1
|
Xu P, Li Y, Zhuang X, Yue L, Ma Y, Xue W, Ji L, Zhan Y, Ou Y, Qiao T, Wu D, Liu P, Chen H, Cheng Y. Changes in immune subsets during chemotherapy as prognosis biomarkers for multiple myeloma patients by longitudinal monitoring. Immunol Res 2024; 72:1185-1197. [PMID: 39254909 DOI: 10.1007/s12026-024-09521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/22/2024] [Indexed: 09/11/2024]
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells accompanied by immune dysfunction. This study aimed to provide a comprehensive and dynamic characterization of the peripheral immune environment in MM patients and find its diagnostic and prognostic values for therapy. The peripheral immune profiles of MM inpatients and healthy controls were assessed by flow cytometry. A longitudinal study of immune subsets was observed during cycles of chemotherapy. The diagnostic and prognostic models were established based on immune subsets by the absolute shrinkage and selection operator (LASSO) and multivariate regression. MM patients possessed an impeded immune landscape, including reduced activation of B cells, increased effective T cells and regulatory T cells (Tregs), augmented CD16 expression on monocytes and dendritic cell percentages, decreased CD56dimCD16+ natural killer cells (NKs), and amplified CD56bright and HLA-DR+ natural killer T cells (NKTs). Chemotherapy has different dynamic effects on specific cells, of which 2 cycles is the key turning point. NKT, dendritic cells, naïve Tc and Th cells, HLA-DR+ Tc cells, CD56dim NKTs, CD16++ monocytes, and CD25+ B cells could have the diagnostic value, and a prognostic model including neutrophils, naïve Tc cells, CD56brightCD16dim NKs, and CD16+ dendritic cells was established with acceptable accuracy. Our data showed dynamic and abnormal peripheral immune profiles in MM patients, which had prognostic values and could provide the basis for clinical therapy.
Collapse
Affiliation(s)
- Pengcheng Xu
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital QingPu Branch, Fudan University, Shanghai, China
| | - Ying Li
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xibing Zhuang
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Yue
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanna Ma
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wenjin Xue
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Lili Ji
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Ou
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tiankui Qiao
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Duojiao Wu
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hao Chen
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Thoracic Surgery, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Yunfeng Cheng
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Kriegsmann K, Ton GNHQ, Awwad MHS, Benner A, Bertsch U, Besemer B, Hänel M, Fenk R, Munder M, Dürig J, Blau IW, Huhn S, Hose D, Jauch A, Mann C, Weinhold N, Scheid C, Schroers R, von Metzler I, Schieferdecker A, Thomalla J, Reimer P, Mahlberg R, Graeven U, Kremers S, Martens UM, Kunz C, Hensel M, Seidel-Glätzer A, Weisel KC, Salwender HJ, Müller-Tidow C, Raab MS, Goldschmidt H, Mai EK, Hundemer M. CD8 + CD28 - regulatory T cells after induction therapy predict progression-free survival in myeloma patients: results from the GMMG-HD6 multicenter phase III study. Leukemia 2024; 38:1621-1625. [PMID: 38830959 PMCID: PMC11216978 DOI: 10.1038/s41375-024-02290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024]
Affiliation(s)
- Katharina Kriegsmann
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Laborarztpraxis Rhein-Main MVZ GbR, Frankfurt am Main, Germany
| | - Gigi Nu Hoang Quy Ton
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Mohamed H S Awwad
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Uta Bertsch
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Britta Besemer
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Mathias Hänel
- Department of Internal Medicine III, Klinikum Chemnitz, Chemnitz, Germany
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Markus Munder
- Department of Internal Medicine III, University Hospital Mainz, Mainz, Germany
| | - Jan Dürig
- Department for Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Igor W Blau
- Medical Clinic, Charité University Medicine Berlin, Berlin, Germany
| | - Stefanie Huhn
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Hose
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Christoph Mann
- Department of Hematology, Oncology and Immunology, Phillips-University Marburg, Marburg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Christof Scheid
- Department of Internal Medicine I, University Hospital Cologne, Cologne, Germany
| | - Roland Schroers
- Department of Hematology, Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Ivana von Metzler
- Department of Internal Medicine II, University Hospital Frankfurt a.M., Frankfurt a.M., Germany
| | - Aneta Schieferdecker
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Peter Reimer
- Evang. Kliniken Essen-Mitte, Evang. Krankenhaus Essen-Werden, Essen, Germany
| | - Rolf Mahlberg
- Internal Medicine I, Hospital Mutterhaus der Borromäerinnen, Trier, Germany
| | - Ullrich Graeven
- Department of Hematology, Oncology and Gastroenterology, Kliniken Maria Hilf GmbH, Mönchengladbach, Germany
| | | | - Uwe M Martens
- Hematology, Oncology, Palliative Care, SLK Clinics Heilbronn, Heilbronn, Germany
| | - Christian Kunz
- Hematology and Oncology, Westpfalz-Klinikum, Kaiserslautern, Germany
| | | | | | - Katja C Weisel
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans J Salwender
- Asklepios Tumorzentrum Hamburg, Asklepios Hospital Hamburg Altona and St. Georg, Hamburg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Marc S Raab
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Elias K Mai
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Hundemer
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
3
|
Xu X, Wei F, Xiao L, Wu R, Wei B, Huang S, Yi J, Cui W. High proportion of circulating CD8 + CD28- senescent T cells is an independent predictor of distant metastasis in nasopharyngeal canrcinoma after radiotherapy. J Transl Med 2023; 21:64. [PMID: 36721233 PMCID: PMC9887944 DOI: 10.1186/s12967-023-03912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a kind of epithelial carcinoma that is common in East and Southeast Asia. Distant metastasis after radiotherapy remains the main cause of treatment failure and preradiotherapy immune system function can influence prognosis. Our study aimed to identify immune-related prognostic factors for NPC after radiotherapy and establish a prognostic model to predict progression-free survival (PFS) and distant metastasis-free survival (DMFS). METHODS We enrolled NPC patients and divided them into training and validation cohorts with follow-up. We collected clinical information and investigated immune cells, EBV DNA and cytokines in the peripheral blood of NPC patients before radiotherapy and EBV DNA after radiotherapy. Among these immune cells, we included CD8+CD28- T cells, which are a unique T-cell immunosenescent subset that increases in human peripheral blood with increasing age and declining immune function. Based on the detection results and clinical information, we utilized Cox regression and least absolute shrinkage and selection operator (LASSO) regression to screen the PFS and DMFS prognostic factors and build nomograms to predict the PFS and DMFS of NPC. We also verified the results in the validation set. RESULTS Three factors associated with PFS were selected: proportion of CD8+CD28- T cells posttreatment EBV and N stage. Three factors associated with DMFS were screened: proportion of CD8+CD28- T cells, posttreatment EBV and N stage. CD8+CD28- T cells are correlated with systemic inflammation and posttreatment immunosuppression. The C-indexes were 0.735 and 0.745 in the training and validation cohorts for predicting PFS. For DMFS, the C-indexes were 0.793 and 0.774 in the training and validation cohorts. CONCLUSIONS The pretreatment proportion of CD8+CD28- T cells is a candidate prognostic biomarker for NPC after radiotherapy. The constructed nomogram models based on CD8+CD28- T cells have good predictive value.
Collapse
Affiliation(s)
- Xiaotian Xu
- grid.506261.60000 0001 0706 7839Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Fangze Wei
- grid.506261.60000 0001 0706 7839Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Lin Xiao
- grid.506261.60000 0001 0706 7839Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Runye Wu
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Baojun Wei
- grid.506261.60000 0001 0706 7839Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Shengkai Huang
- grid.506261.60000 0001 0706 7839Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Junlin Yi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Wei Cui
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Lopes R, Caetano J, Barahona F, Pestana C, Ferreira BV, Lourenço D, Queirós AC, Bilreiro C, Shemesh N, Beck HC, Carvalho AS, Matthiesen R, Bogen B, Costa-Silva B, Serre K, Carneiro EA, João C. Multiple Myeloma-Derived Extracellular Vesicles Modulate the Bone Marrow Immune Microenvironment. Front Immunol 2022; 13:909880. [PMID: 35874665 PMCID: PMC9302002 DOI: 10.3389/fimmu.2022.909880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 01/10/2023] Open
Abstract
Multiple myeloma (MM), the third most frequent hematological cancer worldwide, is characterized by the proliferation of neoplastic plasma cells in the bone marrow (BM). One of the hallmarks of MM is a permissive BM microenvironment. Increasing evidence suggests that cell-to-cell communication between myeloma and immune cells via tumor cell-derived extracellular vesicles (EV) plays a key role in the pathogenesis of MM. Hence, we aimed to explore BM immune alterations induced by MM-derived EV. For this, we inoculated immunocompetent BALB/cByJ mice with a myeloma cell line, MOPC315.BM, inducing a MM phenotype. Upon tumor establishment, characterization of the BM microenvironment revealed the expression of both activation and suppressive markers by lymphocytes, such as granzyme B and PD-1, respectively. In addition, conditioning of the animals with MOPC315.BM-derived EV, before transplantation of the MOPC315.BM tumor cells, did not anticipate the disease phenotype. However, it induced features of suppression in the BM milieu, such as an increase in PD-1 expression by CD4+ T cells. Overall, our findings reveal the involvement of MOPC315.BM-derived EV protein content as promoters of immune niche remodeling, strengthening the importance of assessing the mechanisms by which MM may impact the immune microenvironment.
Collapse
Affiliation(s)
- Raquel Lopes
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Joana Caetano
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Hemato-Oncology Department, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medical Sciences, NOVA Medical School (NMS), Lisbon, Portugal
| | - Filipa Barahona
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medical Sciences, NOVA Medical School (NMS), Lisbon, Portugal
| | - Carolina Pestana
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Centre of Statistics and Its Applications, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Bruna Velosa Ferreira
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Hemato-Oncology Department, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medical Sciences, NOVA Medical School (NMS), Lisbon, Portugal
| | - Diana Lourenço
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana C. Queirós
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Carlos Bilreiro
- Faculty of Medical Sciences, NOVA Medical School (NMS), Lisbon, Portugal
- Neural Plasticity and Neural Activity Laboratory, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal
| | - Noam Shemesh
- Neural Plasticity and Neural Activity Laboratory, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Ana Sofia Carvalho
- Computational and Experimental Biology, Chronic Diseases Research Centre (CEDOC); NOVA Medical School (NMS), Lisbon, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology, Chronic Diseases Research Centre (CEDOC); NOVA Medical School (NMS), Lisbon, Portugal
| | - Bjarne Bogen
- Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bruno Costa-Silva
- Systems Oncology, Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Karine Serre
- Molecular Medicine Institute-Laço Hub, Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
| | - Emilie Arnault Carneiro
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Cristina João
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Hemato-Oncology Department, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medical Sciences, NOVA Medical School (NMS), Lisbon, Portugal
- *Correspondence: Cristina João,
| |
Collapse
|
5
|
Mirlekar B. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy. SAGE Open Med 2022; 10:20503121211069012. [PMID: 35096390 PMCID: PMC8793114 DOI: 10.1177/20503121211069012] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022] Open
Abstract
Cytokines play a critical role in regulating host immune response toward cancer and determining the overall fate of tumorigenesis. The tumor microenvironment is dominated mainly by immune-suppressive cytokines that control effector antitumor immunity and promote survival and the proliferation of cancer cells, which ultimately leads to enhanced tumor growth. In addition to tumor cells, the heterogeneous immune cells present within the tumor milieu are the significant source of immune-suppressive cytokines. These cytokines are classified into a broad range; however, in most tumor types, the interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 are consistently reported as immune-suppressive cytokines that help tumor growth and metastasis. The most emerging concern in cancer treatment is hijacking and restraining the activity of antitumor immune cells in the tumor niche due to a highly immune-suppressive environment. This review summarizes the role and precise functions of interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 in modulating tumor immune contexture and its implication in developing effective immune-therapeutic approaches. CONCISE CONCLUSION Recent effort geared toward developing novel immune-therapeutic approaches faces significant challenges due to sustained mutations in tumor cells and a highly immune-suppressive microenvironment present within the tumor milieu. The cytokines play a crucial role in developing an immune-suppressive environment that ultimately dictates the fate of tumorigenesis. This review critically covers the novel aspects of predominant immune-suppressive cytokines such as interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 in dictating the fate of tumorigenesis and how targeting these cytokines can help the development of better immune-therapeutic drug regimens for the treatment of cancer.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Mi J, Xu J, Zhou J, Zhao W, Chen Z, Melenhorst JJ, Chen S. CAR T-cell immunotherapy: a powerful weapon for fighting hematological B-cell malignancies. Front Med 2021; 15:783-804. [DOI: 10.1007/s11684-021-0904-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
|
7
|
Coleman MJ, Zimmerly KM, Yang XO. Accumulation of CD28 null Senescent T-Cells Is Associated with Poorer Outcomes in COVID19 Patients. Biomolecules 2021; 11:1425. [PMID: 34680058 PMCID: PMC8533086 DOI: 10.3390/biom11101425] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes infectious disease, and manifests in a wide range of symptoms from asymptomatic to severe illness and even death. Severity of infection is related to many risk factors, including aging and an array of underlying conditions, such as diabetes, hypertension, chronic obstructive pulmonary disease (COPD), and cancer. It remains poorly understood how these conditions influence the severity of COVID-19. Expansion of the CD28null senescent T-cell populations, a common phenomenon in aging and several chronic inflammatory conditions, is associated with higher morbidity and mortality rates in COVID-19. Here, we summarize the potential mechanisms whereby CD28null cells drive adverse outcomes in disease and predispose patients to devastating COVID-19, and discuss possible treatments for individuals with high counts of CD28null senescent T-cells.
Collapse
Affiliation(s)
- Mia J. Coleman
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (M.J.C.); (K.M.Z.)
- Class of 2023, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Kourtney M. Zimmerly
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (M.J.C.); (K.M.Z.)
| | - Xuexian O. Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (M.J.C.); (K.M.Z.)
| |
Collapse
|
8
|
Cheng Q, Zhao F, Zhang B, Zhang Y, Cai L, Qiao B, Hu Y, Sun C. Prognostic nomogram incorporating cytokines for overall survival in patients with newly diagnosed multiple myeloma. Int Immunopharmacol 2021; 99:108016. [PMID: 34385029 DOI: 10.1016/j.intimp.2021.108016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The purpose of this study was to explore the relationship between pretreatment cytokine status and overall survival and establish a prognostic nomogram incorporating cytokines in newly diagnosed multiple myeloma (NDMM) patients. METHODS A total of 121 patients with NDMM from the Wuhan Union Hospital were included in our study. Patient serum levels of cytokines, including macrophage inflammatory protein 1 alpha (MIP-1α), migration inhibitory factor (MIF), tumor necrosis factor-α (TNF-α), vascular endothelial growth factor-α (VEGF-α), monocyte chemoattractant protein-1 (MCP-1) and soluble interleukins IL-17A, IL-6, IL-21 and IL-10 were assessed before treatment. Based on the results of the multivariate Cox proportional hazards model, we developed a prognostic nomogram. We used the concordance index (C-index) and a calibration curve to measure the predictive performance of the nomogram. RESULTS Three important variables (lactate dehydrogenase, MIP-1α and creatinine) were incorporated in the nomogram using multivariate Cox analysis. The 3-year overall survival (OS) rate and progression-free survival (PFS) rate were 83.8% and 21.8% in the low-risk group of the nomogram and 17.4% and 8.4% in the high-risk group, respectively. The C-index of the nomogram for OS prediction was 0.80 (95% CI: 0.68-0.92), showing superiority over the predictive power of the Durie-Salmon staging system (C-index = 0.58; 95% CI: 0.49-0.67), International Staging System (C-index = 0.70; 95% CI: 0.61-0.79) and Revised-International Staging System (C-index = 0.71; 95% CI: 0.63-0.80). The calibration curve showed that the nomogram accurately predicted the 1-year, 2-year and 3-year OS of NDMM patients. CONCLUSION The established nomogram provides accurate and individualized OS risk estimation for NDMM patients.
Collapse
Affiliation(s)
- Qianwen Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Fei Zhao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yuyang Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Li Cai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Bing Qiao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| |
Collapse
|
9
|
Awwad MHS, Mahmoud A, Bruns H, Echchannaoui H, Kriegsmann K, Lutz R, Raab MS, Bertsch U, Munder M, Jauch A, Weisel K, Maier B, Weinhold N, Salwender HJ, Eckstein V, Hänel M, Fenk R, Dürig J, Brors B, Benner A, Müller-Tidow C, Goldschmidt H, Hundemer M. Selective elimination of immunosuppressive T cells in patients with multiple myeloma. Leukemia 2021; 35:2602-2615. [PMID: 33597728 PMCID: PMC8410603 DOI: 10.1038/s41375-021-01172-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 01/31/2023]
Abstract
Elimination of suppressive T cells may enable and enhance cancer immunotherapy. Here, we demonstrate that the cell membrane protein SLAMF7 was highly expressed on immunosuppressive CD8+CD28-CD57+ Tregs in multiple myeloma (MM). SLAMF7 expression associated with T cell exhaustion surface markers and exhaustion-related transcription factor signatures. T cells from patients with a high frequency of SLAMF7+CD8+ T cells exhibited decreased immunoreactivity towards the MART-1aa26-35*A27L antigen. A monoclonal anti-SLAMF7 antibody (elotuzumab) specifically depleted SLAMF7+CD8+ T cells in vitro and in vivo via macrophage-mediated antibody-dependent cellular phagocytosis (ADCP). Anti-SLAMF7 treatment of MM patients depleted suppressive T cells in peripheral blood. These data highlight SLAMF7 as a marker for suppressive CD8+ Treg and suggest that anti-SLAMF7 antibodies can be used to boost anti-tumoral immune responses in cancer patients.
Collapse
Affiliation(s)
- Mohamed H. S. Awwad
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Abdelrahman Mahmoud
- grid.7497.d0000 0004 0492 0584Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Heiko Bruns
- grid.411668.c0000 0000 9935 6525Department of Hematology and Oncology, Erlangen University Hospital, Erlangen, Germany
| | - Hakim Echchannaoui
- grid.5802.f0000 0001 1941 7111Third Department of Medicine, University Cancer Center (UCT), University Medical Center (UMC) of the Johannes Gutenberg University, Erlangen, Germany ,German Cancer Consortium (Dktk), Partner Site Frankfurt/Mainz, Mainz, Germany
| | - Katharina Kriegsmann
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Raphael Lutz
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc S. Raab
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center and Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
| | - Uta Bertsch
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373National Center for Tumor Diseases, Heidelberg University, Heidelberg, Germany
| | - Markus Munder
- grid.5802.f0000 0001 1941 7111Third Department of Medicine, University Cancer Center (UCT), University Medical Center (UMC) of the Johannes Gutenberg University, Erlangen, Germany
| | - Anna Jauch
- grid.5253.10000 0001 0328 4908Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Katja Weisel
- grid.13648.380000 0001 2180 3484Department of Oncology, Hematology and BMT, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Bettina Maier
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Niels Weinhold
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Volker Eckstein
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mathias Hänel
- grid.459629.50000 0004 0389 4214Department of Internal Medicine III, Klinikum Chemnitz, Chemnitz, Germany
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, Düsseldorf University, Hamburg, Germany
| | - Jan Dürig
- grid.5718.b0000 0001 2187 5445Department of Hematology, Essen University, Hamburg, Germany
| | - Benedikt Brors
- grid.7497.d0000 0004 0492 0584Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373National Center for Tumor Diseases, Heidelberg University, Heidelberg, Germany
| | - Axel Benner
- grid.7497.d0000 0004 0492 0584Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carsten Müller-Tidow
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373National Center for Tumor Diseases, Heidelberg University, Heidelberg, Germany ,Molecular Medicine Partnership Unit, Heidelberg University Hospital, EMBL, Heidelberg, Germany
| | - Hartmut Goldschmidt
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373National Center for Tumor Diseases, Heidelberg University, Heidelberg, Germany
| | - Michael Hundemer
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
10
|
Liu CD, Chang CC, Huang WH. The perspectives of interleukin-10 in the pathogenesis and therapeutics of multiple myeloma. Tzu Chi Med J 2020; 33:257-262. [PMID: 34386363 PMCID: PMC8323651 DOI: 10.4103/tcmj.tcmj_141_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is typically featured by the increased levels of inflammatory cytokines in the neoplastic plasma cells (PCs) producing monoclonal immunoglobulin. PCs proliferate in the bone marrow, which will lead to extensive skeletal destruction with osteolytic lesions, osteopenia, or pathologic fractures. The diagnostic biology of MM has progressed from morphology and low-sensitivity protein analysis into multiomics-based high-throughput readout, whereas therapeutics has evolved from single active agent to potential active drug combinations underlying precision medicine. Many studies have focused on the cytokine networks that control growth, progression, and dissemination of the disease. The complexity of cytokines in MM development remains to be elucidated comprehensively. Apart from knowing that interleukin (IL)-6 is important in the pathogenesis of MM, it has been shown that IL-6 is a paracrine factor supplied by the microenvironment comprising of those cells from the myeloid compartment. Due to IL-10 was considered an immunosuppressive cytokine to promote cancer escape from immune surveillance, the role of IL-10 in this regard has been underestimated although recent advances have reported that IL-10 induces both PC proliferation and angiogenesis in MM. In addition, cumulative studies have suggested that IL-10 plays an important role in the induction of chemoresistance in many cancers; a virtual requirement of autocrine IL-10 for MM cells to escape from an IL-6-dependent proliferation loop was implicated. In this review, we summarize the available information to elucidate a new understanding of the molecular and functional roles of IL-10 in MM.
Collapse
Affiliation(s)
- Cheng-Der Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Han Huang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Clinical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
11
|
Effect of early restrictive fluid resuscitation on inflammatory and immune factors in patients with severe pelvic fracture. Chin J Traumatol 2019; 22:311-315. [PMID: 31685356 PMCID: PMC6923289 DOI: 10.1016/j.cjtee.2019.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 02/04/2023] Open
Abstract
PURPOSE To study the effect of early restrictive fluid resuscitation (EFR) on inflammatory and immune factors in patients with severe pelvic fracture (SPF). METHODS A total of 174 SPF patients in the Department of Orthopaedics, the First Affiliated Hospital of Chengdu Medical College from July 2015 to June 2018 were involved in this study and divided into EFR group (n = 87) and control group (n = 87) using the random number table method. Conventional fluid resuscitation (CFR) was performed in control group, and EFR was performed in EFR group. The incidences of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) during rescue, successful rescue rate, blood transfusion volume, fluid input, and resuscitation time were compared between the two groups. The parameters including prothrombin time (PT), hematocrit (HCT), platelet (PLT) and blood lactate (BL) at the 4th hour after fluid resuscitation were recorded. The levels of inflammatory factors (TNF-α, IL-6, CRP) and immune factors (CD3+, CD4+, CD8+, CD4+/CD8+) were compared between the two groups before treatment and 7 days after treatment. The revised acute physiologic and chronic health evaluation system and the sequential organ failure assessment scores were adopted for evaluation before treatment and 7 days after treatment. RESULTS The incidences of ARDS and MODS during rescue in EFR group were significantly lower than those in control group (p=0.015 and 0.010 respectively), and the successful rescue rate in EFR group was significantly higher than that in control group (p = 0.011). The blood transfusion volume, fluid input, resuscitation time in EFR group were significantly lower than those in control group (p = 0.016, 0.002 and 0.001 respectively). At the 4th hour after fluid resuscitation, PT and BL in EFR group were significantly lower than those in control group (p = 0.021 and 0.003 respectively), while HCT and PLT in EFR group were significantly higher than those in control group (p = 0.016 and 0.021 respectively). On day 7 after treatment, TNF-α, IL-6, CRP and CD8+ in EFR group were significantly lower than those in control group (p = 0.003, 0.004, 0.007 and 0.003 respectively), while CD3+, CD4+ and CD4+/CD8+ in EFR group were significantly higher than those in control group (p = 0.004, 0.000, 0.007 respectively). On day 7 after treatment, the revised acute physiologic and chronic health evaluation (APACHE) system and the sequential organ failure assessment (SOFA) scores in EFR group were significantly lower than those in control group. CONCLUSION EFR can effectively eliminate inflammatory factors, improve immune function, maintain the stability of blood components, reduce the incidences of ARDS and MODS, and elevate the successful rescue rate in patients with SPF.
Collapse
|
12
|
Lucas F, Pennell M, Huang Y, Benson DM, Efebera YA, Chaudhry M, Hughes T, Woyach JA, Byrd JC, Zhang S, Jones D, Guan X, Burd CE, Rosko AE. T Cell Transcriptional Profiling and Immunophenotyping Uncover LAG3 as a Potential Significant Target of Immune Modulation in Multiple Myeloma. Biol Blood Marrow Transplant 2019; 26:7-15. [PMID: 31445183 DOI: 10.1016/j.bbmt.2019.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/16/2019] [Accepted: 08/11/2019] [Indexed: 12/20/2022]
Abstract
Autologous stem cell transplant (ASCT) is the standard of care for patients with multiple myeloma (MM). The clinical significance of peripheral blood T lymphocyte (PBTL) immunologic changes associated with ASCT is poorly understood. Here we evaluated T cell transcriptional messenger RNA profiles and immunophenotypes to correlate immunologic senescence, exhaustion, and anergy with clinical endpoints in a cohort of patients with MM undergoing ASCT. ASCT induced global transcriptional T cell changes and altered molecular levels of markers of T cell subtypes, T cell activation, and exhaustion. These included reduced CD4/CD8 ratio, skewing toward the Th1 subset, reduced expression of costimulatory receptors CD27 and CD28, heightened T cell activation, and increased expression of immune modulatory molecules LAG3 and PD1. Multicolor flow cytometry experiments confirmed altered circulating CD4 and CD8 subsets and skewing toward differentiated effector cells. Moreover, ASCT promoted an exhausted immunophenotype in CD3+CD4+ subsets and a senescent immunophenotype in CD3+CD8+ subsets. Subset-specific altered expression was also seen for surface molecules with immunomodulatory function. ASCT affected soluble levels of molecules with immunomodulatory function by increasing plasma HVEM and TIM3. High molecular LAG3 level was associated with inferior event-free survival post-ASCT (hazard ratio = 5.44; confidence interval, 1.92 to 15.46; P = .001; adjusted P [controlling for false discovery rate] = .038). Using a comprehensive evaluation of PBTLs on a molecular and phenotypic level, we have identified that ASCT induces global T cell alterations with CD4 and CD8 subset-specific changes. Moreover, LAG3 emerged as an early biomarker of adverse events post-ASCT. These findings will support the development of treatment strategies targeting immune defects in MM to augment or restore T cell responses.
Collapse
Affiliation(s)
- Fabienne Lucas
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Michael Pennell
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, Ohio
| | - Ying Huang
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Don M Benson
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Yvonne A Efebera
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Maria Chaudhry
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Tiffany Hughes
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | | | - John C Byrd
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Suohui Zhang
- Department of Molecular Genetics, Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Desiree Jones
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Xiangnan Guan
- Department of Molecular Genetics, Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Christin E Burd
- Department of Molecular Genetics, Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Ashley E Rosko
- Division of Hematology, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
13
|
Huff WX, Kwon JH, Henriquez M, Fetcko K, Dey M. The Evolving Role of CD8 +CD28 - Immunosenescent T Cells in Cancer Immunology. Int J Mol Sci 2019; 20:ijms20112810. [PMID: 31181772 PMCID: PMC6600236 DOI: 10.3390/ijms20112810] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022] Open
Abstract
Functional, tumor-specific CD8+ cytotoxic T lymphocytes drive the adaptive immune response to cancer. Thus, induction of their activity is the ultimate aim of all immunotherapies. Success of anti-tumor immunotherapy is precluded by marked immunosuppression in the tumor microenvironment (TME) leading to CD8+ effector T cell dysfunction. Among the many facets of CD8+ T cell dysfunction that have been recognized—tolerance, anergy, exhaustion, and senescence—CD8+ T cell senescence is incompletely understood. Naïve CD8+ T cells require three essential signals for activation, differentiation, and survival through T-cell receptor, costimulatory receptors, and cytokine receptors. Downregulation of costimulatory molecule CD28 is a hallmark of senescent T cells and increased CD8+CD28− senescent populations with heterogeneous roles have been observed in multiple solid and hematogenous tumors. T cell senescence can be induced by several factors including aging, telomere damage, tumor-associated stress, and regulatory T (Treg) cells. Tumor-induced T cell senescence is yet another mechanism that enables tumor cell resistance to immunotherapy. In this paper, we provide a comprehensive overview of CD8+CD28− senescent T cell population, their origin, their function in immunology and pathologic conditions, including TME and their implication for immunotherapy. Further characterization and investigation into this subset of CD8+ T cells could improve the efficacy of future anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Wei X Huff
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Jae Hyun Kwon
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mario Henriquez
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kaleigh Fetcko
- Department of Neurology, University of Illinois at Chicago School of Medicine, Chicago, IL 60612, USA.
| | - Mahua Dey
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
14
|
Dhakal B, Pagenkopf A, Mushtaq MU, Cunningham AM, Flietner E, Morrow Z, Papadas A, Hope C, Leith C, Hematti P, Hari P, Callander NS, Asimakopoulos F. Versican proteolysis predicts immune effector infiltration and post-transplant survival in myeloma. Leuk Lymphoma 2019; 60:2558-2562. [PMID: 30845856 DOI: 10.1080/10428194.2019.1585836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Binod Dhakal
- Department of Medicine, Division of Hematology/Oncology, Medical College of Wisconsin , Milwaukee , WI , USA
| | - Adam Pagenkopf
- Department of Medicine, Division of Hematology-Oncology, University of Wisconsin-Madison , Madison , WI , USA.,University of Wisconsin Carbone Cancer Center , Madison , WI , USA
| | - Muhammad Umair Mushtaq
- Department of Medicine, Division of Hematology-Oncology, University of Wisconsin-Madison , Madison , WI , USA.,University of Wisconsin Carbone Cancer Center , Madison , WI , USA
| | - Ashley M Cunningham
- Division of Pathology and Laboratory Medicine, Medical College of Wisconsin , Milwaukee , WI , USA
| | - Evan Flietner
- Department of Medicine, Division of Hematology-Oncology, University of Wisconsin-Madison , Madison , WI , USA.,University of Wisconsin Carbone Cancer Center , Madison , WI , USA
| | - Zachary Morrow
- Department of Medicine, Division of Hematology-Oncology, University of Wisconsin-Madison , Madison , WI , USA.,University of Wisconsin Carbone Cancer Center , Madison , WI , USA
| | - Athanasios Papadas
- Department of Medicine, Division of Hematology-Oncology, University of Wisconsin-Madison , Madison , WI , USA.,University of Wisconsin Carbone Cancer Center , Madison , WI , USA
| | - Chelsea Hope
- Department of Medicine, Division of Hematology-Oncology, University of Wisconsin-Madison , Madison , WI , USA.,University of Wisconsin Carbone Cancer Center , Madison , WI , USA
| | - Catherine Leith
- Division of Pathology and Laboratory Medicine, University of Wisconsin-Madison , Madison , WI , USA
| | - Peiman Hematti
- Department of Medicine, Division of Hematology-Oncology, University of Wisconsin-Madison , Madison , WI , USA.,University of Wisconsin Carbone Cancer Center , Madison , WI , USA
| | - Parameswaran Hari
- Department of Medicine, Division of Hematology/Oncology, Medical College of Wisconsin , Milwaukee , WI , USA
| | - Natalie S Callander
- Department of Medicine, Division of Hematology-Oncology, University of Wisconsin-Madison , Madison , WI , USA.,University of Wisconsin Carbone Cancer Center , Madison , WI , USA
| | - Fotis Asimakopoulos
- Department of Medicine, Division of Hematology-Oncology, University of Wisconsin-Madison , Madison , WI , USA.,University of Wisconsin Carbone Cancer Center , Madison , WI , USA
| |
Collapse
|