1
|
Yang YM, Ye L, Ruge F, Fang Z, Ji K, Sanders AJ, Jia S, Hao C, Dou QP, Ji J, Jiang WG. Activated Leukocyte Cell Adhesion Molecule (ALCAM), a Potential 'Seed' and 'Soil' Receptor in the Peritoneal Metastasis of Gastrointestinal Cancers. Int J Mol Sci 2023; 24:ijms24010876. [PMID: 36614319 PMCID: PMC9821744 DOI: 10.3390/ijms24010876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166) is a cell-cell adhesion protein conferring heterotypic and homotypic interactions between cells of the same type and different types. It is aberrantly expressed in various cancer types and has been shown to be a regulator of cancer metastasis. In the present study, we investigated potential roles of ALCAM in the peritoneal transcoelomic metastasis in gastrointestinal cancers, a metastatic type commonly occurred in gastro-intestinal and gynaecological malignancies and resulting in poor clinical outcomes. Specifically, we studied whether ALCAM acts as both a 'seed' receptor in these tumour cells and a 'soil' receptor in peritoneal mesothelial cells during cancer metastasis. Gastric cancer and pancreatic cancer tissues with or without peritoneal metastasis were compared for their levels of ALCAM expression. The impact of ALCAM expression in these tumours was also correlated to the patients' clinical outcomes, namely peritoneal metastasis-free survival. In addition, cancer cells of gastric and pancreatic origins were used to create cell models with decreased or increased levels of ALCAM expression by genetic knocking down or overexpression, respectively. Human peritoneal mesothelial cells were also genetically transfected to generate cell models with different profiles of ALCAM expression. These cell models were used in the tumour-mesothelial interaction assay to assess if and how the interaction was influenced by ALCAM. Both gastric and pancreatic tumour tissues from patients who developed peritoneal metastases had higher levels of ALCAM transcript than those without. Patients who had tumours with high levels of ALCAM had a much shorter peritoneal metastasis free survival compared with those who had low ALCAM expression (p = 0.006). ALCAM knockdown of the mesothelial cell line MET5A rendered the cells with reduced interaction with both gastric cancer cells and pancreatic cancer cells. Likewise, levels of ALCAM in both human gastric and pancreatic cancer cells were also a determining factor for their adhesiveness to mesothelial cells, a process that was likely to be triggered the phosphorylation of the SRC kinase. A soluble ALCAM (sALCAM) was found to be able to inhibit the adhesiveness between cancer cells and mesothelial cells, mechanistically behaving like a SRC kinase inhibitor. ALCAM is an indicator of peritoneal metastasis in both gastric and pancreatic cancer patients. It acts as not only a potential peritoneal 'soil' receptor of tumour seeding but also a 'soil' receptor in peritoneal mesothelial cells during cancer metastasis. These findings have an important therapeutic implication for treating peritoneal transcoelomic metastases.
Collapse
Affiliation(s)
- Yi Ming Yang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Ziqian Fang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Ke Ji
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Street, Haidian District, Beijing 100089, China
| | - Andrew J. Sanders
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- School of Natural and Social Science, University of Gloucestershire, Francis Close Hall, Swindon Road, Cheltenham GL50 4AZ, UK
| | - Shuqin Jia
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Street, Haidian District, Beijing 100089, China
| | - Chunyi Hao
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Street, Haidian District, Beijing 100089, China
| | - Q. Ping Dou
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Jiafu Ji
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Street, Haidian District, Beijing 100089, China
- Correspondence: (J.J.); (W.G.J.)
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Correspondence: (J.J.); (W.G.J.)
| |
Collapse
|
2
|
Yang Y, Sanders AJ, Dou QP, Jiang DG, Li AX, Jiang WG. The Clinical and Theranostic Values of Activated Leukocyte Cell Adhesion Molecule (ALCAM)/CD166 in Human Solid Cancers. Cancers (Basel) 2021; 13:cancers13205187. [PMID: 34680335 PMCID: PMC8533996 DOI: 10.3390/cancers13205187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary ALCAM (activated leukocyte cell adhesion molecule) is an important regulator in human cancers, particularly solid tumours. Its expression in cancer tissues has prognostic values depending on cancer types and is also linked to distant metastases. A truncated form, soluble form of ALCAM (sALCAM) in circulation has been suggested to be a prognostic indicator and a potential therapeutic tool. This article summarises recent findings and progress in ALCAM and its involvement in cancer, with a primary focus on its clinical connections and therapeutic values. Abstract Activated leukocyte cell adhesion molecule (ALCAM), also known as CD166, is a cell adhesion protein that is found in multiple cell types. ALCAM has multiple and diverse roles in various physiological and pathological conditions, including inflammation and cancer. There has been compelling evidence of ALCAM’s prognostic value in solid cancers, indicating that it is a potential therapeutic target. The present article overviews the recent findings and progress in ALCAM and its involvement in cancer, with a primary focus on its clinical connections in cancer and therapeutic values.
Collapse
Affiliation(s)
- Yiming Yang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
| | - Andrew J. Sanders
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Correspondence: (A.J.S.); (W.G.J.)
| | - Q. Ping Dou
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201-2013, USA
| | - David G. Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Stoke Mandeville Hospital, Buckinghamshire Healthcare NHS Trust, Aylesbury HP21 8AL, UK
| | - Amber Xinyu Li
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
| | - Wen G. Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Correspondence: (A.J.S.); (W.G.J.)
| |
Collapse
|
3
|
Ghani S, Deravi N, Pirzadeh M, Rafiee B, Gatabi ZR, Bandehpour M, Yarian F. Antibody fragment and targeted colorectal cancer therapy: A global systematic review. Curr Pharm Biotechnol 2021; 23:1061-1071. [PMID: 34375187 DOI: 10.2174/1389201022666210810104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Antibody-based therapeutics have been evidenced promising for the treatment of colorectal cancer patients. However, the size and long circulating half-lives of antibodies can limit their reproducible manufacture in clinical studies. Consequently, in novel therapeutic approaches conventional antibodies are minimized and engineered to produce fragments like Fab, scFv, nanobody, bifunctional antibody, bispecific antibody, minibody and diabody to preserve their high affinity and specificity to target pharmaceutical nanoparticle conjugates. This systematic review for the first time aimed to elucidate the role of various antibody fragments in colorectal cancer treatment. METHOD A systematic literature search in web of sciences, PubMed, Scopus, Google scholar and ProQuest was conducted. Reference lists of the articles were reviewed to identify the relevant papers. The full text search included articles published in English during 1990-2021. RESULTS Most the 53 included studies were conducted in vitro and in most conducted studies single-chain antibodies were among the most used antibody fragments. Most antibodies targeted CEA in the treatment of colorectal cancer. Moreover, a large number of studies observed apoptosis induction and tumor growth inhibition. In addition, few studies implicated the role of the innate immune system as an indirect mechanisms of tumor growth by enhancing NK-cell killing. CONCLUSION Antibody-based therapy was demonstrated to be of a great promise in the treatment of colorectal cancer rather than common treatments such as radiotherapy, chemotherapy, and surgical operations. This type of specified cancer treatment can also induce the activation of innate and specific immune system to eradicate tumor cells.
Collapse
Affiliation(s)
- Sepideh Ghani
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Pirzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Behnam Rafiee
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Zahra Rezanejad Gatabi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mojgan Bandehpour
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yarian
- SBUMS, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, Iran
| |
Collapse
|
4
|
Ferragut F, Vachetta VS, Troncoso MF, Rabinovich GA, Elola MT. ALCAM/CD166: A pleiotropic mediator of cell adhesion, stemness and cancer progression. Cytokine Growth Factor Rev 2021; 61:27-37. [PMID: 34272152 DOI: 10.1016/j.cytogfr.2021.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166) is a glycoprotein involved in homotypic and heterotypic cell adhesion. ALCAM can be proteolytically cleaved at the cell surface by metalloproteases, which generate shedding of its ectodomain. In various tumors, ALCAM is overexpressed and serves as a valuable prognostic marker of disease progression. Moreover, CD166 has been identified as a putative cancer stem cell marker in particular cancers. Herein, we summarize biochemical aspects of ALCAM, including structure, proteolytic shedding, alternative splicing, and specific ligands, and integrate this information with biological functions of this glycoprotein including cell adhesion, migration and invasion. In addition, we discuss different patterns of ALCAM expression in distinct tumor types and its contribution to tumor progression. Finally, we highlight the role of ALCAM as a cancer stem cell marker and introduce current clinical trials associated with this molecule. Future studies are needed to define the value of shed ALCAM in biofluids or ALCAM isoform expression as prognostic biomarkers in tumor progression.
Collapse
Affiliation(s)
- Fátima Ferragut
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - Vanina S Vachetta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - María F Troncoso
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María T Elola
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Ghani S, Bahrami S, Rafiee B, Eyvazi S, Yarian F, Ahangarzadeh S, Khalili S, Shahzamani K, Jafarisani M, Bandehpour M, Kazemi B. Recent developments in antibody derivatives against colorectal cancer; A review. Life Sci 2020; 265:118791. [PMID: 33220288 DOI: 10.1016/j.lfs.2020.118791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/10/2020] [Accepted: 11/14/2020] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is the fourth most common cause of cancer and mortality worldwide and is the third most common cancer in men and women. Surgery, radiotherapy, and chemotherapy are conventionally used for the treatment of colorectal cancer. However, these methods are associated with various side effects on normal cells. Thus, new studies are moving towards more effective and non-invasive methods for treatment of colorectal cancer. Targeted therapy of CRC is a promising new approach to enhance the efficiency and decrease the toxicity of the treatment. In targeted therapy of CRC, antibody fragments can directly inhibit tumor cell growth and proliferation. They also can act as an ideal carrier for targeted delivery of anticancer drugs. In the present study, the structure and function of different formats of antibody fragments, immune-targeted therapy of CRC using antibody fragments will be discussed.
Collapse
Affiliation(s)
- Sepideh Ghani
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Bahrami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Rafiee
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Shirin Eyvazi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Yarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Kiana Shahzamani
- Isfahan Gastroenterology and Hepatology Research Center (IGHRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Moslem Jafarisani
- Clinical Biochemistry, Cancer Prevention Research Center, Shahroud university of Medical Sciences, Shahroud, Iran
| | - Mojgan Bandehpour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Simões IT, Aranda F, Casadó-Llombart S, Velasco-de Andrés M, Català C, Álvarez P, Consuegra-Fernández M, Orta-Mascaró M, Merino R, Merino J, Alberola-Ila J, González-Aseguinolaza G, Carreras E, Martínez V, Lozano F. Multifaceted effects of soluble human CD6 in experimental cancer models. J Immunother Cancer 2020; 8:jitc-2019-000172. [PMID: 32217757 PMCID: PMC7174071 DOI: 10.1136/jitc-2019-000172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background CD6 is a lymphocyte surface co-receptor physically associated with the T-cell receptor (TCR)/CD3 complex at the center of the immunological synapse. There, CD6 assists in cell-to-cell contact stabilization and modulation of activation/differentiation events through interaction with CD166/ALCAM (activated leukocyte cell adhesion molecule), its main reported ligand. While accumulating evidence is attracting new interest on targeting CD6 for therapeutic purposes in autoimmune disorders, little is known on its potential in cancer. In an attempt to elucidate the in vivo relevance of blocking CD6-mediated interactions in health and disease, we explored the consequences of expressing high circulating levels of a soluble form CD6 (sCD6) as a decoy receptor. Methods High sCD6 serum levels were achieved by using transgenic C57BL/6 mice expressing human sCD6 under the control of lymphoid-specific transcriptional elements (shCD6LckEμTg) or wild type either transduced with hepatotropic adeno-associated virus coding for mouse sCD6 or undergoing repeated infusions of recombinant human sCD6 protein. Characterization of sCD6-induced changes was performed by ex vivo flow cytometry and functional analyses of mouse lymphoid organ cells. The in vivo relevance of those changes was explored by challenging mice with subcutaneous or metastatic tumors induced by syngeneic cancer cells of different lineage origins. Results Through a combination of in vitro and in vivo studies, we show that circulating sCD6 expression induces defective regulatory T cell (Treg) generation and function, decreased CD166/ALCAM-mediated tumor cell proliferation/migration and impaired galectin-induced T-cell apoptosis, supporting the fact that sCD6 modulates antitumor lymphocyte effector function and tumorigenesis. Accordingly, sCD6 expression in vivo resulted in delayed subcutaneous tumor growth and/or reduced metastasis on challenge of mice with syngeneic cancer cells. Conclusions Evidence is provided for the disruption of CD6 receptor–ligand interactions as a feasible immunomodulatory approach in cancer.
Collapse
Affiliation(s)
- Inês T Simões
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Fernando Aranda
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Sergi Casadó-Llombart
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - María Velasco-de Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Cristina Català
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Pilar Álvarez
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Cantabria, Spain
| | - Marta Consuegra-Fernández
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Marc Orta-Mascaró
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Ramón Merino
- Instituto de Biomedicina y Biotecnología de Cantabria, CSIC-UC, Santander, Cantabria, Spain
| | - Jesús Merino
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Cantabria, Spain
| | - José Alberola-Ila
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | | | - Esther Carreras
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Vanesa Martínez
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain .,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Barcelona, Spain.,Servei d'Immunologia, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Oldham RAA, Faber ML, Keppel TR, Buchberger AR, Waas M, Hari P, Gundry RL, Medin JA. Discovery and validation of surface N-glycoproteins in MM cell lines and patient samples uncovers immunotherapy targets. J Immunother Cancer 2020; 8:e000915. [PMID: 32771993 PMCID: PMC7418848 DOI: 10.1136/jitc-2020-000915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) is characterized by clonal expansion of malignant plasma cells in the bone marrow. While recent advances in treatment for MM have improved patient outcomes, the 5-year survival rate remains ~50%. A better understanding of the MM cell surface proteome could facilitate development of new directed therapies and assist in stratification and monitoring of patient outcomes. METHODS In this study, we first used a mass spectrometry (MS)-based discovery-driven cell surface capture (CSC) approach to map the cell surface N-glycoproteome of MM cell lines. Next, we developed targeted MS assays, and applied these to cell lines and primary patient samples to refine the list of candidate tumor markers. Candidates of interest detected by MS on MM patient samples were further validated using flow cytometry (FCM). RESULTS We identified 696 MM cell surface N-glycoproteins by CSC, and developed 73 targeted MS detection assays. MS-based validation using primary specimens detected 30 proteins with significantly higher abundance in patient MM cells than controls. Nine of these proteins were identified as potential immunotherapeutic targets, including five that were validated by FCM, confirming their expression on the cell surface of primary MM patient cells. CONCLUSIONS This MM surface N-glycoproteome will be a valuable resource in the development of biomarkers and therapeutics. Further, we anticipate that our targeted MS assays will have clinical benefit for the diagnosis, stratification, and treatment of MM patients.
Collapse
Affiliation(s)
- Robyn A A Oldham
- Medical Biophysics, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada
- Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mary L Faber
- Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Theodore R Keppel
- Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Amanda R Buchberger
- Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew Waas
- Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Parameswaran Hari
- Division of Hematology Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rebekah L Gundry
- Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jeffrey A Medin
- Medical Biophysics, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada
- Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Darvishi B, Salehi M, Boroumandieh S, Majidzadeh-A K, Jalili N, Moradi-Kalbolandi S, Farahmand L. Dual in vitro invasion/migration suppressing and tamoxifen response modulating effects of a recombinant anti-ALCAM scFv on breast cancer cells. Cell Biochem Funct 2020; 38:651-659. [PMID: 32196701 DOI: 10.1002/cbf.3525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/22/2020] [Accepted: 02/27/2020] [Indexed: 11/06/2022]
Abstract
It has been shown that overexpression of activated leukocyte cell adhesion molecule (ALCAM) is involved in development of resistance to tamoxifen therapy and promotion of cell invasion, migration and metastasis in ER+ breast cancer cells. Thus, we hypothesized that blockade of ALCAM interconnections with antibodies could be an effective approach for reversing mentioned negative events associated with ALCAM overexpression in breast cancer cells. Here, an anti-ALCAM scFv was recombinantly expressed and used throughout study for examination of the putative anticancer effects of ALCAM blockade. The anti-ALCAM scFv coding sequence was obtained from GenBank database and after addition of a 6× His-tag moiety, signal peptide and flanking sequences, the whole construct was expressed in Escherichia coli. Tamoxifen resistant MCF7 cells were then pretreat for 24 hours with purified recombinant anti-ALCAM scFv prior to administration of tamoxifen. In parallel, the cytotoxicity profile of anti-ALCAM scFv and tamoxifen co-treatments against tamoxifen resistant and sensitive MCF7 cell lines was also evaluated using CompuSyn software. The invasion/migration inhibitory effects of anti-ALCAM scFv on MDA-MB-231 cells were also evaluated. Pretreatment with anti-ALCAM scFv could successfully enhance anti-proliferative effects of tamoxifen against resistant MCF-7 cell lines. Furthermore, the combination of 19.2:1 of tamoxifen to anti-ALCAM scFv demonstrated synergistic cell inhibitory effect against tamoxifen resistant MCF7 cell lines. Also, incubating MDA-MB-231 cell lines with anti-ALCAM scFv resulted in a 30% and 25% reduction in number of invaded and migrated cells respectively. Overall, application of anti-ALCAM scFv could significantly suppress cancer cells metastasis in vitro and modulate tamoxifen resistant ER+ MCF7 cell line's sensitivity to tamoxifen. SIGNIFICANCE OF THE STUDY: Acquisition of resistance to tamoxifen therapy is one of the major challenges associated with cancer chemotherapy, gradually turning a responsive tumour into a refractory more invasive one which ultimately ends in disease progression and relapse. Here, we reported expression of an anti-ALCAM scFv, capable of increasing the sensitivity of tamoxifen resistant ER+ MCF-7 cells to tamoxifen therapy following a 24-hour pretreatment period. In addition, we demonstrated that the anti-ALCAM scFv monotherapy was also capable of suppressing invasion and migration of MDA-MB-231 cells in Boyden chamber assays.
Collapse
Affiliation(s)
- Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saeedeh Boroumandieh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Neda Jalili
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shima Moradi-Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Nicolau-Neto P, de Souza-Santos PT, Severo Ramundo M, Valverde P, Martins I, Costa Santos I, Dias F, de Almeida Simão T, Ribeiro Pinto LF. Transcriptome Analysis Identifies ALCAM Overexpression as a Prognosis Biomarker in Laryngeal Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12020470. [PMID: 32085563 PMCID: PMC7072229 DOI: 10.3390/cancers12020470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is one of the most incident tumors in the world, especially in developing countries, such as Brazil. Different from other tumors, LSCC prognosis did not improve during the past four decades. Therefore, the objective of this study was to develop biomarkers that can predict LSCC patient's prognosis. RESULTS Transcriptome analysis pointed out 287 overexpressed genes in LSCC in comparison to adjacent mucosa. Among these, a gene-pattern signature was created with 24 genes associated with prognosis. The Bayesian clustering of both Brazil and The Cancer Genome Atlas (TCGA) data pointed out clusters of samples possessing significative differences in the prognosis, and the expression panel of three genes (ALCAM, GBP6, and ME1) was capable to distinguish patients with worse prognosis with an accuracy of 97%. Survival analyses with TCGA data highlighted ALCAM gene expression as an independent prognostic factor for LSCC. This was further confirmed through immunohistochemistry, using a validation set of Brazilian patients. ALCAM expression was not associated with prognosis for other head and neck tumor sites. CONCLUSION ALCAM overexpression seems to be an independent prognosis biomarker for LSCC patients.
Collapse
Affiliation(s)
- Pedro Nicolau-Neto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer—INCA, Rua Andre Cavalcanti 37, Rio de Janeiro, RJ CEP 20231-050, Brazil; (P.N.-N.); (M.S.R.)
| | - Paulo Thiago de Souza-Santos
- Laboratório de Hanseníase, Instituto Oswaldo Cruz—Fiocruz, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro, RJ CEP 21040-900, Brazil;
| | - Mariana Severo Ramundo
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer—INCA, Rua Andre Cavalcanti 37, Rio de Janeiro, RJ CEP 20231-050, Brazil; (P.N.-N.); (M.S.R.)
| | - Priscila Valverde
- Divisão de Patologia, Instituto Nacional de Câncer—INCA, Rua Cordeiro da Graça, 156, Rio de Janeiro, RJ CEP 20220-400, Brazil; (P.V.); (I.M.)
| | - Ivanir Martins
- Divisão de Patologia, Instituto Nacional de Câncer—INCA, Rua Cordeiro da Graça, 156, Rio de Janeiro, RJ CEP 20220-400, Brazil; (P.V.); (I.M.)
| | - Izabella Costa Santos
- Seção de Cirurgia de Cabeça e Pescoço, Instituto Nacional de Câncer—INCA, Praça da Cruz Vermelha, Rio de Janeiro, RJ CEP 20230130, Brazil; (I.C.S.); (F.D.)
| | - Fernando Dias
- Seção de Cirurgia de Cabeça e Pescoço, Instituto Nacional de Câncer—INCA, Praça da Cruz Vermelha, Rio de Janeiro, RJ CEP 20230130, Brazil; (I.C.S.); (F.D.)
| | - Tatiana de Almeida Simão
- Departamento de Bioquímica, IBRAG, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87, Fundos, Pavilhão Américo Piquet Carneiro-4º andar, Rio de Janeiro, RJ CEP 20551-030, Brazil;
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer—INCA, Rua Andre Cavalcanti 37, Rio de Janeiro, RJ CEP 20231-050, Brazil; (P.N.-N.); (M.S.R.)
- Departamento de Bioquímica, IBRAG, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87, Fundos, Pavilhão Américo Piquet Carneiro-4º andar, Rio de Janeiro, RJ CEP 20551-030, Brazil;
- Correspondence: ; Tel.: +55-21-3207-6598
| |
Collapse
|
10
|
Dana H, Mahmoodi Chalbatani G, Gharagouzloo E, Miri SR, Memari F, Rasoolzadeh R, Zinatizadeh MR, Kheirandish Zarandi P, Marmari V. In silico Analysis, Molecular Docking, Molecular Dynamic, Cloning, Expression and Purification of Chimeric Protein in Colorectal Cancer Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:309-329. [PMID: 32158188 PMCID: PMC6986173 DOI: 10.2147/dddt.s231958] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
Introduction Colorectal cancer (CRC) is a type of cancer in humans that leads to high mortality and morbidity. CD166 and CD326 are immunoglobulins that are associated with cell migration. These molecules are included in tumorigenesis of CRC and serve a great marker of CRC stem cells. In the present study, we devised a novel chimeric protein including the V1-domain of the CD166 and two epitopes of CD326 to use in diagnostic or therapeutic applications. Methods In silico techniques were launched to characterize the properties and structure of the protein. We have predicted physicochemical properties, structures, stability, MHC class I binding properties and ligand-receptor interaction of this chimeric protein by means of computational bioinformatics tools and servers. The sequence of chimeric gene was optimized for expression in prokaryotic host using online tools and cloned into pET-28a plasmid. The recombinant pET28a was transformed into the E. coli BL21DE3. Expression of recombinant protein was examined by SDS-PAGE and Western blotting. Results The designed chimeric protein retained high stability and the same immunogenicity as of the original proteins. Bioinformatics data indicated that the epitopes of the synthetic chimeric protein might induce B-cell- and T-cell-mediated immune responses. Furthermore, a gene was synthesized using the codon bias of a prokaryotic expression system. This synthetic gene expressed a bacterial expression system. The recombinant protein with molecular weights of 27kDa was expressed and confirmed by anti-his Western blot analysis. Conclusion The designed recombinant protein may be useful as a CRC diagnostic tool and for developing a protective vaccine against CRC.
Collapse
Affiliation(s)
- Hassan Dana
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran.,Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | - Elahe Gharagouzloo
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Fereidoon Memari
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Reza Rasoolzadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Vahid Marmari
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
11
|
Xu Z, Chang CC, Li M, Zhang QY, Vasilescu ERM, D’Agati V, Floratos A, Vlad G, Suciu-Foca N. ILT3.Fc–CD166 Interaction Induces Inactivation of p70 S6 Kinase and Inhibits Tumor Cell Growth. THE JOURNAL OF IMMUNOLOGY 2017; 200:1207-1219. [DOI: 10.4049/jimmunol.1700553] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/29/2017] [Indexed: 01/17/2023]
|
12
|
Devis L, Moiola CP, Masia N, Martinez-Garcia E, Santacana M, Stirbat TV, Brochard-Wyart F, García Á, Alameda F, Cabrera S, Palacios J, Moreno-Bueno G, Abal M, Thomas W, Dufour S, Matias-Guiu X, Santamaria A, Reventos J, Gil-Moreno A, Colas E. Activated leukocyte cell adhesion molecule (ALCAM) is a marker of recurrence and promotes cell migration, invasion, and metastasis in early-stage endometrioid endometrial cancer. J Pathol 2017; 241:475-487. [PMID: 27873306 DOI: 10.1002/path.4851] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/17/2016] [Accepted: 10/29/2016] [Indexed: 02/06/2023]
Abstract
Endometrial cancer is the most common gynaecological cancer in western countries, being the most common subtype of endometrioid tumours. Most patients are diagnosed at an early stage and present an excellent prognosis. However, a number of those continue to suffer recurrence, without means of identification by risk classification systems. Thus, finding a reliable marker to predict recurrence becomes an important unmet clinical issue. ALCAM is a cell-cell adhesion molecule and member of the immunoglobulin superfamily that has been associated with the genesis of many cancers. Here, we first determined the value of ALCAM as a marker of recurrence in endometrioid endometrial cancer by conducting a retrospective multicentre study of 174 primary tumours. In early-stage patients (N = 134), recurrence-free survival was poorer in patients with ALCAM-positive compared to ALCAM-negative tumours (HR 4.237; 95% CI 1.01-17.76). This difference was more significant in patients with early-stage moderately-poorly differentiated tumours (HR 9.259; 95% CI 2.12-53.47). In multivariate analysis, ALCAM positivity was an independent prognostic factor in early-stage disease (HR 6.027; 95% CI 1.41-25.74). Then we demonstrated in vitro a role for ALCAM in cell migration and invasion by using a loss-of-function model in two endometrial cancer cell lines. ALCAM depletion resulted in a reduced primary tumour size and reduced metastatic local spread in an orthotopic murine model. Gene expression analysis of ALCAM-depleted cell lines pointed to motility, invasiveness, cellular assembly, and organization as the most deregulated functions. Finally, we assessed some of the downstream effector genes that are involved in ALCAM-mediated cell migration; specifically FLNB, TXNRD1, and LAMC2 were validated at the mRNA and protein level. In conclusion, our results highlight the potential of ALCAM as a recurrent biomarker in early-stage endometrioid endometrial cancer and point to ALCAM as an important molecule in endometrial cancer dissemination by regulating cell migration, invasion, and metastasis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laura Devis
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristian P Moiola
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria Masia
- Cell Cycle and Ovarian Cancer Group, Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martinez-Garcia
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Santacana
- Pathological Oncology Group and Pathology Department, Hospital Arnau de Vilanova, Lleida, Spain
| | | | | | - Ángel García
- Pathology Department, Vall Hebron University Hospital, Barcelona, Spain
| | | | - Silvia Cabrera
- Gynecological Oncology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - Jose Palacios
- Department of Pathology, Hospital Universitario Ramón y Cajal, 28031 Madrid, Spain
| | - Gema Moreno-Bueno
- Hospital MD Anderson Cancer Centre Madrid, 28033 Madrid, Spain.,Departament of Biochemistry, Universidad Autonoma de Madrid (UAM), Instituto de Investigaciones Biomedicas 'Alberto Sols' (CSIC-UAM), IdiPAZ, 28046 Madrid, Spain
| | - Miguel Abal
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Fundacion Ramon Dominguez, SERGAS, 15706 Santiago de Compostela, Spain
| | - William Thomas
- Department of Natural Sciences, Colby-Sawyer College, New London, NH 03257, USA
| | | | - Xavier Matias-Guiu
- Pathological Oncology Group and Pathology Department, Hospital Arnau de Vilanova, Lleida, Spain
| | - Anna Santamaria
- Cell Cycle and Ovarian Cancer Group, Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Reventos
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Basic Sciences Department, International University of Catalonia, Barcelona, Spain
| | - Antonio Gil-Moreno
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Gynecological Oncology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Pathological Oncology Group and Pathology Department, Hospital Arnau de Vilanova, Lleida, Spain
| |
Collapse
|
13
|
Chen MJ, Cheng YM, Chen CC, Chen YC, Shen CJ. MiR-148a and miR-152 reduce tamoxifen resistance in ER+ breast cancer via downregulating ALCAM. Biochem Biophys Res Commun 2017; 483:840-846. [PMID: 28063929 DOI: 10.1016/j.bbrc.2017.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM), also called CD166 is a 105-kDa transmembrane glycoprotein of the immunoglobin superfamily. In this study, we studied the association between ALCAM expression and tamoxifen resistance in ER + breast cancer and further investigated how ALCAM is regulated in the cancer cells. IHC staining data showed that the tumor tissues from non-responders (N = 20) generally had significantly stronger ALCAM staining than that from tamoxifen responders (N = 16). In vitro cell assay also confirmed ALCAM upregulation in tamoxifen resistant (TamR) MCF-7 cells than in tamoxifen sensitive (TamS) MCF-7 cells. ALCAM overexpression significantly alleviated 4-Hydroxytestosterone (4-OHT) induced cell viability inhibition and cell apoptosis in TamS MCF-7 cells, while ALCAM knockdown remarkably enhanced 4-OHT induced cell viability inhibition and cell apoptosis in TamR MCF-7 cells. Demethylation reagent treatment significantly restored miR-148a and miR-152 expression in TamR MCF-7 cells. MiR-148a and miR-152 can directly target ALCAM 3'UTR and decrease ALCAM expression. MiR-148a overexpression had similar effect as ALCAM siRNA on enhancing 4-OHT induced cell viability inhibition and cell apoptosis in TamR MCF-7 cells. MiR-152 overexpression alone caused growth inhibition and increased cell apoptosis in TamR MCF-7 cells. It also enhanced the effect of 4-OHT. Simultaneous inhibition of miR-148a and miR-152 significantly protected TamS MCF-7 cells from 4-OHT induced cell viability inhibition and cell apoptosis. Based on these findings, we infer that MiR-148a and miR-152 can sensitize TamR MCF-7 cells to tamoxifen at least via downregulating ALCAM.
Collapse
Affiliation(s)
- Ming-Jenn Chen
- Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan; Department of Sports Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Ya-Min Cheng
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chung Chen
- Department of Plastic and Reconstruction Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Yu-Chieh Chen
- Department of Gynecology and Obstetrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Ju Shen
- Department of Gynecology and Obstetrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Owen S, Zabkiewicz C, Ye L, Sanders AJ, Gong C, Jiang WG. Key Factors in Breast Cancer Dissemination and Establishment at the Bone: Past, Present and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:197-216. [PMID: 29282685 DOI: 10.1007/978-981-10-6020-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bone metastases associated with breast cancer remain a clinical challenge due to their associated morbidity, limited therapeutic intervention and lack of prognostic markers. With a continually evolving understanding of bone biology and its dynamic microenvironment, many potential new targets have been proposed. In this chapter, we discuss the roles of well-established bone markers and how their targeting, in addition to tumour-targeted therapies, might help in the prevention and treatment of bone metastases. There are a vast number of bone markers, of which one of the best-known families is the bone morphogenetic proteins (BMPs). This chapter focuses on their role in breast cancer-associated bone metastases, associated signalling pathways and the possibilities for potential therapeutic intervention. In addition, this chapter provides an update on the role receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) play on breast cancer development and their subsequent influence during the homing and establishment of breast cancer-associated bone metastases. Beyond the well-established bone molecules, this chapter also explores the role of other potential factors such as activated leukocyte cell adhesion molecule (ALCAM) and its potential impact on breast cancer cells' affinity for the bone environment, which implies that ALCAM could be a promising therapeutic target.
Collapse
Affiliation(s)
- Sioned Owen
- Cardiff University School of Medicine, CCMRC, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - Catherine Zabkiewicz
- Cardiff University School of Medicine, CCMRC, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - Lin Ye
- Cardiff University School of Medicine, CCMRC, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - Andrew J Sanders
- Cardiff University School of Medicine, CCMRC, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - Chang Gong
- Cardiff University School of Medicine, CCMRC, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wen G Jiang
- Cardiff University School of Medicine, CCMRC, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
15
|
Xu L, Mohammad KS, Wu H, Crean C, Poteat B, Cheng Y, Cardoso AA, Machal C, Hanenberg H, Abonour R, Kacena MA, Chirgwin J, Suvannasankha A, Srour EF. Cell Adhesion Molecule CD166 Drives Malignant Progression and Osteolytic Disease in Multiple Myeloma. Cancer Res 2016; 76:6901-6910. [PMID: 27634757 DOI: 10.1158/0008-5472.can-16-0517] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 08/04/2016] [Accepted: 08/19/2016] [Indexed: 12/31/2022]
Abstract
Multiple myeloma is incurable once osteolytic lesions have seeded at skeletal sites, but factors mediating this deadly pathogenic advance remain poorly understood. Here, we report evidence of a major role for the cell adhesion molecule CD166, which we discovered to be highly expressed in multiple myeloma cell lines and primary bone marrow cells from patients. CD166+ multiple myeloma cells homed more efficiently than CD166- cells to the bone marrow of engrafted immunodeficient NSG mice. CD166 silencing in multiple myeloma cells enabled longer survival, a smaller tumor burden, and less osteolytic lesions, as compared with mice bearing control cells. CD166 deficiency in multiple myeloma cell lines or CD138+ bone marrow cells from multiple myeloma patients compromised their ability to induce bone resorption in an ex vivo organ culture system. Furthermore, CD166 deficiency in multiple myeloma cells also reduced the formation of osteolytic disease in vivo after intratibial engraftment. Mechanistic investigation revealed that CD166 expression in multiple myeloma cells inhibited osteoblastogenesis of bone marrow-derived osteoblast progenitors by suppressing Runx2 gene expression. Conversely, CD166 expression in multiple myeloma cells promoted osteoclastogenesis by activating TRAF6-dependent signaling pathways in osteoclast progenitors. Overall, our results define CD166 as a pivotal director in multiple myeloma cell homing to the bone marrow and multiple myeloma progression, rationalizing its further study as a candidate therapeutic target for multiple myeloma treatment. Cancer Res; 76(23); 6901-10. ©2016 AACR.
Collapse
Affiliation(s)
- Linlin Xu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Khalid S Mohammad
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hao Wu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Colin Crean
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bradley Poteat
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yinghua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Angelo A Cardoso
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Dusseldorf, Germany.,Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rafat Abonour
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - John Chirgwin
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, Indiana
| | - Attaya Suvannasankha
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, Indiana
| | - Edward F Srour
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana. .,Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
16
|
Xiao M, Wang X, Yan M, Chen W. A systematic evaluation for the potential translation of CD166-related expression as a cancer biomarker. Expert Rev Mol Diagn 2016; 16:925-32. [PMID: 27398729 DOI: 10.1080/14737159.2016.1211932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Meng Xiao
- Department of Oral and Maxillofacial-Head & Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ming Yan
- Department of Oral and Maxillofacial-Head & Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
17
|
Kudo-Saito C, Fuwa T, Kawakami Y. Targeting ALCAM in the cryo-treated tumour microenvironment successfully induces systemic anti-tumour immunity. Eur J Cancer 2016; 62:54-61. [PMID: 27208904 DOI: 10.1016/j.ejca.2016.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 11/15/2022]
Abstract
Cryoablative treatment has been widely used for treating cancer. However, the therapeutic efficacies are still controversial. The molecular mechanisms of the cryo-induced immune responses, particularly underlying the ineffectiveness, remain to be fully elucidated. In this study, we identified a new molecular mechanism involved in the cryo failure. We used cryo-ineffective metastatic tumour models that murine melanoma B16-F10 cells were subcutaneously and intravenously implanted into C57BL/6 mice. When the subcutaneous tumours were treated cryoablation on day 7 after tumour implantation, cells expressing activated leucocyte cell adhesion molecule (ALCAM/CD166) were significantly expanded not only locally in the treated tumours but also systemically in spleen and bone marrow of the mice. The cryo-induced ALCAM(+) cells including CD45(-) mesenchymal stem/stromal cells, CD11b(+)Gr1(+) myeloid-derived suppressor cells, and CD4(+)Foxp3(+) regulatory T cells significantly suppressed interferon γ production and cytotoxicity of tumour-specific CD8(+) T cells via ALCAM expressed in these cells. This suggests that systemic expansion of the ALCAM(+) cells negatively switches host-immune directivity to the tumour-supportive mode. Intratumoural injection with anti-ALCAM blocking monoclonal antibody (mAb) following the cryo treatment systemically induced tumour-specific CD8(+) T cells with higher cytotoxic activities, resulting in suppression of tumour growth and metastasis in the cryo-resistant tumour models. These suggest that expansion of ALCAM(+) cells is a determinant of limiting the cryo efficacy. Further combination with an immune checkpoint inhibitor anti-CTLA4 mAb optimized the anti-tumour efficacy of the dual-combination therapy. Targeting ALCAM may be a promising strategy for overcoming the cryo ineffectiveness leading to the better practical use of cryoablation in clinical treatment of cancer.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Takafumi Fuwa
- Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yutaka Kawakami
- Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
18
|
Adisakwattana P, Suwandittakul N, Petmitr S, Wongkham S, Sangvanich P, Reamtong O. ALCAM is a Novel Cytoplasmic Membrane Protein in TNF-α Stimulated Invasive Cholangiocarcinoma Cells. Asian Pac J Cancer Prev 2016; 16:3849-56. [PMID: 25987048 DOI: 10.7314/apjcp.2015.16.9.3849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA), or bile duct cancer, is incurable with a high mortality rate due to a lack of effective early diagnosis and treatment. Identifying cytoplasmic membrane proteins of invasive CCA that facilitate cancer progression would contribute toward the development of novel tumor markers and effective chemotherapy. MATERIALS AND METHODS An invasive CCA cell line (KKU-100) was stimulated using TNF-α and then biotinylated and purified for mass spectrometry analysis. Novel proteins expressed were selected and their mRNAs expression levels were determined by real-time RT-PCR. In addition, the expression of ALCAM was selected for further observation by Western blot analysis, immunofluorescent imaging, and antibody neutralization assay. RESULTS After comparing the proteomics profile of TNF-α induced invasive with non-treated control cells, over-expression of seven novel proteins was observed in the cytoplasmic membrane of TNF-α stimulated CCA cells. Among these, ALCAM is a novel candidate which showed significant higher mRNA- and protein levels. Immunofluorescent assay also supported that ALCAM was expressed on the cell membrane of the cancer, with increasing intensity associated with TNF-α. CONCLUSIONS This study indicated that ALCAM may be a novel protein candidate expressed on cytoplasmic membranes of invasive CCA cells that could be used as a biomarker for development of diagnosis, prognosis, and drug or antibody-based targeted therapies in the future.
Collapse
Affiliation(s)
- Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand E-mail :
| | | | | | | | | | | |
Collapse
|
19
|
Guo W, Wang W, Zhu Y, Zhu X, Shi Z, Wang Y. HER2 status in molecular apocrine breast cancer: associations with clinical, pathological, and molecular features. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8008-17. [PMID: 26339367 PMCID: PMC4555695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/26/2015] [Indexed: 06/05/2023]
Abstract
Molecular apocrine breast cancer (MABC) is a distinct subtype of breast cancer. The purpose of this study was to investigate the relationship between HER2 status and clinicopathologic characteristics of MABCs from Chinese Han cohort. A cohort of 90 MABC patients were enrolled. Immunohistochemical method was performed to analyze the molecular expression, and the human epidermal growth factor receptor 2 (HER2) amplification was verified by fluorescence in situ hybridization (FISH). By studying these 90 MABC cases, the majority of studied patients were premenopausal young women (median age 48 yr) with high grade tumors. We also found that MABCs had high positive expression rates of HER2, CK8, CD44, CD166, p53 and BRCA1, the elevated Ki-67 labeling index, and favorable prognosis. There was a significantly higher incidence of lymph node metastasis and lower CD166 positive rate in HER2-negative patients compared to HER2-positive patients (54.5% vs. 37.0%, P = 0.044 and 72.7% vs. 91.3%, P = 0.021, respectively). The CK5/6 and EGFR expression rates were significant higher in HER2-negative cases than in HER2-positive cases, suggesting that there is overlap between MABC with HER2-negative phenotype and basal-like breast cancer. In addition, HER2 positive was found to be significantly associated a poor overall survival in MABCs. In conclusion, HER2 are highly expressed, and HER2 positivity could be considered as a significant biomarker of poor prognosis in MABC. The results also suggest that a subtype tumor with distinct patterns of molecule expression depending on HER2 status presented in MABC.
Collapse
Affiliation(s)
- Wenwen Guo
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical UniversityNanjing 210011, China
- Clinical Molecular Diagnostic Center, The Second Affiliated Hospital of Nanjing Medical UniversityNanjing 210011, China
| | - Wei Wang
- Department of Breast Surgery, Xuzhou Central HospitalXuzhou 221009, China
| | - Yun Zhu
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Xiaojing Zhu
- Department of Pathology, Jiangsu Province Academy of Traditional Chinese MedicineNanjing 210028, China
| | - Zhongyuan Shi
- Department of Pathology, Jiangsu Province Academy of Traditional Chinese MedicineNanjing 210028, China
| | - Yan Wang
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical UniversityNanjing 210011, China
| |
Collapse
|
20
|
Selection strategies for anticancer antibody discovery: searching off the beaten path. Trends Biotechnol 2015; 33:292-301. [PMID: 25819764 DOI: 10.1016/j.tibtech.2015.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 01/13/2023]
Abstract
Antibody-based drugs represent one of the most successful and promising therapeutic approaches in oncology. Large combinatorial phage antibody libraries are available for the identification of therapeutic antibodies and various technologies exist for their further conversion into multivalent and multispecific formats optimized for the desired pharmacokinetics and the pathological context. However, there is no technology for antigen profiling of intact tumors to identify tumor markers targetable with antibodies. Such constraints have led to a relative paucity of tumor-associated antigens for antibody targeting in oncology. Here we review novel approaches aimed at the identification of antibody-targetable, accessible antigens in intact tumors. We hope that such advanced selection approaches will be useful in the development of next-generation antibody therapies for cancer.
Collapse
|
21
|
BURANDT EIKE, NOUBAR TANAZBARI, LEBEAU ANNETTE, MINNER SARAH, BURDELSKI CHRISTOPH, JÄNICKE FRITZ, MÜLLER VOLLKMAR, TERRACCIANO LUIGI, SIMON RONALD, SAUTER GUIDO, WILCZAK WALDEMAR, LEBOK PATRICK. Loss of ALCAM expression is linked to adverse phenotype and poor prognosis in breast cancer: A TMA-based immunohistochemical study on 2,197 breast cancer patients. Oncol Rep 2014; 32:2628-34. [DOI: 10.3892/or.2014.3523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/25/2014] [Indexed: 11/06/2022] Open
|
22
|
Tavaré R, Wu WH, Zettlitz KA, Salazar FB, McCabe KE, Marks JD, Wu AM. Enhanced immunoPET of ALCAM-positive colorectal carcinoma using site-specific ⁶⁴Cu-DOTA conjugation. Protein Eng Des Sel 2014; 27:317-24. [PMID: 25095796 DOI: 10.1093/protein/gzu030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) is an immunoglobulin superfamily cell adhesion molecule that is aberrantly expressed in a wide variety of human tumors, including melanoma, prostate cancer, breast cancer, colorectal carcinoma, bladder cancer and pancreatic adenocarcinoma. This wide spectrum of human malignancies makes ALCAM a prospective pan-cancer immunoPET target to aid in detection and diagnosis in multiple malignancies. In this study, we assess site-specific versus non-site-specific conjugation strategies for (64)Cu-DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) immunoPET imaging of a fully human ALCAM cys-diabody (cDb) with a reduced linker length that retains its bivalent binding ability. ALCAM constructs with linker lengths of eight, five and three amino acids were produced to make true non-covalent site-specifically modified cDbs. Characterization by gel electrophoresis, size exclusion chromatography, flow cytometry and mass spectrometry of the various constructs was performed. To demonstrate the increased utility of targeting multiple malignancies expressing ALCAM, we compare the targeting of the site-specific versus non-site-specific conjugated cDbs to the human colorectal cancer xenograft LS174T. Interestingly, the conjugation strategy not only affects tumor targeting but also hepatic and renal uptake/clearance.
Collapse
Affiliation(s)
- Richard Tavaré
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Wei H Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kirstin A Zettlitz
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Felix B Salazar
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Katelyn E McCabe
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - James D Marks
- Department of Anesthesia, UCSF, San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Farajnia S, Ahmadzadeh V, Tanomand A, Veisi K, Khosroshahi SA, Rahbarnia L. Development trends for generation of single-chain antibody fragments. Immunopharmacol Immunotoxicol 2014; 36:297-308. [DOI: 10.3109/08923973.2014.945126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Faulin TDES, Guilherme DF, Silva AS, Abdalla DSP, Hering VR, Politi MJ, Maranhão AQ. GFP-SCFV: expression and possible applications as a tool for experimental investigations of atherosclerosis. Biotechnol Prog 2014; 30:1206-13. [PMID: 24911875 DOI: 10.1002/btpr.1935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/21/2014] [Indexed: 12/26/2022]
Abstract
Experimental studies on atherosclerosis are crucial for investigating its pathophysiology, defining new therapeutic targets, and developing new drugs and diagnostic tools. Thus, many imaging markers have been developed and introduced in experimental studies. The main advantage of these new tools is that they allow the noninvasive diagnosis of atherosclerotic vascular disease. Here, we describe the cloning, expression, purification, and stabilization of a chimeric protein specifically designed to probe cells and tissues for the presence of LDL(-), a relevant marker of atherosclerosis. The DNA sequence that encodes the anti-LDL(-) scFv, previously obtained from a hybridoma secreting an anti-LDL(-) monoclonal antibody, was inserted into the bacterial vector pET-28a(+) in tandem with a DNA sequence encoding GFP. The recombinant protein was expressed in high yields in E. coli as inclusion bodies. The applicability of GFP-scFv was assessed by ELISA, which determined its affinity for LDL(-) and confocal microscopy, that showed macrophage uptake of the protein along with LDL(-). In conclusion, our data suggest that the anti-LDL(-) GFP-scFv chimeric protein could be useful in studies on atherogenesis as well as for developing diagnostic tools for atherosclerosis.
Collapse
|
25
|
Soto MS, Serres S, Anthony DC, Sibson NR. Functional role of endothelial adhesion molecules in the early stages of brain metastasis. Neuro Oncol 2014; 16:540-51. [PMID: 24311639 PMCID: PMC3956349 DOI: 10.1093/neuonc/not222] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/20/2013] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cellular adhesion molecules (CAMs), which are normally associated with leukocyte trafficking, have also been shown to play an essential role in tumor metastasis to non-CNS sites. However, the role played by CAMs in brain metastasis is largely unexplored. It is known that leukocyte recruitment to the brain is very atypical and that mechanisms of disease in peripheral tissues cannot be extrapolated to the brain. Here, we have established the spatiotemporal expression of 12 key CAMs in the initial phases of tumor seeding in 2 different models of brain metastasis. METHODS BALB/c or SCID mice were injected intracardially (10(5) cells/100 μL phosphate-buffered saline with either 4T1-GFP or MDA231BR-GFP cells, respectively (n = 4-6/group), and expression of the CAMs was determined by immunohistochemistry and immunofluorescence colocalisation. RESULTS Endothelial expression of E-selectin, VCAM-1, ALCAM, ICAM-1, VLA-4, and β4 integrin was markedly increased early in tumor seeding. At the same time, the natural ligands to these adhesion molecules were highly expressed on the metastatic tumor cells both in vitro and in vivo. Two of these ligands showed particularly high tumor cell expression (ALCAM and VLA-4), and consequently their functional role in tumor seeding was determined. Antibody neutralization of either ALCAM or VLA-4 significantly reduced tumor seeding within the brain (>60% decrease in tumor number/mm(2) brain; P < .05-0.01). CONCLUSIONS These findings suggest that ALCAM/ALCAM and VLA-4/VCAM-1 interactions play an important functional role in the early stages of metastasis seeding in the brain. Moreover, this work identifies a specific subset of ligand-receptor interactions that may yield new therapeutic and diagnostic targets for brain metastasis.
Collapse
Affiliation(s)
| | | | | | - Nicola R. Sibson
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, UK (M.S.S., S. S., N.R.S.;Department of Pharmacology, University of Oxford, OxfordUK (D.C.A.)
| |
Collapse
|
26
|
Serres S, O'Brien ER, Sibson NR. Imaging angiogenesis, inflammation, and metastasis in the tumor microenvironment with magnetic resonance imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 772:263-83. [PMID: 24272363 DOI: 10.1007/978-1-4614-5915-6_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With the development of new imaging techniques, the potential for probing the molecular, cellular, and structural components of the tumor microenvironment in situ has increased dramatically. A multitude of imaging modalities have been successfully employed to probe different aspects of the tumor microenvironment, including expression of molecules, cell motion, cellularity, vessel permeability, vascular perfusion, metabolic and physiological changes, apoptosis, and inflammation. This chapter focuses on the most recent advances in magnetic resonance imaging methods, which offer a number of advantages over other methodologies, including high spatial resolution and the use of nonionizing radiation, as well as the use of such methods in the context of primary and secondary brain tumors. It also highlights how they can be used to assess the molecular and cellular changes in the tumor microenvironment in response to therapy.
Collapse
Affiliation(s)
- Sébastien Serres
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK,
| | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Many surface antigens have been previously used to identify hematopoietic stem cells or cellular elements of the hematopoietic niche. However, to date, not a single surface marker has been identified as a common marker expressed on murine and human hematopoietic stem cells and on cells of the hematopoietic niche. Recently, a few laboratories, including ours, recognized the importance of CD166 as a functional marker on both stem cells and osteoblasts and have begun to characterize the role of CD166 in hematopoiesis. RECENT FINDINGS Expression of CD166 on hematopoietic cells and cells in the marrow microenvironment was first reported more than a decade ago. Lately, however, a more prominent role for CD166 in normal hematopoiesis and in cancer biology including metastasis began to emerge. This review will cover the significance of CD166 in identifying normal hematopoietic stem cells and cells of the hematopoietic niche and highlight how CD166-mediated homophilic interactions between both cell types may be critical for stem cell function. SUMMARY The conserved homology between murine and human CD166 and its involvement in metastasis provides an excellent bridge for translational investigations aimed at enhancing stem cell engraftment and clinical utility of stem cells and at using CD166 as a therapeutic target in cancer.
Collapse
|
28
|
Targets in small cell lung cancer. Biochem Pharmacol 2013; 87:211-9. [PMID: 24091017 DOI: 10.1016/j.bcp.2013.09.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 12/14/2022]
Abstract
Recurrent small cell lung cancer is a recalcitrant malgnancy. The application of genomic technologies has begun to elucidate the large number of genetic abnormalities in SCLC. Several cell surface receptors are known to be overexpressed by SCLC in clinic specimens and cell in culture including GPCRs such as the bradykinin receptor, the chemokine receptor CXCR4, the vasopression receeptor and the three bomebsin receptors. The glucose transporter GLUT1, the tetraspanin family member PETA/CD151 and the immunoglobulin superfamily member ALCAM/CD166 are also overexpressed by SCLC. NCAM/CD56 is overexpressed by nearly all SCLC and is currently the target for an antibody drug conjugate in Phase II trial. Although SCLC is not considered a RTK driven disease, IGF1R and FGFRs are often overexpressed by SCLC. SCLC abberantly expresses several developmental transcription factors including ASCL1, SOX2, 4, and 11, OCT4, NANOG, PAX5; however, overexpression of MYC may be a driver in SCLC. Like other cancers, SCLC expresses survival factors and uses aerobic glycolysis as a major source of ATP. The drawback of many potential targets overexpressed by SCLC is expression of the same proteins by normal tissues. We are slowly learning more about the molecular abnormalities that occur in SCLC; however, therapeutic impact from new findings remains a goal to work toward.
Collapse
|
29
|
Flatmark K, Guldvik IJ, Svensson H, Fleten KG, Flørenes VA, Reed W, Giercksky KE, Fodstad Ø, Andersson Y. Immunotoxin targeting EpCAM effectively inhibits peritoneal tumor growth in experimental models of mucinous peritoneal surface malignancies. Int J Cancer 2013; 133:1497-506. [PMID: 23494569 DOI: 10.1002/ijc.28158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 02/11/2013] [Accepted: 03/01/2013] [Indexed: 11/10/2022]
Abstract
Cytoreductive surgery and intraperitoneal (i.p.) chemotherapy constitute a curative treatment option in mucinous peritoneal surface malignancies of intestinal origin, but treatment outcome is highly variable and the search for novel therapies is warranted. Immunotoxins are attractive candidates for targeted therapy in the peritoneal cavity because of direct cytotoxicity, distinct mechanisms of action and tumor cell selectivity. The MOC31PE immunotoxin targets the tumor-associated adhesion protein EpCAM (Epithelial Cell Adhesion Molecule), and has been administered safely in early clinical trials. In our work, the efficacy of i.p. administration of MOC31PE alone and together with mitomycin C (MMC) was investigated in unique animal models of human mucinous peritoneal surface malignancies. In initial model validation experiments, clear differences in efficacy were demonstrated between MMC and oxaliplatin, favoring MMC in five investigated tumor models. Subsequently, MOC31PE and MMC were given as single i.p. injections alone and in combination. In the PMCA-2 model, moderate growth inhibition was obtained with both drugs, while the combination resulted in at least additive effects; whereas the PMP-2 model was highly sensitive to both drugs separately and in combination and intermediate sensitivity was found for the PMCA-3 model. Furthermore, results from ex vivo experiments on freshly obtained mucinous tumor tissue from animals and patients suggested that classic mechanisms of immunotoxin activity were involved, i.e., inhibition of protein synthesis and induction of apoptosis. The present results suggest that adding MOC31PE to MMC-based i.p. chemotherapy should be further explored for EpCAM-expressing peritoneal surface malignancies, and a phase I trial is in preparation.
Collapse
Affiliation(s)
- Kjersti Flatmark
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yan M, Yang X, Wang L, Clark D, Zuo H, Ye D, Chen W, Zhang P. Plasma membrane proteomics of tumor spheres identify CD166 as a novel marker for cancer stem-like cells in head and neck squamous cell carcinoma. Mol Cell Proteomics 2013; 12:3271-84. [PMID: 23903875 DOI: 10.1074/mcp.m112.025460] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Patients with advanced head and neck squamous cell carcinoma (HNSCC) have a poor prognosis with the currently available therapy, and tumor recurrence is frequently observed. The discovery of specific membrane-associated cancer stem cell (CSC) markers is crucial for the development of novel therapeutic strategies to target these CSCs. To address this issue, we established sphere cultures to enrich CSCs and used them for plasma membrane proteomics to identify specific membrane signatures of the HNSCC spheres. Of a dataset that included a total of 376 identified proteins, 200 were bona fide membrane proteins. Among them, 123 proteins were at least 1.5-fold up- or down-regulated in the spheres relative to the adherent cultures. These proteins included cell adhesion molecules, receptors, and transporter proteins. Some of them play key roles in wnt, integrin, and TGFβ signaling pathways. When we compared our dataset with two published hESC membrane protein signatures, we found 18 proteins common to all three of the databases. CD166 and CD44 were two such proteins. Interestingly, the expression of CD166, rather than that of the well-established HNSCC CSC marker CD44, was significantly related to the malignant behavior of HNSCC. Relative to CD166(low) HNSCC cells, CD166(high) HNSCC cells had a greater sphere-formation ability in vitro and tumor formation ability in vivo. Patients whose tumors expressed high levels of CD166 had a significantly poorer clinical outcome than those whose tumors expressed low levels of CD166 (cohort 1: 96 cases, p = 0.040), whereas the level of CD44 expression had only a marginal influence on the clinical outcome of patients with HNSCC (p = 0.078). The level of CD166 expression in HNSCC tumors was also associated with the tumor recurrence rate (cohort 2: 104 cases, p = 0.016). This study demonstrates that CD166 is a valuable cell surface marker for the enrichment of HNSCC stem cells and that plasma membrane proteomics is a promising biological tool for investigating the membrane proteins of CSCs.
Collapse
Affiliation(s)
- Ming Yan
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Barrett CL, Schwab RB, Jung H, Crain B, Goff DJ, Jamieson CHM, Thistlethwaite PA, Harismendy O, Carson DA, Frazer KA. Transcriptome sequencing of tumor subpopulations reveals a spectrum of therapeutic options for squamous cell lung cancer. PLoS One 2013; 8:e58714. [PMID: 23527012 PMCID: PMC3604164 DOI: 10.1371/journal.pone.0058714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/05/2013] [Indexed: 12/11/2022] Open
Abstract
Background The only therapeutic options that exist for squamous cell lung carcinoma (SCC) are standard radiation and cytotoxic chemotherapy. Cancer stem cells (CSCs) are hypothesized to account for therapeutic resistance, suggesting that CSCs must be specifically targeted. Here, we analyze the transcriptome of CSC and non-CSC subpopulations by RNA-seq to identify new potential therapeutic strategies for SCC. Methods We sorted a SCC into CD133− and CD133+ subpopulations and then examined both by copy number analysis (CNA) and whole genome and transcriptome sequencing. We analyzed The Cancer Genome Atlas (TCGA) transcriptome data of 221 SCCs to determine the generality of our observations. Results Both subpopulations highly expressed numerous mRNA isoforms whose protein products are active drug targets for other cancers; 31 (25%) correspond to 18 genes under active investigation as mAb targets and an additional 4 (3%) are of therapeutic interest. Moreover, we found evidence that both subpopulations were proliferatively driven by very high levels of c-Myc and the TRAIL long isoform (TRAILL) and that normal apoptotic responses to high expression of these genes was prevented through high levels of Mcl-1L and Bcl-xL and c-FlipL—isoforms for which drugs are now in clinical development. SCC RNA-seq data (n = 221) from TCGA supported our findings. Our analysis is inconsistent with the CSC concept that most cells in a cancer have lost their proliferative potential. Furthermore, our study suggests how to target both the CSC and non-CSC subpopulations with one treatment strategy. Conclusions Our study is relevant to SCC in particular for it presents numerous potential options to standard therapy that target the entire tumor. In so doing, it demonstrates how transcriptome sequencing provides insights into the molecular underpinnings of cancer propagating cells that, importantly, can be leveraged to identify new potential therapeutic options for cancers beyond what is possible with DNA sequencing.
Collapse
MESH Headings
- AC133 Antigen
- Animals
- Antigens, CD/metabolism
- Apoptosis/genetics
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/therapy
- DNA Copy Number Variations
- DNA, Neoplasm/genetics
- Glycoproteins/metabolism
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Membrane Proteins/genetics
- Mice
- Mutation
- Neoplastic Stem Cells/classification
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Peptides/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Transcriptome
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Christian L. Barrett
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, California, United States of America
| | - Richard B. Schwab
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Clinical and Translational Research Institute, University of California San Diego, La Jolla, California, United States of America
| | - HyunChul Jung
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Brian Crain
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Daniel J. Goff
- Department of Medicine, Stem Cell and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Catriona H. M. Jamieson
- Department of Medicine, Stem Cell and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Patricia A. Thistlethwaite
- Division of Cardiothoracic Surgery, University of California San Diego, La Jolla, California, United States of America
| | - Olivier Harismendy
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, California, United States of America
- Clinical and Translational Research Institute, University of California San Diego, La Jolla, California, United States of America
| | - Dennis A. Carson
- Sanford Consortium for Regenerative Medicine, La Jolla, California, United States of America
| | - Kelly A. Frazer
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, California, United States of America
- Clinical and Translational Research Institute, University of California San Diego, La Jolla, California, United States of America
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
An engineered cysteine-modified diabody for imaging activated leukocyte cell adhesion molecule (ALCAM)-positive tumors. Mol Imaging Biol 2012; 14:336-47. [PMID: 21630083 DOI: 10.1007/s11307-011-0500-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE The purpose of this study was to generate and evaluate a positron emission tomography (PET) radiotracer targeting activated leukocyte cell adhesion molecule (ALCAM). PROCEDURES A human anti-ALCAM single chain variable fragment was reformatted to produce a covalent dimer, termed a cys-diabody (CysDb). Purified CysDb was characterized by gel electrophoresis and size exclusion chromatography, and immunoreactivity was assessed by flow cytometry and immunofluorescence. Targeting and imaging of ALCAM-positive tumors using (64)Cu-DOTA-CysDb were evaluated in mice bearing human pancreatic adenocarcinoma xenografts (HPAF-II or BxPC-3). RESULTS CysDb binds specifically to ALCAM-positive cells in vitro with an apparent affinity in the range of 1-3 nM. MicroPET images at 4 h showed specific targeting of positive tumors in vivo, a finding confirmed by biodistribution analysis, with positive/negative tumor ratios of 1.9 ± 0.6 and 2.4 ± 0.6, and positive tumor/blood ratios of 2.5 ± 0.9 and 2.9 ± 0.6 (HPAF-II and BxPC-3, respectively). CONCLUSIONS Successful imaging with (64)Cu-DOTA-CysDb in animal models suggests further investigation of ALCAM as an imaging biomarker is warranted.
Collapse
|
34
|
Activated leukocyte cell-adhesion molecule (ALCAM) promotes malignant phenotypes of malignant mesothelioma. J Thorac Oncol 2012; 7:890-9. [PMID: 22722789 DOI: 10.1097/jto.0b013e31824af2db] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Cell-adhesion molecules play important roles involving the malignant phenotypes of human cancer cells. However, detailed characteristics of aberrant expression status of cell-adhesion molecules in malignant mesothelioma (MM) cells and their possible biological roles for MM malignancy remain poorly understood. METHODS DNA microarray analysis was employed to identify aberrantly expressing genes using 20 MM cell lines. Activated leukocyte cell-adhesion molecule (ALCAM) expression in MM cell lines was analyzed with quantitative reverse transcription-polymerase chain reaction and Western blot analyses in 47 primary MM specimens with immunohistochemistry. ALCAM knockdown in MM cell lines was performed with lentivirus-mediated short hairpin RNA (shRNA) transduction. Purified soluble ALCAM (sALCAM) protein was used for in vitro experiments, whereas MM cell lines infected with the sALCAM-expressing lentivirus were tested for tumorigenicity in vivo. RESULTS ALCAM, a member of the immunoglobulin superfamily, was detected as one of the most highly upregulated genes among 103 cell-adhesion molecules with microarray analysis. Elevated expression levels of ALCAM messenger RNA and protein were detected in all 20 cell lines. Positive staining of ALCAM was detected in 26 of 47 MM specimens (55%) with immunohistochemistry. ALCAM knockdown with shRNA suppressed cell migration and invasion of MM cell lines. Purified sALCAM protein impaired the migration and invasion of MM cells in vitro, and the infection of sALCAM-expressing virus into MM cells significantly prolonged survival periods of MM-transplanted nude mice in vivo. CONCLUSION Our study suggests that overexpression of ALCAM contributes to tumor progression in MM and that ALCAM might be a potential therapeutic target of MM.
Collapse
|
35
|
Jiao J, Hindoyan A, Wang S, Tran LM, Goldstein AS, Lawson D, Chen D, Li Y, Guo C, Zhang B, Fazli L, Gleave M, Witte ON, Garraway IP, Wu H. Identification of CD166 as a surface marker for enriching prostate stem/progenitor and cancer initiating cells. PLoS One 2012; 7:e42564. [PMID: 22880034 PMCID: PMC3411798 DOI: 10.1371/journal.pone.0042564] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/09/2012] [Indexed: 12/29/2022] Open
Abstract
New therapies for late stage and castration resistant prostate cancer (CRPC) depend on defining unique properties and pathways of cell sub-populations capable of sustaining the net growth of the cancer. One of the best enrichment schemes for isolating the putative stem/progenitor cell from the murine prostate gland is Lin-;Sca1+;CD49fhi (LSChi), which results in a more than 10-fold enrichment for in vitro sphere-forming activity. We have shown previously that the LSChi subpopulation is both necessary and sufficient for cancer initiation in the Pten-null prostate cancer model. To further improve this enrichment scheme, we searched for cell surface molecules upregulated upon castration of murine prostate and identified CD166 as a candidate gene. CD166 encodes a cell surface molecule that can further enrich sphere-forming activity of WT LSChi and Pten null LSChi. Importantly, CD166 could enrich sphere-forming ability of benign primary human prostate cells in vitro and induce the formation of tubule-like structures in vivo. CD166 expression is upregulated in human prostate cancers, especially CRPC samples. Although genetic deletion of murine CD166 in the Pten null prostate cancer model does not interfere with sphere formation or block prostate cancer progression and CRPC development, the presence of CD166 on prostate stem/progenitors and castration resistant sub-populations suggest that it is a cell surface molecule with the potential for targeted delivery of human prostate cancer therapeutics.
Collapse
Affiliation(s)
- Jing Jiao
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Antreas Hindoyan
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shunyou Wang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Linh M. Tran
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Andrew S. Goldstein
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Devon Lawson
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Donghui Chen
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yunfeng Li
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Changyong Guo
- Department of Urology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Baohui Zhang
- Department of Urology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ladan Fazli
- The Vancouver Prostate Centre and University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Gleave
- The Vancouver Prostate Centre and University of British Columbia, Vancouver, British Columbia, Canada
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, United States of America
| | - Isla P. Garraway
- Department of Urology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (IG); (HW)
| | - Hong Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (IG); (HW)
| |
Collapse
|
36
|
Tachezy M, Zander H, Gebauer F, Marx A, Kaifi JT, Izbicki JR, Bockhorn M. Activated leukocyte cell adhesion molecule (CD166)--its prognostic power for colorectal cancer patients. J Surg Res 2012; 177:e15-20. [PMID: 22482754 DOI: 10.1016/j.jss.2012.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND The activated leukocyte cell adhesion molecule (ALCAM, CD166) has been reported to be involved in tumorigenesis of colorectal cancer (CRC) and to function as a cancer stem cell marker. Controversial data exist regarding the prognostic power of ALCAM expression in CRC. Here, we evaluate the expression of ALCAM in a cohort of CRC patients and its usage as a prognostic marker for survival. MATERIALS AND METHODS Tissue specimens from 299 patients with CRC treated between 1993 and 2006 were analyzed via ALCAM immunohistochemistry (clone MOG/07) using a tissue microarray. Results were correlated with clinical, histopathological, and patient survival data (Chi-square test, Kaplan-Meier analysis, and log-rank test, respectively). Multivariate analysis also was performed (Cox regression). RESULTS ALCAM is expressed in most primary (76%) and secondary (62%) CRC lesions (P = 0.014). Immunohistochemistry revealed an inverse association with tumor grading (P = 0.002) but not with any other clinical or histopathological data. Kaplan-Meier survival analysis revealed a significant overall survival benefit in the group of ALCAM-positive patients (P = 0.019). Multivariate analysis showed that ALCAM is an independent positive prognostic marker for overall survival (P = 0.023). CONCLUSIONS ALCAM expression is a positive prognostic marker for overall survival of CRC patients, and its detection might help to optimize the existing prognostic staging system. Elevated expression in higher differentiated tumors might indicate a potential role in the early steps of tumorigenesis, and its loss might be associated with reduced cellular adhesion, resulting in a higher metastatic potential of the tumor. Further studies must be conducted investigating these hypotheses.
Collapse
Affiliation(s)
- Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Dumont B, Castronovo V, Peulen O, Blétard N, Clézardin P, Delvenne P, De Pauw EA, Turtoi A, Bellahcène A. Differential proteomic analysis of a human breast tumor and its matched bone metastasis identifies cell membrane and extracellular proteins associated with bone metastasis. J Proteome Res 2012; 11:2247-60. [PMID: 22356681 DOI: 10.1021/pr201022n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The classical fate of metastasizing breast cancer cells is to seed and form secondary colonies in bones. The molecules closely associated with these processes are predominantly present at the cell surface and in the extracellular space, establishing the first contacts with the target tissue. In this study, we had the rare opportunity to analyze a bone metastatic lesion and its corresponding breast primary tumor obtained simultaneously from the same patient. Using mass spectrometry, we undertook a proteomic study on cell surface and extracellular protein-enriched material. We provide a repertoire of significantly modulated proteins, some with yet unknown roles in the bone metastatic process as well as proteins notably involved in cancer cell invasiveness and in bone metabolism. The comparison of these clinical data with those previously obtained using a human osteotropic breast cancer cell line highlighted an overlapping group of proteins. Certain differentially expressed proteins are validated in the present study using immunohistochemistry on a retrospective collection of breast tumors and matched bone metastases. Our exclusive set of selected proteins supports the setup of further investigations on both clinical samples and experimental bone metastasis models that will help to reveal the finely coordinated expression of proteins that favor the development of metastases in the bone microenvironment.
Collapse
Affiliation(s)
- Bruno Dumont
- Metastasis Research Laboratory, Department of Pathology, University of Liège, Bat. B23, CHU Sart Tilman Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Allmendinger O, Trautmann K, Mittelbronn M, Waidelich J, Meyermann R, Tatagiba M, Schittenhelm J. Activated leukocyte cell adhesion molecule is expressed in neuroepithelial neoplasms and decreases with tumor malignancy, matrix metalloproteinase 2 expression, and absence of IDH1R132H mutation. Hum Pathol 2012; 43:1289-99. [PMID: 22304788 DOI: 10.1016/j.humpath.2011.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 10/14/2022]
Abstract
Diffuse growth of gliomas is based on enhanced cell migration and remodeling of the extracellular matrix. Up-regulation of matrix metalloproteinases in gliomas is associated with a poor prognosis. The activated leukocyte adhesion molecule is considered to be indispensable for conversion of matrix metalloproteinase 2 into its active form. We therefore investigated the expression of activated leukocyte adhesion molecule in 9 malignant glial cell lines, 105 normal/reactive human brain specimens, 248 astrocytomas/glioblastomas, 98 ependymomas, 35 oligodendrogliomas, 10 neurocytomas, 10 primitive neuroectodermal tumors (PNET), and 36 medulloblastomas by immunohistochemistry and in selected cases by reverse transcriptase polymerase chain reaction. Correlation between activated leukocyte adhesion molecule expression and tumor grades and entities, proliferation activity, matrix metalloproteinase 2 expression, prognostic isocitrate dehydrogenase (IDH)1 mutation (R132H) status, O-6-methylguanine DNA-methyltransferase (MGMT) promoter status, or association with patient survival were analyzed. All oligodendrogliomas were strongly activated leukocyte adhesion molecule positive. Numbers of activated leukocyte adhesion molecule positive tumors were higher in glioblastomas (93%) than in diffuse astrocytomas (83%), but mean expression intensity was significantly reduced. Anaplastic ependymomas (68%) exhibited reduced numbers of activated leukocyte adhesion molecule-positive tumors and staining intensity compared with lower-grade ependymomas (85%). Activated leukocyte adhesion molecule expression in gliomas was independent of proliferative activity, MGMT status, patient survival, and age, whereas gliomas with IDH1 (R132H) mutation had significantly higher activated leukocyte adhesion molecule levels than their wild-type counterparts. Matrix metalloproteinase 2-negative glioblastomas exhibited significantly reduced activated leukocyte adhesion molecule expression levels compared with astrocytomas. In summary, our findings indicate that activated leukocyte adhesion molecule expression levels in gliomas are probably linked to other mechanisms than its supposed role as regulator of matrix metalloproteinase 2.
Collapse
Affiliation(s)
- Olga Allmendinger
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Amanda G Hansen
- Pathology and Cancer Biology, Vanderbilt University, TN 37232, US
| | - Guido W Swart
- FNWI-WiNSt (Faculty of Science, Mathematics & Informatics), Radboud University Nijmegen, 6500 GL, NL
| | - Andries Zijlstra
- Pathology and Cancer Biology, Vanderbilt University, TN 37232, US
| |
Collapse
|
40
|
Hein S, Müller V, Köhler N, Wikman H, Krenkel S, Streichert T, Schweizer M, Riethdorf S, Assmann V, Ihnen M, Beck K, Issa R, Jänicke F, Pantel K, Milde-Langosch K. Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue. Breast Cancer Res Treat 2010; 129:347-60. [DOI: 10.1007/s10549-010-1219-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/06/2010] [Indexed: 01/26/2023]
|