, Wiehle R, Thomann B, Sigle A, Bronsert P, Ruf J, Benndorf M, Nicolay NH, Sprave T, Grosu AL, Baltas D, Zamboglou C. Influence of Urethra Sparing on Tumor Control Probability and Normal Tissue Complication Probability in Focal Dose Escalated Hypofractionated Radiotherapy: A Planning Study Based on Histopathology Reference. Front Oncol 2021; 11:652678. [PMID: 34055621 PMCID: PMC8160377 DOI: 10.3389/fonc.2021.652678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Multiparametric magnetic resonance tomography (mpMRI) and prostate specific membrane antigen positron emission tomography (PSMA-PET/CT) are used to guide focal radiotherapy (RT) dose escalation concepts. Besides improvements of treatment effectiveness, maintenance of a good quality of life is essential. Therefore, this planning study investigates whether urethral sparing in moderately hypofractionated RT with focal RT dose escalation influences tumour control probability (TCP) and normal tissue complication probability (NTCP). Patients and Methods 10 patients with primary prostate cancer (PCa), who underwent 68Ga PSMA-PET/CT and mpMRI followed by radical prostatectomy were enrolled. Intraprostatic tumour volumes (gross tumor volume, GTV) based on both imaging techniques (GTV-MRI and -PET) were contoured manually using validated contouring techniques and GTV-Union was created by summing both. For each patient three IMRT plans were generated with 60 Gy to the whole prostate and a simultaneous integrated boost up to 70 Gy to GTV-Union in 20 fractions by (Plan 1) not respecting and (Plan 2) respecting dose constraints for urethra as well as (Plan 3) respecting dose constraints for planning organ at risk volume for urethra (PRV = urethra + 2mm expansion). NTCP for urethra was calculated applying a Lyman-Kutcher-Burman model. TCP-Histo was calculated based on PCa distribution in co-registered histology (GTV-Histo). Complication free tumour control probability (P+) was calculated. Furthermore, the intrafractional movement was considered. Results Median overlap of GTV-Union and PRV-Urethra was 1.6% (IQR 0-7%). Median minimum distance of GTV-Histo to urethra was 3.6 mm (IQR 2 - 7 mm) and of GTV-Union to urethra was 1.8 mm (IQR 0.0 - 5.0 mm). The respective prescription doses and dose constraints were reached in all plans. Urethra-sparing in Plans 2 and 3 reached significantly lower NTCP-Urethra (p = 0.002) without significantly affecting TCP-GTV-Histo (p = p > 0.28), NTCP-Bladder (p > 0.85) or NTCP-Rectum (p = 0.85), resulting in better P+ (p = 0.006). Simulation of intrafractional movement yielded even higher P+ values for Plans 2 and 3 compared to Plan 1. Conclusion Urethral sparing may increase the therapeutic ratio and should be implemented in focal RT dose escalation concepts.
Collapse
Affiliation(s)
- Simon K B Spohn
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK). Partner Site Freiburg, Freiburg, Germany.,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ilias Sachpazidis
- Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rolf Wiehle
- Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benedikt Thomann
- Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - August Sigle
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Juri Ruf
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Benndorf
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK). Partner Site Freiburg, Freiburg, Germany
| | - Tanja Sprave
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK). Partner Site Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK). Partner Site Freiburg, Freiburg, Germany
| | - Dimos Baltas
- German Cancer Consortium (DKTK). Partner Site Freiburg, Freiburg, Germany.,Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK). Partner Site Freiburg, Freiburg, Germany.,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Hearn N, Blazak J, Vivian P, Vignarajah D, Cahill K, Atwell D, Lagopoulos J, Min M. Prostate cancer GTV delineation with biparametric MRI and 68Ga-PSMA-PET: comparison of expert contours and semi-automated methods. Br J Radiol 2021; 94:20201174. [PMID: 33507812 DOI: 10.1259/bjr.20201174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The optimal method for delineation of dominant intraprostatic lesions (DIL) for targeted radiotherapy dose escalation is unclear. This study evaluated interobserver and intermodality variability of delineations on biparametric MRI (bpMRI), consisting of T2 weighted (T2W) and diffusion-weighted (DWI) sequences, and 68Ga-PSMA-PET/CT; and compared manually delineated GTV contours with semi-automated segmentations based on quantitative thresholding of intraprostatic apparent diffusion coefficient (ADC) and standardised uptake values (SUV). METHODS 16 patients who had bpMRI and PSMA-PET scanning performed prior to any treatment were eligible for inclusion. Four observers (two radiation oncologists, two radiologists) manually delineated the DIL on: (1) bpMRI (GTVMRI), (2) PSMA-PET (GTVPSMA) and (3) co-registered bpMRI/PSMA-PET (GTVFused) in separate sittings. Interobserver, intermodality and semi-automated comparisons were evaluated against consensus Simultaneous Truth and Performance Level Estimation (STAPLE) volumes, created from the relevant manual delineations of all observers with equal weighting. Comparisons included the Dice Similarity Coefficient (DSC), mean distance to agreement (MDA) and other metrics. RESULTS Interobserver agreement was significantly higher (p < 0.05) for GTVPSMA (DSC: 0.822, MDA: 1.12 mm) and GTVFused (DSC: 0.787, MDA: 1.34 mm) than for GTVMRI (DSC: 0.705, MDA 2.44 mm). Intermodality agreement between GTVMRI and GTVPSMA was low (DSC: 0.440, MDA: 4.64 mm). Agreement between semi-automated volumes and consensus GTV was low for MRI (DSC: 0.370, MDA: 8.16 mm) and significantly higher for PSMA-PET (0.571, MDA: 4.45 mm, p < 0.05). CONCLUSION 68Ga-PSMA-PET appears to improve interobserver consistency of DIL localisation vs bpMRI and may be more viable for simple quantitative delineation approaches; however, more sophisticated approaches to semi-automatic delineation factoring for patient- and disease-related heterogeneity are likely required. ADVANCES IN KNOWLEDGE This is the first study to evaluate the interobserver variability of prostate GTV delineations with co-registered bpMRI and 68Ga-PSMA-PET.
Collapse
Affiliation(s)
- Nathan Hearn
- Department of Radiation Oncology, Sunshine Coast University Hospital, Birtinya, Australia.,ICON Cancer Centre, Maroochydore, Australia.,University of the Sunshine Coast, Sippy Downs, Australia
| | - John Blazak
- Department of Medical Imaging, Sunshine Coast University Hospital, Birtinya, Australia
| | - Philip Vivian
- Department of Medical Imaging, Sunshine Coast University Hospital, Birtinya, Australia
| | - Dinesh Vignarajah
- Department of Radiation Oncology, Sunshine Coast University Hospital, Birtinya, Australia.,ICON Cancer Centre, Maroochydore, Australia
| | - Katelyn Cahill
- Department of Radiation Oncology, Sunshine Coast University Hospital, Birtinya, Australia
| | - Daisy Atwell
- Department of Radiation Oncology, Sunshine Coast University Hospital, Birtinya, Australia.,ICON Cancer Centre, Maroochydore, Australia.,University of the Sunshine Coast, Sippy Downs, Australia
| | - Jim Lagopoulos
- University of the Sunshine Coast, Sippy Downs, Australia.,Sunshine Coast Mind and Neuroscience - Thompson Institute, University of the Sunshine Coast, Birtinya, Australia
| | - Myo Min
- Department of Radiation Oncology, Sunshine Coast University Hospital, Birtinya, Australia.,ICON Cancer Centre, Maroochydore, Australia.,University of the Sunshine Coast, Sippy Downs, Australia
| |
Collapse
|
21
|
Spohn SKB, Kramer M, Kiefer S, Bronsert P, Sigle A, Schultze-Seemann W, Jilg CA, Sprave T, Ceci L, Fassbender TF, Nicolay NH, Ruf J, Grosu AL, Zamboglou C. Comparison of Manual and Semi-Automatic [ 18F]PSMA-1007 PET Based Contouring Techniques for Intraprostatic Tumor Delineation in Patients With Primary Prostate Cancer and Validation With Histopathology as Standard of Reference. Front Oncol 2020; 10:600690. [PMID: 33365271 PMCID: PMC7750498 DOI: 10.3389/fonc.2020.600690] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Accurate contouring of intraprostatic gross tumor volume (GTV) is pivotal for successful delivery of focal therapies and for biopsy guidance in patients with primary prostate cancer (PCa). Contouring of GTVs, using 18-Fluor labeled tracer prostate specific membrane antigen positron emission tomography ([18F]PSMA-1007/PET) has not been examined yet. PATIENTS AND METHODS Ten Patients with primary PCa who underwent [18F]PSMA-1007 PET followed by radical prostatectomy were prospectively enrolled. Coregistered histopathological gross tumor volume (GTV-Histo) was used as standard of reference. PSMA-PET images were contoured on two ways: (1) manual contouring with PET scaling SUVmin-max: 0-10 was performed by three teams with different levels of experience. Team 1 repeated contouring at a different time point, resulting in n = 4 manual contours. (2) Semi-automatic contouring approaches using SUVmax thresholds of 20-50% were performed. Interobserver agreement was assessed for manual contouring by calculating the Dice Similarity Coefficient (DSC) and for all approaches sensitivity, specificity were calculated by dividing the prostate in each CT slice into four equal quadrants under consideration of histopathology as standard of reference. RESULTS Manual contouring yielded an excellent interobserver agreement with a median DSC of 0.90 (range 0.87-0.94). Volumes derived from scaling SUVmin-max 0-10 showed no statistically significant difference from GTV-Histo and high sensitivities (median 87%, range 84-90%) and specificities (median 96%, range 96-100%). GTVs using semi-automatic segmentation applying a threshold of 20-40% of SUVmax showed no significant difference in absolute volumes to GTV-Histo, GTV-SUV50% was significantly smaller. Best performing semi-automatic contour (GTV-SUV20%) achieved high sensitivity (median 93%) and specificity (median 96%). There was no statistically significant difference to SUVmin-max 0-10. CONCLUSION Manual contouring with PET scaling SUVmin-max 0-10 and semi-automatic contouring applying a threshold of 20% of SUVmax achieved high sensitivities and very high specificities and are recommended for [18F]PSMA-1007 PET based focal therapy approaches. Providing high specificities, semi-automatic approaches applying thresholds of 30-40% of SUVmax are recommend for biopsy guidance.
Collapse
Affiliation(s)
- Simon K. B. Spohn
- Department of Radiation Oncology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maria Kramer
- Department of Radiation Oncology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Selina Kiefer
- Institute for Surgical Pathology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - August Sigle
- Department of Urology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Schultze-Seemann
- Department of Urology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cordula A. Jilg
- Department of Urology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tanja Sprave
- Department of Radiation Oncology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Lara Ceci
- Department of Radiation Oncology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas F. Fassbender
- Department of Nuclear Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils H. Nicolay
- Department of Radiation Oncology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Juri Ruf
- Department of Nuclear Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca L. Grosu
- Department of Radiation Oncology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|