1
|
Ninatti G, Pini C, Lazar A, Gelardi F. The wings of progress: technological and radiopharmaceutical innovations in nuclear medicine. Eur J Nucl Med Mol Imaging 2024; 51:3815-3821. [PMID: 39264424 DOI: 10.1007/s00259-024-06913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Affiliation(s)
- Gaia Ninatti
- Nuclear Medicine Department, IRCCS San Raffaele Hospital, Via Olgettina 60, Milan, 20132, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristiano Pini
- Nuclear Medicine Department, IRCCS San Raffaele Hospital, Via Olgettina 60, Milan, 20132, Italy.
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Alexandra Lazar
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Fabrizia Gelardi
- Nuclear Medicine Department, IRCCS San Raffaele Hospital, Via Olgettina 60, Milan, 20132, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Mairinger S, Jackwerth M, Chalampalakis Z, Rausch I, Weber M, Wölfl-Duchek M, Pracher L, Nics L, Pahnke J, Langsteger W, Hacker M, Zeitlinger M, Langer O. First-in-human evaluation of 6-bromo-7-[ 11C]methylpurine, a PET tracer for assessing the function of multidrug resistance-associated proteins in different tissues. Eur J Nucl Med Mol Imaging 2024; 51:3900-3911. [PMID: 39060376 PMCID: PMC11527933 DOI: 10.1007/s00259-024-06851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Multidrug resistance-associated protein 1 (MRP1) is a transport protein with a widespread tissue distribution, which has been implicated in the pathophysiology of Alzheimer's and chronic respiratory disease. PET with 6-bromo-7-[11C]methylpurine ([11C]BMP) has been used to measure MRP1 function in rodents. In this study, [11C]BMP was for the first time characterised in humans to assess the function of MRP1 and other MRP subtypes in different tissues. METHODS Thirteen healthy volunteers (7 men, 6 women) underwent dynamic whole-body PET scans on a long axial field-of-view (LAFOV) PET/CT system after intravenous injection of [11C]BMP. Three subjects of each sex were scanned a second time to assess reproducibility. Volumes of interest were outlined for MRP-expressing tissues (cerebral cortex, cerebellum, choroid plexus, retina, lungs, myocardium, kidneys, and liver). From the time-activity curves, the elimination rate constant (kE, h- 1) was derived as a parameter for tissue MRP function and its test-retest variability (TRTV, %) was calculated. Radiation dosimetry was calculated using the Medical Internal Radiation Dose (MIRD) methodology. RESULTS Mean kE and corresponding TRTV values were: cerebral cortex: 0.055 ± 0.010 h- 1 (- 4 ± 24%), cerebellum: 0.033 ± 0.009 h- 1 (1 ± 39%), choroid plexus: 0.292 ± 0.059 h- 1 (0.1 ± 16%), retina: 0.234 ± 0.045 h- 1 (30 ± 38%), lungs: 0.875 ± 0.095 h- 1 (- 3 ± 11%), myocardium: 0.641 ± 0.105 h- 1 (11 ± 25%), kidneys: 1.378 ± 0.266 h- 1 (14 ± 16%), and liver: 0.685 ± 0.072 h- 1 (7 ± 9%). Significant sex differences were found for kE in the cerebellum, lungs and kidneys. Effective dose was 4.67 ± 0.18 µSv/MBq for men and 4.55 ± 0.18 µSv/MBq for women. CONCLUSION LAFOV PET/CT with [11C]BMP potentially allows for simultaneous assessment of MRP function in multiple human tissues. Mean TRTV of kE in different tissues was in an acceptable range, except for the retina. The radiation dosimetry of [11C]BMP was in the typical range of 11C-tracers. LAFOV PET/CT holds great potential to assess at a whole-body, multi-tissue level molecular targets relevant for drug disposition in humans. TRIAL REGISTRATION EudraCT 2021-006348-29. Registered 15 December 2021.
Collapse
Affiliation(s)
- Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Matthias Jackwerth
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Zacharias Chalampalakis
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Maria Weber
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Wölfl-Duchek
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lena Pracher
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo, Oslo, Norway
- Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital, Oslo, Norway
- Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia, Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Werner Langsteger
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Zwama J, Rosenberg NM, Verheij VA, Raijmakers PGHM, Yaqub M, Botman E, de Ruiter RD, Garrelfs MR, Bökenkamp A, Micha D, Schwarte LA, Teunissen BP, Lammertsma AA, Boellaard R, Eekhoff EMW. [ 18F]NaF PET/CT as a Marker for Fibrodysplasia Ossificans Progressiva: From Molecular Mechanisms to Clinical Applications in Bone Disorders. Biomolecules 2024; 14:1276. [PMID: 39456213 PMCID: PMC11505869 DOI: 10.3390/biom14101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic bone disorder characterized by episodic flare-ups in connective tissue, which are frequently followed by the formation of heterotopic ossification. The absence of available plasma-soluble biomarkers for flare-ups or heterotopic bone formation poses severe challenges to the monitoring of disease activity to measure or predict disease progression. Recently, 18-fluor-sodium fluoride positron emission tomography/computed tomography ([18F]NaF PET/CT) was introduced as a potential marker for ossifying FOP activity. This review discusses the pharmacokinetics of [18F]NaF in relation to the pathophysiology of FOP, and its use as a marker of local bone metabolism in a variety of bone-related disorders. In addition, the review specifically addresses the applicability of [18F]NaF PET/CT imaging in FOP as a monitoring modality.
Collapse
Affiliation(s)
- Jolien Zwama
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| | - Neeltje M. Rosenberg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| | - Vincent A. Verheij
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| | - Pieter G. H. M. Raijmakers
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Maqsood Yaqub
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Esmée Botman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| | - Ruben D. de Ruiter
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Dijklander Hospital, Maelsonstraat 3, 1624 NP Hoorn, The Netherlands
| | - Mark R. Garrelfs
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Pediatric Endocrinology, Emma Children’s Hospital, Meibergdreef 9, Amsterdam, The Netherlands
| | - Arend Bökenkamp
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Pediatric Nephrology, Emma Children’s Hospital, Meibergdreef 9, Amsterdam, The Netherlands
| | - Dimitra Micha
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Lothar A. Schwarte
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anesthesiology, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Bernd P. Teunissen
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Adriaan A. Lammertsma
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ronald Boellaard
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Elisabeth M. W. Eekhoff
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Abikhzer G, Treglia G, Pelletier-Galarneau M, Buscombe J, Chiti A, Dibble EH, Glaudemans AWJM, Palestro CJ, Sathekge M, Signore A, Jamar F, Israel O, Gheysens O. EANM/SNMMI guideline/procedure standard for [ 18F]FDG hybrid PET use in infection and inflammation in adults v2.0. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06915-3. [PMID: 39387894 DOI: 10.1007/s00259-024-06915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Hybrid [18F]FDG PET imaging is currently the method of choice for a wide variety of infectious and inflammatory disorders and was recently adopted in several clinical guidelines. A large amount of evidence-based articles, guidelines and appropriate use criteria have been published since the first version of this guideline in 2013. PURPOSE To provide updated evidence-based information to assist physicians in recommending, performing and interpreting hybrid [18F]FDG PET examinations for infectious and inflammatory disorders in the adult population. METHODS A systematic literature search of evidence-based articles using whole-body [18F]FDG hybrid imaging on the indications covered within this guideline was performed. All systematic reviews and meta-analyses published within the last 10 years until January 2023 were identified in PubMed/Medline or Cochrane. For each indication covered in this manuscript, diagnostic performance was provided based on meta-analyses or systematic reviews. If not available, results from prospective or retrospective studies were considered based on predefined selection criteria. RESULTS AND CONCLUSIONS: Hybrid [18F]FDG PET is extremely useful in the work-up and management of adults with infectious and inflammatory diseases, as supported by extensive and rapidly growing evidence-based literature and adoption in clinical guidelines. Practical recommendations are provided describing evidence-based indications as well as interpretation criteria and pitfalls. Monitoring treatment response is the most challenging but insufficiently studied potential application in infection and inflammation imaging.
Collapse
Affiliation(s)
- Gad Abikhzer
- Department of Medical Imaging, Faculty of Medicine and Health Sciences, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Giorgio Treglia
- Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900, Lugano, Switzerland
| | | | - John Buscombe
- Department of Nuclear Medicine, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Arturo Chiti
- Department of Nuclear Medicine, IRCCS San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Elizabeth H Dibble
- Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | | | - Mike Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, University Hospital S. Andrea, "Sapienza" University, Roma, Italy
| | - Francois Jamar
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc and Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Ora Israel
- Rappaport School of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc and Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
5
|
Roya M, van Snick JH, Slart RHJA, Noordzij W, Stormezand GN, Willemsen ATM, Boellaard R, Glaudemans AWJM, Tsoumpas C, van Sluis J. Clinical Performance Comparison of a Long Versus a Short Axial Field-of-View PET/CT Using EARL-Compliant Reconstructions. Mol Imaging Biol 2024; 26:780-789. [PMID: 39093483 PMCID: PMC11436434 DOI: 10.1007/s11307-024-01939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE To ensure comparable PET/CT image quality between or within centres, clinical inter-system performance comparisons following European Association of Nuclear Medicine Research Ltd. (EARL) guidelines is required. In this work the performance of the long axial field-of-view Biograph Vision Quadra is compared to its predecessor, the short axial field-of-view Biograph Vision. PROCEDURES To this aim, patients with suspected tumour lesions received a single weight-based (3 MBq/kg) 2-deoxy-2-[18F]fluoro-D-glucose injection and underwent routine clinical ( ∼ 15 min) scans on the Vision and 3-min scans on the Quadra in listmode in balanced order. Image quality (IQ), image noise (IN), and tumour demarcation (TD) were assessed visually by four nuclear medicine physicians using a 5-point Likert scale and semiquantitative analysis was performed using standardised uptake values (SUVs). Inter-reader agreement was tested using Wilcoxon's signed rank test and the SUVs were statistically compared using a paired t-test. RESULTS Twenty patients (mean age, 60 years ± 8.8 [standard deviation], 16 male) were enrolled. Inter-reader agreement ranged from good to very good for IQ and IN (0.62 ≤ W ≤ 0.81), and fair for TD (0.29 ≤ W ≤ 0.39). Furthermore, a significant difference was found for TD (p = 0.015) between the systems, showing improved TD for the Quadra. CONCLUSION This study demonstrates that the Quadra can be used in routine clinical practice with multiple PET/CT systems or in multicentre studies. This system provides comparable diagnostic image quality and semiquantitative accuracy, improved TD, and has the advantage of shorter scan durations.
Collapse
Affiliation(s)
- Mostafa Roya
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Johannes H van Snick
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enchede, The Netherlands
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Gilles N Stormezand
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Antoon T M Willemsen
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Radiology and Nuclear Medicine, Free University of Amsterdam, University Medical Centers Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
6
|
Mingels C, Nalbant H, Sari H, Godinez F, Sen F, Spencer B, Esteghamat NS, Tuscano JM, Nardo L. Long-Axial Field-of-View PET Imaging in Patients with Lymphoma: Challenges and Opportunities. PET Clin 2024; 19:495-504. [PMID: 38969563 PMCID: PMC11433941 DOI: 10.1016/j.cpet.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
[18F]fluoro-2-deoxy-d-glucose PET/computed tomography has been implemented in the management of patients with lymphoma, offering real-time metabolic information on lymphoma with the promise of more accurate staging, treatment response assessment, prognostication, and early detection of disease recurrence. The clinical management of lymphoproliferative disease has recently, rapidly evolved from initial chemotherapeutic to the use of immunotherapy, targeted agents, and to the use of chimeric antigen receptor T-cell therapies. The implementation of these new systems and imaging protocols together with new tracer development creates, in the field of lymphoproliferative disease, both opportunities and challenges that will be detailed in this comprehensive literature review.
Collapse
Affiliation(s)
- Clemens Mingels
- Department of Radiology, University of California Davis, Sacramento, CA, USA; Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Hande Nalbant
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Siemens Healthineers International AG, Zurich, Switzerland
| | - Felipe Godinez
- Department of Radiology, University of California Davis, Sacramento, CA, USA; UC Cavis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Fatma Sen
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Benjamin Spencer
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Naseem S Esteghamat
- Division of Malignant Hematology, Cellular Therapy & Transplantation, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Joseph M Tuscano
- Division of Malignant Hematology, Cellular Therapy & Transplantation, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
7
|
Pan L, Sachpekidis C, Hassel J, Christopoulos P, Dimitrakopoulou-Strauss A. Impact of different parametric Patlak imaging approaches and comparison with a 2-tissue compartment pharmacokinetic model with a long axial field-of-view (LAFOV) PET/CT in oncological patients. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06879-4. [PMID: 39256215 DOI: 10.1007/s00259-024-06879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/10/2024] [Indexed: 09/12/2024]
Abstract
AIM The recently introduced Long-Axial-Field-of-View (LAFOV) PET-CT scanners allow for the first-time whole-body dynamic- and parametric imaging. Primary aim of this study was the comparison of direct and indirect Patlak imaging as well as the comparison of different time frames for Patlak calculation with the LAFOV PET-CT in oncological patients. Secondary aims of the study were lesion detectability and comparison of Patlak analysis with a two-tissue-compartment model (2TCM). METHODOLOGY 50 oncological patients with 346 tumor lesions were enrolled in the study. All patients underwent [18F]FDG PET/CT (skull to upper thigh). Here, the Image-Derived-Input-Function) (IDIF) from the descending aorta was used as the exclusive input function. Four sets of images have been reviewed visually and evaluated quantitatively using the target-to-background (TBR) and contrast-to-noise ratio (CNR): short-time (30 min)-direct (STD) Patlak Ki, short-time (30 min)-indirect (STI) Patlak Ki, long-time (59.25 min)-indirect (LTI) Patlak Ki, and 50-60 min SUV (sumSUV). VOI-based 2TCM was used for the evaluation of tumor lesions and normal tissues and compared with the results of Patlak model. RESULTS No significant differences were observed between the four approaches regarding the number of tumor lesions. However, we found three discordant results: a true positive liver lesion in all Patlak Ki images, a false positive liver lesion delineated only in LTI Ki which was a hemangioma according to MRI and a true negative example in a patient with an atelectasis next to a lung tumor. STD, STI and LTI Ki images had superior TBR in comparison with sumSUV images (2.9-, 3.3- and 4.3-fold higher respectively). TBR of LTI Ki were significantly higher than STD Ki. VOI-based k3 showed a 21-fold higher TBR than sumSUV. Parameters of different models vary in their differential capability between tumor lesions and normal tissue like Patlak Ki which was better in normal lung and 2TCM k3 which was better in normal liver. 2TCM Ki revealed the highest correlation (r = 0.95) with the LTI Patlak Ki in tumor lesions group and demonstrated the highest correlation with the STD Patlak Ki in all tissues group and normal tissues group (r = 0.93 and r = 0.74 respectively). CONCLUSIONS Dynamic [18F]-FDG with the new LAFOV PET/CT scanner produces Patlak Ki images with better lesion contrast than SUV images, but does not increase the lesion detection rate. The time window used for Patlak imaging plays a more important role than the direct or indirect method. A combination of different models, like Patlak and 2TCM may be helpful in parametric imaging to obtain the best TBR in the whole body in future.
Collapse
Affiliation(s)
- Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69210, Heidelberg, Germany.
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69210, Heidelberg, Germany
| | - Jessica Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik of the University of Heidelberg, Heidelberg, Germany
| | - Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69210, Heidelberg, Germany
| |
Collapse
|
8
|
Slart RHJA, Martinez-Lucio TS, Boersma HH, Borra RH, Cornelissen B, Dierckx RAJO, Dobrolinska M, Doorduin J, Erba PA, Glaudemans AWJM, Giacobbo BL, Luurtsema G, Noordzij W, van Sluis J, Tsoumpas C, Lammertsma AA. [ 15O]H 2O PET: Potential or Essential for Molecular Imaging? Semin Nucl Med 2024; 54:761-773. [PMID: 37640631 DOI: 10.1053/j.semnuclmed.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Imaging water pathways in the human body provides an excellent way of measuring accurately the blood flow directed to different organs. This makes it a powerful diagnostic tool for a wide range of diseases that are related to perfusion and oxygenation. Although water PET has a long history, its true potential has not made it into regular clinical practice. The article highlights the potential of water PET in molecular imaging and suggests its prospective role in becoming an essential tool for the 21st century precision medicine in different domains ranging from preclinical to clinical research and practice. The recent technical advances in high-sensitivity PET imaging can play a key accelerating role in empowering this technique, though there are still several challenges to overcome.
Collapse
Affiliation(s)
- Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| | - T Samara Martinez-Lucio
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendrikus H Boersma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald H Borra
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart Cornelissen
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Magdalena Dobrolinska
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paola A Erba
- Department of Medicine and Surgery, University of Milan Bicocca, and Nuclear Medicine Unit ASST Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bruno Lima Giacobbo
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
van der Geest KSM, Gheysens O, Gormsen LC, Glaudemans AWJM, Tsoumpas C, Brouwer E, Nienhuis PH, van Praagh GD, Slart RHJA. Advances in PET Imaging of Large Vessel Vasculitis: An Update and Future Trends. Semin Nucl Med 2024; 54:753-760. [PMID: 38538456 DOI: 10.1053/j.semnuclmed.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 08/20/2024]
Abstract
Systemic vasculitides are autoimmune diseases characterized by inflammation of blood vessels. They are categorized based on the size of the preferentially affected blood vessels: large-, medium-, and small-vessel vasculitides. The main forms of large-vessel vasculitis include giant cell arteritis (GCA) and Takayasu arteritis (TAK). Depending on the location of the affected vessels, various imaging modalities can be employed for diagnosis of large vessel vasculitis: ultrasonography (US), magnetic resonance angiography (MRA), computed tomography angiography (CTA), and [18F]-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT). These imaging tools offer complementary information about vascular changes occurring in vasculitis. Recent advances in PET imaging in large vessel vasculitis include the introduction of digital long axial field-of-view PET/CT, dedicated acquisition, quantitative methodologies, and the availability of novel radiopharmaceuticals. This review aims to provide an update on the current status of PET imaging in large vessel vasculitis and to share the latest developments on imaging vasculitides.
Collapse
Affiliation(s)
- Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques universitaires St-Luc and Institute for Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Lars C Gormsen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus N, Denmark
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pieter H Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gijs D van Praagh
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
10
|
Aghayev A, Weber B, Lins de Carvalho T, Glaudemans AWJM, Nienhuis PH, van der Geest KSM, Slart RHJA. Multimodality imaging to assess diagnosis and evaluate complications of large vesselarteritis. J Nucl Cardiol 2024; 37:101864. [PMID: 38663459 PMCID: PMC11257818 DOI: 10.1016/j.nuclcard.2024.101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 05/26/2024]
Abstract
Different types of vasculitis can be distinguished according to the blood vessel's size that is preferentially affected: large-vessel, medium-vessel, and small-vessel vasculitides. Giant cell arteritis (GCA) and Takayasu's arteritis (TAK) are the main forms of large-vessel vasculitis, and may lead to lumen narrowing. Clinical manifestations of arterial narrowing on the short- and long term include vision loss, stroke, limb ischemia, and heart failure. Imaging tools are well established diagnostic tests for large-vessel vasculitis and may aid therapy monitoring in selected cases while providing important information regarding the occurrence of vascular damage, tissue and organ complications. This review aims to provide the current status of multimodality imaging for the diagnosis and identification of vascular complications in the field of large vessel vasculitis.
Collapse
Affiliation(s)
- Ayaz Aghayev
- Cardiovascular Imaging Program, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brittany Weber
- Cardiovascular Imaging Program, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tiago Lins de Carvalho
- Cardiovascular Imaging Program, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Pieter H Nienhuis
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, the Netherlands; Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
11
|
Glaudemans AW. Heliyon medical imaging: Shaping the future of health. Heliyon 2024; 10:e32395. [PMID: 39183843 PMCID: PMC11341280 DOI: 10.1016/j.heliyon.2024.e32395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 08/27/2024] Open
Affiliation(s)
- Andor W.J.M. Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Volpe F, Nappi C, Klain M. Long-axial-field of view in prostate cancer next generation imaging: the launch pad of theragnostic. Eur J Nucl Med Mol Imaging 2024; 51:2134-2136. [PMID: 38351388 DOI: 10.1007/s00259-024-06647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Affiliation(s)
- Fabio Volpe
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.
| | - Michele Klain
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Caldarella C, De Risi M, Massaccesi M, Miccichè F, Bussu F, Galli J, Rufini V, Leccisotti L. Role of 18F-FDG PET/CT in Head and Neck Squamous Cell Carcinoma: Current Evidence and Innovative Applications. Cancers (Basel) 2024; 16:1905. [PMID: 38791983 PMCID: PMC11119768 DOI: 10.3390/cancers16101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
This article provides an overview of the use of 18F-FDG PET/CT in various clinical scenarios of head-neck squamous cell carcinoma, ranging from initial staging to treatment-response assessment, and post-therapy follow-up, with a focus on the current evidence, debated issues, and innovative applications. Methodological aspects and the most frequent pitfalls in head-neck imaging interpretation are described. In the initial work-up, 18F-FDG PET/CT is recommended in patients with metastatic cervical lymphadenectomy and occult primary tumor; moreover, it is a well-established imaging tool for detecting cervical nodal involvement, distant metastases, and synchronous primary tumors. Various 18F-FDG pre-treatment parameters show prognostic value in terms of disease progression and overall survival. In this scenario, an emerging role is played by radiomics and machine learning. For radiation-treatment planning, 18F-FDG PET/CT provides an accurate delineation of target volumes and treatment adaptation. Due to its high negative predictive value, 18F-FDG PET/CT, performed at least 12 weeks after the completion of chemoradiotherapy, can prevent unnecessary neck dissections. In addition to radiomics and machine learning, emerging applications include PET/MRI, which combines the high soft-tissue contrast of MRI with the metabolic information of PET, and the use of PET radiopharmaceuticals other than 18F-FDG, which can answer specific clinical needs.
Collapse
Affiliation(s)
- Carmelo Caldarella
- Nuclear Medicine Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (M.D.R.); (L.L.)
| | - Marina De Risi
- Nuclear Medicine Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (M.D.R.); (L.L.)
| | - Mariangela Massaccesi
- Radiation Oncology Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Francesco Miccichè
- Radiation Oncology Unit, Ospedale Isola Tiberina—Gemelli Isola, 00186 Rome, Italy;
| | - Francesco Bussu
- Otorhinolaryngology Operative Unit, Azienda Ospedaliero Universitaria Sassari, 07100 Sassari, Italy;
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Jacopo Galli
- Otorhinolaryngology Unit, Department of Neurosciences, Sensory Organs and Thorax, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Section of Otolaryngology, Department of Head-Neck and Sensory Organs, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Vittoria Rufini
- Nuclear Medicine Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (M.D.R.); (L.L.)
- Section of Nuclear Medicine, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lucia Leccisotti
- Nuclear Medicine Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (M.D.R.); (L.L.)
- Section of Nuclear Medicine, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
14
|
Besson FL, Nocturne G, Noël N, Gheysens O, Slart RHJA, Glaudemans AWJM. PET/CT in Inflammatory and Auto-immune Disorders: Focus on Several Key Molecular Concepts, FDG, and Radiolabeled Probe Perspectives. Semin Nucl Med 2024; 54:379-393. [PMID: 37973447 DOI: 10.1053/j.semnuclmed.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Chronic immune diseases mainly include autoimmune and inflammatory diseases. Managing chronic inflammatory and autoimmune diseases has become a significant public health concern, and therapeutic advancements over the past 50 years have been substantial. As therapeutic tools continue to multiply, the challenge now lies in providing each patient with personalized care tailored to the specifics of their condition, ushering in the era of personalized medicine. Precise and holistic imaging is essential in this context to comprehensively map the inflammatory processes in each patient, identify prognostic factors, and monitor treatment responses and complications. Imaging of patients with inflammatory and autoimmune diseases must provide a comprehensive view of the body, enabling the whole-body mapping of systemic involvement. It should identify key cellular players in the pathology, involving both innate immunity (dendritic cells, macrophages), adaptive immunity (lymphocytes), and microenvironmental cells (stromal cells, tissue cells). As a highly sensitive imaging tool with vectorized molecular probe capabilities, PET/CT can be of high relevance in the management of numerous inflammatory and autoimmune diseases. Relying on key molecular concepts of immunity, the clinical usefulness of FDG-PET/CT in several relevant inflammatory and immune-inflammatory conditions, validated or emerging, will be discussed in this review, together with radiolabeled probe perspectives.
Collapse
Affiliation(s)
- Florent L Besson
- Department of Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris-Saclay, AP-HP, DMU SMART IMAGING, CHU Bicêtre, Paris, France; Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; Université Paris-Saclay, Commissariat à l'énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), INSERM, BioMaps, Le Kremlin-Bicêtre, France.
| | - Gaetane Nocturne
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; Department of Rheumatology, Hôpital Bicêtre Assistance Publique -Hôpitaux de Paris, Le Kremlin-Bicêtre, France; Center for Immunology of Viral Infections and Auto-Immune Diseases (IMVA), Université Paris-Saclay, Institut pour la Santé et la Recherche Médicale (INSERM) UMR 1184, Le Kremlin Bicêtre, Paris, France
| | - Nicolas Noël
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; Center for Immunology of Viral Infections and Auto-Immune Diseases (IMVA), Université Paris-Saclay, Institut pour la Santé et la Recherche Médicale (INSERM) UMR 1184, Le Kremlin Bicêtre, Paris, France; Department of Internal Medicine, Hôpital Bicêtre Assistance Publique -Hôpitaux de Paris, Le Kremlin-Bicêtre, Paris, France
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires St-Luc and Institute for Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands; Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Besson FL, Faure S. PET KinetiX-A Software Solution for PET Parametric Imaging at the Whole Field of View Level. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:842-850. [PMID: 38343229 PMCID: PMC11031504 DOI: 10.1007/s10278-023-00965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 04/20/2024]
Abstract
Kinetic modeling represents the ultimate foundations of PET quantitative imaging, a unique opportunity to better characterize the diseases or prevent the reduction of drugs development. Primarily designed for research, parametric imaging based on PET kinetic modeling may become a reality in future clinical practice, enhanced by the technical abilities of the latest generation of commercially available PET systems. In the era of precision medicine, such paradigm shift should be promoted, regardless of the PET system. In order to anticipate and stimulate this emerging clinical paradigm shift, we developed a constructor-independent software package, called PET KinetiX, allowing a faster and easier computation of parametric images from any 4D PET DICOM series, at the whole field of view level. The PET KinetiX package is currently a plug-in for Osirix DICOM viewer. The package provides a suite of five PET kinetic models: Patlak, Logan, 1-tissue compartment model, 2-tissue compartment model, and first pass blood flow. After uploading the 4D-PET DICOM series into Osirix, the image processing requires very few steps: the choice of the kinetic model and the definition of an input function. After a 2-min process, the PET parametric and error maps of the chosen model are automatically estimated voxel-wise and written in DICOM format. The software benefits from the graphical user interface of Osirix, making it user-friendly. Compared to PMOD-PKIN (version 4.4) on twelve 18F-FDG PET dynamic datasets, PET KinetiX provided an absolute bias of 0.1% (0.05-0.25) and 5.8% (3.3-12.3) for KiPatlak and Ki2TCM, respectively. Several clinical research illustrative cases acquired on different hybrid PET systems (standard or extended axial fields of view, PET/CT, and PET/MRI), with different acquisition schemes (single-bed single-pass or multi-bed multipass), are also provided. PET KinetiX is a very fast and efficient independent research software that helps molecular imaging users easily and quickly produce 3D PET parametric images from any reconstructed 4D-PET data acquired on standard or large PET systems.
Collapse
Affiliation(s)
- Florent L Besson
- Department of Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris-Saclay, AP-HP, DMU SMART IMAGING, CHU Bicêtre, Le Kremlin-Bicêtre, France.
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
- CEA / Inserm / CNRS/ Université Paris-Saclay, BioMaps, Orsay, France.
| | - Sylvain Faure
- Laboratoire de Mathématique d'Orsay, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
16
|
El Ouaridi A, Ait Elcadi Z, Mkimel M, Bougteb M, El Baydaoui R. The detection instrumentation and geometric design of clinical PET scanner: towards better performance and broader clinical applications. Biomed Phys Eng Express 2024; 10:032002. [PMID: 38412520 DOI: 10.1088/2057-1976/ad2d61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Positron emission tomography (PET) is a powerful medical imaging modality used in nuclear medicine to diagnose and monitor various clinical diseases in patients. It is more sensitive and produces a highly quantitative mapping of the three-dimensional biodistribution of positron-emitting radiotracers inside the human body. The underlying technology is constantly evolving, and recent advances in detection instrumentation and PET scanner design have significantly improved the medical diagnosis capabilities of this imaging modality, making it more efficient and opening the way to broader, innovative, and promising clinical applications. Some significant achievements related to detection instrumentation include introducing new scintillators and photodetectors as well as developing innovative detector designs and coupling configurations. Other advances in scanner design include moving towards a cylindrical geometry, 3D acquisition mode, and the trend towards a wider axial field of view and a shorter diameter. Further research on PET camera instrumentation and design will be required to advance this technology by improving its performance and extending its clinical applications while optimising radiation dose, image acquisition time, and manufacturing cost. This article comprehensively reviews the various parameters of detection instrumentation and PET system design. Firstly, an overview of the historical innovation of the PET system has been presented, focusing on instrumental technology. Secondly, we have characterised the main performance parameters of current clinical PET and detailed recent instrumental innovations and trends that affect these performances and clinical practice. Finally, prospects for this medical imaging modality are presented and discussed. This overview of the PET system's instrumental parameters enables us to draw solid conclusions on achieving the best possible performance for the different needs of different clinical applications.
Collapse
Affiliation(s)
- Abdallah El Ouaridi
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Zakaria Ait Elcadi
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
- Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, 23874, Qatar
| | - Mounir Mkimel
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Mustapha Bougteb
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Redouane El Baydaoui
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| |
Collapse
|
17
|
Saha E, Shimochi S, Keller T, Eskola O, López-Picón F, Rajander J, Löyttyniemi E, Forsback S, Solin O, Grönroos TJ, Parikka V. Evaluation of PET imaging as a tool for detecting neonatal hypoxic-ischemic encephalopathy in a preclinical animal model. Exp Neurol 2024; 373:114673. [PMID: 38163475 DOI: 10.1016/j.expneurol.2023.114673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/09/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Hypoxic-ischemic encephalopathy due to insufficient oxygen delivery to brain tissue is a leading cause of death or severe morbidity in neonates. The early recognition of the most severely affected individuals remains a clinical challenge. We hypothesized that hypoxic-ischemic injury can be detected using PET radiotracers for hypoxia ([18F]EF5), glucose metabolism ([18F]FDG), and inflammation ([18F]F-DPA). METHODS A preclinical model of neonatal hypoxic-ischemic brain injury was made in 9-d-old rat pups by permanent ligation of the left common carotid artery followed by hypoxia (8% oxygen and 92% nitrogen) for 120 min. In vivo PET imaging was performed immediately after injury induction or at different timepoints up to 21 d later. After imaging, ex vivo brain autoradiography was performed. Brain sections were stained with cresyl violet to evaluate the extent of the brain injury and to correlate it with [18F]FDG uptake. RESULTS PET imaging revealed that all three of the radiotracers tested had significant uptake in the injured brain hemisphere. Ex vivo autoradiography revealed high [18F]EF5 uptake in the hypoxic hemisphere immediately after the injury (P < 0.0001), decreasing to baseline even 1 d postinjury. [18F]FDG uptake was highest in the injured hemisphere on the day of injury (P < 0.0001), whereas [18F]F-DPA uptake was evident after 4 d (P = 0.029), peaking 7 d postinjury (P < 0.0001), and remained significant 21 d after the injury. Targeted evaluation demonstrated that [18F]FDG uptake measured by in vivo imaging 1 d postinjury correlated positively with the brain volume loss detected 21 d later (r = 0.72, P = 0.028). CONCLUSION Neonatal hypoxic-ischemic brain injury can be detected using PET imaging. Different types of radiotracers illustrate distinct phases of hypoxic brain damage. PET may be a new useful technique, worthy of being explored for clinical use, to predict and evaluate the course of the injury.
Collapse
Affiliation(s)
- Emma Saha
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratories, University of Turku, Turku, Finland; Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland.
| | - Saeka Shimochi
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Thomas Keller
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Olli Eskola
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Francisco López-Picón
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Johan Rajander
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
| | | | - Sarita Forsback
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Olof Solin
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland; Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland; Department of Chemistry, University of Turku, Finland
| | - Tove J Grönroos
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Vilhelmiina Parikka
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratories, University of Turku, Turku, Finland; Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
18
|
Erba PA, Pizzi MN, Roque A, Slart RHJA. Nuclear imaging in the new ESC Guidelines: the age of maturity. Eur J Nucl Med Mol Imaging 2024; 51:938-941. [PMID: 38163837 DOI: 10.1007/s00259-023-06572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Affiliation(s)
- Paola Anna Erba
- Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.
- Nuclear Medicine Unit, ASST Ospedale Papa Giovanni XXIII, Bergamo, Italy.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands.
| | - Maria Nazarena Pizzi
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Department of Nuclear Medicine, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Albert Roque
- Department of Radiology, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Department of Nuclear Medicine, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
19
|
Slart RHJA, Bengel FM, Akincioglu C, Bourque JM, Chen W, Dweck MR, Hacker M, Malhotra S, Miller EJ, Pelletier-Galarneau M, Packard RRS, Schindler TH, Weinberg RL, Saraste A, Slomka PJ. Total-Body PET/CT Applications in Cardiovascular Diseases: A Perspective Document of the SNMMI Cardiovascular Council. J Nucl Med 2024:jnumed.123.266858. [PMID: 38388512 DOI: 10.2967/jnumed.123.266858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
Digital PET/CT systems with a long axial field of view have become available and are emerging as the current state of the art. These new camera systems provide wider anatomic coverage, leading to major increases in system sensitivity. Preliminary results have demonstrated improvements in image quality and quantification, as well as substantial advantages in tracer kinetic modeling from dynamic imaging. These systems also potentially allow for low-dose examinations and major reductions in acquisition time. Thereby, they hold great promise to improve PET-based interrogation of cardiac physiology and biology. Additionally, the whole-body coverage enables simultaneous assessment of multiple organs and the large vascular structures of the body, opening new opportunities for imaging systemic mechanisms, disorders, or treatments and their interactions with the cardiovascular system as a whole. The aim of this perspective document is to debate the potential applications, challenges, opportunities, and remaining challenges of applying PET/CT with a long axial field of view to the field of cardiovascular disease.
Collapse
Affiliation(s)
- Riemer H J A Slart
- Medical Imaging Centre, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Cigdem Akincioglu
- Division of Nuclear Medicine, Medical Imaging, Western University, London, Ontario, Canada
| | - Jamieson M Bourque
- Departments of Medicine (Cardiology) and Radiology, University of Virginia, Charlottesville, Virginia
| | - Wengen Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Heart Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Edward J Miller
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, and Department of Internal Medicine, Yale University, New Haven, Connecticut
| | | | - René R S Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Thomas H Schindler
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Richard L Weinberg
- Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Antti Saraste
- Turku PET Centre and Heart Center, Turku University Hospital and University of Turku, Turku, Finland; and
| | - Piotr J Slomka
- Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
20
|
Merlet A, Presles B, Su KH, Salvadori J, Sayah F, Jozi H, Cochet A, Vrigneaud JM. Validation of a discovery MI 4-ring model according to the NEMA NU 2-2018 standards: from Monte Carlo simulations to clinical-like reconstructions. EJNMMI Phys 2024; 11:13. [PMID: 38294624 PMCID: PMC11266333 DOI: 10.1186/s40658-024-00616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND We propose a comprehensive evaluation of a Discovery MI 4-ring (DMI) model, using a Monte Carlo simulator (GATE) and a clinical reconstruction software package (PET toolbox). The following performance characteristics were compared with actual measurements according to NEMA NU 2-2018 guidelines: system sensitivity, count losses and scatter fraction (SF), coincidence time resolution (CTR), spatial resolution (SR), and image quality (IQ). For SR and IQ tests, reconstruction of time-of-flight (TOF) simulated data was performed using the manufacturer's reconstruction software. RESULTS Simulated prompt, random, true, scatter and noise equivalent count rates closely matched the experimental rates with maximum relative differences of 1.6%, 5.3%, 7.8%, 6.6%, and 16.5%, respectively, in a clinical range of less than 10 kBq/mL. A 3.6% maximum relative difference was found between experimental and simulated sensitivities. The simulated spatial resolution was better than the experimental one. Simulated image quality metrics were relatively close to the experimental results. CONCLUSIONS The current model is able to reproduce the behaviour of the DMI count rates in the clinical range and generate clinical-like images with a reasonable match in terms of contrast and noise.
Collapse
Affiliation(s)
- Antoine Merlet
- Imagerie et Vision artificielle, ImViA EA 7535, University of Burgundy, Dijon, France
| | - Benoît Presles
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, University of Burgundy, Dijon, France
| | | | - Julien Salvadori
- ICANS, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Farzam Sayah
- Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France
| | - Hanieh Jozi
- Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France
| | - Alexandre Cochet
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, University of Burgundy, Dijon, France
- Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France
| | - Jean-Marc Vrigneaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, University of Burgundy, Dijon, France.
- Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France.
| |
Collapse
|
21
|
Tingen HSA, van Praagh GD, Nienhuis PH, Tubben A, van Rijsewijk ND, ten Hove D, Mushari NA, Martinez-Lucio TS, Mendoza-Ibañez OI, van Sluis J, Tsoumpas C, Glaudemans AW, Slart RH. The clinical value of quantitative cardiovascular molecular imaging: a step towards precision medicine. Br J Radiol 2023; 96:20230704. [PMID: 37786997 PMCID: PMC10646628 DOI: 10.1259/bjr.20230704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide and have an increasing impact on society. Precision medicine, in which optimal care is identified for an individual or a group of individuals rather than for the average population, might provide significant health benefits for this patient group and decrease CVD morbidity and mortality. Molecular imaging provides the opportunity to assess biological processes in individuals in addition to anatomical context provided by other imaging modalities and could prove to be essential in the implementation of precision medicine in CVD. New developments in single-photon emission computed tomography (SPECT) and positron emission tomography (PET) systems, combined with rapid innovations in promising and specific radiopharmaceuticals, provide an impressive improvement of diagnostic accuracy and therapy evaluation. This may result in improved health outcomes in CVD patients, thereby reducing societal impact. Furthermore, recent technical advances have led to new possibilities for accurate image quantification, dynamic imaging, and quantification of radiotracer kinetics. This potentially allows for better evaluation of disease activity over time and treatment response monitoring. However, the clinical implementation of these new methods has been slow. This review describes the recent advances in molecular imaging and the clinical value of quantitative PET and SPECT in various fields in cardiovascular molecular imaging, such as atherosclerosis, myocardial perfusion and ischemia, infiltrative cardiomyopathies, systemic vascular diseases, and infectious cardiovascular diseases. Moreover, the challenges that need to be overcome to achieve clinical translation are addressed, and future directions are provided.
Collapse
Affiliation(s)
- Hendrea Sanne Aletta Tingen
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gijs D. van Praagh
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Alwin Tubben
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Nick D. van Rijsewijk
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Derk ten Hove
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Nouf A. Mushari
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - T. Samara Martinez-Lucio
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Oscar I. Mendoza-Ibañez
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Andor W.J.M. Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | | |
Collapse
|
22
|
Moretti R, Meffe G, Annunziata S, Capotosti A. Innovations in imaging modalities: a comparative review of MRI, long-axial field-of-view PET, and full-ring CZT-SPECT in detecting bone metastases. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2023; 67:259-270. [PMID: 37870526 DOI: 10.23736/s1824-4785.23.03537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The accurate diagnosis of bone metastasis, a condition in which cancer cells have spread to the bone, is essential for optimal patient care and outcome. This review provides a detailed overview of the current medical imaging techniques used to detect and diagnose this critical condition focusing on three cardinal imaging modalities: positron emission tomography (PET), single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Each of these techniques has unique advantages: PET/CT combines functional imaging with anatomical imaging, allowing precise localization of metabolic abnormalities; the SPECT/CT offers a wider range of radiopharmaceuticals for visualizing specific receptors and metabolic pathways; MRI stands out for its unparalleled ability to produce high-resolution images of bone marrow structures. However, as this paper shows, each modality has its own limitations. The comprehensive analysis does not stop at the technical aspects, but ventures into the wider implications of these techniques in a clinical setting. By understanding the synergies and shortcomings of these modalities, healthcare professionals can make diagnostic and therapeutic decisions. Furthermore, at a time when medical technology is evolving at a breakneck pace, this review casts a speculative eye towards future advances in the field of bone metastasis imaging, bridging the current state with future possibilities. Such insights are essential for both clinicians and researchers navigating the complex landscape of bone metastasis diagnosis.
Collapse
Affiliation(s)
- Roberto Moretti
- Department of Diagnostic Imaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Guenda Meffe
- Department of Diagnostic Imaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Salvatore Annunziata
- Department of Diagnostic Imaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Amedeo Capotosti
- Department of Diagnostic Imaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy -
| |
Collapse
|
23
|
Volpi T, Maccioni L, Colpo M, Debiasi G, Capotosti A, Ciceri T, Carson RE, DeLorenzo C, Hahn A, Knudsen GM, Lammertsma AA, Price JC, Sossi V, Wang G, Zanotti-Fregonara P, Bertoldo A, Veronese M. An update on the use of image-derived input functions for human PET studies: new hopes or old illusions? EJNMMI Res 2023; 13:97. [PMID: 37947880 PMCID: PMC10638226 DOI: 10.1186/s13550-023-01050-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The need for arterial blood data in quantitative PET research limits the wider usability of this imaging method in clinical research settings. Image-derived input function (IDIF) approaches have been proposed as a cost-effective and non-invasive alternative to gold-standard arterial sampling. However, this approach comes with its own limitations-partial volume effects and radiometabolite correction among the most important-and varying rates of success, and the use of IDIF for brain PET has been particularly troublesome. MAIN BODY This paper summarizes the limitations of IDIF methods for quantitative PET imaging and discusses some of the advances that may make IDIF extraction more reliable. The introduction of automated pipelines (both commercial and open-source) for clinical PET scanners is discussed as a way to improve the reliability of IDIF approaches and their utility for quantitative purposes. Survey data gathered from the PET community are then presented to understand whether the field's opinion of the usefulness and validity of IDIF is improving. Finally, as the introduction of next-generation PET scanners with long axial fields of view, ultra-high sensitivity, and improved spatial and temporal resolution, has also brought IDIF methods back into the spotlight, a discussion of the possibilities offered by these state-of-the-art scanners-inclusion of large vessels, less partial volume in small vessels, better description of the full IDIF kinetics, whole-body modeling of radiometabolite production-is included, providing a pathway for future use of IDIF. CONCLUSION Improvements in PET scanner technology and software for automated IDIF extraction may allow to solve some of the major limitations associated with IDIF, such as partial volume effects and poor temporal sampling, with the exciting potential for accurate estimation of single kinetic rates. Nevertheless, until individualized radiometabolite correction can be performed effectively, IDIF approaches remain confined at best to a few tracers.
Collapse
Affiliation(s)
- Tommaso Volpi
- Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA.
| | - Lucia Maccioni
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Maria Colpo
- Department of Information Engineering, University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Giulia Debiasi
- Department of Information Engineering, University of Padova, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Amedeo Capotosti
- Department of Information Engineering, University of Padova, Padua, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Tommaso Ciceri
- Department of Information Engineering, University of Padova, Padua, Italy
- Neuroimaging Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, LC, Italy
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Christine DeLorenzo
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Healthy (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen, Netherlands
| | - Julie C Price
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, USA
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Guobao Wang
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA
| | | | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Mattia Veronese
- Department of Information Engineering, University of Padova, Padua, Italy
- Department of Neuroimaging, King's College London, London, UK
| |
Collapse
|
24
|
van Leer B, van Rijsewijk ND, Nijsten MWN, Slart RHJA, Pillay J, Glaudemans AWJM. Practice of 18F-FDG-PET/CT in ICU Patients: A Systematic Review. Semin Nucl Med 2023; 53:809-819. [PMID: 37258380 DOI: 10.1053/j.semnuclmed.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
18F-FDG-PET/CT imaging has become a key tool to evaluate infectious and inflammatory diseases. However, application of 18F-FDG-PET/CT in patients in the intensive care unit (ICU) is limited, which is remarkable since the development of critical illness is closely linked to infection and inflammation. This limited use is caused by perceived complexity and risk of planning and executing 18F-FDG-PET/CT in such patients. The aim of this systematic review was to investigate the feasibility of 18F-FDG-PET/CT in ICU patients with special emphasis on patient preparation, transport logistics and safety. Therefore, a systematic search was performed in PubMed, Embase, and Web of Science using the search terms: intensive care, critically ill, positron emission tomography and 18F-FDG or derivates. A total of 1183 articles were found of which 10 were included. Three studies evaluated the pathophysiology of acute respiratory distress syndrome, acute lung injury and acute chest syndrome. Three other studies applied 18F-FDG-PET/CT to increase understanding of pathophysiology after traumatic brain injury. The remaining four studies evaluated infection of unknown origin. These four studies showed a sensitivity and specificity between 85%-100% and 57%-88%, respectively. A remarkable low adverse event rate of 2% was found during the entire 18F-FDG-PET/CT procedure, including desaturation and hypotension. In all studies, a team consisting of an intensive care physician and nurse was present during transport to ensure continuation of necessary critical care. Full monitoring during transport was used in patients requiring mechanical ventilation or vasopressor support. None of the studies used specific patient preparation for ICU patients. However, one article described specific recommendations in their discussion. In conclusion, 18F-FDG-PET/CT has been shown to be feasible and safe in ICU patients, even when ventilated or requiring vasopressors. Specific recommendations regarding patient preparation, logistics and scanning are needed. Including 18F-FDG-PET/CT in routine workup of infection of unknown origin in ICU patients showed potential to identify source of infection and might improve outcome.
Collapse
Affiliation(s)
- Bram van Leer
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Nick D van Rijsewijk
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten W N Nijsten
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Janesh Pillay
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
25
|
Knuuti J, Tuisku J, Kärpijoki H, Iida H, Maaniitty T, Latva-Rasku A, Oikonen V, Nesterov SV, Teuho J, Jaakkola MK, Klén R, Louhi H, Saunavaara V, Nuutila P, Saraste A, Rinne J, Nummenmaa L. Quantitative Perfusion Imaging with Total-Body PET. J Nucl Med 2023; 64:11S-19S. [PMID: 37918848 DOI: 10.2967/jnumed.122.264870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Recently, PET systems with a long axial field of view have become the current state of the art. Total-body PET scanners enable unique possibilities for scientific research and clinical diagnostics, but this new technology also raises numerous challenges. A key advantage of total-body imaging is that having all the organs in the field of view allows studying biologic interaction of all organs simultaneously. One of the new, promising imaging techniques is total-body quantitative perfusion imaging. Currently, 15O-labeled water provides a feasible option for quantitation of tissue perfusion at the total-body level. This review summarizes the status of the methodology and the analysis and provides examples of preliminary findings on applications of quantitative parametric perfusion images for research and clinical work. We also describe the opportunities and challenges arising from moving from single-organ studies to modeling of a multisystem approach with total-body PET, and we discuss future directions for total-body imaging.
Collapse
Affiliation(s)
- Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland;
- Department of Clinical Physiology, Nuclear Medicine, and PET, Turku University Hospital, Turku, Finland; and
| | - Jouni Tuisku
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Henri Kärpijoki
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Hidehiro Iida
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Teemu Maaniitty
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Department of Clinical Physiology, Nuclear Medicine, and PET, Turku University Hospital, Turku, Finland; and
| | - Aino Latva-Rasku
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Sergey V Nesterov
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Jarmo Teuho
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Maria K Jaakkola
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Riku Klén
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Heli Louhi
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Juha Rinne
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
26
|
Mohr P, van Sluis J, Providência L, van Snick JH, Lub-de Hooge MN, Willemsen AT, Glaudemans AWJM, Boellaard R, Lammertsma AA, Brouwers AH, Tsoumpas C. Long Versus Short Axial Field of View Immuno-PET/CT: Semiquantitative Evaluation for 89Zr-Trastuzumab. J Nucl Med 2023; 64:1815-1820. [PMID: 37536740 DOI: 10.2967/jnumed.123.265621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/20/2023] [Indexed: 08/05/2023] Open
Abstract
The purpose of this study was to quantify any differences between the SUVs of 89Zr immuno-PET scans obtained using a PET/CT system with a long axial field of view (LAFOV; Biograph Vision Quadra) compared to a PET/CT system with a short axial field of view (SAFOV; Biograph Vision) and to evaluate how LAFOV PET scan duration affects image noise and SUV metrics. Methods: Five metastatic breast cancer patients were scanned consecutively on SAFOV and LAFOV PET/CT scanners. Four additional patients were scanned using only LAFOV PET/CT. Scans on both systems lasted approximately 30 min and were acquired 4 d after injection of 37 MBq of 89Zr-trastuzumab. LAFOV list-mode data were reprocessed to obtain images acquired using shorter scan durations (15, 10, 7.5, 5, and 3 min). Volumes of interest were placed in healthy tissues, and tumors were segmented semiautomatically to compare coefficients of variation and to perform Bland-Altman analysis on SUV metrics (SUVmax, SUVpeak, and SUVmean). Results: Using 30-min images, 2 commonly used lesion SUV metrics were higher for SAFOV than for LAFOV PET (SUVmax, 16.2% ± 13.4%, and SUVpeak, 10.1% ± 7.2%), whereas the SUVmean of healthy tissues showed minimal differences (0.7% ± 5.8%). Coefficients of variation in the liver derived from 30-min SAFOV PET were between those of 3- and 5-min LAFOV PET. The smallest SUVmax and SUVpeak differences between SAFOV and LAFOV were found for 3-min LAFOV PET. Conclusion: LAFOV 89Zr immuno-PET showed a lower SUVmax and SUVpeak than SAFOV because of lower image noise. LAFOV PET scan duration may be reduced at the expense of increasing image noise and bias in SUV metrics. Nevertheless, SUVpeak showed only minimal bias when reducing scan duration from 30 to 10 min.
Collapse
Affiliation(s)
- Philipp Mohr
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura Providência
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes H van Snick
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Antoon T Willemsen
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Liu Y, Ren YN, Cui Y, Liu S, Yang Z, Zhu H, Li N. Inspired by novel radiopharmaceuticals: Rush hour of nuclear medicine. Chin J Cancer Res 2023; 35:470-482. [PMID: 37969954 PMCID: PMC10643344 DOI: 10.21147/j.issn.1000-9604.2023.05.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023] Open
Abstract
Nuclear medicine plays an irreplaceable role in the diagnosis and treatment of tumors. Radiopharmaceuticals are important components of nuclear medicine. Among the radiopharmaceuticals approved by the Food and Drug Administration (FDA), radio-tracers targeting prostate-specific membrane antigen (PSMA) and somatostatin receptor (SSTR) have held essential positions in the diagnosis and treatment of prostate cancers and neuroendocrine neoplasms, respectively. In recent years, FDA-approved serials of immune-therapy and targeted therapy drugs targeting programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1), human epidermal growth factor receptor 2 (HER2), and nectin cell adhesion molecule 4 (Nectin 4). How to screen patients suitable for these treatments and monitor the therapy? Nuclear medicine with specific radiopharmaceuticals can visualize the expression level of those targets in systemic lesions and evaluate the efficacy of treatment. In addition to radiopharmaceuticals, imaging equipment is also a key step for nuclear medicine. Advanced equipment including total-body positron emission tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MRI) has been developed, which contribute to the diagnosis and treatment of tumors, as well as the development of new radiopharmaceuticals. Here, we conclude most recently advances of radiopharmaceuticals in nuclear medicine, and they substantially increase the "arsenal" of clinicians for tumor therapy.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ya-nan Ren
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yan Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Song Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
28
|
Roya M, Mostafapour S, Mohr P, Providência L, Li Z, van Snick JH, Brouwers AH, Noordzij W, Willemsen ATM, Dierckx RAJO, Lammertsma AA, Glaudemans AWJM, Tsoumpas C, Slart RHJA, van Sluis J. Current and Future Use of Long Axial Field-of-View Positron Emission Tomography/Computed Tomography Scanners in Clinical Oncology. Cancers (Basel) 2023; 15:5173. [PMID: 37958347 PMCID: PMC10648837 DOI: 10.3390/cancers15215173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The latest technical development in the field of positron emission tomography/computed tomography (PET/CT) imaging has been the extension of the PET axial field-of-view. As a result of the increased number of detectors, the long axial field-of-view (LAFOV) PET systems are not only characterized by a larger anatomical coverage but also by a substantially improved sensitivity, compared with conventional short axial field-of-view PET systems. In clinical practice, this innovation has led to the following optimization: (1) improved overall image quality, (2) decreased duration of PET examinations, (3) decreased amount of radioactivity administered to the patient, or (4) a combination of any of the above. In this review, novel applications of LAFOV PET in oncology are highlighted and future directions are discussed.
Collapse
Affiliation(s)
- Mostafa Roya
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Samaneh Mostafapour
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Philipp Mohr
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Laura Providência
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Zekai Li
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Johannes H. van Snick
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Adrienne H. Brouwers
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Antoon T. M. Willemsen
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Adriaan A. Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Andor W. J. M. Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, 7522 NB Enchede, The Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| |
Collapse
|
29
|
Honoré d’Este S, Andersen FL, Andersen JB, Jakobsen AL, Sanchez Saxtoft E, Schulze C, Hansen NL, Andersen KF, Reichkendler MH, Højgaard L, Fischer BM. Potential Clinical Impact of LAFOV PET/CT: A Systematic Evaluation of Image Quality and Lesion Detection. Diagnostics (Basel) 2023; 13:3295. [PMID: 37958190 PMCID: PMC10650426 DOI: 10.3390/diagnostics13213295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
We performed a systematic evaluation of the diagnostic performance of LAFOV PET/CT with increasing acquisition time. The first 100 oncologic adult patients referred for 3 MBq/kg 2-[18F]fluoro-2-deoxy-D-glucose PET/CT on the Siemens Biograph Vision Quadra were included. A standard imaging protocol of 10 min was used and scans were reconstructed at 30 s, 60 s, 90 s, 180 s, 300 s, and 600 s. Paired comparisons of quantitative image noise, qualitative image quality, lesion detection, and lesion classification were performed. Image noise (n = 50, 34 women) was acceptable according to the current standard of care (coefficient-of-varianceref < 0.15) after 90 s and improved significantly with increasing acquisition time (PB < 0.001). The same was seen in observer rankings (PB < 0.001). Lesion detection (n = 100, 74 women) improved significantly from 30 s to 90 s (PB < 0.001), 90 s to 180 s (PB = 0.001), and 90 s to 300 s (PB = 0.002), while lesion classification improved from 90 s to 180 s (PB < 0.001), 180 s to 300 s (PB = 0.021), and 90 s to 300 s (PB < 0.001). We observed improved image quality, lesion detection, and lesion classification with increasing acquisition time while maintaining a total scan time of less than 5 min, which demonstrates a potential clinical benefit. Based on these results we recommend a standard imaging acquisition protocol for LAFOV PET/CT of minimum 180 s to maximum 300 s after injection of 3 MBq/kg 2-[18F]fluoro-2-deoxy-D-glucose.
Collapse
Affiliation(s)
- Sabrina Honoré d’Este
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Julie Bjerglund Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Annika Loft Jakobsen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Eunice Sanchez Saxtoft
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Christina Schulze
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Naja Liv Hansen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Kim Francis Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Michala Holm Reichkendler
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Liselotte Højgaard
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health, Copenhagen University, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Barbara Malene Fischer
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health, Copenhagen University, Blegdamsvej 3b, 2200 Copenhagen, Denmark
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| |
Collapse
|
30
|
Wu Y, Sun X, Zhang B, Zhang S, Wang X, Sun Z, Liu R, Zhang M, Hu K. Marriage of radiotracers and total-body PET/CT rapid imaging system: current status and clinical advances. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2023; 13:195-207. [PMID: 38023815 PMCID: PMC10656629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 12/01/2023]
Abstract
Radiotracers and medical imaging equipment are the two main keys to molecular imaging. While radiotracers are of great interest to research and industry, medical imaging equipment technology is blossoming everywhere. Total-body PET/CT (TB-PET/CT) has emerged in response to this trend and is rapidly gaining traction in the fields of clinical oncology, cardiovascular medicine, inflammatory/infectious diseases, and pediatric diseases. In addition, the use of a growing number of radiopharmaceuticals in TB-PET/CT systems has shown promising results. Notably, the distinctive features of TB-PET/CT, such as its ultra-long axial field of view (194 cm), ultra-high sensitivity, and capability for low-dose tracer imaging, have enabled enhanced imaging quality while reducing the radiation dose. The envisioned whole-body dynamic imaging, delayed imaging, personalized disease management, and ultrafast acquisition for motion correction, among others, are achieved. This review highlights two key factors affecting molecular imaging, describing the rapid imaging effects of radiotracers allowed at low doses on TB-PET/CT and the improvements offered compared to conventional PET/CT.
Collapse
Affiliation(s)
- Yuxuan Wu
- Beijing Engineering Research Center of Printed Electronics, School of Printing and Packaging Engineering, Beijing Institute of Graphic CommunicationBeijing 102600, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Xiaona Sun
- Beijing Engineering Research Center of Printed Electronics, School of Printing and Packaging Engineering, Beijing Institute of Graphic CommunicationBeijing 102600, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Boyang Zhang
- Beijing Engineering Research Center of Printed Electronics, School of Printing and Packaging Engineering, Beijing Institute of Graphic CommunicationBeijing 102600, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Zhicheng Sun
- Beijing Engineering Research Center of Printed Electronics, School of Printing and Packaging Engineering, Beijing Institute of Graphic CommunicationBeijing 102600, China
| | - Ruping Liu
- Beijing Engineering Research Center of Printed Electronics, School of Printing and Packaging Engineering, Beijing Institute of Graphic CommunicationBeijing 102600, China
| | - Mingrong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba 263-8555, Japan
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba 263-8555, Japan
| |
Collapse
|
31
|
Gu F, Wu Q. Quantitation of dynamic total-body PET imaging: recent developments and future perspectives. Eur J Nucl Med Mol Imaging 2023; 50:3538-3557. [PMID: 37460750 PMCID: PMC10547641 DOI: 10.1007/s00259-023-06299-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/05/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Positron emission tomography (PET) scanning is an important diagnostic imaging technique used in disease diagnosis, therapy planning, treatment monitoring, and medical research. The standardized uptake value (SUV) obtained at a single time frame has been widely employed in clinical practice. Well beyond this simple static measure, more detailed metabolic information can be recovered from dynamic PET scans, followed by the recovery of arterial input function and application of appropriate tracer kinetic models. Many efforts have been devoted to the development of quantitative techniques over the last couple of decades. CHALLENGES The advent of new-generation total-body PET scanners characterized by ultra-high sensitivity and long axial field of view, i.e., uEXPLORER (United Imaging Healthcare), PennPET Explorer (University of Pennsylvania), and Biograph Vision Quadra (Siemens Healthineers), further stimulates valuable inspiration to derive kinetics for multiple organs simultaneously. But some emerging issues also need to be addressed, e.g., the large-scale data size and organ-specific physiology. The direct implementation of classical methods for total-body PET imaging without proper validation may lead to less accurate results. CONCLUSIONS In this contribution, the published dynamic total-body PET datasets are outlined, and several challenges/opportunities for quantitation of such types of studies are presented. An overview of the basic equation, calculation of input function (based on blood sampling, image, population or mathematical model), and kinetic analysis encompassing parametric (compartmental model, graphical plot and spectral analysis) and non-parametric (B-spline and piece-wise basis elements) approaches is provided. The discussion mainly focuses on the feasibilities, recent developments, and future perspectives of these methodologies for a diverse-tissue environment.
Collapse
Affiliation(s)
- Fengyun Gu
- School of Mathematics and Physics, North China Electric Power University, 102206, Beijing, China.
- School of Mathematical Sciences, University College Cork, T12XF62, Cork, Ireland.
| | - Qi Wu
- School of Mathematical Sciences, University College Cork, T12XF62, Cork, Ireland
| |
Collapse
|
32
|
Saraste A, Knuuti J, Bengel F. Phenotyping heart failure by nuclear imaging of myocardial perfusion, metabolism, and molecular targets. Eur Heart J Cardiovasc Imaging 2023; 24:1318-1328. [PMID: 37294318 PMCID: PMC10531130 DOI: 10.1093/ehjci/jead128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Nuclear imaging techniques can detect and quantify pathophysiological processes underlying heart failure, complementing evaluation of cardiac structure and function with other imaging modalities. Combined imaging of myocardial perfusion and metabolism can identify left ventricle dysfunction caused by myocardial ischaemia that may be reversible after revascularization in the presence of viable myocardium. High sensitivity of nuclear imaging to detect targeted tracers has enabled assessment of various cellular and subcellular mechanisms of heart failure. Nuclear imaging of active inflammation and amyloid deposition is incorporated into clinical management algorithms of cardiac sarcoidosis and amyloidosis. Innervation imaging has well-documented prognostic value with respect to heart failure progression and arrhythmias. Emerging tracers specific for inflammation and myocardial fibrotic activity are in earlier stages of development but have demonstrated potential value in early characterization of the response to myocardial injury and prediction of adverse left ventricular remodelling. Early detection of disease activity is a key for transition from broad medical treatment of clinically overt heart failure towards a personalized approach aimed at supporting repair and preventing progressive failure. This review outlines the current status of nuclear imaging in phenotyping heart failure and combines it with discussion on novel developments.
Collapse
Affiliation(s)
- Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4–8, 20520 Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Hämeentie 11, 20520 Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4–8, 20520 Turku, Finland
| | - Frank Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
33
|
Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Long axial field of view (LAFOV) PET-CT: implementation in static and dynamic oncological studies. Eur J Nucl Med Mol Imaging 2023; 50:3354-3362. [PMID: 37079129 PMCID: PMC10541341 DOI: 10.1007/s00259-023-06222-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/02/2023] [Indexed: 04/21/2023]
Abstract
Long axial field of view (LAFOV) PET-CT scanners have been recently developed and are already in clinical use in few centers worldwide. Although still limited, the hitherto acquired experience with these novel systems highlights an increased sensitivity as their main advantage, which results in an increased lesion detectability. This attribute, alternatively, allows a reduction in PET acquisition time and/or administered radiotracer dose, while it renders delayed scanning of satisfying diagnostic accuracy possible. Another potential advantage of the new generation scanners is CT-less approaches for attenuation correction with the impact of marked reduction of radiation exposure, which may in turn lead to greater acceptance of longitudinal PET studies in the oncological setting. Further, the possibility for the first time of whole-body dynamic imaging, improved compartment modeling, and whole-body parametric imaging represent unique characteristics of the LAFOV PET-CT scanners. On the other hand, the advent of the novel LAFOV scanners is linked to specific challenges, such as the high purchase price and issues related to logistics and their optimal operation in a nuclear medicine department. Moreover, with regard to its research applications in oncology, the full potential of the new scanners can only be reached if different radiopharmaceuticals, both short and long-lived ones, as well as novel tracers, are available for use, which would, in turn, require the appropriate infrastructure in the area of radiochemistry. Although the novel LAFOV scanners are not yet widely used, this development represents an important step in the evolution of molecular imaging. This review presents the advantages and challenges of LAFOV PET-CT imaging for oncological applications with respect to static and dynamic acquisition protocols as well as to new tracers, while it provides an overview of the literature in the field.
Collapse
Affiliation(s)
- Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.
| | - Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| |
Collapse
|
34
|
Chen WJ, Rae WID, Kench PL, Meikle SR. The potential advantages and workflow challenges of long axial field of view PET/CT. J Med Radiat Sci 2023; 70:310-318. [PMID: 37156564 PMCID: PMC10500105 DOI: 10.1002/jmrs.686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
Recently developed Long (≥100 cm) axial field of view (AFOV) PET/CT scanners are capable of producing images with higher signal-to-noise ratio, or performing faster whole-body acquisitions, or scanning with lower radiation dose to the patient, compared with conventional PET/CT scanners. These benefits, which arise due to their substantially higher, by more than an order of magnitude, geometric efficiency, have been well described in the recent literature. The introduction of Long AFOV PET/CT technology into the clinic also has important implications for the design and workflow of PET/CT facilities and their effects on radiation exposure to staff and patients. Maximising the considerable benefits of this technology requires a thorough understanding of the relationships between these factors to optimise workflows while appropriately managing radiation exposure. This article reviews current knowledge on PET/CT facility design, workflows and their effects on radiation exposure, identifies gaps in the literature and discusses the challenges that need to be considered with the introduction of Long AFOV PET/CT into the clinic.
Collapse
Affiliation(s)
- Wei‐Ting J. Chen
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
- Medical Image Optimisation and Perception Group (MIOPeG), Faculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
| | - William I. D. Rae
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
- Medical Image Optimisation and Perception Group (MIOPeG), Faculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
- Medical Imaging DepartmentPrince of Wales HospitalRandwickNew South WalesAustralia
| | - Peter L. Kench
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
- Medical Image Optimisation and Perception Group (MIOPeG), Faculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
| | - Steven R. Meikle
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
- Brain and Mind CentreUniversity of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
35
|
Djekidel M, Alsadi R, Abi Akl M, Bouhali O, O'Doherty J. Tumor microenvironment and fibroblast activation protein inhibitor (FAPI) PET: developments toward brain imaging. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1183471. [PMID: 39355017 PMCID: PMC11440979 DOI: 10.3389/fnume.2023.1183471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/03/2023] [Indexed: 10/03/2024]
Abstract
Fibroblast activation protein (FAP) is a type-II membrane bound glycoprotein specifically expressed by activated fibroblasts almost exclusively in pathological conditions including arthritis, fibrosis and cancer. FAP is overexpressed in cancer-associated fibroblasts (CAFs) located in tumor stroma, and is known to be involved in a variety of tumor-promoting activities such as angiogenesis, proliferation, resistance to chemotherapy, extracellular matrix remodeling and immunosuppression. In most cancer types, higher FAP expression is associated with worse clinical outcomes, leading to the hypothesis that FAP activity is involved in cancer development, cancer cell migration, and cancer spread. Recently, various high selectivity FAP inhibitors (FAPIs) have been developed and subsequently used for positron emission tomography (PET) imaging of different pathologies. Considering the paucity of widely available and especially mainstream reliable radioligands in brain cancer PET imaging, and the poor survival rates of patients with certain types of brain cancer such as glioblastoma, FAPI-PET represents a major development in enabling the detection of small primary or metastatic lesions in the brain due to its biological characteristics and low background accumulation. In this work, we aim to summarize the potential avenues for use of FAPI-PET, from the basic biological processes to oncologic imaging and with a main focus on brain imaging.
Collapse
Affiliation(s)
- Mehdi Djekidel
- Department of Radiology/Nuclear Medicine, Northwell Health, New York, NY, United States
| | - Rahaf Alsadi
- Division of Arts and Science, Texas A&M University at Qatar, Doha, Qatar
| | - Maya Abi Akl
- Division of Arts and Science, Texas A&M University at Qatar, Doha, Qatar
- Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP), Ghent University, Ghent, Belgium
| | - Othmane Bouhali
- Division of Arts and Science, Texas A&M University at Qatar, Doha, Qatar
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Jim O'Doherty
- Siemens Medical Solutions, Malvern, PA, United States
- Department of Radiology & Radiological Sciences, Medical University of South Carolina, Charleston, SC, United States
- Radiography and Diagnostic Imaging, University College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Shah UA, Ballinger TJ, Bhandari R, Dieli-Conwright CM, Guertin KA, Hibler EA, Kalam F, Lohmann AE, Ippolito JE. Imaging modalities for measuring body composition in patients with cancer: opportunities and challenges. J Natl Cancer Inst Monogr 2023; 2023:56-67. [PMID: 37139984 PMCID: PMC10157788 DOI: 10.1093/jncimonographs/lgad001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 05/05/2023] Open
Abstract
Body composition assessment (ie, the measurement of muscle and adiposity) impacts several cancer-related outcomes including treatment-related toxicities, treatment responses, complications, and prognosis. Traditional modalities for body composition measurement include body mass index, body circumference, skinfold thickness, and bioelectrical impedance analysis; advanced imaging modalities include dual energy x-ray absorptiometry, computerized tomography, magnetic resonance imaging, and positron emission tomography. Each modality has its advantages and disadvantages, thus requiring an individualized approach in identifying the most appropriate measure for specific clinical or research situations. Advancements in imaging approaches have led to an abundance of available data, however, the lack of standardized thresholds for classification of abnormal muscle mass or adiposity has been a barrier to adopting these measurements widely in research and clinical care. In this review, we discuss the different modalities in detail and provide guidance on their unique opportunities and challenges.
Collapse
Affiliation(s)
- Urvi A Shah
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Tarah J Ballinger
- Department of Medicine, Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Rusha Bhandari
- Department of Pediatrics, City of Hope, Duarte, CA, USA
- Department of Population Science, City of Hope, Duarte, CA, USA
| | - Christina M Dieli-Conwright
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kristin A Guertin
- Department of Public Health Sciences, University of Connecticut Health, Farmington, CT, USA
| | - Elizabeth A Hibler
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Faiza Kalam
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ana Elisa Lohmann
- Department of Medical Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Joseph E Ippolito
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
37
|
Triumbari EKA, Rufini V, Mingels C, Rominger A, Alavi A, Fanfani F, Badawi RD, Nardo L. Long Axial Field-of-View PET/CT Could Answer Unmet Needs in Gynecological Cancers. Cancers (Basel) 2023; 15:2407. [PMID: 37173874 PMCID: PMC10177015 DOI: 10.3390/cancers15092407] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Gynecological malignancies currently affect about 3.5 million women all over the world. Imaging of uterine, cervical, vaginal, ovarian, and vulvar cancer still presents several unmet needs when using conventional modalities such as ultrasound, computed tomography (CT), magnetic resonance, and standard positron emission tomography (PET)/CT. Some of the current diagnostic limitations are represented by differential diagnosis between inflammatory and cancerous findings, detection of peritoneal carcinomatosis and metastases <1 cm, detection of cancer-associated vascular complications, effective assessment of post-therapy changes, as well as bone metabolism and osteoporosis assessment. As a result of recent advances in PET/CT instrumentation, new systems now offer a long-axial field-of-view (LAFOV) to image between 106 cm and 194 cm (i.e., total-body PET) of the patient's body simultaneously and feature higher physical sensitivity and spatial resolution compared to standard PET/CT systems. LAFOV PET could overcome the forementioned limitations of conventional imaging and provide valuable global disease assessment, allowing for improved patient-tailored care. This article provides a comprehensive overview of these and other potential applications of LAFOV PET/CT imaging for patients with gynecological malignancies.
Collapse
Affiliation(s)
- Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, G-STeP Radiopharmacy Research Core Facility, Department of Radiology, Radiotherapy and Haematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Vittoria Rufini
- Nuclear Medicine Unit, Department of Radiology, Radiotherapy and Haematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
- Section of Nuclear Medicine, Department of Radiological Sciences, Radiotherapy and Haematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesco Fanfani
- Woman, Child and Public Health Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Section of Obstetrics and Gynaecology, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Ramsey D. Badawi
- Department of Radiology, University of California Davis, Sacramento, CA 95819, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA 95819, USA
| |
Collapse
|
38
|
Slart RHJA, Nienhuis PH, Glaudemans AWJM, Brouwer E, Gheysens O, van der Geest KSM. Role of 18F-FDG PET/CT in Large Vessel Vasculitis and Polymyalgia Rheumatica. J Nucl Med 2023; 64:515-521. [PMID: 37011940 DOI: 10.2967/jnumed.122.265016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Indexed: 04/05/2023] Open
Abstract
Systemic vasculitides comprise a group of autoimmune diseases affecting blood vessels, including large vessel vasculitis (LVV) and medium-sized vessel vasculitis such as giant cell arteritis (GCA) and Takayasu arteritis (TAK). GCA frequently overlaps with polymyalgia rheumatica (PMR), a rheumatic inflammatory condition affecting bursae, tendons or tendon sheaths, and joints. 18F-FDG PET/CT plays an important role in the diagnostic work-up of GCA, PMR, and TAK and is increasingly used to monitor treatment response. This continuing education article provides up-to-date guidance on the role of 18F-FDG PET/CT in patients with LVV, medium-sized vessel vasculitis, and PMR. It provides a general introduction on the clinical presentation and challenges in the diagnostic work-up of LVV and medium-sized vessel vasculitis, with a focus on the 2 major LVV subtypes: GCA, including PMR, and TAK. Next, practice points to perform and interpret the results of 18F-FDG PET/CT are described in line with the published procedure recommendations. Furthermore, the diagnostic performance and its role for treatment monitoring are discussed, taking into account recent international recommendations for the use of imaging in LVV and medium-sized vessel vasculitis in clinical practice. This is illustrated by several clinically representative PET/CT scan examples. Lastly, knowledge of limitations and pitfalls is essential to understand the role of 18F-FDG PET/CT in LVV, medium-sized vessel vasculitis, and PMR. Challenges and opportunities, as well as future research and conclusions, are highlighted. Learning objectives provide up-to-date guidance for the role of 18F-FDG PET/CT in patients with suspected LVV, medium-sized vessel vasculitis, and PMR.
Collapse
Affiliation(s)
- Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, The Netherlands;
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Pieter H Nienhuis
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, The Netherlands; and
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, The Netherlands; and
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc and Institute of Clinical and Experimental Research, Université Catholique de Louvain, Brussels, Belgium
| | - Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, The Netherlands; and
| |
Collapse
|
39
|
Slart RHJA, Rominger A. Collection on clinical total-body-PET studies. Eur J Nucl Med Mol Imaging 2023; 50:1556-1557. [PMID: 36922448 DOI: 10.1007/s00259-023-06161-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
40
|
van Leer B, van Snick JH, Londema M, Nijsten MWN, Kasalak Ö, Slart RHJA, Glaudemans AWJM, Pillay J. [ 18F]FDG-PET/CT in mechanically ventilated critically ill patients with COVID-19 ARDS and persistent inflammation. Clin Transl Imaging 2023; 11:297-306. [PMID: 37275950 PMCID: PMC10008145 DOI: 10.1007/s40336-023-00550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/14/2023]
Abstract
Purpose We report the findings of four critically ill patients who underwent an [18F]FDG-PET/CT because of persistent inflammation during the late phase of their COVID-19. Methods Four mechanically ventilated patients with COVID-19 were retrospectively discussed in a research group to evaluate the added value of [18F]FDG-PET/CT. Results Although pulmonary PET/CT findings differed, bilateral lung anomalies could explain the increased CRP and leukocytes in all patients. This underscores the limited ability of the routine laboratory to discriminate inflammation from secondary infections. Based on PET/CT findings, a secondary infection/inflammatory focus was suspected in two patients (pancreatitis and gastritis). Lymphadenopathy was present in patients with a detectable SARS-CoV-2 viral load. Muscle uptake around the hips or shoulders was observed in all patients, possibly due to the process of heterotopic ossification. Conclusion This case series illustrates the diagnostic potential of [18F]FDG-PET/CT imaging in critically ill patients with persistent COVID-19 for the identification of other causes of inflammation and demonstrates that this technique can be performed safely in mechanically ventilated critically ill patients.
Collapse
Affiliation(s)
- Bram van Leer
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, TA29, PO box: 30 001, 9700 RB Groningen, The Netherlands
| | - Johannes H. van Snick
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mark Londema
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, TA29, PO box: 30 001, 9700 RB Groningen, The Netherlands
| | - Maarten W. N. Nijsten
- Department of Critical Care, University Medical Center Groningen, University of Groningen, TA29, PO box: 30 001, 9700 RB Groningen, The Netherlands
| | - Ömer Kasalak
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riemer H. J. A. Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Andor W. J. M. Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janesh Pillay
- Department of Critical Care, University Medical Center Groningen, University of Groningen, TA29, PO box: 30 001, 9700 RB Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Muraglia L, Mattana F, Travaini LL, Musi G, Bertani E, Renne G, Pisa E, Ferrari ME, Fumagalli Romario U, De Cobelli O, Fusco N, Ceci F. First Live-Experience Session with PET/CT Specimen Imager: A Pilot Analysis in Prostate Cancer and Neuroendocrine Tumor. Biomedicines 2023; 11:biomedicines11020645. [PMID: 36831181 PMCID: PMC9953571 DOI: 10.3390/biomedicines11020645] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
OBJECTIVE to evaluate the feasibility of the intra-operative application of a specimen PET/CT imager in a clinical setting. MATERIALS AND METHODS this is a pilot analysis performed in three patients who received an intra-operative administration of 68Ga-PSMA-11 (n = 2) and 68Ga-DOTA-TOC (n = 1), respectively. Patients were administrated with PET radiopharmaceuticals to perform radio-guided surgery with a beta-probe detector during radical prostatectomy for prostate cancer (PCa) and salvage lymphadenectomy for recurrent neuroendocrine tumor (NET) of the ileum, respectively. All procedures have been performed within two ongoing clinical trials in our Institute (NCT05596851 and NCT05448157). Pathologic assessment with immunohistochemistry (PSMA-staining and SSA immunoreactivity) was considered as standard of truth. Specimen images were compared with baseline PET/CT images and histopathological analysis. RESULTS Patients received 1 MBq/Kg of 68Ga-PSMA-11 (PCa) or 1.2 MBq/Kg of 68Ga-DOTA-TOC (NET) prior to surgery. Specimens were collected, positioned in the dedicated specimen container, and scanned to obtain high-resolution PET/CT images. In all cases, a perfect match was observed between the findings detected by the specimen imager and histopathology. Overall, the PET spatial resolution was sensibly higher for the specimen images compared to the baseline whole-body PET/CT images. Furthermore, the use of the PET/CT specimen imager did not significantly interfere with any procedures, and the overall length of the surgery was not affected using the PET/CT specimen imager. Finally, the radiation exposure of the operating theater staff was lower than 40 µSv per procedure (range 26-40 μSv). CONCLUSIONS the image acquisition of specimens obtained by patients who received intra-surgery injections of 68Ga-PSMA-11 and 68Ga-DOTA-TOC was feasible and reliable also in a live-experience session and has been easily adapted to surgery daily practice. The high sensitivity, together with the evaluation of intra-lesion tumor heterogeneity, were the most relevant results since the data derived from specimen PET/CT imaging matched perfectly with the histopathological analysis.
Collapse
Affiliation(s)
- Lorenzo Muraglia
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesco Mattana
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Laura Lavinia Travaini
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Gennaro Musi
- Division of Urology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Emilio Bertani
- Division of Digestive Surgery, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giuseppe Renne
- Division of Pathology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Eleonora Pisa
- Division of Pathology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | | | | | - Ottavio De Cobelli
- Division of Urology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
- Division of Pathology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesco Ceci
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
- Correspondence:
| |
Collapse
|
42
|
Ricci M, Carabellese B, Pietroniro D, Grivet Fojaja MR, De Vincentis G, Cimini A. Digital PET for recurrent prostate cancer: how the technology help. Clin Transl Imaging 2023. [DOI: 10.1007/s40336-023-00545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
43
|
Molecular Imaging Diagnosis of Renal Cancer Using 99mTc-Sestamibi SPECT/CT and Girentuximab PET-CT-Current Evidence and Future Development of Novel Techniques. Diagnostics (Basel) 2023; 13:diagnostics13040593. [PMID: 36832081 PMCID: PMC9954934 DOI: 10.3390/diagnostics13040593] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023] Open
Abstract
Novel molecular imaging opportunities to preoperatively diagnose renal cell carcinoma is under development and will add more value in limiting the postoperative renal function loss and morbidity. We aimed to comprehensively review the research on single photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography computed tomography (PET-CT) molecular imaging and to enhance the urologists' and radiologists' knowledge of the current research pattern. We identified an increase in prospective and also retrospective studies that researched to distinguish between benign and malignant lesions and between different clear cell renal cell carcinoma subtypes, with small numbers of patients studied, nonetheless with excellent results on specificity, sensitivity and accuracy, especially for 99mTc-sestamibi SPECT/CT that delivers quick results compared to a long acquisition time for girentuximab PET-CT, which instead gives better image quality. Nuclear medicine has helped clinicians in evaluating primary and secondary lesions, and has lately returned with new and exciting insights with novel radiotracers to reinforce its diagnostic potential in renal carcinoma. To further limit the renal function loss and post-surgery morbidity, future research is mandatory to validate the results and to clinically implement the diagnostic techniques in the context of precision medicine.
Collapse
|
44
|
van der Geest KS, Slijkhuis BG, Tomelleri A, Gheysens O, Jiemy WF, Piccolo C, Nienhuis P, Sandovici M, Brouwer E, Glaudemans AW, Mulder DJ, Slart RH. Positron Emission Tomography Imaging in Vasculitis. Cardiol Clin 2023; 41:251-265. [PMID: 37003681 DOI: 10.1016/j.ccl.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Systemic vasculitides comprise a group of autoimmune diseases affecting blood vessels. [18F]-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT) plays an important role in the diagnosis and therapeutic monitoring of vasculitides affecting large-sized and medium-sized vessels. FDG-PET/CT also provides complementary information to other vascular imaging tools. The resolution and sensitivity of newer generation scanners continues to increase, hereby improving the ability of FDG-PET/CT to accurately assess the full disease extent in patients with vasculitis. Novel tracers targeting specific immune cells will allow for more detailed detection of vascular infiltrates.
Collapse
|
45
|
Duarte PS. Letter to the editor: Combined [ 68 Ga]Ga-PSMA-11 and low-dose [ 18F]FDG PET/CT using a long-axial field of view scanner for patients referred for [ 177Lu]-PSMA-radioligand therapy. Eur J Nucl Med Mol Imaging 2023; 50:642-643. [PMID: 36258051 DOI: 10.1007/s00259-022-06009-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023]
Affiliation(s)
- Paulo Schiavom Duarte
- Division of Nuclear Medicine, São Paulo Cancer Institute (ICESP), Av. Dr. Arnaldo, 251, 4° SS, Cerqueira César, São Paulo, SP, 01246-000, Brazil.
| |
Collapse
|
46
|
ImmunoPET Directed to the Brain: A New Tool for Preclinical and Clinical Neuroscience. Biomolecules 2023; 13:biom13010164. [PMID: 36671549 PMCID: PMC9855881 DOI: 10.3390/biom13010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a non-invasive in vivo imaging method based on tracking and quantifying radiolabeled monoclonal antibodies (mAbs) and other related molecules, such as antibody fragments, nanobodies, or affibodies. However, the success of immunoPET in neuroimaging is limited because intact antibodies cannot penetrate the blood-brain barrier (BBB). In neuro-oncology, immunoPET has been successfully applied to brain tumors because of the compromised BBB. Different strategies, such as changes in antibody properties, use of physiological mechanisms in the BBB, or induced changes to BBB permeability, have been developed to deliver antibodies to the brain. These approaches have recently started to be applied in preclinical central nervous system PET studies. Therefore, immunoPET could be a new approach for developing more specific PET probes directed to different brain targets.
Collapse
|
47
|
Glaudemans AWJM, Gheysens O. Expert opinions in nuclear medicine: Finding the "holy grail" in infection imaging. Front Med (Lausanne) 2023; 10:1149925. [PMID: 36923013 PMCID: PMC10008957 DOI: 10.3389/fmed.2023.1149925] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Nuclear medicine imaging techniques are now widely accepted and increasingly used for diagnosing and treatment monitoring of infectious and inflammatory diseases. The latter has been exemplified by numerous recent clinical guidelines in which PET imaging is now part of the diagnostic flowcharts. In this perspective paper we discuss the current available guidelines, the current limitations, and we provide the future aims of research to achieve the holy grail in nuclear medicine: the differentiation between infection, inflammation and malignancy.
Collapse
Affiliation(s)
- Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc and Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
48
|
van Rijsewijk ND, van Leer B, Ivashchenko OV, Schölvinck EH, van den Heuvel F, van Snick JH, Slart RHJA, Noordzij W, Glaudemans AWJM. Ultra-low dose infection imaging of a newborn without sedation using long axial field-of-view PET/CT. Eur J Nucl Med Mol Imaging 2023; 50:622-623. [PMID: 36166078 PMCID: PMC9816243 DOI: 10.1007/s00259-022-05979-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023]
Affiliation(s)
- N D van Rijsewijk
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - B van Leer
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - O V Ivashchenko
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - E H Schölvinck
- Department of Pediatric Infectious Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - F van den Heuvel
- Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - J H van Snick
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - R H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - W Noordzij
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - A W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
49
|
van Sluis J, Bellido M, Glaudemans AWJM, Slart RHJA. Long Axial Field-of-View PET for Ultra-Low-Dose Imaging of Non-Hodgkin Lymphoma during Pregnancy. Diagnostics (Basel) 2022; 13:28. [PMID: 36611320 PMCID: PMC9818305 DOI: 10.3390/diagnostics13010028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Generally, positron emission tomography imaging is not often performed in the case of pregnant patients. The careful weighing of the risks of radiation exposure to the fetus and benefits for cancer staging and the swift onset of treatment for the mother complicates decision making in clinical practice. In oncology, the most commonly used PET radiotracer is 2-deoxy-2-[fluorine-18] fluoro-D-glucose (18F-FDG), a glucose analog which has established roles in the daily routines for, among other applications, initial diagnosis, staging, (radiation) therapy planning, and response monitoring. The introduction of long axial Field-of-View (LAFOV) PET systems allows for PET imaging with a reduced level of injected 18F-FDG activity while maintaining the image quality. Here, we discuss the first reported case of a pregnant patient diagnosed with follicular lymphoma using LAFOV PET imaging for the staging and therapy selection. The acquired PET images show diagnostic quality images with clearly distinguishable areas of lymphadenopathy, even with only 34 MBq of injected 18F-FDG activity, leading to a considerable decrease in the level of radiation exposure to the fetus.
Collapse
Affiliation(s)
- Joyce van Sluis
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Mar Bellido
- Department of Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Andor W. J. M. Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Riemer H. J. A. Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| |
Collapse
|
50
|
de Vries EFJ, Elsinga PH, Tsoumpas C. Will extended field-of-view PET/CT depopulate the graveyard of failed PET radiopharmaceuticals? Cancer Imaging 2022; 22:70. [PMID: 36529738 PMCID: PMC9761966 DOI: 10.1186/s40644-022-00510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
With the rapid emergence of extended Field-of-View PET-cameras several new applications for radiopharmaceuticals become within reach. Main reason is the significant increase of the sensitivity of the PET-camera so that much less radioactivity can be administered. Issues that that hampered development or use of PET-radiopharmaceuticals become realistic again. Molar activity requirements can become less strict. New low-yielding radiochemistry methods may become applicable. Carbon-11 labelled compounds can revive and potentially be shipped to nearby PET-facilities. PET-radiopharmaceuticals with slow kinetics in comparison to their half life can still be used. As additional infrastructure and equipment will likely remain unchanged and keep the same sensitivity therefore there will be issues with kinetic modelling requiring analysis of plasma or metabolites samples with lower count rate. Besides the potential revival of failed radiopharmaceuticals, novel challenges are ahead to develop novel radiochemistry based on thus far unsuitable (low yielding or time consuming) reactions.
Collapse
Affiliation(s)
- E. F. J. de Vries
- grid.4494.d0000 0000 9558 4598Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ The Netherlands
| | - P. H. Elsinga
- grid.4494.d0000 0000 9558 4598Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ The Netherlands
| | - C. Tsoumpas
- grid.4494.d0000 0000 9558 4598Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ The Netherlands
| |
Collapse
|