1
|
Armstrong HC, Russell DJF, Moss SEW, Pomeroy P, Bennett KA. Fitness correlates of blubber oxidative stress and cellular defences in grey seals (Halichoerus grypus): support for the life-history-oxidative stress theory from an animal model of simultaneous lactation and fasting. Cell Stress Chaperones 2023; 28:551-566. [PMID: 36933172 PMCID: PMC10469160 DOI: 10.1007/s12192-023-01332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/19/2023] Open
Abstract
Life-history-oxidative stress theory predicts that elevated energy costs during reproduction reduce allocation to defences and increase cellular stress, with fitness consequences, particularly when resources are limited. As capital breeders, grey seals are a natural system in which to test this theory. We investigated oxidative damage (malondialdehyde (MDA) concentration) and cellular defences (relative mRNA abundance of heat shock proteins (Hsps) and redox enzymes (REs)) in blubber of wild female grey seals during the lactation fast (n = 17) and summer foraging (n = 13). Transcript abundance of Hsc70 increased, and Nox4, a pro-oxidant enzyme, decreased throughout lactation. Foraging females had higher mRNA abundance of some Hsps and lower RE transcript abundance and MDA concentrations, suggesting they experienced lower oxidative stress than lactating mothers, which diverted resources into pup rearing at the expense of blubber tissue damage. Lactation duration and maternal mass loss rate were both positively related to pup weaning mass. Pups whose mothers had higher blubber glutathione-S-transferase (GST) expression at early lactation gained mass more slowly. Higher glutathione peroxidase (GPx) and lower catalase (CAT) were associated with longer lactation but reduced maternal transfer efficiency and lower pup weaning mass. Cellular stress, and the ability to mount effective cellular defences, could proscribe lactation strategy in grey seal mothers and thus affect pup survival probability. These data support the life-history-oxidative stress hypothesis in a capital breeding mammal and suggest lactation is a period of heightened vulnerability to environmental factors that exacerbate cellular stress. Fitness consequences of stress may thus be accentuated during periods of rapid environmental change.
Collapse
Affiliation(s)
- Holly C Armstrong
- Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK.
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK.
| | - Debbie J F Russell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK
| | - Simon E W Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK
| | - Paddy Pomeroy
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK
| | - Kimberley A Bennett
- Division of Health Science, School of Applied Sciences, Abertay University, Dundee, DD1 1HG, UK
| |
Collapse
|
2
|
Fowler MA, Wong JB, Harrison AL. Oxidative physiology of two small and highly migratory Arctic seabirds: Arctic terns ( Sterna paradisaea) and long-tailed jaegers ( Stercorarius longicaudus). CONSERVATION PHYSIOLOGY 2023; 11:coad060. [PMID: 37916041 PMCID: PMC10616233 DOI: 10.1093/conphys/coad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/21/2023] [Accepted: 08/14/2023] [Indexed: 11/03/2023]
Abstract
Arctic ecosystems are changing rapidly. The tundra supports nesting migratory seabirds that spend most of their year over the ocean. Migrations are demanding, but it is unclear how physiological capability may equip organisms to respond to their changing environments. For two migratory seabird species nesting in Alaska, USA, the Arctic tern (n = 10) and the long-tailed jaeger (n = 8), we compared oxidative physiology and aerobic capacity measured during incubation and we recorded individual movement paths using electronic tracking tags. Within species, we hypothesized that individuals with longer-distance migrations would show higher oxidative stress and display better aerobic capacity than shorter-distance migrants. We examined blood parameters relative to subsequent fall migration in jaegers and relative to previous spring migration in terns. We present the first measurements of oxidative stress in these species and the first migratory movements of long-tailed jaegers in the Pacific Ocean. Arctic terns displayed positive correlation of oxidative variables, or better integration than jaegers. Relative to physiological sampling, pre-breeding northward migration data were available for terns and post-breeding southward data were available for jaegers. Terns reached a farther maximum distance from the colony than jaegers (16 199 ± 275 km versus 10 947 ± 950 km) and rate of travel northward (447 ± 41.8 km/day) was positively correlated with hematocrit, but we found no other relationships. In jaegers, there were no relationships between individuals' physiology and southward rate of travel (193 ± 52.3 km/day) or migratory distance. While it is not clear whether the much longer migrations of the terns is related to their better integration, or to another factor, our results spark hypotheses that could be evaluated through a controlled phylogenetic study. Species with better integration may be less susceptible to environmental factors that increase oxidative stress, including thermal challenges or changes in prey distribution as the Arctic climate changes rapidly.
Collapse
Affiliation(s)
- Melinda A. Fowler
- Department of Biology/Chemistry. Springfield College, 263 Alden Street, Springfield, MA 01109 USA
| | - Joanna B. Wong
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Bird Migration, Swiss Ornithological Institute, 6204 Sempach, Switzerland
| | - Autumn-Lynn Harrison
- Smithsonian‘s National Zoo and Conservation Biology Institute, Migratory Bird Center, 3001 Connecticut Avenue, NW, Washington, DC. 20008 USA
| |
Collapse
|
3
|
Sawecki J, Dijkstra PD. Mothers modify the cost of reproduction by dynamic changes in antioxidant function and filial cannibalism. Biol Lett 2022; 18:20220319. [PMID: 36349581 PMCID: PMC9653243 DOI: 10.1098/rsbl.2022.0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2023] Open
Abstract
Investment in current reproduction may negatively influence subsequent fitness. Oxidative stress has been proposed as a potential mediator of this trade-off between current and future reproductive success. However, evidence of reproduction causing oxidative stress is limited, possibly owing to compensatory mechanisms that counteract oxidative insults. Here we test the idea that organisms protect against oxidative challenges through a dynamic interaction between behavioural and physiological adjustments at different stages of reproduction. To test this idea, we manipulated maternal care in the mouthbrooding cichlid fish Astatotilapia burtoni by allowing females to continue care (brooders) or by preventing care (non-brooders). We found that brooders depleted the pool of antioxidants as brood care progressed; however, we only observed increased oxidative DNA damage at the early stage of care relative to non-brooders, possibly owing to upregulated antioxidant protection during later stages of care. Most brooders adjusted parental investment by consuming some of their offspring during mouthbrooding. Intriguingly, the level of filial cannibalism was positively related to liver antioxidant function. These changes in antioxidant function and filial cannibalism allow parents to manage the cost of reproduction and are important for our understanding of how oxidative stress mediates life-history trade-offs.
Collapse
Affiliation(s)
- Jake Sawecki
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Peter D. Dijkstra
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA
- Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
4
|
Dujon AM, Boutry J, Tissot S, Lemaître JF, Boddy AM, Gérard AL, Alvergne A, Arnal A, Vincze O, Nicolas D, Giraudeau M, Telonis-Scott M, Schultz A, Pujol P, Biro PA, Beckmann C, Hamede R, Roche B, Ujvari B, Thomas F. Cancer Susceptibility as a Cost of Reproduction and Contributor to Life History Evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.861103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reproduction is one of the most energetically demanding life-history stages. As a result, breeding individuals often experience trade-offs, where energy is diverted away from maintenance (cell repair, immune function) toward reproduction. While it is increasingly acknowledged that oncogenic processes are omnipresent, evolving and opportunistic entities in the bodies of metazoans, the associations among reproductive activities, energy expenditure, and the dynamics of malignant cells have rarely been studied. Here, we review the diverse ways in which age-specific reproductive performance (e.g., reproductive aging patterns) and cancer risks throughout the life course may be linked via trade-offs or other mechanisms, as well as discuss situations where trade-offs may not exist. We argue that the interactions between host–oncogenic processes should play a significant role in life-history theory, and suggest some avenues for future research.
Collapse
|
5
|
Vincze O, Vágási CI, Pénzes J, Szabó K, Magonyi NM, Czirják GÁ, Pap PL. Sexual dimorphism in immune function and oxidative physiology across birds: The role of sexual selection. Ecol Lett 2022; 25:958-970. [PMID: 35106902 PMCID: PMC9305230 DOI: 10.1111/ele.13973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 01/08/2023]
Abstract
Sex‐specific physiology is commonly reported in animals, often indicating lower immune indices and higher oxidative stress in males than in females. Sexual selection is argued to explain these differences, but empirical evidence is limited. Here, we explore sex differences in immunity, oxidative physiology and packed cell volume of wild, adult, breeding birds (97 species, 1997 individuals, 14 230 physiological measurements). We show that higher female immune indices are most common across birds (when bias is present), but oxidative physiology shows no general sex‐bias and packed cell volume is generally male‐biased. In contrast with predictions based on sexual selection, male‐biased sexual size dimorphism is associated with male‐biased immune measures. Sexual dichromatism, mating system and parental roles had no effect on sex‐specificity in physiology. Importantly, female‐biased immunity remained after accounting for sexual selection indices. We conclude that cross‐species differences in physiological sex‐bias are largely unrelated to sexual selection and alternative explanations should be explored.
Collapse
Affiliation(s)
- Orsolya Vincze
- Centre for Ecological Research, Institute of Aquatic Ecology, Debrecen, Hungary.,Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Csongor I Vágási
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Janka Pénzes
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Krisztián Szabó
- Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Nóra M Magonyi
- Doctoral School of Biology and Sportbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary.,Centre for Agricultural Research, Plant Protection Institute, ELKH, Budapest, Hungary
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Péter L Pap
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania.,Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Lin Y, Patterson A, Jimenez AG, Elliott K. Altered Oxidative Status as a Cost of Reproduction in a Seabird with High Reproductive Costs. Physiol Biochem Zool 2021; 95:35-53. [PMID: 34846992 DOI: 10.1086/717916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractLife history theory posits that reproduction is constrained by a cost of reproduction such that any increase in breeding effort should reduce subsequent survival. Oxidative stress refers to an imbalance between the prooxidant reactive oxygen species (ROS) and antioxidant defense. If not thwarted, ROS can cause damage to DNA, lipids, and proteins, potentially increasing the rate of senescence and decreasing cellular function. Reproduction is often associated with higher metabolic rates, which could increase production of ROS and lead to oxidative damage if the animal does not increase antioxidant protection. Thus, oxidative stress could be one mechanism creating a cost of reproduction. In this study we explored how reproduction may affect oxidative status differently between male and female thick-billed murres during early and late breeding seasons over three consecutive years. We manipulated breeding efforts by removing an egg from the nest of some individuals, which forced females to relay, and by handicapping other individuals by clipping wings. We measured total antioxidant capacity (TAC), uric acid (UA) concentration, and malondialdehyde (MDA; an index of lipid oxidative damage) concentration in blood plasma as well as activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in red blood cells. Oxidative status was highly variable across years, and year was consistently the most important factor determining oxidative status; inconsistent results in previous field studies may be because reproductive oxidative stress occurs only in some years. Females had lower SOD and GPx and higher MDA and TAC than males immediately after egg laying, suggesting that the cost of egg laying required investment in cheaper nonenzymatic antioxidant defenses that had lower capacity for defending against lipid peroxidation. Delayed birds had lower UA and lower SOD, GPx, and CAT activity compared with control birds. In conclusion, when reproductive costs increase via higher energy costs or longer breeding seasons, the oxidative status of both male and female murres deteriorated as a result of reduced antioxidant defenses.
Collapse
Affiliation(s)
- Yimei Lin
- Department of Biology, Colgate University, Hamilton, New York
| | - Allison Patterson
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Kyle Elliott
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
7
|
Ensminger DC, Salvador-Pascual A, Arango BG, Allen KN, Vázquez-Medina JP. Fasting ameliorates oxidative stress: A review of physiological strategies across life history events in wild vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110929. [PMID: 33647461 DOI: 10.1016/j.cbpa.2021.110929] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Fasting is a component of many species' life history due to environmental factors or behavioral patterns that limit access to food. Despite metabolic and physiological challenges associated with these life history stages, fasting-adapted wild vertebrates exhibit few if any signs of oxidative stress, suggesting that fasting promotes redox homeostasis. Here we review mammalian, avian, reptilian, amphibian, and piscine examples of animals undergoing fasting during prolonged metabolic suppression (e.g. hibernation and estivation) or energetically demanding processes (e.g. migration and breeding) to better understand the mechanisms underlying fasting tolerance in wild vertebrates. These studies largely show beneficial effects of fasting on redox balance via limited oxidative damage. Though some species exhibit signs of oxidative stress due to energetically or metabolically extreme processes, fasting wild vertebrates largely buffer themselves from the negative consequences of oxidative damage through specific strategies such as elevating antioxidants, selectively maintaining redox balance in critical tissues, or modifying behavioral patterns. We conclude with suggestions for future research to better elucidate the protective effects of fasting on oxidative stress as well as disentangle the impacts from other life history stages. Further research in these areas will facilitate our understanding of the mechanisms wild vertebrates use to mitigate the negative impacts associated with metabolically-extreme life history stages as well as potential translation into therapeutic interventions in non-fasting-adapted species including humans.
Collapse
Affiliation(s)
- David C Ensminger
- Department of Integrative Biology, University of California, Berkeley, USA
| | | | - B Gabriela Arango
- Department of Integrative Biology, University of California, Berkeley, USA
| | - Kaitlin N Allen
- Department of Integrative Biology, University of California, Berkeley, USA
| | | |
Collapse
|
8
|
Vágási CI, Tóth Z, Pénzes J, Pap PL, Ouyang JQ, Lendvai ÁZ. The Relationship between Hormones, Glucose, and Oxidative Damage Is Condition and Stress Dependent in a Free-Living Passerine Bird. Physiol Biochem Zool 2021; 93:466-476. [PMID: 33164671 PMCID: PMC7982133 DOI: 10.1086/711957] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractPhysiological state is an emergent property of the interactions among physiological systems within an intricate network. Understanding the connections within this network is one of the goals in physiological ecology. Here, we studied the relationship between body condition, two neuroendocrine hormones (corticosterone and insulin-like growth factor 1 [IGF-1]) as physiological regulators, and two physiological systems related to resource metabolism (glucose) and oxidative balance (malondialdehyde). We measured these traits under baseline and stress-induced conditions in free-living house sparrows (Passer domesticus). We used path analysis to analyze different scenarios about the structure of the physiological network. Our data were most consistent with a model in which corticosterone was the major regulator under baseline conditions. This model shows that individuals in better condition have lower corticosterone levels; corticosterone and IGF-1 levels are positively associated; and oxidative damage is higher when levels of corticosterone, IGF-1, and glucose are elevated. After exposure to acute stress, these relationships were considerably reorganized. In response to acute stress, birds increased their corticosterone and glucose levels and decreased their IGF-1 levels. However, individuals in better condition increased their corticosterone levels more and better maintained their IGF-1 levels in response to acute stress. The acute stress-induced changes in corticosterone and IGF-1 levels were associated with an increase in glucose levels, which in turn was associated with a decrease in oxidative damage. We urge ecophysiologists to focus more on physiological networks, as the relationships between physiological traits are complex and dynamic during the organismal stress response.
Collapse
Affiliation(s)
- Csongor I. Vágási
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Zsófia Tóth
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, Debrecen, Hungary
| | - Janka Pénzes
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Péter L. Pap
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | | | - Ádám Z. Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
9
|
Gormally BMG, Romero LM. What are you actually measuring? A review of techniques that integrate the stress response on distinct time‐scales. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13648] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Bodey TW, Cleasby IR, Blount JD, McElwaine G, Vigfusdottir F, Bearhop S. Consistent measures of oxidative balance predict survival but not reproduction in a long‐distance migrant. J Anim Ecol 2020; 89:1872-1882. [DOI: 10.1111/1365-2656.13237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/27/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Thomas W. Bodey
- Centre for Ecology & Conservation University of Exeter Penryn Campus Penryn UK
- School of Biological Sciences University of Auckland Auckland New Zealand
| | - Ian R. Cleasby
- Centre for Ecology & Conservation University of Exeter Penryn Campus Penryn UK
- Royal Society for the Protection of Birds Centre for Conservation Science Inverness UK
| | - Jonathan D. Blount
- Centre for Ecology & Conservation University of Exeter Penryn Campus Penryn UK
| | | | - Freydis Vigfusdottir
- Faculty of Life and Environmental Sciences and School of Social Sciences University of Iceland Reykjavik Iceland
| | - Stuart Bearhop
- Centre for Ecology & Conservation University of Exeter Penryn Campus Penryn UK
| |
Collapse
|
11
|
Pap PL, Fülöp A, Adamkova M, Cepak J, Michalkova R, Safran RJ, Stermin AN, Tomasek O, Vágási CI, Vincze O, Wilkins MR, Albrecht T. Selection on multiple sexual signals in two Central and Eastern European populations of the barn swallow. Ecol Evol 2019; 9:11277-11287. [PMID: 31641472 PMCID: PMC6802025 DOI: 10.1002/ece3.5629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
Variation in intensity and targets of sexual selection on multiple traits has been suggested to play a major role in promoting phenotypic differentiation between populations, although the divergence in selection may depend on year, local conditions or age. In this study, we quantified sexual selection for two putative sexual signals across two Central and East European barn swallow (Hirundo rustica rustica) populations from Czech Republic and Romania over multiple years. We then related these differences in selection to variation in sexual characters among barn swallow populations. Our results show that tail length and ventral coloration vary between populations, sexes, and age classes (first-time breeders vs. experienced birds). We found that selection on tail length was stronger in first-time breeders than in experienced birds and in males than in females in the Romanian population, while these differences between age groups and sexes were weak in Czech birds. We suggest that the populational difference in selection on tail length might be related to the differences in breeding conditions. Our results show that ventral coloration is darker (i.e., has lower brightness) in the Romanian than in the Czech population, and in experienced birds and males compared with first-time breeders and females, respectively. The sexual difference in ventral coloration may suggest sexual selection on this trait, which is supported by the significant directional selection of ventral coloration in first-time breeding males on laying date. However, after controlling for the confounding effect of wing length and tarsus length, the partial directional selection gradient on this trait turned nonsignificant, suggesting that the advantage of dark ventral coloration in early breeding birds is determined by the correlated traits of body size. These findings show that ventral coloration may be advantageous over the breeding season, but the underlying mechanism of this relationship is not clarified.
Collapse
Affiliation(s)
- Péter L. Pap
- Evolutionary Ecology GroupHungarian Department of Biology and EcologyBabeş‐Bolyai UniversityCluj NapocaRomania
- MTA‐DE Behavioural Ecology Research GroupDepartment of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderCOUSA
| | - Attila Fülöp
- Evolutionary Ecology GroupHungarian Department of Biology and EcologyBabeş‐Bolyai UniversityCluj NapocaRomania
- MTA‐DE Behavioural Ecology Research GroupDepartment of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary
| | - Marie Adamkova
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | | | - Romana Michalkova
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Rebecca J. Safran
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderCOUSA
| | | | - Oldrich Tomasek
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Csongor I. Vágási
- Evolutionary Ecology GroupHungarian Department of Biology and EcologyBabeş‐Bolyai UniversityCluj NapocaRomania
- MTA‐DE Behavioural Ecology Research GroupDepartment of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary
| | - Orsolya Vincze
- Evolutionary Ecology GroupHungarian Department of Biology and EcologyBabeş‐Bolyai UniversityCluj NapocaRomania
| | | | - Tomas Albrecht
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| |
Collapse
|
12
|
Baylor JL, Butler MW. Immune challenge-induced oxidative damage may be mitigated by biliverdin. ACTA ACUST UNITED AC 2019; 222:jeb.200055. [PMID: 30770399 DOI: 10.1242/jeb.200055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Abstract
An effective immune response results in the elimination of pathogens, but this immunological benefit may be accompanied by increased levels of oxidative damage. However, organisms have evolved mechanisms to mitigate the extent of such oxidative damage, including the production and mobilization of antioxidants. One potential mechanism of mitigating immune challenge-induced changes in oxidative physiology is increasing biliverdin production. Biliverdin is chemically an antioxidant, but within-tissue correlations between biliverdin concentration and oxidative damage have never been directly examined. To test how biliverdin tissue concentrations are associated with physiological responses to an immune challenge, we exposed northern bobwhite quail (Colinus virginianus) to one of four treatments: injection of a non-pathogenic antigen - either lipopolysaccharide or phytohemagglutinin, control injection of phosphate-buffered saline or a sham procedure with no injection. Twenty-four hours later, we quantified oxidative damage and triglyceride concentration in the plasma, and biliverdin concentration in the plasma, liver and spleen. We found that both types of immune challenge increased oxidative damage relative to both non-injected and vehicle-injected controls, but treatment had no effects on any other metric. However, across all birds, oxidative damage and biliverdin concentration in the plasma were negatively correlated, which is consistent with a localized antioxidant function of biliverdin. Additionally, we uncovered multiple links between biliverdin concentration, change in mass during the immune challenges and triglyceride levels, suggesting that pathways associated with biliverdin production may also be associated with aspects of nutrient mobilization. Future experiments that manipulate biliverdin levels or oxidative damage directly could establish a systemic antioxidant function or elucidate important physiological impacts on body mass maintenance and triglyceride storage, mobilization or transport.
Collapse
|
13
|
Vágási CI, Vincze O, Pătraș L, Osváth G, Pénzes J, Haussmann MF, Barta Z, Pap PL. Longevity and life history coevolve with oxidative stress in birds. Funct Ecol 2019; 33:152-161. [PMID: 34290466 PMCID: PMC8291348 DOI: 10.1111/1365-2435.13228] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/30/2018] [Indexed: 01/09/2023]
Abstract
1. The mechanisms that underpin the evolution of ageing and life histories remain elusive. Oxidative stress, which results in accumulated cellular damages, is one of the mechanisms suggested to play a role. 2. In this paper, we set out to test the "oxidative stress theory of ageing" and the "oxidative stress hypothesis of life histories" using a comprehensive phylogenetic comparison based on an unprecedented dataset of oxidative physiology in 88 free-living bird species. 3. We show for the first time that bird species with longer lifespan have higher non-enzymatic antioxidant capacity and suffer less oxidative damage to their lipids. We also found that bird species featuring a faster pace-of-life either have lower non-enzymatic antioxidant capacity or are exposed to higher levels of oxidative damage, while adult annual mortality does not relate to oxidative state. 4. These results reinforce the role of oxidative stress in the evolution of lifespan and also corroborate the role of oxidative state in the evolution of life histories among free-living birds.
Collapse
Affiliation(s)
- Csongor I. Vágási
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Orsolya Vincze
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Laura Pătraș
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Gergely Osváth
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
- Museum of Zoology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Janka Pénzes
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
| | | | - Zoltán Barta
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Péter L. Pap
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
14
|
|
15
|
Fowler MA, Paquet M, Legault V, Cohen AA, Williams TD. Physiological predictors of reproductive performance in the European Starling ( Sturnus vulgaris). Front Zool 2018; 15:45. [PMID: 30479645 PMCID: PMC6249724 DOI: 10.1186/s12983-018-0288-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/25/2018] [Indexed: 01/23/2023] Open
Abstract
Background It is widely assumed that variation in fitness components has a physiological basis that might underlie selection on trade-offs, but the mechanisms driving decreased survival and future fecundity remain elusive. Here, we assessed whether physiological variables are related to workload ability or immediate fitness consequences and if they mediate future survival or reproductive success. We used data on 13 physiological variables measured in 93 female European starlings (Sturnus vulgaris) at two breeding stages (incubation, chick-rearing), for first-and second-broods over two years (152 observations). Results There was little co-variation among the physiological variables, either in incubating or chick-rearing birds, but some systematic physiological differences between the two stages. Chick-rearing birds had lower hematocrit and plasma creatine kinase but higher hemoglobin, triglyceride and uric acid levels. Only plasma corticosterone was repeatable between incubation and chick-rearing. We assessed relationships between incubation or chick-rearing physiology and measures of workload, current productivity, future fecundity or survival in a univariate manner, and found very few significant relationships. Thus, we next explored the utility of multivariate analysis (principal components analysis, Mahalanobis distance) to account for potentially complex physiological integration, but still found no clear associations. Conclusions This implies either that a) birds maintained physiological variables within a homeostatic range that did not affect their performance, b) there are relatively few links between physiology and performance, or, more likely, c) that the complexity of these relationships exceeds our ability to measure it. Variability in ecological context may complicate the relationship between physiology and behavior. We thus urge caution regarding the over-interpretation of isolated significant findings, based on single traits in single years, in the literature. Electronic supplementary material The online version of this article (10.1186/s12983-018-0288-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melinda A Fowler
- 1Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada.,Present address: Springfield College Biology, 263 Alden Street, Springfield, MA 01109-3797 USA
| | - Mélissa Paquet
- 3Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4 Canada
| | - Véronique Legault
- 3Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4 Canada
| | - Alan A Cohen
- 3Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4 Canada
| | - Tony D Williams
- 1Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada
| |
Collapse
|
16
|
Hood WR, Zhang Y, Mowry AV, Hyatt HW, Kavazis AN. Life History Trade-offs within the Context of Mitochondrial Hormesis. Integr Comp Biol 2018; 58:567-577. [PMID: 30011013 PMCID: PMC6145418 DOI: 10.1093/icb/icy073] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Evolutionary biologists have been interested in the negative interactions among life history traits for nearly a century, but the mechanisms that would create this negative interaction remain poorly understood. One variable that has emerged as a likely link between reproductive effort and longevity is oxidative stress. Specifically, it has been proposed that reproduction generates free radicals that cause oxidative stress and, in turn, oxidative stress damages cellular components and accelerates senescence. We propose that there is limited support for the hypothesis because reactive oxygen species (ROS), the free radicals implicated in oxidative damage, are not consistently harmful. With this review, we define the hormetic response of mitochondria to ROS, termed mitochondrial hormesis, and describe how to test for a mitohormetic response. We interpret existing data using our model and propose that experimental manipulations will further improve our knowledge of this response. Finally, we postulate how the mitohormetic response curve applies to variation in animal performance and longevity.
Collapse
Affiliation(s)
- W R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Y Zhang
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - A V Mowry
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Product Development, Stimlabs, Roswell, GA 30076, USA
| | - H W Hyatt
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - A N Kavazis
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|