1
|
Khan S, Simsek R, Fuentes JDB, Vohra I, Vohra S. Implication of Toll-Like Receptors in growth and management of health and diseases: Special focus as a promising druggable target to Prostate Cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189229. [PMID: 39608622 DOI: 10.1016/j.bbcan.2024.189229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Toll-like receptors (TLRs) are protein structures belonging to the pattern recognition receptors family. TLRs have the great potential that can directly recognize the specific molecular structures on the surface of pathogens, damaged senescent cells and apoptotic host cells. Available evidence suggests that TLRs have crucial roles in maintaining tissue homeostasis through control of the inflammatory and tissue repair responses during injury. TLRs are the player of first line of defense against different microbes and activate the signaling cascades which help to induce the immune system and inflammatory responses by affecting various signaling pathways, including nuclear factor-κB (NF-κB), interferon regulatory factors, and mitogen-activated protein kinases (MAPKs). TLRs have been identified to be over-expressed in different types of cancers and play an important role in control of health and management of diseases. The current review provides updated knowledge on the implication of TLRs in growth and management of cancers including prostate cancer.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health Technology (IIHT), Paramedical and Nursing College, Deoband, 247554 Saharanpur, India; Department of Health Sciences, Novel Global Community Educational Foundation, Australia.
| | - Rahime Simsek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe Unversity, 06100 Ankara, Turkey
| | - Javier David Benitez Fuentes
- Medical Oncology Department, Hospital General Universitario de Elche, Carrer Almazara, 11, 03203 Elche, Alicante, Spain
| | - Isra Vohra
- University of Houston Clear Lake Graduated with bachelors Physiology, Houston, TX, USA
| | - Saeed Vohra
- Department of Anatomy and Physiology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Peng J, Sun J, Yu Y, Yuan Q, Zhang Y. Integrative multi-omics analysis reveals the role of toll-like receptor signaling in pancreatic cancer. Sci Rep 2025; 15:52. [PMID: 39747201 PMCID: PMC11696379 DOI: 10.1038/s41598-024-84062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
As one of the most destructive and invasive cancers, pancreatic cancer exhibits complex tumor heterogeneity, which has been a major challenge for clinicians in terms of patient treatment and prognosis. The toll-like receptor (TLR) pathway is closely related to the immune microenvironment within various cancer tissues. To explore the development pattern of pancreatic cancer and find an ideal biomarker, our research has explored the mechanism of the TLR pathway in pancreatic cancer. We collected single-cell expression data from 57,024 cells and transcriptomic data from 945 pancreatic cancer patients, and conducted a series of analyses at both the single-cell and transcriptomic levels. By calculating the TLR pathway score, we clustered pancreatic cancer patients and conducted a series of analyses including metabolic pathways, immune microenvironment, drug sensitivity and so on. In the process of building prognostic models, we screened 33 core genes related to the prognosis of pancreatic cancer, and combined a series of machine learning algorithms to build the prognosis model of pancreatic cancer. We used single cell sequencing to clarify the complex intrinsic relationship between TLR pathway and pancreatic cancer. The strongest TLR signals were observed in macrophages and endothelial cells. With the occurrence of pancreatic cancer, the TLR signal of various cell types gradually increased, but with the increase of the malignant degree of ductal epithelial cells, the TLR signal gradually weakened. Cluster analysis showed that patients with the most active TLR pathway had severe dysregulation of immune microenvironment and the worst prognosis. Finally, we combined a series of machine learning algorithms to build a pancreatic cancer prognosis model that includes four genes (NT5E, TGFBI, ANLN, and FAM83A). The model showed strong performance in predicting the survival state of pancreatic cancer samples. We explored the important role of TLR pathway in pancreatic cancer and established and validated a new prognosis model for pancreatic cancer based on TLR-related genes.
Collapse
Affiliation(s)
- Jie Peng
- Ningde Clinical Medical College of Fujian Medical University, Fujian, China
- Ningde Municipal Hospital of Ningde Normal University, Fujian, China
| | - Jiaao Sun
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Youfeng Yu
- Ningde Clinical Medical College of Fujian Medical University, Fujian, China
- Ningde Municipal Hospital of Ningde Normal University, Fujian, China
| | - Qihang Yuan
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Yong Zhang
- Ningde Clinical Medical College of Fujian Medical University, Fujian, China.
- Ningde Municipal Hospital of Ningde Normal University, Fujian, China.
| |
Collapse
|
3
|
Hatase R, Li Q, Hatakeyama M, Kitaoka T. Direct activation of Toll-like receptor 2 signaling stimulated by contact with the interfacial structures of chitin nanofibers. Int J Biol Macromol 2025; 284:138092. [PMID: 39613079 DOI: 10.1016/j.ijbiomac.2024.138092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
The innate immune system, which eliminates pathogens and abnormal cells, is involved in the pathogenesis of various diseases and infections, where Toll-like receptors (TLRs) play a critical regulatory role. In this study, we investigated the potential of chitin nanofiber (CtNF) to induce an immune response, which is expected to act as an agonist of TLR2. Crab-derived CtNF, surface-deacetylated CtNF, and surface-carboxylated cellulose NF were employed as TLR2-mediated immune stimulator, signal regulator, and cell adhesion promoter, respectively, to fabricate cell culture scaffolds for HEK293 cells with TLR2 and human monocyte THP-1 cells with or without TLR2. Surface deacetylation of CtNF drastically diminished the immunological response of HEK293 cells, suggesting that the N-acetyl groups on the solid CtNF surface were pivotal for TLR2-mediated stimulation. A comparison of wild-type and TLR2-KO THP-1 cells on cell culture substrates with N-acetyl groups ranging from 0 to 1.39 mmol g-1 revealed that immune signaling for nuclear factor-κB and interferon regulatory factor pathways was strongly dependent on the surface N-acetyl group content. The immunostimulatory level at the interface of solid CtNF and immune cells could be regulated by simply mixing CtNF and surface-deacetylated CtNF, which is a significant advantage for its potential use as a novel immunostimulant.
Collapse
Affiliation(s)
- Risa Hatase
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Qi Li
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Mayumi Hatakeyama
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Takuya Kitaoka
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
4
|
Chung KY, Kim S, Yoon HT, Kwon SH, Park HS, Im JP, Kim JS, Kim JW, Han YM, Koh SJ. Toll-like receptor 3 signaling attenuated colitis-associated cancer development in mice. Sci Rep 2024; 14:30308. [PMID: 39639064 PMCID: PMC11621332 DOI: 10.1038/s41598-024-76954-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024] Open
Abstract
Inflammatory bowel disease is associated with a high risk of colitis-associated cancer (CAC). We evaluated the role of TLR3 in CAC using a murine model. Wild-type (WT) and TLR3-knockout (TLR3-/-) mice received azoxymethane (AOM) 12.5 mg/kg intraperitoneally on day zero, followed by three cycles of 2% dextran sulfate sodium (DSS) for five days and free water for two weeks. We evaluated clinical indices, such as weight change, colon length, histological severity of colitis, and tumor number. We performed immunofluorescence assays for phospho-IκB kinase and β-catenin in colon tissues. To elucidate the antitumorigenic mechanism of TLR3 signaling, we injected poly(I: C) or phosphate-buffered saline intraperitoneally into an AOM/DSS-induced tumorigenesis model in WT mice. We also evaluate the direct antitumor effect of TLR signaling in AOM-treated WT and TLR3-/- mice without DSS. TLR3 deficiency increased tumor burden and colitis severity in the colon tissue than in the WT mice. β-catenin immunoreactivity was higher in TLR3-/- mice, while phospho-IκB kinase expression was similar. TLR3 activation by poly(I: C) did not reduce tumor burden in WT mice, but long-term AOM administration without DSS significantly increased tumor burden in TLR3-/- mice. TLR3 signaling attenuates CAC development, suggesting it may be a target for preventing CAC in inflammatory bowel disease.
Collapse
Affiliation(s)
- Kee Young Chung
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Laboratory of Intestinal Mucosa and Skin Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Seulji Kim
- Division of Gastroenterology, Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
- Laboratory of Intestinal Mucosa and Skin Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Tae Yoon
- Laboratory of Intestinal Mucosa and Skin Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - So Hyun Kwon
- Laboratory of Intestinal Mucosa and Skin Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Sun Park
- Laboratory of Intestinal Mucosa and Skin Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Dermatology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Jong Pil Im
- Division of Gastroenterology, Department of Internal medicine, Seoul National University Hospital, Seoul, Korea
| | - Joo Sung Kim
- Division of Gastroenterology, Department of Internal medicine, Seoul National University Hospital, Seoul, Korea
| | - Ji Won Kim
- Division of Gastroenterology, Department of Internal medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Yoo Min Han
- Laboratory of Intestinal Mucosa and Skin Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine and Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Seong-Joon Koh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Laboratory of Intestinal Mucosa and Skin Immunology, Seoul National University College of Medicine, Seoul, Korea.
- Division of Gastroenterology, Department of Internal medicine, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
5
|
Ghali RM, Zaied S, Daldoul A, Kanabekova P, Almawi WY. Association between Toll-like receptor 2 rs4696483 and rs1898830 polymorphisms and the risk of triple-negative breast cancer. Gene 2024; 928:148773. [PMID: 39029768 DOI: 10.1016/j.gene.2024.148773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
PURPOSE Breast cancer (BC) is heterogeneous in clinical manifestation, of which the triple-negative (TNBC) subtype is the most aggressive. This study examines the associations between Toll-Like Receptor (TLR)-2 polymorphisms and the susceptibility to BC and TNBC. METHODS Genotyping of TLR-2 rs1898830 and rs4696483 polymorphisms was done by real-time PCR in 488 women with BC (130 TNBC, 358 non-TNBC) and 476 cancer-free control women. RESULTS The minor allele frequency (MAF) of rs4696483 was significantly lower in BC cases compared to controls, and significantly lower frequencies of rs4696483 C/T and higher frequencies of rs1898830 G/G genotypes were seen in BC cases. Significantly higher MAF of rs4696483 and higher C/T and T/T rs4696483 genotypes frequencies were seen in TNBC than in non-TNBC cases. Considering the prevalent AC haplotype as a reference, 2-locus TLR-2 haplotype analysis did not identify any 2-locus TLR-2 haplotype associated with an altered risk of BC or TNBC. Positive associations of rs1898830 and rs4966483 were seen with the histological type in TNBC and negatively with distant metastasis and HR status in TNBC and non-TNBC rs1898830 carriers. In addition, rs4696483 was positively correlated with hormonotherapy and surgery in non-TNBC cases, while rs1898830 was negatively associated with hormonotherapy. Furthermore, rs1898830 was negatively and positively correlated with BMI in TNBC and TNBC cases, respectively, but positively with Ki-67 status. CONCLUSIONS Our study highlights the association between TLR-2 genetic polymorphisms and BC and TNBC susceptibility, suggesting these variants' diagnostic/prognostic capacity in BC patients and patient subgroups.
Collapse
Affiliation(s)
- Rabeb M Ghali
- Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Sonia Zaied
- Department of Medical Oncol., Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Amira Daldoul
- Department of Medical Oncol., Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | | | - Wassim Y Almawi
- Faculté des Sciences de Tunis - Université de Tunis El Manar, Tunis, Tunisia; Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.
| |
Collapse
|
6
|
Kos M, Bojarski K, Mertowska P, Mertowski S, Tomaka P, Zaborek-Łyczba M, Łyczba J, Dziki Ł, Grywalska E. Can the Analysis of Toll-like Receptors (TLR) on NK and NKT-like Cells Improve Gastric Cancer Diagnostics and Treatment? Cancers (Basel) 2024; 16:3854. [PMID: 39594809 PMCID: PMC11592653 DOI: 10.3390/cancers16223854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The aim of this study was to determine the assessment of the percentage of NK and NKT-like cells expressing Toll-like receptors (TLR-2, TLR-3, TLR-4, and TLR-9) in patients with gastric cancer (GC) compared with healthy volunteers (HV) and to investigate differences according to cancer subtype. We also assessed TLR gene expression by RT-qPCR to assess whether TLRs could be diagnostic and prognostic biomarkers. Methods: The study included 86 patients with histologically confirmed gastric cancer and 30 healthy volunteers. Peripheral blood samples were collected from the participants, and TLR expression on NK and NKT-like cells was assessed by flow cytometry and RT-qPCR. The expression of TLR2, TLR3, TLR4, and TLR9 genes was assessed using genetic material derived from NK and NKT-like cells sourced from PBMC. The obtained results were statistically analyzed using Mann-Whitney U and Kruskal-Wallis tests, and the predictive ability of variables was assessed using ROC curve analysis. Results: A significantly higher expression of TLR receptors (TLR-2, TLR-3, TLR-4, and TLR-9) was found in patients with gastric cancer compared to healthy volunteers (p < 0.05). TLR expression also differed depending on the cancer subtype, and higher expression was observed in more advanced GC subtypes. RT-qPCR analysis showed significantly increased expression of TLR genes in the group of GC patients. ROC curves indicate a high ability of TLRs to differentiate between GC patients and healthy individuals. Conclusions: The expression of TLRs on NK and NKT-like cells is clearly increased in patients with gastric cancer, especially in more advanced subtypes of the tumor. The results suggest that TLRs could potentially be used as diagnostic and prognostic biomarkers and represent potential targets for immune therapies in GC. However, further studies are needed to determine the functional role of TLRs in disease progression and the possibility of their use in personalized treatment.
Collapse
Affiliation(s)
- Marek Kos
- Department of Public Health, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Krzysztof Bojarski
- General Surgery Department, Independent Public Health Care Center in Łęczna (SP ZOZ in Leczna), 52 Krasnystawska Street, 21-010 Leczna, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Piotr Tomaka
- Department of Anesthesiology and Intensive Care, Independent Public Health Care Center in Łęczna (SP ZOZ in Leczna), 52 Krasnystawska Street, 21-010 Leczna, Poland
| | - Monika Zaborek-Łyczba
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Jakub Łyczba
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, 251 Street, 92-213 Lodz, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| |
Collapse
|
7
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
8
|
Ren SM, Chang JB, Liu RQ, Jin GY. The novel selective TLR7 agonist GY101 suppresses colon cancer growth by stimulating immune cells. Eur J Pharmacol 2024; 967:176383. [PMID: 38311281 DOI: 10.1016/j.ejphar.2024.176383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Toll-like receptor (TLR) 7, a transmembrane signal transduction receptor expressed on the surface of endosomes, has become an attractive target for antiviral and cancer immunotherapies. TLR7 can induce signal transduction by recognizing single-stranded RNA or its analogs, leading to the release of cytokines such as IL-6, IL-12, TNF-α and type-I IFN. Activation of TLR7 helps to enhance immunogenicity and immune memory by stimulating immune cells. Herein, we identified a novel selective TLR7 agonist, GY101, and determined its ability to activate TLR7. In summary, in vitro, compound GY101 significantly induced the secretion of IL-6, IL-12, TNF-α and IFN-γ in mouse splenic lymphocytes; in vivo, peritumoral injection of GY101 significantly suppressed colon cancer CT26, as well as poorly immunogenic B16-F10 and 4T1 cancer cell-derived tumor growth by activating the infiltration of lymphocytes and polarization of M2-like macrophages into M1-like macrophages. These results demonstrate that GY101, as a potent TLR7 agonist, holds great potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Su-Mei Ren
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jun-Biao Chang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Rui-Qi Liu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Guang-Yi Jin
- School of Pharmaceutical Sciences, Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060, Guangdong, China; Shenzhen Conjugenix Pharmaceutical Technology Company, China.
| |
Collapse
|
9
|
Bhardwaj A, Prasad D, Mukherjee S. Role of toll-like receptor in the pathogenesis of oral cancer. Cell Biochem Biophys 2024; 82:91-105. [PMID: 37853249 DOI: 10.1007/s12013-023-01191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Toll-like receptors are important molecules of innate immunity. They are known as pattern recognition receptors. They recognise certain molecules known as pathogen-associated molecular pattern on a pathogen and release chemicals that causes inflammation. Toll-like receptors (TLR) help in the removal of the infected cell and thus stop the spread of infection and are being studied for their association with cancer. Oral carcinoma has emerged as a major problem of our country today; it is found ranks first in men and third in women. Toll-like receptors have been implicated in the development of cancer. Certain polymorphisms in toll-like receptor can make a cell more susceptible to develop oral cancer. The identification of toll-like receptors and the different genotypes that are involved in the development of cancer can be utilised for using them as biomarkers of the disease. The study revealed that toll-like receptors like TLR7 and TLR5 are found to have a role in suppression of oral cancer while toll-like receptors like TLR4 and TLR2 are found to be associated with the progression of oral cancer. Toll-like receptors can turn out as important target molecules in the future in designing therapeutic strategies for oral cancer.
Collapse
Affiliation(s)
- Ananya Bhardwaj
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Divya Prasad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
10
|
Xu Y, Wang J, He Z, Rao Z, Zhang Z, Zhou J, Zhou T, Wang H. A review on the effect of COX-2-mediated mechanisms on development and progression of gastric cancer induced by nicotine. Biochem Pharmacol 2024; 220:115980. [PMID: 38081368 DOI: 10.1016/j.bcp.2023.115980] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Smoking is a documented risk factor for cancer, e.g., gastric cancer. Nicotine, the principal tobacco alkaloid, would exert its role of contribution to gastric cancer development and progression through nicotinic acetylcholine receptors (nAChRs) and β-adrenergic receptors (β-ARs), which then promote cancer cell proliferation, migration and invasion. As a key isoenzyme in conversion of arachidonic acid to prostaglandins, cyclooxygenase-2 (COX-2) has been demonstrated to have a wide range of effects in carcinogenesis and tumor development. At present, many studies have reported the effect of nicotine on gastric cancer by binding to nAChR, as well as indirectly stimulating β-AR to mediate COX-2-related pathways. This review summarizes these studies, and also proposes more potential COX-2-mediated mechanisms. These events might contribute to the growth and progression of gastric cancer exposed to nicotine through tobacco smoke or cigarette substitutes. Also, this review article has therefore the potential not only to make a significant contribution to the treatment and prognosis of gastric cancer for smokers but also to the clinical application of COX-2 antagonists. In addition, this work also discusses the considerable challenges of this field with special reference to the future perspective of COX-2-mediated mechanisms in development and progression of gastric cancer induced by nicotine.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Juan Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Zihan He
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zihan Rao
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zhongwei Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Jianming Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Tong Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Huai Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China.
| |
Collapse
|
11
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
12
|
Lou F, Zhang Y, Xu A, Gao T. Transcriptional responses of liver and spleen in Lota lota to polyriboinosinic polyribocytidylic acid. Front Immunol 2023; 14:1272393. [PMID: 37901224 PMCID: PMC10611466 DOI: 10.3389/fimmu.2023.1272393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction The cultured Lota lota can meet the market demand in the context of the decline of wild resources, but the disease in the high-density culture process also deserves attention. Therefore, understanding the immune regulation mechanisms of L. lota will be the basis for obtaining high benefits in artificial culture. Methods To explore the viral response mechanism of L. lota, RNA-seq was applied to identify the transcriptomic changes of the liver and spleen in L. lota by poly (I:C) stress. Results The DEGs (liver: 2186 to 3123; spleen 1542 to 2622) and up-regulated genes (liver: 1231 to 1776; spleen 769 to 1502) in the liver and spleen increased with the prolongation (12h to 48h) of poly (I:C)-stimulation time. This means L. lota needs to mobilize more functional genes in response to longer periods of poly (I:C)-stimulation. Despite the responses of L. lota to poly (I:C) showed tissue-specificity, we hypothesized that both liver and spleen of L. lota can respond to poly (I:C) challenge may be through promoting apoptosis of DNA-damaged cells, increasing the activity of immune-enhancing enzymes, and increasing energy supply based on DEGs annotation information. Conclusions Our results demonstrate the transcriptional responses of L. lota to poly (I:C)-stimulation, and these data provide the first resource on the genetic regulation mechanisms of L. lota against viruses. Furthermore, the present study can provide basic information for the prevention of viral diseases in L. lota artificial culture process.
Collapse
Affiliation(s)
- Fangrui Lou
- School of Ocean, Yantai University, Yantai, Shandong, China
| | - Yuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou, China
| | - Anle Xu
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
13
|
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol 2023; 14:1244345. [PMID: 37822929 PMCID: PMC10562563 DOI: 10.3389/fimmu.2023.1244345] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
14
|
Guan H, Chen X, Liu J, Sun J, Guo H, Jiang Y, Zhang H, Zhang B, Lin J, Yuan Q. Molecular characteristics and therapeutic implications of Toll-like receptor signaling pathway in melanoma. Sci Rep 2023; 13:13788. [PMID: 37666853 PMCID: PMC10477197 DOI: 10.1038/s41598-023-38850-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/16/2023] [Indexed: 09/06/2023] Open
Abstract
Melanoma is a malignant tumor of melanocytes and is often considered immunogenic cancer. Toll-like receptor-related genes are expressed differently in most types of cancer, depending on the immune microenvironment inside cancer, and the key function of Toll-like receptors (TLRs) for melanoma has not been fully elucidated. Based on multi-omics data from TCGA and GEO databases, we first performed pan-cancer analysis on TLR, including CNV, SNV, and mRNA changes in TLR-related genes in multiple human cancers, as well as patient prognosis characterization. Then, we divided melanoma patients into three subgroups (clusters 1, 2, and 3) according to the expression of the TLR pathway, and explored the correlation between TLR pathway and melanoma prognosis, immune infiltration, metabolic reprogramming, and oncogene expression characteristics. Finally, through univariate Cox regression analysis and LASSO algorithm, we selected six TLR-related genes to construct a survival prognostic model, divided melanoma patients into the training set, internal validation set 1, internal validation set 2, and external validation set for multiple validations, and discussed the correlation between model genes and clinical features of melanoma patients. In conclusion, we constructed a prognostic survival model based on TLR-related genes that precisely and independently demonstrated the potential to assess the prognosis and immune traits of melanoma patients, which is critical for patients' survival.
Collapse
Affiliation(s)
- Hewen Guan
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Chen
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jifeng Liu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiaao Sun
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hui Guo
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yuankuan Jiang
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Huimin Zhang
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Jingrong Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
15
|
Yang Y, Li H, Fotopoulou C, Cunnea P, Zhao X. Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Front Immunol 2022; 13:1049340. [PMID: 36479129 PMCID: PMC9721395 DOI: 10.3389/fimmu.2022.1049340] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors, originally discovered to stimulate innate immune reactions against microbial infection. TLRs also play essential roles in bridging the innate and adaptive immune system, playing multiple roles in inflammation, autoimmune diseases, and cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted strategies in cancer treatment have proved to be able to regulate the tumor microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical studies and clinical trials using TLR-targeted strategies in treating cancer have been initiated, with some drugs already becoming part of standard care. Here we review the structure, ligand, signaling pathways, and expression of TLRs; we then provide an overview of the pre-clinical studies and an updated clinical trial watch targeting each TLR in cancer treatment; and finally, we discuss the challenges and prospects of TLR-targeted therapy.
Collapse
Affiliation(s)
- Yang Yang
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xia Zhao
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Kim MJ, Lee JS, Kim JY, Choi B, Son J, Min Y, Jeong SK, Kim DH, Lee JS, Chun E, Lee KY. CRBN is downregulated in lung cancer and negatively regulates TLR2, 4 and 7 stimulation in lung cancer cells. Clin Transl Med 2022; 12:e1050. [PMID: 36164994 PMCID: PMC9513676 DOI: 10.1002/ctm2.1050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mi-Jeong Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ji Su Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ji Young Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Bongkum Choi
- Department of Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Juhee Son
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Yoon Min
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Soo-Kyung Jeong
- R&D Center, CHA Vaccine Institute, Seongnam-si, Republic of Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Joo Sang Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Eunyoung Chun
- R&D Center, CHA Vaccine Institute, Seongnam-si, Republic of Korea
| | - Ki-Young Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
17
|
Judge SJ, Bloomstein JD, Sholevar CJ, Darrow MA, Stoffel KM, Vick LV, Dunai C, Cruz SM, Razmara AM, Monjazeb AM, Rebhun RB, Murphy WJ, Canter RJ. Transcriptome Analysis of Tumor-Infiltrating Lymphocytes Identifies NK Cell Gene Signatures Associated With Lymphocyte Infiltration and Survival in Soft Tissue Sarcomas. Front Immunol 2022; 13:893177. [PMID: 35874727 PMCID: PMC9300876 DOI: 10.3389/fimmu.2022.893177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/16/2022] [Indexed: 01/26/2023] Open
Abstract
Purpose Clinical successes using current T-cell based immunotherapies have been limited in soft tissue sarcomas (STS), while pre-clinical studies have shown evidence of natural killer (NK) cell activity. Since tumor immune infiltration, especially tumor-infiltrating lymphocytes, is associated with improved survival in most solid tumors, we sought to evaluate the gene expression profile of tumor and blood NK and T cells, as well as tumor cells, with the goal of identifying potential novel immune targets in STS. Experimental Design Using fluorescence-activated cell sorting, we isolated blood and tumor-infiltrating CD3-CD56+ NK and CD3+ T cells and CD45- viable tumor cells from STS patients undergoing surgery. We then evaluated differential gene expression (DGE) of these purified populations with RNA sequencing analysis. To evaluate survival differences and validate primary DGE results, we also queried The Cancer Genome Atlas (TCGA) database to compare outcomes stratified by bulk gene expression. Results Sorted intra-tumoral CD3+ T cells showed significant upregulation of established activating (CD137) and inhibitory genes (TIM-3) compared to circulating T cells. In contrast, intra-tumoral NK cells did not exhibit upregulation of canonical cytotoxic genes (IFNG, GZMB), but rather significant DGE in mitogen signaling (DUSP4) and metabolic function (SMPD3, SLC7A5). Tumors with higher NK and T cell infiltration exhibited significantly increased expression of the pro-inflammatory receptor TLR4 in sorted CD45- tumor cells. TCGA analysis revealed that tumors with high TLR4 expression (P = 0.03) and low expression of STMN1 involved in microtubule polymerization (P < 0.001) were associated with significantly improved survival. Conclusions Unlike T cells, which demonstrate significant DGE consistent with upregulation of both activating and inhibiting receptors in tumor-infiltrating subsets, NK cells appear to have more stable gene expression between blood and tumor subsets, with alterations restricted primarily to metabolic pathways. Increased immune cell infiltration and improved survival were positively correlated with TLR4 expression and inversely correlated with STMN1 expression within tumors, suggesting possible novel therapeutic targets for immunotherapy in STS.
Collapse
Affiliation(s)
- Sean J. Judge
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Joshua D. Bloomstein
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Cyrus J. Sholevar
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Morgan A. Darrow
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, United States
| | - Kevin M. Stoffel
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Logan V. Vick
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Cordelia Dunai
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Sylvia M. Cruz
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Aryana M. Razmara
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Robert B. Rebhun
- Center for Companion Animal Health, Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - William J. Murphy
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States,Division of Hematology and Oncology, Department of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Robert J. Canter
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States,*Correspondence: Robert J. Canter,
| |
Collapse
|
18
|
TLR4 Agonist and Hypoxia Synergistically Promote the Formation of TLR4/NF-κB/HIF-1α Loop in Human Epithelial Ovarian Cancer. Anal Cell Pathol (Amst) 2022; 2022:4201262. [PMID: 35464826 PMCID: PMC9023210 DOI: 10.1155/2022/4201262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Inflammation and hypoxia are involved in numerous cancer progressions. Reportedly, the toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) pathway and hypoxia-inducible factor-1α (HIF-1α) are activated and closely related to the chemoresistance and poor prognosis of epithelial ovarian cancer (EOC). However, the potential correlation between TLR4/NF-κB and HIF-1α remains largely unknown in EOC. In our study, the possible positive correlation among TLR4, NF-κB, and HIF-1α proteins was investigated in the EOC tissues. Our in vitro results demonstrated that LPS can induce and activate HIF-1α through the TLR4/NF-κB signaling in A2780 and SKOV3 cells. Moreover, hypoxia-induced TLR4 expression and the downstream transcriptional activity of NF-κB were HIF-1α-dependent. The cross talk between the TLR4/NF-κB signaling pathway and HIF-1α was also confirmed in the nude mice xenograft model. Therefore, we first proposed the formation of a TLR4/NF-κB/HIF-1α loop in EOC. The positive feedback loop enhanced the susceptibility and responsiveness to inflammation and hypoxia, which synergistically promote the initiation and progression of EOC. The novel mechanism may act as a future therapeutic candidate for the treatment of EOC.
Collapse
|
19
|
Banescu C, Tripon F, Bojan AS, Trifa AP, Muntean C, Crauciuc GA, Boglis A, Candea M, Lazar E, Jimbu L, Iancu M. Association of TLR4 Rs4986791 Polymorphism and TLR9 Haplotypes with Acute Myeloid Leukemia Susceptibility: A Case-Control Study of Adult Patients. J Pers Med 2022; 12:jpm12030409. [PMID: 35330409 PMCID: PMC8950293 DOI: 10.3390/jpm12030409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Toll-like receptors (TLRs) have an important role in innate immunity, and single nucleotide polymorphisms (SNPs) of TLR genes influence the risk of developing hematological malignancies. We aimed to evaluate the effect of TLR2 (rs5743708), TLR4 (rs11536889, rs4986790, rs4986791), TLR9 (rs187084, rs352140, rs5743836) on AML risk, the relation between investigated SNPs and somatic mutations, clinical features, and the overall survival of adult AML patients. All mentioned SNPs were genotyped in 511 AML cases and 503 healthy controls. DNMT3A (R882), FLT3 (D835, ITD), and NPM1 mutations’ status were investigated in AML patients. TLR4 rs4986791 was associated with an increased risk of AML under the dominant model (OR = 1.61, 95% CI: 1.001–2.59). Variant genotypes of the TLR4 rs4986790 or rs4986791 were associated with the odds of developing AML in the codominant model (OR = 3.14; 95% CI: 1.12–8.84; p = 0.032). The TLR9 rs5743836 variant genotype was associated with the NPM1 mutation (p = 0.002). The investigated SNPs were not associated with the DNMT3A, FLT3 mutations and had no significant contribution to the hazard of death after adjusting for covariates. Our findings suggest that TLR4 rs4986791 is associated with AML susceptibility. The combined variant genotypes of TLR4 rs4986790 and rs4986791 increase AML risk, the TLR9 C-G-A haplotype may represent a promising approach to predict a person’s risk for developing AML.
Collapse
Affiliation(s)
- Claudia Banescu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 38, Gheorghe Marinescu Street, 540139 Targu Mures, Romania; (F.T.); (G.A.C.); (A.B.)
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
- Genetics Laboratory, County Emergency Clinical Hospital of Targu Mures, 50, Gheorghe Marinescu Street, 540136 Targu Mures, Romania
- Correspondence:
| | - Florin Tripon
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 38, Gheorghe Marinescu Street, 540139 Targu Mures, Romania; (F.T.); (G.A.C.); (A.B.)
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Anca S. Bojan
- Department of Hematology, The Oncology Institute “Ion Chiricuta” Cluj-Napoca, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8, Victor Babes, Street, 400012 Cluj-Napoca, Romania; (A.S.B.); (L.J.)
| | - Adrian P. Trifa
- Department of Medical Genetics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8, Victor Babes, Street, 400012 Cluj-Napoca, Romania;
- Department of Genetics, The Oncology Institute “Ion Chiricuta” Cluj-Napoca, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Carmen Muntean
- Department of Clinical Science, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - George Andrei Crauciuc
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 38, Gheorghe Marinescu Street, 540139 Targu Mures, Romania; (F.T.); (G.A.C.); (A.B.)
| | - Alina Boglis
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 38, Gheorghe Marinescu Street, 540139 Targu Mures, Romania; (F.T.); (G.A.C.); (A.B.)
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Marcela Candea
- Department of Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (M.C.); (E.L.)
| | - Erzsebet Lazar
- Department of Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (M.C.); (E.L.)
| | - Laura Jimbu
- Department of Hematology, The Oncology Institute “Ion Chiricuta” Cluj-Napoca, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8, Victor Babes, Street, 400012 Cluj-Napoca, Romania; (A.S.B.); (L.J.)
| | - Mihaela Iancu
- Department of Medical Informatics and Biostatistics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8, Victor Babes, Street, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
20
|
Ouyang X, Duan H, Jin Q, Luo X, Han L, Zhao B, Li J, Chen Y, Lin Y, Liu Y, Huang Y, Shuang S, Huang C, He R, Yao Q, Xue Y, Guo S, Zhao J. Moxibustion may delay the aging process of Wistar rats by regulating intestinal microbiota. Biomed Pharmacother 2022; 146:112147. [PMID: 34810050 DOI: 10.1016/j.biopha.2021.112147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
As one of the important treatments of health care and anti-aging in traditional Chinese medicine (TCM), moxibustion has been proved to have the effects of scavenging free radicals, anti-oxidation, reducing inflammatory reaction, regulating immunity and so on. Recent studies have shown that intestinal microbiota affect the process of aging. The relationship between aging, moxibustion and intestinal microbiota is still unclear. In this study, we explored the effects of moxibustion at Guanyuan (RN4) acupoint on intestinal microbiota, short-chain fatty acids and immunological characteristics of young and elder female Wistar rats to explore the relationship between aging, moxibustion and intestinal microbiota. Six 12-week-old female Wistar rats were young group (Y), and twelve 36-week-old female Wistar rats were randomly divided into elder group (C) and moxibustion group (M). The rats in M group were received mild moxibustion at Guanyuan (RN4) acupoint, 20 min/d for 40 days. The rats in Y group and C group were not given any therapeutic intervention. The results showed that moxibustion increased the abundance of intestinal probiotics (mainly Lactobacillus) and the level of short chain fatty acids, the microcirculation blood flow around Guanyuan (RN4) acupoint was also significantly improved in elder rats. In addition, the expression of MyD88, MAPK, TRAF6, NF-κB in intestinal tissue was down-regulated, and the levels of inflammatory cytokines in intestinal were decreased.
Collapse
Affiliation(s)
- Xiali Ouyang
- Beijing University of Chinese Medicine, Beijing, China
| | - Haoru Duan
- Beijing University of Chinese Medicine, Beijing, China
| | - Qi Jin
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Luo
- Beijing University of Chinese Medicine, Beijing, China
| | - Li Han
- Beijing University of Chinese Medicine, Beijing, China.
| | - Baixiao Zhao
- Beijing University of Chinese Medicine, Beijing, China.
| | - Jiangtao Li
- Technical Institute of Physics and Chemistry, Beijing, China
| | - Yixiang Chen
- Technical Institute of Physics and Chemistry, Beijing, China
| | - Yao Lin
- Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Yueping Huang
- Beijing University of Chinese Medicine, Beijing, China
| | - Shuang Shuang
- Technical Institute of Physics and Chemistry, Beijing, China
| | - Chang Huang
- Beijing University of Chinese Medicine, Beijing, China
| | - Rui He
- Beijing University of Chinese Medicine, Beijing, China
| | - Qin Yao
- Beijing University of Chinese Medicine, Beijing, China
| | - Ying Xue
- Beijing University of Chinese Medicine, Beijing, China
| | - Shiqi Guo
- Beijing University of Chinese Medicine, Beijing, China
| | - Jing Zhao
- Inshine Health Care Services Management Co., Ltd, Beijing, China
| |
Collapse
|
21
|
Mallick R, Duttaroy AK. Can interruption of innate immune recognition-mediated emergency myelopoiesis impede tumor progression? Med Hypotheses 2021; 155:110663. [PMID: 34403869 DOI: 10.1016/j.mehy.2021.110663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/08/2021] [Indexed: 01/01/2023]
Abstract
Cancer cells survive and grow despite various advanced anti-cancer therapy. To overcome this antineoplastic resistance, adjuvant therapy is often required to prevent cancer cells' immunoescape capacity. Established tumors build a stressful and hostile microenvironment in order to escape protective innate and adaptive immune responses. Specific conditions and factors within tumors, including hypoxia, nutrient starvation, acidic pH, and increased levels of free radicals, provoke a state of "endoplasmic reticulum stress" in both malignant cells and infiltrating myeloid cells. The stimulated endoplasmic reticulum stress can affect cancer progression via cross-talks with the innate immune system. Recently, the immunosuppressive activities of myeloid cells in the development of antineoplastic resistance are gaining more attention. Based on all these available data, we hypothesize that interruption of innate-immune recognition-mediated emergency myelopoiesis may be beneficial in halting cancer progression.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
22
|
Quirino MG, Macedo LC, Pagnano KBB, Pagliarini-E-Silva S, Sell AM, Visentainer JEL. Toll-like receptor gene polymorphisms in patients with myeloproliferative neoplasms. Mol Biol Rep 2021; 48:4995-5001. [PMID: 34191235 DOI: 10.1007/s11033-021-06238-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/16/2021] [Indexed: 12/26/2022]
Abstract
Toll-like receptors (TLRs) are a family of transmembrane receptors whose signaling control cellular processes of cell proliferation, survival, apoptosis, angiogenesis, remodeling, and repair of tissues. Polymorphisms in TLR genes can change the balance between pro and anti-inflammatory cytokines, modulating the risk of infection, chronic inflammation, and cancer. Although many studies have demonstrated the direct involvement of TLR signaling in the benefit of tumor cells in certain cancers, little is known about the influence of these gene polymorphisms on myeloproliferative neoplasms (MPNs). In this context, the objective of the study was to investigate a possible association between the TLR polymorphisms and the development of MPNs. 167 patients diagnosed with MPN and 222 healthy controls from the same region were evaluated. Genomic DNA was extracted and the TLR2 (rs5743708), TLR4 (rs4986790, rs4986791), TLR9 (rs5743836, rs187084) and JAK2V617F polymorphisms were genotyped by PCR-RFLP. The statistical analysis was performed by OpenEpi and SNPstat software. The JAK2V617F mutation was found in 68.32% of patients. TLR9-1486C/T CT genotype was less frequent in patients with polycythemia vera (PV) (OR 0.39, 95% CI 0.20-0.78, P = 0.025). When haplotype frequencies were analyzed, -1237T/-1486C (TLR9) was also less frequent in men (OR 0.58, 95% CI 0.36-0.94) and JAK negative men patients (OR 0.43, 95% CI 0.21-0.88). We can infer that the TLR9-1486 CT genotype could be associated with protection for PV and the TLR9-1237T/-1486C haplotype, protection for men, as well as for JAK negative men patients with MPN. There were no associations between TLR2 and TLR4 gene polymorphisms and MPN.
Collapse
Affiliation(s)
- Marília Gonçalves Quirino
- Graduate Program in Biosciences and Physiopathology of the State University of Maringá, Av. Colombo 5790, bloco T20, sala 109, Maringá, PR, CEP: 87020-900, Brazil
| | - Luciana Conci Macedo
- Graduate Program in Biosciences and Physiopathology of the State University of Maringá, Av. Colombo 5790, bloco T20, sala 109, Maringá, PR, CEP: 87020-900, Brazil
| | | | | | - Ana Maria Sell
- Graduate Program in Biosciences and Physiopathology of the State University of Maringá, Av. Colombo 5790, bloco T20, sala 109, Maringá, PR, CEP: 87020-900, Brazil
| | - Jeane Eliete Laguila Visentainer
- Graduate Program in Biosciences and Physiopathology of the State University of Maringá, Av. Colombo 5790, bloco T20, sala 109, Maringá, PR, CEP: 87020-900, Brazil.
| |
Collapse
|
23
|
Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial Watch: Experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 2021; 1:699-716. [PMID: 22934262 PMCID: PMC3429574 DOI: 10.4161/onci.20696] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are prototypic pattern recognition receptors (PRRs) best known for their ability to activate the innate immune system in response to conserved microbial components such as lipopolysaccharide and double-stranded RNA. Accumulating evidence indicates that the function of TLRs is not restricted to the elicitation of innate immune responses against invading pathogens. TLRs have indeed been shown to participate in tissue repair and injury-induced regeneration as well as in adaptive immune responses against cancer. In particular, TLR4 signaling appears to be required for the efficient processing and cross-presentation of cell-associated tumor antigens by dendritic cells, which de facto underlie optimal therapeutic responses to some anticancer drugs. Thus, TLRs constitute prominent therapeutic targets for the activation/intensification of anticancer immune responses. In line with this notion, long-used preparations such as the Coley toxin (a mixture of killed Streptococcus pyogenes and Serratia marcescens bacteria) and the bacillus Calmette-Guérin (BCG, an attenuated strain of Mycobacterium bovis originally developed as a vaccine against tuberculosis), both of which have been associated with consistent anticancer responses, potently activate TLR2 and TLR4 signaling. Today, besides BCG, only one TLR agonist is FDA-approved for therapeutic use in cancer patients: imiquimod. In this Trial Watch, we will briefly present the role of TLRs in innate and cognate immunity and discuss the progress of clinical studies evaluating the safety and efficacy of experimental TLR agonists as immunostimulatory agents for oncological indications.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Institut Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mokhtari Y, Pourbagheri‐Sigaroodi A, Zafari P, Bagheri N, Ghaffari SH, Bashash D. Toll-like receptors (TLRs): An old family of immune receptors with a new face in cancer pathogenesis. J Cell Mol Med 2021; 25:639-651. [PMID: 33336901 PMCID: PMC7812258 DOI: 10.1111/jcmm.16214] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
In the dark path of tumorigenesis, the more carefully the cancer biology is studied, the more brilliant answers could be given to the countless questions about its orchestrating derivers. The identification of the correlation between Toll-like receptors (TLRs) and different processes involved in carcinogenesis was one of the single points of blinding light highlighting the interconnection between the immune system and cancer. TLRs are a wide family of single-pass membrane-spanning receptors that have developed through the evolution to recognize the structurally conserved molecules derived from microorganisms or damaged cells. But this is not everything about these receptors as they could orchestrate several downstream signalling pathways leading to the formation or suppression of cancer cells. The present review is tempted to provide a concise schematic about the biology and the characters of TLRs and also summarize the major findings of the regulatory role of TLRs and their associated signalling in the pathogenesis of human cancers.
Collapse
Affiliation(s)
- Yazdan Mokhtari
- Department of Hematology and Blood BankingSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Atieh Pourbagheri‐Sigaroodi
- Department of Hematology and Blood BankingSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Parisa Zafari
- Department of ImmunologyFaculty of MedicineMazandaran University of Medical SciencesSariIran
- Student Research CommitteeFaculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Nader Bagheri
- Cellular and Molecular Research CenterBasic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Seyed H. Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research CenterShariati HospitalSchool of MedicineTehran University of Medical SciencesTehranIran
| | - Davood Bashash
- Department of Hematology and Blood BankingSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
25
|
Pu R, Pu M, Huang H, Cui Y. MicroRNA 144 inhibits cell migration and invasion and regulates inflammatory cytokine secretion through targeting toll like receptor 2 in non-small cell lung cancer. Arch Med Sci 2021; 17:1028-1037. [PMID: 34336030 PMCID: PMC8314413 DOI: 10.5114/aoms.2020.93084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are endogenous small noncoding RNA molecules involved in modulation of cancer progression. Here, we investigated the possible role of miR-144 in non-small cell lung cancer (NSCLC) development. MATERIAL AND METHODS The expression of miR-144 and TLR2 in NSCLC tissue and cell lines was determined by quantitative real-time PCR (qPCR). The TargetScan database was used to predict potential target genes of miR-144. Luciferase assay was used to verify the interaction between TLR2 and miR-144. TLR2 protein expression was measured by western blot. The secretion of interleukin (IL)-1β, IL-6 and IL-8 in A549 cells was detected by an ELISA kit. Cell migration and invasion were evaluated by wound healing assay and transwell assay, respectively. RESULTS Our results showed that miR-144 was downregulated in NSCLC tissue and cell lines when compared with the normal tissues and cell line (p < 0.05). The protein level of TLR2 in NSCLC tissue and cell lines was significantly higher than that in normal lung tissues. Dual luciferase reporter gene assay showed that miR-144 could bind to the 3'UTR of TLR2 specifically. Up-regulation of miR-144 significantly decreased the expression of TLR2. Up-regulation of miR-144 or down-regulation of TLR2 could decrease cell migration, invasion and secretion of IL-1β, IL-6 and IL-8 in A549 cells. Moreover, overexpression of TLR2 rescued the inhibitory effects of miR-144 on migration, invasion and inflammatory factor secretion of A549 cells. CONCLUSIONS miR-144 could inhibit the migration, invasion and secretion of IL-1β, IL-6 and IL-8 through downregulation of TLR2 expression in A549 cells.
Collapse
Affiliation(s)
- Rong Pu
- Department of Laboratory, The Third People’s Hospital of Dongguan, Dongguan, Guangdong, China
| | - Meicen Pu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Haohai Huang
- Department of Education and Science, The Third People’s Hospital of Dongguan, Dongguan, Guangdong, China
| | - Yejia Cui
- Department of Laboratory, The Third People’s Hospital of Dongguan, Dongguan, Guangdong, China
| |
Collapse
|
26
|
Interactions between tumor-derived proteins and Toll-like receptors. Exp Mol Med 2020; 52:1926-1935. [PMID: 33299138 PMCID: PMC8080774 DOI: 10.1038/s12276-020-00540-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are danger signals (or alarmins) alerting immune cells through pattern recognition receptors (PRRs) to begin defense activity. Moreover, DAMPs are host biomolecules that can initiate a noninflammatory response to infection, and pathogen-associated molecular pattern (PAMPs) perpetuate the inflammatory response to infection. Many DAMPs are proteins that have defined intracellular functions and are released from dying cells after tissue injury or chemo-/radiotherapy. In the tumor microenvironment, DAMPs can be ligands for Toll-like receptors (TLRs) expressed on immune cells and induce cytokine production and T-cell activation. Moreover, DAMPs released from tumor cells can directly activate tumor-expressed TLRs that induce chemoresistance, migration, invasion, and metastasis. Furthermore, DAMP-induced chronic inflammation in the tumor microenvironment causes an increase in immunosuppressive populations, such as M2 macrophages, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs). Therefore, regulation of DAMP proteins can reduce excessive inflammation to create an immunogenic tumor microenvironment. Here, we review tumor-derived DAMP proteins as ligands of TLRs and discuss their association with immune cells, tumors, and the composition of the tumor microenvironment. Tumor cells killed by radiotherapy or chemotherapy release signaling molecules that stimulate both immune response and tumor aggressiveness; regulating these molecules could improve treatment efficacy. Tae Heung Kang, Yeong-Min Park, and co-workers at Konkuk University, Seoul, South Korea, have reviewed the role of damage-associated molecular patterns (DAMPs) in immunity and cancer. These signaling molecules act as danger signals, activating immune cells by binding to specific receptors. However, tumor cells have the same receptors, and DAMPs binding triggers chemoresistance and increases invasiveness. The researchers report that although DAMPs can trigger a helpful immune response, they can also cause chronic inflammation, which in turn promotes an immune suppression response, allowing tumors to escape immune detection. Improving our understanding of the functions of different DAMPs could improve our ability to boost the immune response and decrease tumor aggressiveness.
Collapse
|
27
|
-196 to -174del, rs4696480, rs3804099 polymorphisms of Toll-like receptor 2 gene impact the susceptibility of cancers: evidence from 37053 subjects. Biosci Rep 2020; 39:221065. [PMID: 31710083 PMCID: PMC6900473 DOI: 10.1042/bsr20191698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Relationship between Toll-like receptor-2 (TLR2) and cancer risk has been illustrated in some studies, but their conclusions are inconsistent. Therefore, we designed this meta-analysis to explore a more accurate conclusion of whether TLR2 affects cancer risks. Articles were retrieved from various literature databases according to the criteria. We used STATA to calculate the odds ratio (OR) and 95% confidence interval (95% CI) to evaluate the relationship between certain polymorphism of TLR2 and cancer risk. Finally, 47 case-control studies met the criteria, comprising 15851 cases and 21182 controls. In the overall analysis, people are more likely to get cancer because of -196 to -174del in TLR2 in all five genetic models, B vs. A (OR = 1.468, 95% Cl = 1.129-1.91, P=0.005); BB vs. AA (OR = 1.716, 95% Cl = 1.178-2.5, P=0.005); BA vs. AA (OR = 1.408, 95% Cl = 1.092-1.816, P=0.008); BB+BA vs. AA (OR = 1.449, 95% Cl = 1.107-1.897, P=0.007); BB vs. BA+AA (OR = 1.517, 95% Cl = 1.092-2.107, P=0.013). Meanwhile, rs4696480 could significantly increase the risk of cancer in Caucasians, furthermore, rs3804099 significantly decreased cancer risk in overall analysis, but more subjects are necessary to confirm the results. All in all, this meta-analysis revealed that not only -196 to -174del increased the risk of among overall cancers, Caucasians are more likely to get cancer because of rs4696480, while rs3804099 polymorphism could reduce the risk of cancer in some genetic models. There is no direct evidence showing that rs5743708, rs3804100 and rs1898830 are related to cancer.
Collapse
|
28
|
Guil-Luna S, Mena R, Navarrete-Sirvent C, López-Sánchez LM, Khouadri K, Toledano-Fonseca M, Mantrana A, Guler I, Villar C, Díaz C, Medina-Fernández FJ, De la Haba-Rodríguez JR, Aranda E, Rodríguez-Ariza A. Association of Tumor Budding With Immune Evasion Pathways in Primary Colorectal Cancer and Patient-Derived Xenografts. Front Med (Lausanne) 2020; 7:264. [PMID: 32719800 PMCID: PMC7347987 DOI: 10.3389/fmed.2020.00264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor budding has been found to be of prognostic significance for several cancers, including colorectal cancer (CRC). Additionally, the molecular classification of CRC has led to the identification of different immune microenvironments linked to distinct prognosis and therapeutic response. However, the association between tumor budding and the different molecular subtypes of CRC and distinct immune profiles have not been fully elucidated. This study focused, firstly, on the validation of derived xenograft models (PDXs) for the evaluation of tumor budding and their human counterparts and, secondly, on the association between tumor budding and the immune tumor microenvironment by the analysis of gene expression signatures of immune checkpoints, Toll-like receptors (TLRs), and chemokine families. Clinical CRC samples with different grades of tumor budding and their corresponding PDXs were included in this study. Tumor budding grade was reliably reproduced in early passages of PDXs, and high-grade tumor budding was intimately related with a poor-prognosis CMS4 mesenchymal subtype. In addition, an upregulation of negative regulatory immune checkpoints (PDL1, TIM-3, NOX2, and IDO1), TLRs (TLR1, TLR3, TLR4, and TLR6), and chemokine receptors and ligands (CXCR2, CXCR4, CXCL1, CXCL2, CXCL6, and CXCL9) was detected in high-grade tumor budding in both human samples and their corresponding xenografts. Our data support a close link between high-grade tumor budding in CRC and a distinctive immune-suppressive microenvironment promoting tumor invasion, which may have a determinant role in the poor prognosis of the CMS4 mesenchymal subtype. In addition, our study demonstrates that PDX models may constitute a robust preclinical platform for the development of novel therapies directed against tumor budding in CRC.
Collapse
Affiliation(s)
- Silvia Guil-Luna
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Rafael Mena
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | | | - Laura María López-Sánchez
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Karima Khouadri
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | - Marta Toledano-Fonseca
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ana Mantrana
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | - Ipek Guler
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | - Carlos Villar
- Unidad de Gestión Clínica de Anatomía Patológica, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Cesar Díaz
- Unidad de Gestión Clínica de Cirugía General y del Aparato Digestivo, Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Juan Rafael De la Haba-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Unidad de Gestión Clínica de Oncología Médica, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Enrique Aranda
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Unidad de Gestión Clínica de Oncología Médica, Hospital Universitario Reina Sofía, Córdoba, Spain.,Departamento de Medicina, Facultad de Medicina de Córdoba, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Unidad de Gestión Clínica de Oncología Médica, Hospital Universitario Reina Sofía, Córdoba, Spain
| |
Collapse
|
29
|
The Role of Vitamin D Receptor Gene Polymorphisms in Colorectal Cancer Risk. Cancers (Basel) 2020; 12:cancers12061379. [PMID: 32471257 PMCID: PMC7352496 DOI: 10.3390/cancers12061379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Vitamin D deficiency has been associated with increased colorectal cancer (CRC) incidence risk and mortality. Vitamin D mediates its action through the binding of the vitamin D receptor (VDR), and polymorphisms of the VDR might explain these inverse associations. The aim of the study was the investigation of the relevance of rs731236; Thermus aquaticus I (TaqI), rs7975232; Acetobacter pasteurianus sub. pasteurianus I (ApaI), rs2228570; Flavobacterium okeanokoites I (FokI) and rs1544410, Bacillus stearothermophilus I (BsmI) polymorphisms of the VDR gene to colorectal carcinogenesis (CRC) and progression. Peripheral blood was obtained from 397 patients with early operable stage II/III (n = 202) and stage IV (n = 195) CRC. Moreover, samples from 100 healthy donors and 40 patients with adenomatous polyps were also included as control groups. Genotyping in the samples from patients and controls was performed using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP). A significant association was revealed between all four polymorphisms and cancer. Individuals with homozygous mutant (tt, aa, ff or bb) genotypes were more susceptible to the disease (p < 0.001). All of the mutant genotypes detected were also significantly associated with stage IV (p < 0.001), leading to significantly decreased survival (p < 0.001). Moreover, all four polymorphisms were significantly associated with KRAS (Kirsten ras oncogene) mutations and Toll-like receptor (TLR2, TLR4 and TLR9) genetic variants. In multivariate analysis, tt, aa and ff genotypes emerged as independent factors associated with decreased overall survival (OS) (p = 0.001, p < 0.001 and p = 0.001, respectively). The detection of higher frequencies of the VDR polymorphisms in CRC patients highlights the role of these polymorphisms in cancer development and progression.
Collapse
|
30
|
Duval KEA, Vernice NA, Wagner RJ, Fiering SN, Petryk JD, Lowry GJ, Tau SS, Yin J, Houde GR, Chaudhry AS, Hoopes PJ. Immunogenetic effects of low dose (CEM43 30) magnetic nanoparticle hyperthermia and radiation in melanoma cells. Int J Hyperthermia 2020; 36:37-46. [PMID: 31795829 PMCID: PMC6943912 DOI: 10.1080/02656736.2019.1627433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Objective: In this in vitro study we have used an RNA quantification technique, nanoString, and a conventional protein analysis technique (Western Blot) to assess the genetic and protein expression of B16 murine melanoma cells following a modest magnetic nanoparticle hyperthermia (mNPH) dose equivalent to 30 minutes @ 43°C (CEM43 30) and/or a clinically relevant 8 Gy radiation dose. Methods: Melanoma cells with mNPs(2.5 μg Fe/106 cells) were pelleted and exposed to an alternating magnetic field (AMF) to generate the targeted thermal dose. Thermal dose was accurately monitored by a fiber optic probe and automatically maintained at CEM43 30. All cells were harvested 24 hours after treatment. Results: The mNPH dose demonstrated notable elevations in the thermotolerance/immunogenic HSP70 gene and a number of chemoattractant and toll-like receptor gene pathways. The 8 Gy dose also upregulated a number of important immune and cytotoxic genetic and protein pathways. However, the mNPH/radiation combination was the most effective stimulator of a wide variety of immune and cytotoxic genes including HSP70, cancer regulating chemokines CXCL10, CXCL11, the T-cell trafficking chemokine CXCR3, innate immune activators TLR3, TLR4, the MDM2 and mTOR negative regulator of p53, the pro-apoptotic protein PUMA, and the cell death receptor Fas. Importantly a number of the genetic changes were accurately validated by protein expression changes, i.e., HSP70, p-mTOR, p-MDM2. Conclusion: These results not only show that low dose mNPH and radiation independently increase the expression of important immune and cytotoxic genes but that the effect is greatly enhanced when they are used in combination.
Collapse
Affiliation(s)
- Kayla E A Duval
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | - Robert J Wagner
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | - James D Petryk
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | - Steven S Tau
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - John Yin
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Georgia R Houde
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | - P Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
31
|
Impact of Genetic Variation in TLR4 3'UTR on NSCLC Genetic Susceptibility. JOURNAL OF ONCOLOGY 2020; 2020:7593143. [PMID: 32351566 PMCID: PMC7171665 DOI: 10.1155/2020/7593143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) are expressed not only in immune cells but also in a variety of tumor cells. Single-nucleotide polymorphisms (SNPs) located in the TLRs' promoter or the 3′ untranslated region may affect gene expression by affecting the activity of the promoter or regulating the binding of mRNA to miRNA. This study aimed to investigate the association of the SNPs in TLR genes with the susceptibility to NSCLC. This case-control study involved 700 lung cancer patients and 700 healthy controls. All individuals were genotyped for all selected SNPs in TLR genes using polymerase chain reaction (PCR) test-based restriction fragment length polymorphism (PCR-RFLP) and TaqMan SNP genotyping assay. The association of genetic variations in TLRs with the susceptibility to NSCLC was evaluated by unconditional logistic regression with OR (95% CI). After evaluating transcriptional factor or miRNA binding capability by bioinformatics methods, six TLRs were identified for further analysis. We did not find that TLR3 rs5743303, TLR4 rs1927914, TLR4 rs11536891, TLR5 rs1640816, and TLR7 rs3853839 were associated with NSCLC risk (P > 0.05). Our data showed that TLR4 rs7869402 C > T polymorphism reduced the risk of NSCLC with OR (95% CI) of 0.63 (0.45–0.89). When stratified by gender and age, the individuals carrying at least one rs7869402T allele significantly decreased the NSCLC risk among males (OR = 0.58, 95% CI = 0.38–0.87) and among youngsters (OR = 0.43, 95% CI = 0.27–0.69). Smoking stratification analysis showed that the rs7869402T allele-containing genotype reduced the risk of NSCLC with OR (95% CI) of 0.50 (0.29–0.87) among smokers but not among nonsmokers (P > 0.05). When the individuals were classed by the pathological type, we found that the rs7869402T-containing genotype was associated with the risk of adenocarcinoma (OR = 0.62, 95% CI = 0.41–0.92) but not with that of squamous cell carcinoma (OR = 0.71, 95% CI = 0.44–1.13) and other types (OR = 0.23, 95% CI = 0.03–1.70). Compared with the TLR4 Ars1927914-Crs7869402-Trs11536891 haplotype, the Grs1927914-Trs7869402-Trs11536891 haplotype was associated with a decreased risk for developing NSCLC with OR (95% CI) of 0.57 (0.41–0.80). These results indicated that the TLR4 rs7869402 variation affects the genetic susceptibility to NSCLC.
Collapse
|
32
|
Santos-Sierra S. Developments in anticancer vaccination: budding new adjuvants. Biol Chem 2020; 401:435-446. [DOI: 10.1515/hsz-2019-0383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
AbstractThe immune system has a limited capacity to recognize and fight cells that become cancerous and in cancer patients, the immune system has to seek the right balance between cancer rejection and host-immunosupression. The tumor milieu builds a protective shell and tumor cells rapidly accumulate mutations that promote antigen variability and immune-escape. Therapeutic vaccination of cancer is a promising strategy the success of which depends on a powerful activation of the cells of the adaptive immune system specific for tumor-cell detection and killing (e.g. CD4+and CD8+T-cells). In the last decades, the search for novel adjuvants that enhance dendritic cell (DC) function and their ability to prime T-cells has flourished and some Toll-like receptor (TLR) agonists have long been known to be valid immune adjuvants. The implementation of TLR-synthetic agonists in clinical studies of cancer vaccination is replacing the initial use of microbial-derived products with some encouraging results. The purpose of this review is to summarize the latest discoveries of TLR-synthetic agonists with adjuvant potential in anti-cancer vaccination.
Collapse
Affiliation(s)
- Sandra Santos-Sierra
- Section of Biochemical Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
33
|
Zhu G, Cheng Z, Lin C, Hoffman RM, Huang Y, Singh SR, Zheng W, Yang S, Ye J. MyD88 Regulates LPS-induced NF-ĸB/MAPK Cytokines and Promotes Inflammation and Malignancy in Colorectal Cancer Cells. Cancer Genomics Proteomics 2020; 16:409-419. [PMID: 31659096 DOI: 10.21873/cgp.20145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/AIM Inflammation may play a role in cancer initiation and progression. The molecular mechanisms by which inflammation causes colorectal cancer, remains unclear. The present study investigated a signaling pathway that affects inflammation in colorectal cancer. MATERIALS AND METHODS SW480 cells, HCT116 cells, and cells with knockdown of myeloid differentiation 88 (MyD88), and forced expression of MyD88 were treated with lipopolysaccharide (LPS; 1 μg/ml). Inflammation-related mRNA expression was analyzed by the quantitative reverse transcription polymerase chain reaction and inflammatory cytokines were detected by western blotting. The enzyme-linked immunosorbent assay (ELISA) was used to quantify inflammation-related cytokines in colorectal cancer cells. Cancer cell properties were evaluated using the wound-healing assay, transwell migration assay, transwell invasion assay, colony-formation assay, and CCK-8 assay. RESULTS LPS up-regulated mRNA and protein levels of inflammatory factors in colorectal cancer cells. Knockdown of MyD88 inhibited LPS-induced mRNA expression and inflammatory protein expression in colorectal cancer cells. Similarly, silencing of MyD88 expression suppressed LPS-induced changes in the biological behavior of colorectal cancer cells. Silencing of MyD88 expression down-regulated expression of proteins of the LPS/nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-ĸB)/mitogen-activated protein kinase (MAPK) signaling pathway. Restoration of the expression of MyD88 reversed the effects in LPS-treated HCT116 cells. CONCLUSION MyD88-regulated LPS/NF-ĸB/MAPK signaling pathway affects the inflammatory and biological behavior of LPS-induced colorectal cancer cells.
Collapse
Affiliation(s)
- Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, P.R. China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, P.R. China
| | - Zhibin Cheng
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, P.R. China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, P.R. China
| | - Chunlin Lin
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, P.R. China
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Yongjian Huang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, P.R. China
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, U.S.A.
| | - Wei Zheng
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, P.R. China
| | - Shugang Yang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, P.R. China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, P.R. China .,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|
34
|
Sharma Y, Bala K. Role of Toll like receptor in progression and suppression of oral squamous cell carcinoma. Oncol Rev 2020; 14:456. [PMID: 32477468 PMCID: PMC7246341 DOI: 10.4081/oncol.2020.456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/20/2020] [Indexed: 12/22/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common type of head and neck squamous cell carcinoma and one of the multifactorial process that consists of most contributing factors such as tobacco smoking, chewing and alcohol consumption that altered the intracellular environment. Recent studies have shown relevance of Toll like receptor (TLR) associated with carcinogenesis. This review aim’s to explore that how TLR associates with progression and suppression of OSCC. This review is a classical review that has confined to articles published in the past 19 years (i.e. 2000-2019) and has summarized the perspective of the authors. 62 articles were reviewed and it was found that progression and suppression of OSCC is associated with different TLRs promoting tumor development and also inhibiting the progression of oral neoplasm. It was found that TLR2, TLR3, TLR4, TLR5, TLR7 and TLR9 are associated with tumor development i.e. in progression of OSCC, where as suppression of OSCC through TLR3 and TLR7. We authors would like to conclude that literature survey has indicated effective TLR’s against OSCC development and can be explored to investigate other TLRs that can be used for therapeutic purposes in near future.
Collapse
Affiliation(s)
- Yash Sharma
- Therapeutics and Molecular Diagnostic Lab, Centre For Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Kumud Bala
- Therapeutics and Molecular Diagnostic Lab, Centre For Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
35
|
Toll-Like Receptors Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:81-97. [PMID: 32030686 DOI: 10.1007/978-3-030-35582-1_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The involvement of inflammation in cancer progression is well-established. The immune system can play both tumor-promoting and -suppressive roles, and efforts to harness the immune system to help fight tumor growth are at the forefront of research. Of particular importance is the inflammatory profile at the site of the tumor, with respect to both the leukocyte population numbers, the phenotype of these cells, as well as the contribution of the tumor cells themselves. In this regard, the pro-inflammatory effects of pattern recognition receptor expression and activation in the tumor microenvironment have emerged as a relevant issue both for therapy and to understand tumor development.Pattern recognition receptors (PRRs) were originally recognized as components of immune cells, particularly innate immune cells, as detectors of pathogens. PRR signaling in immune cells activates them, inducing robust antimicrobial responses. In particular, toll-like receptors (TLRs) constitute a family of membrane-bound PRRs which can recognize pathogen-associated molecular patterns (PAMPs) carried by bacteria, virus, and fungi. In addition, PRRs can recognize products generated by stressed cells or damaged tissues, namely damage-associated molecular patterns or DAMPS. Taking into account the role of the immune system in fighting tumors together with the presence of immune cells in the microenvironment of different types of tumors, strategies to activate immune cells via PRR ligands have been envisioned as an anticancer therapeutic approach.In the last decades, it has been determined that PRRs are present and functional on nonimmune cells and that their activation in these cells contributes to the inflammation in the tumor microenvironment. Both tumor-promoting and antitumor effects have been observed when tumor cell PRRs are activated. This argues against nonspecific activation of PRR ligands in the tumor microenvironment as a therapeutic approach. Therefore, the use of PRR ligands for anticancer therapy might benefit from strategies that specifically deliver these ligands to immune cells, thus avoiding tumor cells in some settings. This review focuses on these aspects of TLR signaling in the tumor microenvironment.
Collapse
|
36
|
Li L, Pan J, Cai X, Gong E, Xu C, Zheng H, Cao Z, Yin Z. Human umbilical cord mesenchymal stem cells suppress lung cancer via TLR4/NF-κB signalling pathway. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1712257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Lu Li
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Jiongwei Pan
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Xiaoping Cai
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Enhui Gong
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Cunlai Xu
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Hao Zheng
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Zhuo Cao
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Zhangyong Yin
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| |
Collapse
|
37
|
Yu L, Pham Q, Yu LL, Wang TTY. Modulation of CXC-motif chemokine receptor 7, but not 4, expression is related to migration of the human prostate cancer cell LNCaP: regulation by androgen and inflammatory stimuli. Inflamm Res 2019; 69:167-178. [PMID: 31865399 DOI: 10.1007/s00011-019-01305-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 11/08/2019] [Accepted: 12/05/2019] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE To elucidate the regulation, function of the chemokine CXC-motif ligand 12 (CXCL12) and its receptors (CXCR) 4 and 7 in prostate cancer tumor microenvironment. MATERIAL In-silico-analysis of expression in prostate cancer tissues. In-vitro comparison, testing of regulation in human prostate cancer cells LNCaP, DU145, and PC3. TREATMENT Dihydrotestosterone (DHT) treatments (0-10 nM) were for 0-48 h. The inflammatory agent Flagellin treatment (20 ng/ml) was for 2 h. Migration assays were performed for 24 h using 10 ng/ml CXCL12. METHODS Real-time PCR, western analysis, and migration assays were used to determine mRNA, protein, and functional changes, respectively. RESULTS Malignant prostate cancer tissues exhibit higher CXCR4/7 mRNA ratio, and higher CXCR7 mRNA levels were detected in the androgen-responsive LNCaP cells. Putative androgen-responsive elements were identified in CXCR4, 7 gene, and exposure to DHT, flagellin increased CXCR4 mRNA but decreased CXCR7 mRNA levels in LNCaP cells. Androgen receptor siRNA significantly attenuated the effects of DHT on CXCR4, 7 mRNA in LNCaP cells. However, DHT and flagellin only decrease CXCR7 protein and additively increased migration of LNCaP cells towards CXCL12. CONCLUSIONS Down regulation of CXCR7 protein by DHT and flagellin increased migration, supporting CXCR7 as decoy receptor counteracting CXCL12/CXCR4-mediated migration in prostate cancer cells.
Collapse
Affiliation(s)
- Lu Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Quynhchi Pham
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, ARS, USDA, 10300 Baltimore Ave., Bldg. 307C, Rm 132, Beltsville, MD, 20705, USA
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Thomas T Y Wang
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, ARS, USDA, 10300 Baltimore Ave., Bldg. 307C, Rm 132, Beltsville, MD, 20705, USA.
| |
Collapse
|
38
|
Shi S, Xu C, Fang X, Zhang Y, Li H, Wen W, Yang G. Expression profile of Toll‑like receptors in human breast cancer. Mol Med Rep 2019; 21:786-794. [PMID: 31789409 PMCID: PMC6947885 DOI: 10.3892/mmr.2019.10853] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022] Open
Abstract
Toll‑like receptors (TLRs) are the most widely studied pattern recognition receptors. Mounting evidence suggests an important association between TLRs and the occurrence and development of breast cancer. Thus, targeting these receptors may be a potential strategy for breast cancer treatment. The current study analyzed the data of 1,215 patients with breast cancer obtained from The Cancer Genome Atlas (TCGA) database. It was observed that, in addition to TLR6, TLR7 and TLR8, the expression of the remaining TLRs in breast cancer tissues was lower than that in normal tissues. In addition, TLR3 and TLR9 displayed significantly different expression levels in ER‑/PR‑negative breast cancer compared with the control tissues, while TLR5 expression was significantly reduced in HER2‑enriched breast cancer. Furthermore, TLR10 exhibited lower expression levels in advanced stages of the disease as compared with that observed in earlier stages. Survival analysis revealed that the expression of TLR4 and TLR7 had a significant impact on survival, and higher expression levels suggested worse prognosis. Finally, the expression levels of TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10 were correlated with those of the inflammatory cytokines interleukin‑1β and tumor necrosis factor‑α, while the expression levels of TLR3, TLR7, TLR8 and TLR9 were correlated with those of interferon‑β and C‑X‑C motif chemokine ligand 10. Taken together, the current study results suggest that TLR expression may serve as a biomarker of cancer pathogenesis and progression, and may provide new insights for the treatment of breast cancer through the regulation and targeting of TLRs.
Collapse
Affiliation(s)
- Shuxun Shi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Cong Xu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Xiaonan Fang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Yonghuan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Wujun Wen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
39
|
Sipos F, Kiss AL, Constantinovits M, Tulassay Z, Műzes G. Modified Genomic Self-DNA Influences In Vitro Survival of HT29 Tumor Cells via TLR9- and Autophagy Signaling. Pathol Oncol Res 2019; 25:1505-1517. [PMID: 30465163 DOI: 10.1007/s12253-018-0544-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/16/2018] [Indexed: 02/08/2023]
Abstract
In relation of immunobiology, the consequence of the crosstalk between TLR9-signaling and autophagy is poorly documented in HT29 cancer cells. To assess the TLR9-mediated biologic effects of modified self-DNA sequences on cell kinetics and autophagy response HT29 cells were incubated separately with intact genomic (g), hypermethylated (m), fragmented (f), and hypermethylated/fragmented (m/f) self-DNAs. Cell viability, apoptosis, cell proliferation, colonosphere-formation were determined. Moreover, the relation of TLR9-signaling to autophagy response was assayed by real-time RT-PCR, immunocytochemistry and transmission electron microscopy (TEM). After incubation with g-, m-, and m/f-DNAs cell viability and proliferation decreased, while apoptosis increased. F-DNA treatment resulted in an increase of cell survival. Methylation of self-DNA resulted in decrease of TLR9 expression, while it did not influence the positive effect of DNA fragmentation on MyD88 and TRAF6 overexpression, and TNFα downregulation. Fragmentation of DNA abrogated the positive effect of methylation on IRAK2, NFκB and IL-8 mRNA upregulations. In case of the autophagy genes and proteins, g- and f-DNAs caused significant upregulation of Beclin1, Atg16L1, and LC3B. According to TEM analyses, autophagy was present in each group of tumor cells, but to a varying degree. Incubation with m-DNA suppressed tumor cell survival by inducing features of apoptotic cell death, and activated mitophagy. F-DNA treatment enhanced cell survival, and activated macroautophagy and lipophagy. Colonospheres were only present after m-DNA incubation. Our data provided evidence for a close existing interplay between TLR9-signaling and the autophagy response with remarkable influences on cell survival in HT29 cells subjected to modified self-DNA treatments.
Collapse
Affiliation(s)
- Ferenc Sipos
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi street 46, Budapest, 1088, Hungary.
| | - Anna L Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Miklós Constantinovits
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi street 46, Budapest, 1088, Hungary
| | - Zsolt Tulassay
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi street 46, Budapest, 1088, Hungary
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, 1051, Hungary
| | - Györgyi Műzes
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi street 46, Budapest, 1088, Hungary
| |
Collapse
|
40
|
Arora S, Ahmad S, Irshad R, Goyal Y, Rafat S, Siddiqui N, Dev K, Husain M, Ali S, Mohan A, Syed MA. TLRs in pulmonary diseases. Life Sci 2019; 233:116671. [PMID: 31336122 PMCID: PMC7094289 DOI: 10.1016/j.lfs.2019.116671] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) comprise a clan of proteins involved in identification and triggering a suitable response against pathogenic attacks. As lung is steadily exposed to multiple infectious agents, antigens and host-derived danger signals, the inhabiting stromal and myeloid cells of the lung express an aggregate of TLRs which perceive the endogenously derived damage-associated molecular patterns (DAMPs) along with pathogen associated molecular patterns (PAMPs) and trigger the TLR-associated signalling events involved in host defence. Thus, they form an imperative component of host defence activation in case of microbial infections as well as non-infectious pulmonary disorders such as interstitial lung disease, acute lung injury and airways disease, such as COPD and asthma. They also play an equally important role in lung cancer. Targeting the TLR signalling network would pave ways to the design of more reliable and effective vaccines against infectious agents and control deadly infections, desensitize allergens and reduce inflammation. Moreover, TLR agonists may act as adjuvants by increasing the efficiency of cancer vaccines, thereby contributing their role in treatment of lung cancer too. Overall, TLRs present a compelling and expeditiously bolstered area of research and addressing their signalling events would be of significant use in pulmonary diseases.
Collapse
Affiliation(s)
- Shweta Arora
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Shaniya Ahmad
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Rasha Irshad
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Sahar Rafat
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Neha Siddiqui
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Mohammad Husain
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India.
| | - Anant Mohan
- Department of Pulmonary Medicine, AIIMS, New Delhi, India.
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
41
|
The Relationship of the TLR9 and TLR2 Genetic Polymorphisms with Cervical Cancer Risk: a Meta-Analysis of Case-Control Studies. Pathol Oncol Res 2018; 26:307-315. [PMID: 30215163 DOI: 10.1007/s12253-018-0465-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
This meta-analysis aimed to assess the association of common TLR9 and TLR2 gene polymorphisms (TLR9 1486 T/C, TLR9 G2848A, and TLR2-196 to -174 del/ins) with cervical cancer risk. Studies were searched in Scopus, Pubmed, Embase, and CNKI until December 2017. Both fixed-effects and random-effects models were applied to combine odds ratio (OR) and 95% confidence intervals (95% CI). A total of 11 studies including 7856 participants were identified. The pooled estimation revealed an increased risk of cervical cancer in Caucasian subjects carrying the C allele of the TLR9 1486 T/C polymorphism (OR = 1.46, 95% CI: 1.11-1.92, p = 0.007), while there was a decreased risk in Mixed subjects carrying the C allele (OR = 0.35, 95% CI: 0.15-0.82, p = 0.016). Concerning the TLR9 G2848A polymorphism, the A allele was associated with an increased risk of cervical cancer in Caucasians (OR = 1.19, 95% CI: 1.02-1.40, p = 0.030), whereas Asian and Mixed subjects showed no significant associations. No significant associations were demonstrated between the TLR2-196 to -174 del/ins polymorphism and cervical cancer. Our findings suggest that the TLR9 1486 T/C and G2848A polymorphisms contribute to cervical cancer risk, but there is no association of the TLR2-196 to -174 del/ins polymorphism with cervical cancer.
Collapse
|
42
|
Choi CH, Kang TH, Song JS, Kim YS, Chung EJ, Ylaya K, Kim S, Koh SS, Chung JY, Kim JH, Hewitt SM. Elevated expression of pancreatic adenocarcinoma upregulated factor (PAUF) is associated with poor prognosis and chemoresistance in epithelial ovarian cancer. Sci Rep 2018; 8:12161. [PMID: 30111860 PMCID: PMC6093878 DOI: 10.1038/s41598-018-30582-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic adenocarcinoma upregulated factor (PAUF) is a ligand of toll-like receptors (TLRs) and has been reported to be involved in pancreatic tumor development. However, the significance of PAUF expression in epithelial ovarian cancer remains unclear. We aimed to investigate the possible clinical significance of PAUF in epithelial ovarian cancer. We examined the link between PAUF and TLR4 in ovarian cancer cell lines. Recombinant PAUF induced cell activation and proliferation in ovarian cancer cell lines, whereas PAUF knockdown inhibited these properties. Subsequently, we assessed PAUF and TLR4 expression by immunohistochemistry on tissue microarray of 408 ovarian samples ranging from normal to metastatic. PAUF expression positively correlated with TLR4 expression. Overexpression of PAUF was associated with high-grade tumor (p = 0.014) and chemoresistant tumor (p = 0.017). Similarly, high expression of TLR4 correlated with advanced tumor stage (p = 0.002) and chemoresistant tumor (p = 0.001). Multivariate analysis indicated that PAUFhigh, TLR4high, and PAUFhigh/TLR4high expression are independent prognostic factor for progression-free survival, while TLR4high and PAUFhigh/TLR4high expression were independent prognostic factors for overall survival. Our results suggest that PAUF has a role in ovarian cancer progression and is a potential prognostic marker and novel chemotherapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Chel Hun Choi
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Departments of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Tae Heung Kang
- Department of Immunology, College of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Joon Seon Song
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Young Seob Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Kris Ylaya
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seokho Kim
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sang Seok Koh
- Department of Biological Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
43
|
Evaluation of the detection of Toll-like receptors (TLRs) in cancer development and progression in patients with colorectal cancer. PLoS One 2018; 13:e0197327. [PMID: 29883450 PMCID: PMC5993256 DOI: 10.1371/journal.pone.0197327] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022] Open
Abstract
Background Toll-like receptors (TLRs) play essential role in innate and acquired immunity, are expressed in various cell types, and are associated with altered susceptibility to many diseases, and cancers. The aim of this study was to investigate TLR2 (-196 to-174del), TLR4 (Asp299Gly and Thr399Ile) and TLR9 (T1237C and T1486C) gene polymorphisms at risk of colorectal cancer (CRC) development and progression. Methods Peripheral blood was obtained from 397 patients with adjuvant (stage II/III, n = 202) and metastatic (n = 195) CRC. Moreover, blood samples from 50 healthy volunteers and 40 patients with adenomatous polyps were also included as control groups. DNA from patients and controls was analyzed using PCR and PCR-RFLP for genotyping functional polymorphism within TLR2, TLR4 and TLR9 genotypes. Results TLR2–196 to-174del/del genotype was detected in 76.6% of the patients and was significantly higher that the controls groups (p<0.001). TLR4 Asp299Gly, TLR4 Thr399Ile, TLR9 T1237C and T1486C homozygous genotypes were detected in 70.5%, 70.5%, 61.5% and 61.5% of the patients respectively, and were also significantly higher than that in the control groups (p<0.001). All polymorphisms detected were also significantly associated with the metastatic disease (p<0.001) leading to shorter overall survival (p<0.001); whereas, TLR4 Asp299Gly and Thr399Ile polymorphisms were significantly associated with KRAS mutations. Conclusions The detection of higher frequencies of the TLR2, TLR4 and/or TLR9 polymorphisms in CRC patients compared with the control groups highlight the role of these polymorphism in CRC development and cancer progression.
Collapse
|
44
|
Ou T, Lilly M, Jiang W. The Pathologic Role of Toll-Like Receptor 4 in Prostate Cancer. Front Immunol 2018; 9:1188. [PMID: 29928275 PMCID: PMC5998742 DOI: 10.3389/fimmu.2018.01188] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Toll-like receptor (TLR) 4 is expressed on normal and malignant prostate epithelial cells. The TLR4 and its downstream signaling pathways mediate innate immune responses in the host against invading pathogens. However, multiple lines of evidence shows that TLR4 expression is increased in prostate tissues from prostate cancer patients, and altered TLR4 signals may promote cancer development, as well as antitumor effects. In this review, we have summarized key features of the TLR4 signaling pathway and its associated immune responses and focused on the pathologic role of TLR4 in prostate carcinogenesis and tumor progression.
Collapse
Affiliation(s)
- Tongwen Ou
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Michael Lilly
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
45
|
Yang X, Chen GT, Wang YQ, Xian S, Zhang L, Zhu SM, Pan F, Cheng YX. TLR4 promotes the expression of HIF-1α by triggering reactive oxygen species in cervical cancer cells in vitro-implications for therapeutic intervention. Mol Med Rep 2017; 17:2229-2238. [PMID: 29207048 PMCID: PMC5783462 DOI: 10.3892/mmr.2017.8108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
The present study investigated the mechanism underlying Toll-like receptor 4 (TLR4)-mediated stimulation of hypoxia-inducible factor-1α (HIF-1α) activity and its association with reactive oxygen species (ROS) in cervical cancer cells. SiHa cells were cultured and randomized to control, lipopolysaccharide (LPS), methyl-β-cyclodextrin (MβCD)+LPS, ammonium pyrrolidinedithiocarbamate (PDTC)+LPS, ST2825+LPS and small interfering (si) RNA TLR4+LPS treatment groups. Cell proliferation was quantified using an MTT assay, cell cloning was performed using soft agar colony formation and HIF-1α expression was detected by immunocytochemical staining and western blot analyses. Dichloro-dihydro-fluorescein diacetate and lucigenin luminescence assays were used to detect alterations in ROS and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase content, respectively. Co-localization of TLR4 and HIF-1α was detected by immunofluorescence staining and observed using fluorescence microscopy. Compared with the control group, cell proliferation was enhanced in the LPS-treated group and was not altered in the PDTC+LPS treatment group. Cell proliferation was reduced in all other treatment groups (P<0.05). Compared with the LPS group, cell proliferation decreased in all other groups. Compared with the PDTC+LPS treatment group, cell proliferation significantly decreased when LPS was co-administered with ST2825, siTLR4 and MβCD (P<0.01). Treatment with MβCD+LPS exhibited an increased inhibitory effect on cell activity and proliferation. Compared with the control group, HIF-1α expression was enhanced following treatment with LPS, although it decreased when LPS was co-administered with ST2825, siTLR4 and MβCD (P<0.05). HIF-1α expression decreased following treatment with ST2825, siTLR4, MβCD and PDTC+LPS, compared with treatment with LPS alone. Compared with the PDTC+LPS group, HIF-1α activity decreased when LPS was co-administered with ST2825, siTLR4 and MβCD. NADPH oxidase and ROS levels increased in cells treated with LPS, compared with the control group, at 24 and 12 h following treatment, respectively, and decreased at 12 h when LPS was co-administered with ST2825, siTLR4 and MβCD. There was no difference between the LPS and PDTC+LPS groups with respect to NADPH and ROS levels. Compared with the PDTC+LPS group, NADPH oxidase activity and ROS content decreased when LPS was co-administered with ST2825, siTLR4 and MβCD. NADPH oxidase activity and ROS content were lowest in the MβCD+LPS treatment group, and immunofluorescent staining demonstrated that TLR4 was localized to the cell surface and HIF-1α was primarily localized to the cytoplasm. TLR4 was co-expressed with HIF-1α in cervical cancer cells. The results of the present study suggested that TLR4 signaling primarily promoted HIF-1α activity via activation of lipid rafts/NADPH oxidase redox signaling and may be associated with the initiation and progression of cervical cancer. This promoting effect was stronger in TLR4/lipid rafts/NADPH oxidase pathway than that in TLR4-NF-κB signaling pathway. Therefore, the TLR4/lipid raft-associated redox signal may be a target for therapeutic intervention to prevent the growth of cervical cancer.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Gan Tao Chen
- Department of Gastroenterology, The Third Renmin Hospital of Xiantao City, Xiantao, Hubei 433000, P.R. China
| | - Yan Qing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shu Xian
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shao Ming Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Pan
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
46
|
Vidya MK, Kumar VG, Sejian V, Bagath M, Krishnan G, Bhatta R. Toll-like receptors: Significance, ligands, signaling pathways, and functions in mammals. Int Rev Immunol 2017; 37:20-36. [PMID: 29028369 DOI: 10.1080/08830185.2017.1380200] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review attempts to cover the implication of the toll-like receptors (TLRs) in controlling immune functions with emphasis on their significance, function, regulation and expression patterns. The tripartite TLRs are type I integral transmembrane receptors that are involved in recognition and conveying of pathogens to the immune system. These paralogs are located on cell surfaces or within endosomes. The TLRs are found to be functionally involved in the recognition of self and non-self-antigens, maturation of DCs and initiation of antigen-specific adaptive immune responses as they bridge the innate and adaptive immunity. Interestingly, they also have a significant role in immunotherapy and vaccination. Signals generated by TLRs are transduced through NFκB signaling and MAP kinases pathway to recruit pro-inflammatory cytokines and co-stimulatory molecules, which promote inflammatory responses. The excess production of these cytokines leads to grave systemic disorders like tumor growth and autoimmune disorders. Hence, regulation of the TLR signaling pathway is necessary to keep the host system safe. Many molecules like LPS, SOCS1, IRAK1, NFκB, and TRAF3 are involved in modulating the TLR pathways to induce appropriate response. Though quantification of these TLRs helps in correlating the magnitude of immune response exhibited by the animal, there are several internal, external, genetic and animal factors that affect their expression patterns. So it can be concluded that any identification based on those expression profiles may lead to improper diagnosis during certain conditions.
Collapse
Affiliation(s)
- Mallenahally Kusha Vidya
- a Department of Veterinary Biochemistry , Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University , Hebbal, Bangalore , Karnataka , India.,b Animal Physiology Division , ICAR-National Institute of Animal Nutrition and Physiology , Adugodi, Bangalore , Karnataka , India
| | - V Girish Kumar
- a Department of Veterinary Biochemistry , Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University , Hebbal, Bangalore , Karnataka , India
| | - Veerasamy Sejian
- b Animal Physiology Division , ICAR-National Institute of Animal Nutrition and Physiology , Adugodi, Bangalore , Karnataka , India
| | - Madiajagan Bagath
- b Animal Physiology Division , ICAR-National Institute of Animal Nutrition and Physiology , Adugodi, Bangalore , Karnataka , India
| | - Govindan Krishnan
- b Animal Physiology Division , ICAR-National Institute of Animal Nutrition and Physiology , Adugodi, Bangalore , Karnataka , India
| | - Raghavendra Bhatta
- b Animal Physiology Division , ICAR-National Institute of Animal Nutrition and Physiology , Adugodi, Bangalore , Karnataka , India
| |
Collapse
|
47
|
Xu C, Li H, Yin M, Yang T, An L, Yang G. Osteopontin is involved in TLR4 pathway contributing to ovarian cancer cell proliferation and metastasis. Oncotarget 2017; 8:98394-98404. [PMID: 29228698 PMCID: PMC5716738 DOI: 10.18632/oncotarget.21844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/23/2017] [Indexed: 12/27/2022] Open
Abstract
Tumor cell proliferation and metastasis are critical for tumor progression and lead to death of cancer patients. TLR4 is a member of the toll-like receptor (TLR) family, which promotes tumor growth, metastasis and immune escape. Osteopontin (OPN), a phosphorylated glycoprotein extensively expressed in multiple cell-types, plays important roles in tumorigenesis, metastasis and infiltration, and participates in signal transduction of innate immunity. However, it is unclear whether TLR4 has any relationship with OPN. The current study investigated the role of TLR4 and OPN in tumor proliferation and metastasis, and the potential effect of TLR4 signaling on OPN using the human ovarian cancer cell line HO-8910PM. High expression levels of TLR4 and OPN were detected in HO-8910PM cells, which promoted the proliferation, migration and invasion of tumor cells. Lipopolysaccharide (LPS) induced activation of TLR4 up-regulated OPN, increasing the malignant phenotype of cells. RNAi-mediated knockdown of OPN reduced significantly the metastatic phenotype activated by TLR4. Taken together, our study demonstrates that OPN contributes to the ovarian cancer cell proliferation and metastasis, which is activated by TLR4 signaling pathway. It provides new insights for the mechanisms of tumor development and metastasis, and suggests targeting TLR4 and OPN as an intervention in the ovarian cancer treatment.
Collapse
Affiliation(s)
- Cong Xu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China.,College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Miao Yin
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Tao Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
48
|
Park GB, Kim D. TLR5/7-mediated PI3K activation triggers epithelial-mesenchymal transition of ovarian cancer cells through WAVE3-dependent mesothelin or OCT4/SOX2 expression. Oncol Rep 2017; 38:3167-3176. [PMID: 28901470 DOI: 10.3892/or.2017.5941] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/01/2017] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptor (TLR)-mediated signaling induces cell migration or invasion in several tumors and various stages of cancer. Interactions of mesothelin, a 40-kDa cell surface glycoprotein, with cancer antigen 125 (CA125) is associated with drug resistance, metastasis, and poor clinical outcome of ovarian cancer patients. In this study, we examined the role of TLR5 and TLR7 in the metastasis of ovarian cancer through the induction of mesothelin/CA125 expression and investigated its underlying mechanism. TLR5 agonist (flagellin) and TLR7 agonist (imiquimod) upregulated mesenchymal phenotypes and produced epithelial-mesenchymal transition (EMT)-related cytokines in the SKOV3 cells; however, TLR7 expressing CaOV3 cells had no response to the specific ligand, imiquimod, for enhancing its EMT processes. Stimulation of the SKOV3 cells with flagellin or imiquimod activated Wiskott-Aldrich syndrome protein verprolin-homologous 3 (WAVE3) and mesothelin/CA125, whereas it suppressed the expression of TAp63. Moreover, knockdown of TLR5 or TLR7 in SKOV3 cells profoundly impaired the TLR5- or TLR7-intiated downstream signaling pathway. Loss of WAVE3 in SKOV3 cells led to the inhibition of invasion, suppression of mesenchymal characteristics, prevention of OCT4/SOX2 secretion, and attenuation of mesothelin/CA125 expression after stimulation with flagellin or imiquimod. Although the disruption of mesothelin decreased the migratory activity of the TLR5/7-activated SKOV3 cells, knockdown of mesothelin failed to reduce the expression of mesenchymal markers, OCT4, and SOX2. In addition, targeting OCT4 or SOX2 with siRNA had no effect on the expression of mesothelin and the suppression of transcriptionally active p63 (TAp63) in the TLR5/7-stimulated SKOV3 cells. Our results suggest that TLR5/7-mediated WAVE3 activation not only controls the mesothelin-related EMT processes but also modulates OCT4/SOX2-mediated mesenchymal marker expression. Taken together, both TLR5 and TLR7 expression are critical for the TLR5/7-induced metastasis of ovarian cancer and the inhibition of WAVE3 might be a new therapeutic target to control ovarian cancer metastasis.
Collapse
Affiliation(s)
- Ga Bin Park
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea
| |
Collapse
|
49
|
Yue Y, Zhou T, Gao Y, Zhang Z, Li L, Liu L, Shi W, Su L, Cheng B. High mobility group box 1/toll-like receptor 4/myeloid differentiation factor 88 signaling promotes progression of gastric cancer. Tumour Biol 2017; 39:1010428317694312. [PMID: 28347236 DOI: 10.1177/1010428317694312] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
High mobility group box 1 and toll-like receptor 4/myeloid differentiation factor 88 signaling pathway have been indicated to have oncogenic effects in many cancers. However, the role of high mobility group box 1/toll-like receptor 4/myeloid differentiation factor 88 signaling pathway in the development of gastric cancer remains unclear. In this study, we demonstrated that high mobility group box 1, toll-like receptor 4, and myeloid differentiation factor 88 were overexpressed in gastric cancer tumors compared with the adjacent non-tumor tissues. The overexpression of high mobility group box 1, toll-like receptor 4, and myeloid differentiation factor 88 were correlated with tumor-node-metastasis stage (p = 0.0068, p = 0.0063, p = 0.0173) and lymph node metastasis (p = 0.0272, p = 0.0382, and p = 0.0495). Furthermore, we observed that knockdown of high mobility group box 1 by high mobility group box 1-small interfering RNA suppressed the expression of toll-like receptor 4 and myeloid differentiation factor 88. Blockage of high mobility group box 1/toll-like receptor 4/myeloid differentiation factor 88 signaling by high mobility group box 1-small interfering RNA resulted in elevation of apoptotic ratio and inhibition of cell growth, migration, and invasion by upregulating Bax expression and downregulating Bcl-2, matrix metalloproteinase-2, nuclear factor kappa B/p65 expression, and the nuclear translocation of nuclear factor kappa B/p65 in gastric cancer cells. Our findings suggest that high mobility group box 1/toll-like receptor 4/myeloid differentiation factor 88 signaling pathway may contribute to the development and progression of gastric cancer via the nuclear factor kappa B pathway and it also represents a novel potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yanqiu Yue
- Department of Gastroenterology, Qilu Hospital, School of Medicine, Shandong University, Jinan, China
| | - Tao Zhou
- Department of Gastroenterology, Qilu Hospital, School of Medicine, Shandong University, Jinan, China
| | - Yanjing Gao
- Department of Gastroenterology, Qilu Hospital, School of Medicine, Shandong University, Jinan, China
| | - Zongli Zhang
- Department of Hepatobiliary Surgery, Qilu Hospital, School of Medicine, Shandong University, Jinan, China
| | - Li Li
- Department of Pathology, Qilu Hospital, School of Medicine, Shandong University, Jinan, China
| | - Lin Liu
- Department of Pathology, Qilu Hospital, School of Medicine, Shandong University, Jinan, China
| | - Wenna Shi
- Department of Gastroenterology, Dezhou People’s Hospital, School of Medicine, Binzhou Medical University, Dezhou, China
| | - Lihui Su
- Department of Gastroenterology, Qilu Hospital, School of Medicine, Shandong University, Jinan, China
| | - Baoquan Cheng
- Department of Gastroenterology, Qilu Hospital, School of Medicine, Shandong University, Jinan, China
| |
Collapse
|
50
|
Combined toll-like receptor 3/7/9 deficiency on host cells results in T-cell-dependent control of tumour growth. Nat Commun 2017; 8:14600. [PMID: 28300057 PMCID: PMC5356072 DOI: 10.1038/ncomms14600] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) are located either on the cell surface or intracellularly in endosomes and their activation normally contributes to the induction of protective immune responses. However, in cancer their activation by endogenous ligands can modulate tumour progression. It is currently unknown how endosomal TLRs regulate endogenous anti-tumour immunity. Here we show that TLR3, 7 and 9 deficiencies on host cells, after initial tumour growth, result in complete tumour regression and induction of anti-tumour immunity. Tumour regression requires the combined absence of all three receptors, is dependent on both CD4 and CD8 T cells and protects the mice from subsequent tumour challenge. While tumours in control mice are infiltrated by higher numbers of regulatory T cells, tumour regression in TLR-deficient mice is paralleled by altered vascular structure and strongly induced influx of cytotoxic and cytokine-producing effector T cells. Thus, endosomal TLRs may represent a molecular link between the inflamed tumour cell phenotype, anti-tumour immunity and the regulation of T-cell activation. Activation of Toll-like receptor (TLR) is generally associated with increased immune activity. Here, the authors show, using syngeneic mouse models, that combined deficiency of TLR 3/7/9 in the host induces an inflamed tumour phenotype and results in T cell dependent tumour regression after an initial growth.
Collapse
|