1
|
Yang YL, Yi QY, Han Y, Li Y, Yang R. The effectiveness and safety of posaconazole enteric-coated tablet versus oral suspension in invasive fungal infections. Sci Rep 2024; 14:27887. [PMID: 39538016 PMCID: PMC11561054 DOI: 10.1038/s41598-024-79512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Posaconazole enteric-coated tablet and oral suspension are two oral drugs in the treatment of invasive fungal infections (IFIs). This study compared the effectiveness and safety between posaconazole enteric-coated tablet and oral suspension, and provided a real world basis for the clinical practice. A retrospective cohort study was performed on IFIs patients treated with posaconazole enteric-coated tablet or oral suspension. The primary endpoints were in-hospital mortality, treatment discontinuation rate and clinical effective rate. The secondary endpoints were adverse events incidence (liver dysfunction, renal dysfunction and hypokalemia). One hundred and forty-four patients were totally included and divided into enteric-coated tablet group (n = 46) and oral suspension group (n = 98). There was no significant difference in effectiveness and safety between two groups. The female (OR = 0.130, P = 0.018) and diabetes mellitus (OR = 4.242, P = 0.003) were independently associated with combined in-hospital mortality/treatment discontinuation rate. The renal replacement therapy (OR = 10.071, P = 0.006), hypoalbuminemia (OR = 6.646, P = 0.002) and posaconazole duration (OR = 1.119, P = 0.002) were risk factors for liver dysfunction. The posaconazole enteric-coated tablet has comparable effectiveness and safety with oral suspension in IFIs, which need large-scale cases studies to confirm in the future.
Collapse
Affiliation(s)
- Yi-Lei Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, 250014, China
| | - Qiao-Yan Yi
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, 250014, China
| | - Yi Han
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, 250014, China
| | - Yan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, 250014, China
| | - Rui Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, 250014, China.
| |
Collapse
|
2
|
Dladla M, Gyzenhout M, Marias G, Ghosh S. Azole resistance in Aspergillus fumigatus- comprehensive review. Arch Microbiol 2024; 206:305. [PMID: 38878211 DOI: 10.1007/s00203-024-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.
Collapse
Affiliation(s)
- Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Marieka Gyzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Gert Marias
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Birkat Al Mawz, Oman.
| |
Collapse
|
3
|
Sun Y, Kim S, Shin S, Takemura K, Matos GS, Lazzarini C, Haranahalli K, Zambito J, Garg A, Del Poeta M, Ojima I. SAR study of N'-(Salicylidene)heteroarenecarbohydrazides as promising antifungal agents. Bioorg Med Chem 2024; 100:117610. [PMID: 38306882 DOI: 10.1016/j.bmc.2024.117610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Clinically available antifungal drugs have therapeutic limitations due to toxicity, narrow spectrum of activity, and intrinsic or acquired drug resistance. Thus, there is an urgent need for new broad-spectrum antifungal agents with low toxicity and a novel mechanism of action. In this context, we have successfully identified several highly promising lead compounds, i.e., aromatic N'-(salicylidene)carbohydrazides, exhibiting excellent antifungal activities against Cryptococcus neoformans, Candida albicans, Aspergillus fumigatus and several other fungi both in vitro and in vivo. Building upon these highly promising results, 71 novel N'-(salicylidene)heteroarenecarbohydrazides 5 were designed, synthesized and their antifungal activities examined against fungi. Based on the SAR study, four highly promising lead compounds, i.e., 5.6a, 5.6b, 5.7b and 5.13a were identified, which exhibited excellent potency against C. neoformans, C. albicans and A. fumigatus, and displayed impressive time-kill profiles against C. neoformans with exceptionally high selectivity indices (SI ≥ 500). These four lead compounds also showed synergy with clinical antifungal drugs, fluconazole, caspofungin (CS) and amphotericin B against C. neoformans. For the SAR study, we also employed quantitative structure-activity relationship (QSAR) analysis by taking advantage of the accumulated data on a large number of aromatic and heteroaromatic N'-(salicylidene)carbohydrazides, which successfully led to rational design and selection of promising compounds for chemical synthesis and biological evaluation.
Collapse
Affiliation(s)
- Yi Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Saerom Kim
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - SeungYoun Shin
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Kathryn Takemura
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Gabriel S Matos
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, United States
| | - Cristina Lazzarini
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, United States; Veterans Administration Medical Center, Northport, NY 11768, United States
| | - Krupanandan Haranahalli
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Julia Zambito
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Ashna Garg
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Maurizio Del Poeta
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, United States; Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, United States; Veterans Administration Medical Center, Northport, NY 11768, United States; Division of Infectious Diseases, School of Medicine, Stony Brook University, New York 11794-8434, United States
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, United States.
| |
Collapse
|
4
|
Choi Y, Yu SR, Lee Y, Na AY, Lee S, Heitman J, Seo R, Lee HS, Lee JS, Bahn YS. Casein kinase 2 complex: a central regulator of multiple pathobiological signaling pathways in Cryptococcus neoformans. mBio 2024; 15:e0327523. [PMID: 38193728 PMCID: PMC10865844 DOI: 10.1128/mbio.03275-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
The casein kinase 2 (CK2) complex has garnered extensive attention over the past decades as a potential therapeutic target for diverse human diseases, including cancer, diabetes, and obesity, due to its pivotal roles in eukaryotic growth, differentiation, and metabolic homeostasis. While CK2 is also considered a promising antifungal target, its role in fungal pathogens remains unexplored. In this study, we investigated the functions and regulatory mechanisms of the CK2 complex in Cryptococcus neoformans, a major cause of fungal meningitis. The cryptococcal CK2 complex consists of a single catalytic subunit, Cka1, and two regulatory subunits, Ckb1 and Ckb2. Our findings show that Cka1 plays a primary role as a protein kinase, while Ckb1 and Ckb2 have major and minor regulatory functions, respectively, in growth, cell cycle control, morphogenesis, stress response, antifungal drug resistance, and virulence factor production. Interestingly, triple mutants lacking all three subunits (cka1Δ ckb1Δ ckb2Δ) exhibited more severe phenotypic defects than the cka1Δ mutant alone, suggesting that Ckb1/2 may have Cka1-independent functions. In a murine model of systemic cryptococcosis, cka1Δ and cka1Δ ckb1Δ ckb2Δ mutants showed severely reduced virulence. Transcriptomic, proteomic, and phosphoproteomic analyses further revealed that the CK2 complex controls a wide array of effector proteins involved in transcriptional regulation, cell cycle control, nutrient metabolisms, and stress responses. Most notably, CK2 disruption led to dysregulation of key signaling cascades central to C. neoformans pathogenicity, including the Hog1, Mpk1 MAPKs, cAMP/PKA, and calcium/calcineurin signaling pathways. In summary, our study provides novel insights into the multifaceted roles of the fungal CK2 complex and presents a compelling case for targeting it in the development of new antifungal drugs.IMPORTANCEThe casein kinase 2 (CK2) complex, crucial for eukaryotic growth, differentiation, and metabolic regulation, presents a promising therapeutic target for various human diseases, including cancer, diabetes, and obesity. Its potential as an antifungal target is further highlighted in this study, which explores CK2's functions in C. neoformans, a key fungal meningitis pathogen. The CK2 complex in C. neoformans, comprising the Cka1 catalytic subunit and Ckb1/2 regulatory subunits, is integral to processes like growth, cell cycle, morphogenesis, stress response, drug resistance, and virulence. Our findings of CK2's role in regulating critical signaling pathways, including Hog1, Mpk1 MAPKs, cAMP/PKA, and calcium/calcineurin, underscore its importance in C. neoformans pathogenicity. This study provides valuable insights into the fungal CK2 complex, reinforcing its potential as a target for novel antifungal drug development and pointing out a promising direction for creating new antifungal agents.
Collapse
Affiliation(s)
- Yeseul Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Seong-Ryong Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yujin Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Ann-Yae Na
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ran Seo
- AmtixBio Co., Ltd., Hanam-si, Gyeonggi-do, South Korea
| | - Han-Seung Lee
- AmtixBio Co., Ltd., Hanam-si, Gyeonggi-do, South Korea
| | | | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
5
|
Mori G, Diotallevi S, Farina F, Lolatto R, Galli L, Chiurlo M, Acerbis A, Xue E, Clerici D, Mastaglio S, Lupo Stanghellini MT, Ripa M, Corti C, Peccatori J, Puoti M, Bernardi M, Castagna A, Ciceri F, Greco R, Oltolini C. High-Risk Neutropenic Fever and Invasive Fungal Diseases in Patients with Hematological Malignancies. Microorganisms 2024; 12:117. [PMID: 38257945 PMCID: PMC10818361 DOI: 10.3390/microorganisms12010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Invasive fungal diseases (IFDs) still represent a relevant cause of mortality in patients affected by hematological malignancies, especially acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS) undergoing remission induction chemotherapy, and in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Mold-active antifungal prophylaxis (MAP) has been established as a standard of care. However, breakthrough IFDs (b-IFDs) have emerged as a significant issue, particularly invasive aspergillosis and non-Aspergillus invasive mold diseases. Here, we perform a narrative review, discussing the major advances of the last decade on prophylaxis, the diagnosis of and the treatment of IFDs in patients with high-risk neutropenic fever undergoing remission induction chemotherapy for AML/MDS and allo-HSCT. Then, we present our single-center retrospective experience on b-IFDs in 184 AML/MDS patients undergoing high-dose chemotherapy while receiving posaconazole (n = 153 induction treatments, n = 126 consolidation treatments, n = 60 salvage treatments). Six cases of probable/proven b-IFDs were recorded in six patients, with an overall incidence rate of 1.7% (6/339), which is in line with the literature focused on MAP with azoles. The incidence rates (IRs) of b-IFDs (95% confidence interval (95% CI), per 100 person years follow-up (PYFU)) were 5.04 (0.47, 14.45) in induction (n = 2), 3.25 (0.0013, 12.76) in consolidation (n = 1) and 18.38 (3.46, 45.06) in salvage chemotherapy (n = 3). Finally, we highlight the current challenges in the field of b-IFDs; these include the improvement of diagnoses, the expanding treatment landscape of AML with molecular targeted drugs (and related drug-drug interactions with azoles), evolving transplantation techniques (and their related impacts on IFDs' risk stratification), and new antifungals and their features (rezafungin and olorofim).
Collapse
Affiliation(s)
- Giovanni Mori
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.M.)
- Infectious Diseases Unit, Ospedale Santa Chiara, 38122 Trento, Italy
| | - Sara Diotallevi
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Francesca Farina
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Riccardo Lolatto
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Laura Galli
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Matteo Chiurlo
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.M.)
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Andrea Acerbis
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.M.)
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elisabetta Xue
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Centre for Immuno-Oncology, National Cancer Institute, Eliminate NIH, Bethesda, MD 20850, USA
| | - Daniela Clerici
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara Mastaglio
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Marco Ripa
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.M.)
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Consuelo Corti
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Jacopo Peccatori
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Massimo Puoti
- Infectious Diseases Unit, ASST Grande Ospedale Metropolitano Niguarda, 20161 Milan, Italy
- Faculty of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Massimo Bernardi
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonella Castagna
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.M.)
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Fabio Ciceri
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.M.)
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Raffaella Greco
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Oltolini
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
- Infectious Diseases Unit, ASST Grande Ospedale Metropolitano Niguarda, 20161 Milan, Italy
| |
Collapse
|
6
|
Zoowa R, Shah R, Pradhan D, Karmacharya S, Bhandari D. Candida krusei pneumonia in graft-versus-host disease after allogeneic hematopoietic stem cell transplant for paroxysmal nocturnal hemoglobinuria: a case report. Ann Med Surg (Lond) 2023; 85:6168-6172. [PMID: 38098551 PMCID: PMC10718395 DOI: 10.1097/ms9.0000000000001374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/24/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction and importance Paroxysmal nocturnal hemoglobinuria (PNH) is a rare disorder caused by a somatic mutation of PIGA (phosphatidylinositol glycan anchor biosynthesis, class A) gene that leads to the destruction of blood cells. Allogeneic haematopoietic stem cell transplant (HSCT) is a treatment option for PHN, but it can cause graft-versus-host disease (GVHD). Long-term immunosuppression as a treatment of GVHD increases the risk for invasive fungal infections such as Candida krusei pneumonia. Case presentation We present the case of a 22-year-old male with C. krusei pneumonia in a known case of chronic GVHD following HSCT for PNH undergoing long-term immunosuppressive therapy. The patient presented with progressive shortness of breath, productive cough, palpitations, and difficulty swallowing. On examination, he had skin rashes and oral lesions, along with signs of severe malnutrition. Diagnosis was made on the basis of radiological imaging and fungal culture. Discussion The combination of PNH, GVHD, and HSCT created an immunocompromised state, making the patient susceptible to opportunistic infections, including fungal pneumonia. Early recognition of this condition is challenging due to its non-specific symptoms and potential overlap with other post-transplant complications. Timely diagnosis and appropriate treatment, including antifungal therapy and immunosuppression management, are crucial for optimising patient outcomes. Conclusion This case highlights the importance of early recognition and timely treatment of fungal infections in patients with severe conditions such as GVHD following HSCT for PNH. Timely treatment with appropriate antifungals is necessary for optimal outcomes. Additionally, more research with long-term follow-up and monitoring is necessary to address the necessary knowledge gaps in this field.
Collapse
Affiliation(s)
- Ronit Zoowa
- Nepalese Army Institute of Health Sciences, Sanobharyang
| | - Ravi Shah
- Nepalese Army Institute of Health Sciences, Sanobharyang
| | | | | | | |
Collapse
|
7
|
Chen Z, Feng Q, Wang X, Tian F. Prophylactic use amphotericin B use in patients with hematologic disorders complicated by neutropenia: a systematic review and meta-analysis. Sci Rep 2023; 13:14008. [PMID: 37635176 PMCID: PMC10460793 DOI: 10.1038/s41598-023-41268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/24/2023] [Indexed: 08/29/2023] Open
Abstract
The purpose of this study is to evaluate the efficacy of prophylactic use amphotericin B in patients with hematologic disorders complicated by neutropenia. We searched the PubMed, EMBASE, The Cochrane Library, CBM, CNKI, VIP and WanFang Data database and the China Clinical Trials Registry ( www.chictr.org.cn ) to collect randomized controlled trials (RCTs) of amphotericin B for patients with hematologic disorders complicated by neutropenia from inception to May 2023. The Cochrane risk-of-bias tool for RCTs was used to assess the bias risk of the included studies. The meta-analysis was performed using RevMan 5.3 software. A total of 6 studies with a total of 1019 patients were included. The results of the meta-analysis showed that the treatment group was superior to the control group in terms of the fungal infection rate, and the differences were statistically significant [RR = 0.47, 95% CI (0.32, 0.69), P < 0.0001]. There was no significant difference between the two groups in terms of the mortality [RR = 0.87, 95% CI (0.61, 1.23), P = 0.43] and the incidence of colonization [OR = 0.51, 95% CI (0.25, 1.03), P = 0.06]. The evidence shows that amphotericin B prophylactic use for patients with hematologic disorders complicated by neutropenia can decrease the fungal infection rate. However, there was no significant difference in reducing mortality or the incidence of colonization. Due to the limited quality and quantity of the included studies, more high-quality studies are needed to verify the above conclusion.
Collapse
Affiliation(s)
- Zhaoyan Chen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qiyi Feng
- Sichuan Provincial Key Laboratory of Precision Medicine and National Clinical Research Center for Geriatrics, Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaoxing Wang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Fangyuan Tian
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
8
|
Britton SJ, Rogers LJ, White JS, Maskell DL. HYPHAEdelity: a quantitative image analysis tool for assessing peripheral whole colony filamentation. FEMS Yeast Res 2022; 22:6832773. [PMID: 36398755 PMCID: PMC9697609 DOI: 10.1093/femsyr/foac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The yeast Saccharomyces cerevisiae, also known as brewer's yeast, can undergo a reversible stress-responsive transition from individual ellipsoidal cells to chains of elongated cells in response to nitrogen- or carbon starvation. Whole colony morphology is frequently used to evaluate phenotypic switching response; however, quantifying two-dimensional top-down images requires each pixel to be characterized as belonging to the colony or background. While feasible for a small number of colonies, this labor-intensive assessment process is impracticable for larger datasets. The software tool HYPHAEdelity has been developed to semi-automate the assessment of two-dimensional whole colony images and quantify the magnitude of peripheral whole colony yeast filamentation using image analysis tools intrinsic to the OpenCV Python library. The software application functions by determining the total area of filamentous growth, referred to as the f-measure, by subtracting the area of the inner colony boundary from the outer-boundary area associated with hyphal projections. The HYPHAEdelity application was validated against automated and manually pixel-counted two-dimensional top-down images of S. cerevisiae colonies exhibiting varying degrees of filamentation. HYPHAEdelity's f-measure results were comparable to areas determined through a manual pixel enumeration method and found to be more accurate than other whole colony filamentation software solutions.
Collapse
Affiliation(s)
- Scott J Britton
- Corresponding author: Institute for Biological Chemistry, Biophysics and Bioengineering, John Muir Building, Heriot-Watt University, Riccarton, Edinburgh, Scotland, United Kingdom, EH14 4AS. Tel: +32470205380; E-mail:
| | | | - Jane S White
- Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom EH14 4AS
| | - Dawn L Maskell
- Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom EH14 4AS
| |
Collapse
|
9
|
Molecular Modeling Study of Novel Lancifolamide Bioactive Molecule as an Inhibitor of Acetylcholinesterase (AChE), Herpes Simplex Virus (HSV-1), and Anti-proliferative Proteins. Molecules 2022; 27:molecules27175480. [PMID: 36080247 PMCID: PMC9458197 DOI: 10.3390/molecules27175480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Combretaceae, an immense family involving species (500) or genera (20), originates in tropical and subtropical regions. This family has evinced medicinal values such as anti-leishmanial, cytotoxic, antibacterial, antidiabetic, antiprotozoal, and antifungal properties. Conocarpus lancifolius (C. lancifolius) methanol extract (CLM) was prepared, then compound isolation performed by open column chromatography, and compound structure was determined by spectroscopic techniques (13C NMR, IR spectroscopy, 1H-NMR, mass spectrometry UV-visible, and 2D correlation techniques). Molecular docking studies of ligand were performed on transcriptional regulators 4EY7 and 2GV9 to observe possible interactions. Phytochemical screening revealed the presence of secondary metabolites including steroids, cardiac glycosides, saponins, anthraquinones, and flavonoids. The isolated compound was distinguished as lancifolamide (LFD). It showed cytotoxic activity against human breast cancer, murine lymphocytic leukemia, and normal cells, human embryonic kidney cells, and rat glioma cells with IC50 values of 0.72 µg/mL, 2.01 µg/mL, 1.55 µg/mL, and 2.40 µg/mL, respectively. Although no cytotoxic activity was noticed against human colon cancer and human lung cancer, LFD showed 24.04% inhibition against BChE and 60.30% inhibition against AChE and is therefore beneficial for Alzheimer’s disease (AD). AChE and LFD interact mechanistically in a way that is optimum for neurodegenerative disorders, according to molecular docking studies. Methanol and dichloromethane extract of C. lancifolius and LFD shows antibacterial and antifungal activity against antibiotic resistance Bacillus subtilis, Streptococcus mutans, Brevibacillus laterosporus, Salmonella Typhi, Candida albicans, and Cryptococcus neoformans, respectively. LFD shows antiviral activity against HSV-1 with 26% inhibition IP. The outcomes of this study support the use of LFD for cognitive disorders and highlight its underlying mechanism, targeting AChE, DNA-POL, NF-KB, and TNF-α, etc., for the first time.
Collapse
|
10
|
Deletion of cox7c Results in Pan-Azole Resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 2022; 66:e0015122. [PMID: 35647650 PMCID: PMC9211413 DOI: 10.1128/aac.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Aspergillus fumigatus, the most prevalent resistance to azoles results from mutational modifications of the azole target protein Cyp51A, but there are non-cyp51A mutants resistant to azoles, and the mechanisms underlying the resistance of these strains remain to be explored. Here, we identified a novel cytochrome c oxidase, cox7c (W56*), nonsense mutation in the laboratory and found that it caused reduced colony growth and resistance to multiantifungal agents. Meanwhile, we revealed that cold storage is responsible for increased tolerance of conidia to itraconazole (ITC) stress, which further advances azole-resistant mutations (cryopreservation→ITC tolerance→azole resistance). The deletion or mutation of cox7c results explicitly in resistance to antifungal-targeting enzymes, including triazoles, polyenes, and allylamines, required for ergosterol synthesis, or resistance to fungal ergosterol. A high-performance liquid chromatography (HPLC) assay showed that the cox7c knockout strain decreased intracellular itraconazole concentration. In addition, the lack of Cox7c resulted in the accumulation of intracellular heme B. We validated that an endogenous increase in, or the exogenous addition of, heme B was capable of eliciting azole resistance, which was in good accordance with the phenotypic resistance analysis of cox7c mutants. Furthermore, RNA sequencing verified the elevated transcriptional expression levels of multidrug transport genes. Additionally, lower itraconazole-induced reactive oxygen species generation in mycelia of a cox7c-deletion strain suggested that this reduction may, in part, contribute to drug resistance. These findings increase our understanding of how A. fumigatus’s direct responses to azoles promote fungal survival in the environment and address genetic mutations that arise from patients or environments.
Collapse
|
11
|
Abstract
Invasive fungal diseases are rare in individuals with intact immunity. This, together with the fact that there are only a few species that account for most mycotic diseases, implies a remarkable natural resistance to pathogenic fungi. Mammalian immunity to fungi rests on two pillars, powerful immune mechanisms and elevated temperatures that create a thermal restriction zone for most fungal species. Conditions associated with increased susceptibility generally reflect major disturbances of immune function involving both the cellular and humoral innate and adaptive arms, which implies considerable redundancy in host defense mechanisms against fungi. In general, tissue fungal invasion is controlled through either neutrophil or granulomatous inflammation, depending on the fungal species. Neutrophils are critical against Candida spp. and Aspergillus spp. while macrophages are essential for controlling mycoses due to Cryptococcus spp., Histoplasma spp., and other fungi. The increasing number of immunocompromised patients together with climate change could significantly increase the prevalence of fungal diseases.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| |
Collapse
|
12
|
Michallet M, Cheikh JE, Herbrecht R, Yakoub-Agha I, Caillot D, Gangneux JP. Systemic antifungal strategies in allogeneic hematopoietic stem cell recipients hospitalized in french hematology units: a post-hoc analysis of the cross-sectional observational AFHEM study. BMC Infect Dis 2022; 22:352. [PMID: 35397492 PMCID: PMC8994341 DOI: 10.1186/s12879-022-07216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Invasive fungal diseases (IFD) remain a major complication of allogeneic hematopoietic stem cell transplantation (alloHSCT) and are associated with high mortality rates in patients receiving alloHSCT. Antifungal prophylaxis is increasingly being used in the management of IFDs in patients receiving alloHSCT.
Methods
A post-hoc analysis of the cross-sectional observational AFHEM study was carried out to describe the use of antifungal drugs in real-life clinical practice in alloHSCT recipients hospitalized in French hematological units.
Results
A total of 147 alloHSCT recipients were enrolled; most were adults (n = 135; 92%) and had received alloHSCT < 6 months prior to enrollment (n = 123; 84%). Overall, 119 (81%) patients received a systemic antifungal therapy; of these, 95 (80%) patients received antifungal prophylaxis. Rates of patients receiving systemic antifungal treatment were similar irrespective of transplant time, neutropenic, and graft-versus-host disease status. Among patients on systemic antifungal treatment, 83 (70%) received an azole, 22 (18%) received an echinocandin, and 16 (13%) received a polyene.
Conclusions
This work provides evidence of the antifungal strategies used in alloHSCT recipients hospitalized in French hematological units. Unlike earlier studies, the AFHEM study showed that prophylaxis appears to be the leading antifungal strategy used in alloHSCT recipients in France.
Collapse
|
13
|
Wang HJ, Zhou CY, Su YD, Gou KF, Geng XN, Qiu XJ. The Pharmacokinetic Effect of Itraconazole and Voriconazole on Ripretinib in Beagle Dogs by UPLC-MS/MS Technique. Drug Des Devel Ther 2021; 15:4865-4873. [PMID: 34876808 PMCID: PMC8643159 DOI: 10.2147/dddt.s337864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A new UPLC-MS/MS technique for the determination of ripretinib in beagle dog plasma was developed, and the pharmacokinetic effects of voriconazole and itraconazole on ripretinib in beagle dogs were studied. METHODS After extraction with ethyl acetate under alkaline conditions, ripretinib was detected using avapritinib as the internal standard (IS). The mobile phases were 0.1% formic acid-acetonitrile. The scanning method was multi-reaction monitoring using ESI+ source, and the ion pairs for ripretinib and IS were m/z 509.93→416.85 and 499.1→482.09, respectively. This animal experiment adopted a three period self-control experimental design. In the first period, ripretinib was orally administered to six beagle dogs at a dose of 5 mg/kg. In the second period, the same six beagle dogs were orally given itraconazole at a dose of 7 mg/kg, after 30 min, ripretinib was orally given. In the third period, voriconazole at a dose of 7 mg/kg was given orally, and then ripretinib was orally given. At different time points, the blood samples were collected. The concentration of ripretinib was detected, and the pharmacokinetic parameters of ripretinib were calculated. RESULTS Ripretinib had a good linear relationship in the range of 1-1000 ng/mL. The precision, accuracy, recovery, matrix effect and stability met the requirements of the guiding principles. After erdafitinib combined with itraconazole, the Cmax and AUC0→t of ripretinib increased by 38.35% and 36.36%, respectively, and the t1/2 was prolonged to 7.53 h. After ripretinib combined with voriconazole, the Cmax and AUC0→t of ripretinib increased by 37.44% and 25.52%, respectively, and the t1/2 was prolonged to 7.33 h. CONCLUSION A new and reliable UPLC-MS/MS technique was fully optimized and developed to detect the concentration of ripretinib in beagle dog plasma. Itraconazole and voriconazole could inhibit the metabolism of ripretinib in beagle dogs and increase the plasma exposure of ripretinib.
Collapse
Affiliation(s)
- Hui-jun Wang
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
| | - Chun-yan Zhou
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
| | - Yan-ding Su
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
| | - Kai-feng Gou
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
| | - Xiao-nan Geng
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
| | - Xiang-jun Qiu
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
- Functional Experiment Teaching Center, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
| |
Collapse
|
14
|
Del Principe MI, Dragonetti G, Conti A, Verga L, Ballanti S, Fanci R, Candoni A, Marchesi F, Cattaneo C, Lessi F, Fracchiolla N, Spolzino A, Prezioso L, Delia M, Potenza L, Decembrino N, Castagnola C, Nadali G, Picardi M, Zama D, Orciulo E, Veggia B, Garzia M, Dargenio M, Melillo L, Manetta S, Russo D, Mancini V, Piedimonte M, Tisi MC, Toschi N, Busca A, Pagano L. Invasive aspergillosis in relapsed/refractory acute myeloid leukaemia patients: Results from SEIFEM 2016-B survey. Mycoses 2021; 65:171-177. [PMID: 34695256 DOI: 10.1111/myc.13384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND In patients with relapsed/refractory acute myeloid leukaemia (R/R AML) who received salvage chemotherapy, limited and not updated studies explored the incidence of invasive aspergillosis (IA) and the role of antifungal prophylaxis (AP). The aims of this multicentre retrospective 'SEIFEM 2016-B' study were as follows: (1) to evaluate the current rate and the outcome of proven/probable IA and (2) to assess the efficacy of AP, in a large 'real life' series of patient with R/R AML submitted to salvage chemotherapy. RESULTS Of 2250 R/R AML patients, a total of 74 cases of IA (5.1%) were recorded as follows: 10 (0.7%) proven and 64 (4.3%) probable. Information about AP were available in 73/74 (99%) patients. Fifty-eight (79%) breakthrough infections occurred, mainly during AP with posaconazole [25 (43%)]. The patients who received AP during salvage chemotherapy showed a benefit from antifungal therapy (AT) than patients who did not received AP [43 (86%) vs 7 (14%); p < .033]. In a multivariate analysis, AP and absence of severe mucositis had a significant favourable effect on overall response rate. CONCLUSION Our data demonstrated that the incidence of IA during the salvage chemotherapy is similar to the past. Nevertheless, the attributable mortality rate (AMR) appears to be lower than that previously reported in R/R AML. Further prospective studies should be performed to confirm our preliminary observation and understand and the why a decreased AMR is reported in this setting of high-risk patients.
Collapse
Affiliation(s)
- Maria Ilaria Del Principe
- Cattedra di Ematologia, Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma 'Tor Vergata', Roma, Italy
| | - Giulia Dragonetti
- Istituto di Ematologia, Fondazione Policlinico Universitario A. Gemelli-IRCSS-Università Cattolica del Sacro Cuore, Roma, Italy
| | - Allegra Conti
- Sezione di Fisica Medica, Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma 'Tor Vergata', Roma, Italy
| | - Luisa Verga
- Clinica Ematologica, Ospedale San Gerardo, ASST Monza, Università Milano Bicocca, Milano, Italy
| | - Stelvio Ballanti
- Dipartimento di Ematologia, Ospedale Santa Maria della Misericordia, Università di Perugia, Perugia, Italy
| | - Rosa Fanci
- Unità di Ematologia, Ospedale Careggi ed Università di Firenze, Firenze, Italy
| | - Anna Candoni
- Clinica di Ematologia e Unità di terapie Cellulari 'Carlo Melzi'-Azienda Sanitaria-Universitaria, Integrata, Udine, Italy
| | - Francesco Marchesi
- Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Roma, Italy
| | - Chiara Cattaneo
- Divisione di Ematologia, ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Federica Lessi
- Divisione di Ematologia e Immunologia Clinica, Università di Padova, Padova, Italy
| | - Nicola Fracchiolla
- UOC Ematologia, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Angelica Spolzino
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Lucia Prezioso
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Mario Delia
- Hematology and Stem Cell Transplantation Unit-Azienda, Ospedaliero-Universitaria Consorziale-Policlinico di Bari, Bari, Italy
| | - Leonardo Potenza
- UOC Ematologia, Dipartimento di Scienze Mediche e Chirurgiche Materno infantili e dell'Adulto, Università di Modena e Reggio Emilia, Modena, Italy
| | - Nunzia Decembrino
- UOC Oncoematologia Pediatrica, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlo Castagnola
- Divisione di Ematologia, Fondazione ICRRS Policlinico San Matteo, Pavia, Italy
| | - Gianpaolo Nadali
- Unità Operativa Complessa di Ematologia, Azienda Ospedaliera Universitaria Integrata diVerona, Verona, Italy
| | - Marco Picardi
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Ematologia, Università Federico II, Napoli, Italy
| | - Daniele Zama
- Pediatric Oncology and Hematology 'Lalla Seràgnoli', Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Enrico Orciulo
- Dipartimento di Oncologia, Trapianti e Tecnologie Avanzate, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Barbara Veggia
- Dipartimento di Ematologia, Azienda Ospedaliera San Giovanni Addolorata, Rome, Italy
| | - Mariagrazia Garzia
- UOC Ematologia-Trapianto cellule staminali, Azienda Ospedaliera S.Camillo-Forlanini, Roma, Italy
| | - Michelina Dargenio
- Unità di Ematologia e Trapianto di Cellule Staminali, Ospedale Vito Fazzi, Lecce, Italy
| | - Lorella Melillo
- Divisione di Ematologia, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Sara Manetta
- Stem Cell Transplant Center, AOU Citta' della Salute e della Scienza, Torino, Italy
| | - Domenico Russo
- Cattedra di Ematologia USD Trapianti di Midollo Osseo per Adulti Spedali Civili di Brescia, Università di Brescia, ASST SpedaliCivili di Brescia, Brescia, Italy
| | - Valentina Mancini
- Dipartimento di Ematologia ed Oncologia, Niguarda Cancer Center ASST Grande Ospedale Metropolitano, Milano, Italy
| | - Monica Piedimonte
- Dipartimento di Medicina Clinica e Molecolare, Ematologia Ospedale Universitario Sant'Andrea, Università la Sapienza di Roma, Roma, Italy
| | - Maria Chiara Tisi
- Cell Therapy and Hematology, San Bortolo Hospital, Vicenza, Italy.,Divisione di Ematologia, Ospedale San Bortolo, Vicenza, Italy
| | - Nicola Toschi
- Sezione di Fisica Medica, Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma 'Tor Vergata', Roma, Italy.,Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandro Busca
- Stem Cell Transplant Center, AOU Citta' della Salute e della Scienza, Torino, Italy
| | - Livio Pagano
- Istituto di Ematologia, Fondazione Policlinico Universitario A. Gemelli-IRCSS-Università Cattolica del Sacro Cuore, Roma, Italy
| | | | | |
Collapse
|
15
|
Tabassum R, Ashfaq M, Oku H. Current Pharmaceutical Aspects of Synthetic Quinoline Derivatives. Mini Rev Med Chem 2021; 21:1152-1172. [PMID: 33319670 DOI: 10.2174/1389557520999201214234735] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
Quinoline derivatives are considered broad-spectrum pharmacological compounds that exhibit a wide range of biological activities. Integration of quinoline moiety can improve its physical and chemical properties and also pharmacological behavior. Due to its wide range of pharmaceutical applications, it is a very popular compound to design new drugs for the treatment of multiple diseases like cancer, dengue fever, malaria, tuberculosis, fungal infections, AIDS, Alzheimer's disease and diabetes. In this review, our major focus is to pay attention to the biological activities of quinoline compounds in the treatment of these diseases such as anti-viral, anti-cancer, anti-malarial, antibacterial, anti-fungal, anti-tubercular and anti-diabetic.
Collapse
Affiliation(s)
- Rukhsana Tabassum
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 36100, Pakistan
| | - Muhammad Ashfaq
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 36100, Pakistan
| | - Hiroyuki Oku
- Division of Molecular Science, Graduate School of Science & Engineering Gunma University, Gunma 376-8515, Japan
| |
Collapse
|
16
|
Martín Gómez MT, Salavert Lletí M. [Mucormycosis: Current and future management perspective]. Rev Iberoam Micol 2021; 38:91-100. [PMID: 34144835 DOI: 10.1016/j.riam.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Infections caused by mucorales, with an increasing incidence after candidiasis and aspergillosis, are characterized by the fast angioinvasion of blood vessels and invasion of neighboring organs or structures. Mucorales most commonly cause rhinocerebral, pulmonary, cutaneous, digestive or disseminated infections, and their spread is favored by certain underlying diseases (diabetes, kidney failure) and risk factors (neutropenia, immunosuppression, iron overload). These infections have a high mortality rate, over 40% in many series, and the key to their cure depends on both an early diagnosis and an antifungal treatment, associated in most cases with extensive surgical debridement and other adjunctive therapies. Currently, there are international guidelines, not only local ones, for the management of mucormycosis, in which it is considered by consensus and with a strong recommendation that first-line treatment with high-dose liposomal amphotericin B is the best choice. The combined antifungal treatment of polyene agents with triazoles or candins remains in open debate.
Collapse
Affiliation(s)
- María Teresa Martín Gómez
- Sección de Micología, Servicio de Microbiología, Hospital Universitario Vall d'Hebron, Barcelona, España
| | - Miguel Salavert Lletí
- Unidad de Enfermedades Infecciosas (Área Clínica Médica), Hospital Universitario y Politécnico La Fe, Valencia, España.
| |
Collapse
|
17
|
Jäger P, Geyh S, Twarock S, Cadeddu RP, Rabes P, Koch A, Maus U, Hesper T, Zilkens C, Rautenberg C, Bormann F, Köhrer K, Petzsch P, Wieczorek D, Betz B, Surowy H, Hildebrandt B, Germing U, Kobbe G, Haas R, Schroeder T. Acute myeloid leukemia-induced functional inhibition of healthy CD34+ hematopoietic stem and progenitor cells. STEM CELLS (DAYTON, OHIO) 2021; 39:1270-1284. [PMID: 34013984 DOI: 10.1002/stem.3387] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/01/2021] [Accepted: 03/21/2021] [Indexed: 11/11/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by an expansion of leukemic cells and a simultaneous reduction of normal hematopoietic precursors in the bone marrow (BM) resulting in hematopoietic insufficiency, but the underlying mechanisms are poorly understood in humans. Assuming that leukemic cells functionally inhibit healthy CD34+ hematopoietic stem and progenitor cells (HSPC) via humoral factors, we exposed healthy BM-derived CD34+ HSPC to cell-free supernatants derived from AML cell lines as well as from 24 newly diagnosed AML patients. Exposure to AML-derived supernatants significantly inhibited proliferation, cell cycling, colony formation, and differentiation of healthy CD34+ HSPC. RNA sequencing of healthy CD34+ HSPC after exposure to leukemic conditions revealed a specific signature of genes related to proliferation, cell-cycle regulation, and differentiation, thereby reflecting their functional inhibition on a molecular level. Experiments with paired patient samples showed that these inhibitory effects are markedly related to the immunomagnetically enriched CD34+ leukemic cell population. Using PCR, ELISA, and RNA sequencing, we detected overexpression of TGFβ1 in leukemic cells on the transcriptional and protein level and, correspondingly, a molecular signature related to TGFβ1 signaling in healthy CD34+ HSPC. This inhibitory effect of TGFβ1 on healthy hematopoiesis was functionally corrobated and could be pharmacologically reverted by SD208, an inhibitor of TGFβ receptor 1 signaling. Overall, these data indicate that leukemic cells induce functional inhibition of healthy CD34+ HSPC, at least in part, through TGFβ1, suggesting that blockage of this pathway may improve hematopoiesis in AML.
Collapse
Affiliation(s)
- Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sören Twarock
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ron-Patrick Cadeddu
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Pablo Rabes
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Annemarie Koch
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Uwe Maus
- Department of Orthopaedies and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Hesper
- Department of Orthopaedies and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Zilkens
- Department of Orthopaedies and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christina Rautenberg
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Beate Betz
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Harald Surowy
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Barbara Hildebrandt
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
18
|
Renzi DF, de Almeida Campos L, Miranda EH, Mainardes RM, Abraham WR, Grigoletto DF, Khalil NM. Nanoparticles as a Tool for Broadening Antifungal Activities. Curr Med Chem 2021; 28:1841-1873. [PMID: 32223729 DOI: 10.2174/0929867327666200330143338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Fungal infections are diseases that are considered neglected although their infection rates have increased worldwide in the last decades. Thus, since the antifungal arsenal is restricted and many strains have shown resistance, new therapeutic alternatives are necessary. Nanoparticles are considered important alternatives to promote drug delivery. In this sense, the objective of the present study was to evaluate the contributions of newly developed nanoparticles to the treatment of fungal infections. Studies have shown that nanoparticles generally improve the biopharmaceutical and pharmacokinetic characteristics of antifungals, which is reflected in a greater pharmacodynamic potential and lower toxicity, as well as the possibility of prolonged action. It also offers the proposition of new routes of administration. Nanotechnology is known to contribute to a new drug delivery system, not only for the control of infectious diseases but for various other diseases as well. In recent years, several studies have emphasized its application in infectious diseases, presenting better alternatives for the treatment of fungal infections.
Collapse
Affiliation(s)
- Daniele Fernanda Renzi
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Eduardo Hösel Miranda
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Wolf-Rainer Abraham
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Diana Fortkamp Grigoletto
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| |
Collapse
|
19
|
Prevalence surveillance of healthcare-associated infections at a Tunisianonco-hematology ward. LA TUNISIE MÉDICALE 2021. [PMCID: PMC8772597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background : Healthcare-associated infections (HAIs) are with high rates of mortality and an additional cost, in onco-hematology patients. Aim : The study aims to assess the prevalence trends of HAIs in the onco-hematology ward of the Tunisian National Bone Marrow Transplant Center (NBMTC), and to determine the principal associated risk factors. Methods: Six repeated point prevalence surveys were conducted, from May 2018 to March 2019, using a two months interval. All patients hospitalized in the day of the survey were included. Risk factors of HAIs were expressed as odds ratios (ORs) with 95% confidence intervals (CIs). They were assessed using a logistic regression model. Results: Nineteen patients out of a total of 74 patients have been diagnosed with 19 HAIs, representing a prevalence of 25.7%. No significant downward or upward trend of prevalence was revealed over time (p=0.3). The most common HAI was respiratory tract infection (57.9%) with a prevalence of 14.9%. Multiple logistic regression analysis revealed that HAI was significantly associated with neutropenia (Adjusted OR: 14; 95% CI: 1.5-127; p=0.01) and duration of central venous catheter (Adjusted OR: 1.1; 95% CI: 1-1.2; p=0.005). Conclusion: High prevalence of HAIs in our center with a high rate of mortality, requiring identifying potential problems in infection control practices.
Collapse
|
20
|
Bretagne S, Desnos-Ollivier M, Sitbon K, Lortholary O, Che D, Dromer F. No Impact of Fluconazole to Echinocandins Replacement as First-Line Therapy on the Epidemiology of Yeast Fungemia (Hospital-Driven Active Surveillance, 2004-2017, Paris, France). Front Med (Lausanne) 2021; 8:641965. [PMID: 33959624 PMCID: PMC8093410 DOI: 10.3389/fmed.2021.641965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Replacement of fluconazole by echinocandins as the first-line therapy for yeast-related fungemia could have an impact on both the mortality rate and the epidemiology of yeast species responsible for candidemia. We analyzed the individual clinical and microbiological data collected through the active surveillance program on yeast fungemia (YEASTS program, 2004-2016, Paris area, France) within 14 University Hospitals. The cohort included 3,092 patients [male:female ratio: 1.56; median age 61.0 years (IQR: 23.8)]. The mean mortality rate within 30 days was 38.5% (1,103/2,868) and significantly higher in intensive care units (690/1,358, 50.8%) than outside (413/1,510, 27.4%, p < 0.0001) without significant change over time. The yeast species distribution [Candida albicans (n = 1,614, 48.0%), Candida glabrata (n = 607, 18.1%), Candida parapsilosis (n = 390, 11.6%), Candida tropicalis (n = 299, 8.9%), Candida krusei (n = 96, 2.9%), rare species (n = 357, 10.6%)], minimal inhibitory concentration distribution, and the distribution between the patient populations (hematological malignancies, solid tumors, without malignancy) did not change either while the proportion of patients ≥60-years increased from 48.7% (91/187) in 2004 to 56.8% (133/234) in 2017 (p = 0.0002). Fluconazole as first-line therapy dramatically decreased (64.4% in 2004 to 27.7% in 2017, p < 0.0001) with a corresponding increase in echinocandins (11.6% in 2004 to 57.8% in 2017, p < 0.0001). Survival rates did not differ according to the first antifungal therapy. The progressive replacement of fluconazole by echinocandins as the first-line antifungal therapy was not associated with change in global mortality, regardless of species involved and antifungal susceptibility profiles. Other factors remain to be uncovered to improve the prognosis of yeast fungemia.
Collapse
Affiliation(s)
- Stéphane Bretagne
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France.,Laboratoire de Parasitologie-Mycologie, Hôpital Saint Louis, AP-HP, Paris, France.,Université de Paris, Paris, France
| | - Marie Desnos-Ollivier
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France
| | - Karine Sitbon
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France
| | - Olivier Lortholary
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France.,Université de Paris, Paris, France.,Service des Maladies Infectieuses et Tropicales, Centre d'Infectiologie Necker-Pasteur, Hôpital Necker-Enfants Malades, APHP, IHU Imagine, Paris, France
| | - Didier Che
- Santé publique France, Saint Maurice, France
| | - Françoise Dromer
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France
| | | |
Collapse
|
21
|
Cao W, Guan L, Li X, Zhang R, Li L, Zhang S, Wang C, Xie X, Jiang Z, Wan D, Chi X. Clinical Analysis of Bloodstream Infections During Agranulocytosis After Allogeneic Hematopoietic Stem Cell Transplantation. Infect Drug Resist 2021; 14:185-192. [PMID: 33500639 PMCID: PMC7826046 DOI: 10.2147/idr.s280869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/01/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose To explore the epidemiological characteristics and risk factors of bloodstream infections (BSI) in patients who develop agranulocytosis fever after allogeneic hematopoietic stem cell transplantation (allo-HSCT). This study also provides a basis for the clinical treatment of BSI. Methods A retrospective analysis of 397 allo-HSCT patients in the Department of Hematology of our hospital was conducted from January 2013 to December 2017 to analyze the incidence of BSI, the distribution and types of pathogenic bacteria, and drug resistance rates. We also determined whether various parameters are risk factors to BSI, including the patient age, gender, disease type, transplantation method, stem cell source, pre-treatment with anti-thymocyte globulin (ATG), and agranulocytosis time. Results Among the 397 allo-HSCT patients, 294 had a fever during the period of agranulocytosis, and 52 cases were found to have BSI. The incidence of BSI in patients with agranulocytosis fever was 17.7% (52/294). Among the 60 pathogens detected, 43 (71.67%), 10 (16.67%), and 7 (11.67%) were Gram negative strains, Gram positive strains, and fungi, respectively. The most common bacteria were Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The detection rate of extended-spectrum β-lactamase (ESBL) was 40.0%, and carbapenem-resistant Enterobacteriaceae (CRE) accounted for 17.9%. Single-factor and multi-factor analyses showed that pre-treatment with ATG, agranulocytosis time (≥21 days), and stem cell source were risk factors for BSI. Conclusion We found that in our hospital, BSIs in allo-HSCT patients are mainly caused by Gram-negative bacteria, and the resistance rate to carbapenem drugs is high. Pre-treatment with ATG, agranulocytosis time (≥21 days), and stem cell source are risk factors for BSI.
Collapse
Affiliation(s)
- Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lina Guan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaoning Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ran Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Li Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Suping Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Dingming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaohui Chi
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
22
|
Thamban Chandrika N, Dennis EK, Brubaker KR, Kwiatkowski S, Watt DS, Garneau-Tsodikova S. Broad-Spectrum Antifungal Agents: Fluorinated Aryl- and Heteroaryl-Substituted Hydrazones. ChemMedChem 2021; 16:124-133. [PMID: 33063957 PMCID: PMC10898509 DOI: 10.1002/cmdc.202000626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/28/2020] [Indexed: 12/25/2022]
Abstract
Fluorinated aryl- and heteroaryl-substituted monohydrazones displayed excellent broad-spectrum activity against various fungal strains, including a panel of clinically relevant Candida auris strains relative to a control antifungal agent, voriconazole (VRC). These monohydrazones displayed less hemolysis of murine red blood cells than that of VRC at the same concentrations, possessed fungicidal activity in a time-kill study, and exhibited no mammalian cell cytotoxicity. In addition, these monohydrazones prevented the formation of biofilms that otherwise block antibiotic effectiveness and did not trigger the development of resistance when exposed to C. auris AR Bank # 0390 over 15 passages.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Emily K Dennis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Katelyn R Brubaker
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Stefan Kwiatkowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - David S Watt
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| |
Collapse
|
23
|
Bal AM. European confederation of medical mycology quality of clinical candidaemia management score: A review of the points based best practice recommendations. Mycoses 2020; 64:123-131. [PMID: 33058251 DOI: 10.1111/myc.13196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Candidaemia is associated with high mortality. In the last few years, several guidelines have been published on the management of Candida bloodstream infection. However, adherence to the practice guidelines has been suboptimal. In order to facilitate and objectively measure the adherence to good practice recommendations, a scoring criterion was published by the European Confederation of Medical Mycology (ECMM). The ECMM Quality (EQUAL) of Clinical Candidaemia Management is an audit tool that comprises of 10 quality indicators. Each quality indicator is allotted between 1 and 3 points. The maximum achievable score is 22 or 19 in patients with or without a central venous catheter, respectively. This paper reviews each of the 10 quality indicators and provides the context for improving quality within the individual domains. The review also suggests areas that are in need of further clarity or areas which merit attention in the future updates of the EQUAL scoring system so that clinicians are able to derive maximum benefit from the audit tool. The EQUAL scoring tool is an important milestone in the quality improvement aspect of the management of candidaemia and contributes to the various components of clinical governance in the management of Candida infection of the bloodstream.
Collapse
Affiliation(s)
- Abhijit M Bal
- Department of Microbiology, University Hospital Crosshouse, Kilmarnock, UK
| |
Collapse
|
24
|
Preclinical Evaluation of Acylhydrazone SB-AF-1002 as a Novel Broad-Spectrum Antifungal Agent. Antimicrob Agents Chemother 2020; 64:AAC.00946-20. [PMID: 32601165 DOI: 10.1128/aac.00946-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of invasive fungal infections is rising due to the increase in susceptible populations. Current clinically available drugs have therapeutic limitations due to toxicity, a narrow spectrum of activity, and, more importantly, the consistent rise of fungal species that are intrinsically resistant or that develop resistance due to prolonged therapy. Thus, there is an urgent need for new broad-spectrum antifungal agents with low toxicity and a novel mechanism of action. We previously reported a new class of potent antifungal compounds, acylhydrazones, that target the fungal sphingolipid pathway. Based upon our initial lead molecules, (E)-N'-(5-bromo-2-hydroxybenzylidene)-2-methylbenzohydrazide and D13, we performed a structure-activity relationship study, synthesizing ca. 300 new compounds. Of these, 5 compounds were identified to be the most promising for further studies, based on their broad-spectrum activity and low toxicity in mammalian cells lines. Among these top 5 lead compounds, we report here the impressive in vivo activity of 2,4-dibromo-N'-(5-bromo-2-hydroxybenzylidene)benzohydrazide (SB-AF-1002) in several models of systemic fungal infection. Our data show that SB-AF-1002 is efficacious and outperforms current standard-of-care drugs in models of invasive fungal infections, such as cryptococcosis, candidiasis, and aspergillosis. Specifically, animals treated with SB-AF-1002 not only survived the infection but also showed a clearing of fungal cells from key organs. Moreover, SB-AF-1002 was very effective in an aspergillosis model as a prophylactic therapy. SB-AF-1002 also displayed acceptable pharmacokinetic properties in mice, similar to those of the parent compound, D13. These results clearly indicate that our novel acylhydrazones constitute a new class of highly potent and efficacious antifungal agents which warrant further development for the treatment of invasive fungal infections.
Collapse
|
25
|
Lee J, Ng P, Hamandi B, Husain S, Lefebvre MJ, Battistella M. Effect of Therapeutic Drug Monitoring and Cytochrome P450 2C19 Genotyping on Clinical Outcomes of Voriconazole: A Systematic Review. Ann Pharmacother 2020; 55:509-529. [DOI: 10.1177/1060028020948174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives To examine current knowledge on the clinical utility of therapeutic drug monitoring (TDM) in voriconazole therapy, the impact of CYP2C19 genotype on voriconazole plasma concentrations, and the role of CYP2C19 genotyping in voriconazole therapy. Data Sources Three literature searches were conducted for original reports on (1) TDM and voriconazole outcomes and (2) voriconazole and CYP2C19 polymorphisms. Searches were conducted through EMBASE, MEDLINE/PubMed, Scopus, and Cochrane Central Register of Controlled Trials from inception to June 2020. Study Selection and Data Extraction Randomized controlled trials, cohort studies, and case series with ≥10 patients were included. Only full-text references in English were eligible. Data Synthesis A total of 63 studies were reviewed. TDM was recommended because of established concentration and efficacy/toxicity relationships. Voriconazole trough concentrations ≥1.0 mg/L were associated with treatment success; supratherapeutic concentrations were associated with increased neurotoxicity; and hepatotoxicity associations were more prevalent in Asian populations. CYP2C19 polymorphisms significantly affect voriconazole metabolism, but no relationship with efficacy/safety were found. Genotype-guided dosing with TDM was reported to increase chances of achieving therapeutic range. Relevance to Patient Care and Clinical Practice Genotype-guided dosing with TDM is a potential solution to optimizing voriconazole efficacy while avoiding treatment failures and common toxicities. Conclusions Voriconazole plasma concentrations and TDM are treatment outcome predictors, but research is needed to form a consensus target therapeutic range and dosage adjustment guidelines based on plasma concentrations. CYP2C19 polymorphisms are a predictor of voriconazole concentrations and metabolism, but clinical implications are not established. Large-scale, high-methodological-quality trials are required to investigate the role for prospective genotyping and establish CYP2C19-guided voriconazole dosing recommendations.
Collapse
Affiliation(s)
| | - Patrick Ng
- University Health Network, Toronto, ON, Canada
| | - Bassem Hamandi
- University of Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
| | - Shahid Husain
- University of Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
| | | | - Marisa Battistella
- University of Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
| |
Collapse
|
26
|
Kaindl T, Andes D, Engelhardt M, Saulay M, Larger P, Groll AH. Variability and exposure-response relationships of isavuconazole plasma concentrations in the Phase 3 SECURE trial of patients with invasive mould diseases. J Antimicrob Chemother 2020; 74:761-767. [PMID: 30476108 PMCID: PMC6376854 DOI: 10.1093/jac/dky463] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 12/02/2022] Open
Abstract
Objectives This analysis evaluated the variability of isavuconazole plasma concentrations between subjects and between sampling times, and assessed their relationship to outcomes for subjects with invasive fungal disease (IFD) in the SECURE trial. Methods Isavuconazole-treated subjects received 372 mg of isavuconazonium sulphate (corresponding to 200 mg of isavuconazole) three times daily for 2 days, then once daily. Plasma samples were collected after day 4 and analysis sets were constructed as follows: analysis set 1 included all samples from subjects with proven/probable/possible IFD who received ≥1 dose of isavuconazole; analysis set 2 included samples from subjects in analysis set 1 who had provided >1 sample; and analysis set 3 included samples from subjects in analysis set 1 with proven/probable invasive aspergillosis. Assessments included overall distributions of plasma concentrations and variability between samples (analysis sets 1 and 2) as well as relationships to outcomes [all-cause mortality (day 42), overall response (end of treatment) and treatment-emergent adverse events; analysis sets 1 and 3]. Results Analysis sets 1, 2 and 3 included samples from 160, 97 and 98 subjects, respectively. Trough concentrations for each were distributed similarly [mean (SD): 3406.6 (1511.5), 3495.6 (1503.3) and 3368.1 (1523.2) ng/mL, respectively]. The mean coefficient of variation between samples in analysis set 2 was 23.2%; differences between concentrations in first samples and subsequent samples were <2-fold for 85/97 subjects. In quartiles of subject data, no concentration-dependent relationships were observed for efficacy or safety. Conclusions Plasma concentrations of isavuconazole were reasonably consistent between subjects and sampling times, and were not associated with differences in outcomes.
Collapse
Affiliation(s)
- Thomas Kaindl
- Basilea Pharmaceutica International Ltd, Basel, Switzerland
| | - David Andes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Patrice Larger
- Basilea Pharmaceutica International Ltd, Basel, Switzerland
| | - Andreas H Groll
- Department of Paediatric Haematology/Oncology, University Children's Hospital Münster, Münster, Germany
| |
Collapse
|
27
|
Ruhnke M, Cornely OA, Schmidt-Hieber M, Alakel N, Boell B, Buchheidt D, Christopeit M, Hasenkamp J, Heinz WJ, Hentrich M, Karthaus M, Koldehoff M, Maschmeyer G, Panse J, Penack O, Schleicher J, Teschner D, Ullmann AJ, Vehreschild M, von Lilienfeld-Toal M, Weissinger F, Schwartz S. Treatment of invasive fungal diseases in cancer patients-Revised 2019 Recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Mycoses 2020; 63:653-682. [PMID: 32236989 DOI: 10.1111/myc.13082] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Invasive fungal diseases remain a major cause of morbidity and mortality in cancer patients undergoing intensive cytotoxic therapy. The choice of the most appropriate antifungal treatment (AFT) depends on the fungal species suspected or identified, the patient's risk factors (eg length and depth of granulocytopenia) and the expected side effects. OBJECTIVES Since the last edition of recommendations for 'Treatment of invasive fungal infections in cancer patients' of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO) in 2013, treatment strategies were gradually moving away from solely empirical therapy of presumed or possible invasive fungal diseases (IFDs) towards pre-emptive therapy of probable IFD. METHODS The guideline was prepared by German clinical experts for infections in cancer patients in a stepwise consensus process. MEDLINE was systematically searched for English-language publications from January 1975 up to September 2019 using the key terms such as 'invasive fungal infection' and/or 'invasive fungal disease' and at least one of the following: antifungal agents, cancer, haematological malignancy, antifungal therapy, neutropenia, granulocytopenia, mycoses, aspergillosis, candidosis and mucormycosis. RESULTS AFT of IFDs in cancer patients may include not only antifungal agents but also non-pharmacologic treatment. In addition, the armamentarium of antifungals for treatment of IFDs has been broadened (eg licensing of isavuconazole). Additional antifungals are currently under investigation or in clinical trials. CONCLUSIONS Here, updated recommendations for the treatment of proven or probable IFDs are given. All recommendations including the levels of evidence are summarised in tables to give the reader rapid access to key information.
Collapse
Affiliation(s)
- Markus Ruhnke
- Division of Haematology, Oncology and Palliative Care, Department of Internal Medicine, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Oliver A Cornely
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.,ECMM Excellence Centre of Medical Mycology, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | | | - Nael Alakel
- Department I of Internal Medicine, Haematology and Oncology, University Hospital Dresden, Dresden, Germany
| | - Boris Boell
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Dieter Buchheidt
- Department of Hematology and Oncology, Mannheim University Hospital, Heidelberg University, Mannheim, Germany
| | - Maximilian Christopeit
- Department of Stem Cell Transplantation & Oncology, University Medical Center Eppendorf, Hamburg, Germany
| | - Justin Hasenkamp
- Clinic for Haematology and Medical Oncology with Department for Stem Cell Transplantation, University Medicine Göttingen, Göttingen, Germany
| | - Werner J Heinz
- Schwerpunkt Infektiologie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Marcus Hentrich
- Hämatologie und Internistische Onkologie, Innere Medizin III, Rotkreuzklinikum München, München, Germany
| | - Meinolf Karthaus
- Department of Haematology & Oncology, Municipal Hospital Neuperlach, München, Germany
| | - Michael Koldehoff
- Klinik für Knochenmarktransplantation, Westdeutsches Tumorzentrum Essen, Universitätsklinikum Essen (AöR), Essen, Germany
| | - Georg Maschmeyer
- Department of Hematology, Onclogy and Palliative Care, Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Jens Panse
- Klinik für Onkologie, Hämatologie und Stammzelltransplantation, Universitätsklinikum Aachen, Aachen, Germany
| | - Olaf Penack
- Division of Haematology & Oncology, Department of Internal Medicine, Charité University Medicine, Campus Rudolf Virchow, Berlin, Germany
| | - Jan Schleicher
- Klinik für Hämatologie Onkologie und Palliativmedizin, Katharinenhospital, Stuttgart, Germany
| | - Daniel Teschner
- III. Medizinische Klinik und Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Andrew John Ullmann
- Department of Internal Medicine II, Julius Maximilians University, Würzburg, Germany
| | - Maria Vehreschild
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.,ECMM Excellence Centre of Medical Mycology, Cologne, Germany.,Zentrum für Innere Medizin, Infektiologie, Goethe Universität Frankfurt, Frankfurt am Main, Deutschland.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Bonn-Köln, Deutschland
| | - Marie von Lilienfeld-Toal
- Klinik für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Germany
| | - Florian Weissinger
- Division of Haematology, Oncology and Palliative Care, Department of Internal Medicine, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Stefan Schwartz
- Division of Haematology & Oncology, Department of Internal Medicine, Charité University Medicine, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
28
|
Saadullah M, Asif M, A Ch B, Yaseen HS, Uzair M, Afzal K. Isolation, Characterization and Preliminary Cytotoxic and Antifungal Evaluations of Novel Lancifoliate Isolated from Methanol Extract of Conocarpus lancifolius. Anticancer Agents Med Chem 2020; 20:1664-1672. [PMID: 32329701 DOI: 10.2174/1871520620666200424110923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Combretaceae is a large family comprising of 500 species and 20 genera distributed in subtropical and tropical regions of the world. Conocarpus genus is an ornamental tree native to coastal and riverine areas of East Africa and is also planted as an ornamental plant in different areas of Pakistan. This genus has proved medicinal value as a cytotoxic, antibacterial, antiprotozoal, anti-leishmanial, antifungal and antidiabetic agent. OBJECTIVE The current study was designed to screen the selected pharmacological attributes of sulphur containing novel compound isolated from Conocarpus lancifolius using a series of in vitro and molecular docking models. MATERIALS AND METHODS After collection and authentication of plant material, methanolic extract was prepared from which various secondary metabolites were qualitatively examined. The compound was isolated using open column chromatography and the structure was established with spectroscopic techniques such as UV-visible, infrared spectroscopy, proton nuclear magnetic resonance (1H-NMR), 13C NMR (BB, DEPT-135, 90), twodimensional correlation techniques (HMBC, HSQC) and mass spectrometry (HRMS) respectively. C. lancifolius extract and isolated compound were studied for cytotoxic and antifungal potentials using in vitro Sulforhodamine B (SRB) and disc diffusion methods, respectively. Molecular docking studies were conducted to check the interaction of the isolated compound with major oncogenic proteins. RESULTS Qualitative phytochemical screening revealed the presence of saponins, steroids, flavonoids, anthraquinones, and cardiac glycosides while alkaloids were absent in C. lancifolius extract. Isolated compound was characterized as lancifoliate, which showed cytotoxic activity towards a variety of cancer cell lines including murine lymphocytic leukemia (P-388, IC50 = 2.65μg/ml), human colon cancer (Col-2, IC50 = 0.84μg/ml), human breast cancer (MCF-7, IC50 = 0.72μg/ml) while no cytotoxic activity was observed towards human lung cancer (Lu-1), rat normal glioma cells (ASK, IC50 = 11.6μg/ml) and human embryonic kidney cells (Kek293, IC50 = 6.74μg/ml) respectively. Minimum Inhibitory Concentration (MIC) of Lancifoliate towards Aspergillus fumigatus, Aspergillus nigar (skin sample), Aspergillus flavus (pleural fluid) and Candida albicans (urine and blood samples) was found to be 54.5, 44.8, 43.5, 22.4 and 20.2μg/ml respectively. Moreover, docking results are in strong agreement with our experimental finding, which has identified lancifoliate to be a more potent antiproliferative agent than previously known compound ellipticine. CONCLUSION C. lancifolius extract and lancifoliate possess potent cytotoxic and antifungal properties and thus has potential to be further studied. To the best of our knowledge, this is the first study that highlights isolation, identification and pharmacological activities of lancifoliate from Conocarpus lancifolius.
Collapse
Affiliation(s)
- Malik Saadullah
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Asif
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bashir A Ch
- Faculty of Pharmacy, Bahaudin Zakariya University, Multan, Pakistan
| | - Hafiza S Yaseen
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Uzair
- Faculty of Pharmacy, Bahaudin Zakariya University, Multan, Pakistan
| | - Khurram Afzal
- Faculty of Pharmacy, Bahaudin Zakariya University, Multan, Pakistan
| |
Collapse
|
29
|
Surgical management of invasive fungal infections in adult leukemia patients: experience from a large tertiary center in Southeast-Asia. BLOOD SCIENCE 2020; 2:59-65. [PMID: 35402820 PMCID: PMC8974899 DOI: 10.1097/bs9.0000000000000022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/22/2019] [Indexed: 11/25/2022] Open
Abstract
Objectives: Invasive fungal infections (IFIs) are a major cause of morbidity and mortality in acute leukemia patients undergoing chemotherapy or hematopoietic stem cell transplantation (HSCT). Surgical interventions may be necessary to improve the survival outcomes of these patients. The aim of this study is to report a single-center experience using surgical intervention as adjunctive treatment for IFI in adult leukemia patients. Methods: A retrospective review was conducted to obtain clinical characteristics and outcomes of surgically managed IFI patients diagnosed between January 2005 and December 2015 in our center. Results: Nineteen acute leukemia patients, median age 46 years (range 19–65), underwent 20 surgical procedures as management for IFI. Three patients had proven IFI diagnoses prior to surgery. Sixteen patients underwent surgery for both diagnostic and therapeutic purposes. Post-surgery, the diagnostic yield for proven IFI increased by a factor of 5, and 15 patients had definitive IFI diagnoses. Surgical complications included 2 pleural effusions, 4 pneumothoraxes, and 1 hydropneumothorax. The median duration of hospitalization for patients with complications was 9 days (range 3–64). Thirteen patients benefited overall from the procedure, 3 had temporary clinical benefits, and 2 had progression of IFI. After surgery, the 3-month and 2-year overall survival rates were 89.5% and 57.9%, respectively. The median time from surgery to resumption of chemotherapy or HSCT was 25 days. Conclusions: Surgical interventions for IFI are feasible in selected leukemia patients, as they yield valuable information to guide antifungal therapy or enable therapeutic outcomes with acceptable risk, thereby allowing patients to proceed with curative chemotherapy and HSCT.
Collapse
|
30
|
Xiao H, Tang Y, Cheng Q, Liu J, Li X. Risk Prediction and Prognosis of Invasive Fungal Disease in Hematological Malignancies Patients Complicated with Bloodstream Infections. Cancer Manag Res 2020; 12:2167-2175. [PMID: 32273756 PMCID: PMC7102877 DOI: 10.2147/cmar.s238166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose In patients with hematologic malignancies (HM), bloodstream infections (BSI) and invasive fungal disease (IFD) remain important complications causing considerable mortality and morbidity. At present, the morbidity of IFD and the strategies to initiate antifungal treatment in HM patients with BSI remain unclear. Patients and Methods Patient characteristics, infection-related variables, and therapy-related features of 1374 HM patients with proven BSI from three hospitals were reviewed to investigate the epidemiology, risk factors and prognosis of IFD. Results The morbidity of proven and probable IFD in HM patients with BSI was 11.2%, and the mortality of those patients was 40.5%. Existing IFD risk scores were not accurate enough in distinguishing these patients benefiting from antifungal prophylaxis. Multivariate logistic regression identified age >45 years, profound neutropenia, hypoproteinemia, and use of vasopressors as independent variables associated with IFD morbidity in HM patients with BSI. In patients with proven and probable IFD patients, age >45 years, Pitt bacteremia score >3, use of vasopressors, abnormal blood coagulation, and initiation of antifungal therapy within 72 hrs after the onset of fever were independent prognostic factors. The mortality was significantly reduced in patients with high-risk factors of IFD if they initiate antifungal treatment within 72 hrs after the onset of fever compared to the patients not. Conclusion The morbidity and mortality of IFD increase significantly in HM patients with BSI. Early antifungal therapy may improve prognosis in HM patients with BSI complicated with IFD risk factors.
Collapse
Affiliation(s)
- Han Xiao
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yishu Tang
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qian Cheng
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xin Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
31
|
Yang F, Teoh F, Tan ASM, Cao Y, Pavelka N, Berman J. Aneuploidy Enables Cross-Adaptation to Unrelated Drugs. Mol Biol Evol 2020; 36:1768-1782. [PMID: 31028698 PMCID: PMC6657732 DOI: 10.1093/molbev/msz104] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aneuploidy is common both in tumor cells responding to chemotherapeutic agents and in fungal cells adapting to antifungal drugs. Because aneuploidy simultaneously affects many genes, it has the potential to confer multiple phenotypes to the same cells. Here, we analyzed the mechanisms by which Candida albicans, the most prevalent human fungal pathogen, acquires the ability to survive both chemotherapeutic agents and antifungal drugs. Strikingly, adaptation to both types of drugs was accompanied by the acquisition of specific whole-chromosome aneuploidies, with some aneuploid karyotypes recovered independently and repeatedly from very different drug conditions. Specifically, strains selected for survival in hydroxyurea, an anticancer drug, acquired cross-adaptation to caspofungin, a first-line antifungal drug, and both acquired traits were attributable to trisomy of the same chromosome: loss of trisomy was accompanied by loss of adaptation to both drugs. Mechanistically, aneuploidy simultaneously altered the copy number of most genes on chromosome 2, yet survival in hydroxyurea or caspofungin required different genes and stress response pathways. Similarly, chromosome 5 monosomy conferred increased tolerance to both fluconazole and to caspofungin, antifungals with different mechanisms of action. Thus, the potential for cross-adaptation is not a feature of aneuploidy per se; rather, it is dependent on specific genes harbored on given aneuploid chromosomes. Furthermore, pre-exposure to hydroxyurea increased the frequency of appearance of caspofungin survivors, and hydroxyurea-adapted C. albicans cells were refractory to antifungal drug treatment in a mouse model of systemic candidiasis. This highlights the potential clinical consequences for the management of cancer chemotherapy patients at risk of fungal infections.
Collapse
Affiliation(s)
- Feng Yang
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Flora Teoh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Alrina Shin Min Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yongbing Cao
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai TCM-Integrated Institute of Vascular Disease, Shanghai, China
| | - Norman Pavelka
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
Kanda Y, Kimura SI, Iino M, Fukuda T, Sakaida E, Oyake T, Yamaguchi H, Fujiwara SI, Jo Y, Okamoto A, Fujita H, Takamatsu Y, Saburi Y, Matsumura I, Yamanouchi J, Shiratori S, Gotoh M, Nakamura S, Tamura K. D-Index-Guided Early Antifungal Therapy Versus Empiric Antifungal Therapy for Persistent Febrile Neutropenia: A Randomized Controlled Noninferiority Trial. J Clin Oncol 2020; 38:815-822. [PMID: 31977270 DOI: 10.1200/jco.19.01916] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Empiric antifungal therapy (EAT) is recommended for persistent febrile neutropenia (FN), but in most patients, it is associated with overtreatment. The D-index, calculated as the area surrounded by the neutrophil curve and the horizontal line at a neutrophil count of 500/μL, reflects both the duration and depth of neutropenia and enables real-time monitoring of the risk of invasive fungal infection in individual patients at no cost. We investigated a novel approach for patients with persistent FN called D-index-guided early antifungal therapy (DET), in which antifungal treatment is postponed until a D-index reaches 5,500 or the detection of positive serum or imaging tests, and compared it with EAT in this multicenter open-label noninferiority randomized controlled trial. PATIENTS AND METHODS We randomly assigned 423 patients who underwent chemotherapy or hematopoietic stem-cell transplantation for hematologic malignancies to the EAT or DET group. The prophylactic use of antifungal agents other than polyenes, echinocandins, or voriconazole was allowed. Micafungin at 150 mg per day was administered as EAT or DET. RESULTS In an intent-to-treat analysis of 413 patients, the incidence of probable/proven invasive fungal infection was 2.5% in the EAT group and 0.5% in the DET group, which fulfilled the predetermined criterion of noninferiority of the DET group (-2.0%; 90% CI, -4.0% to 0.1%). The survival rate was 98.0% versus 98.6% at day 42 and 96.4% versus 96.2% at day 84. The use of micafungin was significantly reduced in the DET group (60.2% v 32.5%; P < .001). CONCLUSION A novel strategy, DET, decreased the use and cost of antifungal agents without increasing invasive fungal infections and can be a reasonable alternative to empiric or preemptive antifungal therapy.
Collapse
Affiliation(s)
- Yoshinobu Kanda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan.,Division of Hematology, Department of Medicine, Jichi Medical University, Saitama, Japan
| | - Shun-Ichi Kimura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Masaki Iino
- Department of Hematology, Yamanashi Prefectural Central Hospital, Kofu, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Emiko Sakaida
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Tatsuo Oyake
- Division of Hematology and Oncology, Department of Internal Medicine, Iwate Medical University School of Medicine, Morioka, Japan
| | | | - Shin-Ichiro Fujiwara
- Division of Hematology, Department of Medicine, Jichi Medical University, Saitama, Japan
| | - Yumi Jo
- Infection Control Division, Department of Oncology and Hematology, Shimane University Hospital, Izumo, Japan
| | - Akinao Okamoto
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroyuki Fujita
- Department of Hematology, Saiseikai Yokohama Nanbu Hospital, Yokohama, Japan
| | - Yasushi Takamatsu
- Division of Medical Oncology, Hematology and Infectious Diseases, Department of Internal Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Yoshio Saburi
- Department of Hematology, Oita Prefectural Hospital, Oita, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Jun Yamanouchi
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Souichi Shiratori
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Moritaka Gotoh
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Shingen Nakamura
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuo Tamura
- General Medical Research Center, Fukuoka University, Fukuoka, Japan
| | | |
Collapse
|
33
|
Motamedi M, Saharkhiz MJ, Pakshir K, Amini Akbarabadi S, Alikhani Khordshami M, Asadian F, Zareshahrabadi Z, Zomorodian K. Chemical compositions and antifungal activities of Satureja macrosiphon against Candida and Aspergillus species. Curr Med Mycol 2020; 5:20-25. [PMID: 32104740 PMCID: PMC7034783 DOI: 10.18502/cmm.5.4.2162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background and Purpose: Despite the various applications of Satureja species, there are limited data in this domain. Regarding this, the present study was conducted to investigate the essential oil (EO) biological activity of S. macrosiphon species in Iran. Materials and Methods: The EO of S. macrosiphon flowers was obtained by hydrodistillation. Chemical compositions of the EO were analyzed using gas chromatography-mass spectrometry. In addition, minimum inhibitory concentrations (MIC) were measured by means of the broth microdilution method. The estimation of antibiofilm and cytotoxic activities was also accomplished using the tetrazolium salt and MTT assays, respectively. Results: A total of 26 components were identified in the EO with linalool as the main constituent (28.46%). A MIC range value of 0.25-8 μL/mL was obtained against all of the tested fungi. The EO inhibited the biofilm development of the Candida tested strains at a concentration of 4-8 μL/mL. Cytotoxicity (IC50) of EO against the HeLa cell was greater than the MIC concentration (6.49 μL/mL). Conclusion: Based on the findings, it was concluded that the EO of S. macrosiphon has the potential for further use as an antifungal agent.
Collapse
Affiliation(s)
- Marjan Motamedi
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Keyvan Pakshir
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Amini Akbarabadi
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Alikhani Khordshami
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Asadian
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamiar Zomorodian
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Reslan Z, Lindsay J, Kerridge I, Gellatly R. Adherence to Antifungal Guidelines in Malignant Hematology Patients: A Review of the Literature. J Pharm Technol 2019; 35:270-280. [PMID: 34753155 DOI: 10.1177/8755122519859976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objective: To review the published literature assessing adherence rates to antifungal guidelines and reasons for nonadherence in the adult malignant hematology inpatient setting. Data sources: The databases Embase, MEDLINE, and PubMed (from data inception to May 2019) were searched using the terms hematology, oncology, antifungal, guidelines, adherence, and stewardship with the search limited to adult human subjects and published in English. This yielded 123 articles. From this list, studies that were published in peer-reviewed journals were extracted, leaving 10 citations that met the final inclusion criteria. Study Selection and Data Extraction: Ten studies were selected assessing adherence to consensus antifungal guidelines in the malignant hematology setting. These included studies investigating the introduction of antifungal stewardship programs in tertiary hospitals. Data Synthesis: Although the studies were heterogeneous, all focused on appropriateness of antifungal therapy in the inpatient setting. Adherence to antifungal guidelines for optimal antifungal prophylaxis and treatment was low in most studies, with rates of inappropriate antifungal therapy ranging from 25% to 70% of fungal prescriptions. Relevance to Patient Care and Clinical Practice: Adherence rates with guidelines for antifungal therapy are low in the hematology inpatient setting. This may affect infection rates influencing morbidity and mortality in this high-risk population. Conclusion: Given the prevalence of invasive fungal infections in malignant hematology inpatients, suboptimal adherence with antifungal guidelines is concerning. This demands a focus on education, antifungal stewardship, and updating guidelines to meet real-world scenarios. Adherence with antifungal guidelines in the outpatient hematology setting is unknown and requires further research.
Collapse
Affiliation(s)
- Zainab Reslan
- Royal North Shore Hospital, Sydney, New South Wales, Australia.,Monash University, Melbourne, Victoria, Australia
| | - Julian Lindsay
- Royal North Shore Hospital, Sydney, New South Wales, Australia.,Monash University, Melbourne, Victoria, Australia
| | - Ian Kerridge
- Royal North Shore Hospital, Sydney, New South Wales, Australia.,University of Sydney, New South Wales, Australia
| | | |
Collapse
|
35
|
Ong BX, Yoo Y, Han MG, Park JB, Choi MK, Choi Y, Shin JS, Bahn YS, Cho HS. Structural analysis of fungal pathogenicity-related casein kinase α subunit, Cka1, in the human fungal pathogen Cryptococcus neoformans. Sci Rep 2019; 9:14398. [PMID: 31591414 PMCID: PMC6779870 DOI: 10.1038/s41598-019-50678-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/16/2019] [Indexed: 12/28/2022] Open
Abstract
CK2α is a constitutively active and highly conserved serine/threonine protein kinase that is involved in the regulation of key cellular metabolic pathways and associated with a variety of tumours and cancers. The most well-known CK2α inhibitor is the human clinical trial candidate CX-4945, which has recently shown to exhibit not only anti-cancer, but also anti-fungal properties. This prompted us to work on the CK2α orthologue, Cka1, from the pathogenic fungus Cryptococcus neoformans, which causes life-threatening systemic cryptococcosis and meningoencephalitis mainly in immunocompromised individuals. At present, treatment of cryptococcosis remains a challenge due to limited anti-cryptococcal therapeutic strategies. Hence, expanding therapeutic options for the treatment of the disease is highly clinically relevant. Herein, we report the structures of Cka1-AMPPNP-Mg2+ (2.40 Å) and Cka1-CX-4945 (2.09 Å). Structural comparisons of Cka1-AMPPNP-Mg2+ with other orthologues revealed the dynamic architecture of the N-lobe across species. This may explain for the difference in binding affinities and deviations in protein-inhibitor interactions between Cka1-CX-4945 and human CK2α-CX-4945. Supporting it, in vitro kinase assay demonstrated that CX-4945 inhibited human CK2α much more efficiently than Cka1. Our results provide structural insights into the design of more selective inhibitors against Cka1.
Collapse
Affiliation(s)
- Belinda X Ong
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Youngki Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Myeong Gil Han
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jun Bae Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Myung Kyung Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yeseul Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
36
|
Haranahalli K, Lazzarini C, Sun Y, Zambito J, Pathiranage S, McCarthy JB, Mallamo J, Del Poeta M, Ojima I. SAR Studies on Aromatic Acylhydrazone-Based Inhibitors of Fungal Sphingolipid Synthesis as Next-Generation Antifungal Agents. J Med Chem 2019; 62:8249-8273. [PMID: 31369263 DOI: 10.1021/acs.jmedchem.9b01004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recently, the fungal sphingolipid glucosylceramide (GlcCer) synthesis has emerged as a highly promising new target for drug discovery of next-generation antifungal agents, and we found two aromatic acylhydrazones as effective inhibitors of GlcCer synthesis based on HTP screening. In the present work, we have designed libraries of new aromatic acylhydrazones, evaluated their antifungal activities (MIC80 and time-kill profile) against C. neoformans, and performed an extensive SAR study, which led to the identification of five promising lead compounds, exhibiting excellent fungicidal activities with very large selectivity index. Moreover, two compounds demonstrated broad spectrum antifungal activity against six other clinically relevant fungal strains. These five lead compounds were examined for their synergism/cooperativity with five clinical drugs against seven fungal strains, and very encouraging results were obtained; e.g., the combination of all five lead compounds with voriconazole exhibited either synergistic or additive effect to all seven fungal strains.
Collapse
Affiliation(s)
- Krupanandan Haranahalli
- Institute of Chemical Biology and Drug Discovery , Stony Brook University , Stony Brook , New York 11794-3400 , United States.,Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Cristina Lazzarini
- Department of Molecular Genetics and Microbiology , Stony Brook University , Stony Brook , New York 11794-5222 , United States.,Veterans Administration Medical Center , Northport , New York 11768 , United States
| | - Yi Sun
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Julia Zambito
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Senuri Pathiranage
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - J Brian McCarthy
- MicroRid Technologies Inc. , 86 Deer Park Road , Dix Hills , New York 11746 , United States
| | - John Mallamo
- MicroRid Technologies Inc. , 86 Deer Park Road , Dix Hills , New York 11746 , United States
| | - Maurizio Del Poeta
- Institute of Chemical Biology and Drug Discovery , Stony Brook University , Stony Brook , New York 11794-3400 , United States.,Department of Molecular Genetics and Microbiology , Stony Brook University , Stony Brook , New York 11794-5222 , United States.,Veterans Administration Medical Center , Northport , New York 11768 , United States.,Division of Infectious Diseases, School of Medicine , Stony Brook University , New York 11794-8434 , United States
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discovery , Stony Brook University , Stony Brook , New York 11794-3400 , United States.,Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| |
Collapse
|
37
|
Bolous M, Arumugam N, Almansour AI, Suresh Kumar R, Maruoka K, Antharam VC, Thangamani S. Broad-spectrum antifungal activity of spirooxindolo-pyrrolidine tethered indole/imidazole hybrid heterocycles against fungal pathogens. Bioorg Med Chem Lett 2019; 29:2059-2063. [PMID: 31320146 DOI: 10.1016/j.bmcl.2019.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/23/2022]
Abstract
Invasive fungal infections are one of the leading causes of nosocomial bloodstream infections with a limited treatment option. A series of derivatized spirooxindolo-pyrrolidine tethered indole and imidazole heterocyclic hybrids have been synthesized, and their antifungal activity against fungal strains were determined. Here we characterize the antifungal activity of a specific spirooxindolo-pyrrolidine hybrid, dubbed compound 9c, a spirooxindolo-pyrrolidine tethered imidazole synthesized with a 2-chloro and trifluoromethoxy substituent. The compound 9c exhibited no cytotoxicity against mammalian cell line at concentrations that inhibited fungal strains. Compound 9c also significantly inhibited the fungal hyphae and biofilm formation. Our results indicate that spirooxindolo-pyrrolidine heterocyclic hybrids potentially represent a broad class of chemical agents with promising antifungal potential.
Collapse
Affiliation(s)
- Mina Bolous
- College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, United States
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Keiji Maruoka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Vijay C Antharam
- Department of Chemistry, School of Science and Human Development, Methodist University, Fayetteville, NC, United States
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, United States.
| |
Collapse
|
38
|
Wang L, Wang Y, Hu J, Sun Y, Huang H, Chen J, Li J, Ma J, Li J, Liang Y, Wang J, Li Y, Yu K, Hu J, Jin J, Wang C, Wu D, Xiao Y, Huang X. Clinical risk score for invasive fungal diseases in patients with hematological malignancies undergoing chemotherapy: China Assessment of Antifungal Therapy in Hematological Diseases (CAESAR) study. Front Med 2019; 13:365-377. [PMID: 30604166 DOI: 10.1007/s11684-018-0641-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/25/2018] [Indexed: 01/22/2023]
Abstract
Invasive fungal disease (IFD) is a major infectious complication in patients with hematological malignancies. In this study, we examined 4889 courses of chemotherapy in patients with hematological diseases to establish a training dataset (n = 3500) by simple random sampling to develop a weighted risk score for proven or probable IFD through multivariate regression, which included the following variables: male patients, induction chemotherapy for newly diagnosed or relapsed disease, neutropenia, neutropenia longer than 10 days, hypoalbuminemia, central-venous catheter, and history of IFD. The patients were classified into three groups, which had low (0-10, ~1.2%), intermediate (11-15, 6.4%), and high risk ( > 15, 17.5%) of IFD. In the validation set (n = 1389), the IFD incidences of the groups were ~1.4%, 5.0%, and 21.4%. In addition, we demonstrated that antifungal prophylaxis offered no benefits in low-risk patients, whereas benefits were documented in intermediate (2.1% vs. 6.6%, P = 0.007) and high-risk patients (8.4% vs. 23.3%, P = 0.007). To make the risk score applicable for clinical settings, a pre-chemo risk score that deleted all unpredictable factors before chemotherapy was established, and it confirmed that anti-fungal prophylaxis was beneficial in patients with intermediate and high risk of IFD. In conclusion, an objective, weighted risk score for IFD was developed, and it may be useful in guiding antifungal prophylaxis.
Collapse
Affiliation(s)
- Ling Wang
- Blood & Marrow Transplantation Center, Department of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Wang
- Blood & Marrow Transplantation Center, Department of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiong Hu
- Blood & Marrow Transplantation Center, Department of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yuqian Sun
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking University, People's Hospital, Beijing, 100044, China
| | - He Huang
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310003, China
| | - Jing Chen
- Department of Hematology-Oncology, Shanghai Children's Medical Center, Shanghai, 200127, China
| | - Jianyong Li
- Department of Hematology, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Jun Ma
- Harbin Hematologic Tumor Institution, Harbin, 150010, China
| | - Juan Li
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yingmin Liang
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jianmin Wang
- Department of Hematology, Changhai Hospital of the Second Military Medical University, Shanghai, 200082, China
| | - Yan Li
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, 325000, China
| | - Jianda Hu
- Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310003, China
| | - Chun Wang
- Department of Hematology, The First People's Hospital of Shanghai, Shanghai, 200080, China
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yang Xiao
- Department of Hematology, The General Hospital of Guangzhou Military Command of PLA, Guangzhou, 510010, China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking University, People's Hospital, Beijing, 100044, China.
| |
Collapse
|
39
|
Antifungal Drugs Influence Neutrophil Effector Functions. Antimicrob Agents Chemother 2019; 63:AAC.02409-18. [PMID: 30910895 DOI: 10.1128/aac.02409-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/17/2019] [Indexed: 12/14/2022] Open
Abstract
There is a growing body of evidence for immunomodulatory side effects of antifungal agents on different immune cells, e.g., T cells. Therefore, the aim of our study was to clarify these interactions with regard to the effector functions of polymorphonuclear neutrophils (PMN). Human PMN were preincubated with fluconazole (FLC), voriconazole (VRC), posaconazole (POS), isavuconazole (ISA), caspofungin (CAS), micafungin (MFG), conventional amphotericin B (AMB), and liposomal amphotericin B (LAMB). PMN then were analyzed by flow cytometry for activation, degranulation, and phagocytosis and by dichlorofluorescein assay to detect reactive oxygen species (ROS). Additionally, interleukin-8 (IL-8) release was measured by enzyme-linked immunosorbent assay. POS led to enhanced activation, degranulation, and generation of ROS, whereas IL-8 release was reduced. In contrast, ISA-pretreated PMN showed decreased activation signaling, impaired degranulation, and lower generation of ROS. MFG caused enhanced expression of activation markers but impaired degranulation, phagocytosis, generation of ROS, and IL-8 release. CAS showed increased phagocytosis, whereas degranulation and generation of ROS were reduced. AMB led to activation of almost all effector functions besides impaired phagocytosis, whereas LAMB did not alter any effector functions. Independent from class, antifungal agents show variable influence on neutrophil effector functions in vitro Whether this is clinically relevant needs to be clarified.
Collapse
|
40
|
Kochanek M, Schalk E, von Bergwelt-Baildon M, Beutel G, Buchheidt D, Hentrich M, Henze L, Kiehl M, Liebregts T, von Lilienfeld-Toal M, Classen A, Mellinghoff S, Penack O, Piepel C, Böll B. Management of sepsis in neutropenic cancer patients: 2018 guidelines from the Infectious Diseases Working Party (AGIHO) and Intensive Care Working Party (iCHOP) of the German Society of Hematology and Medical Oncology (DGHO). Ann Hematol 2019; 98:1051-1069. [PMID: 30796468 PMCID: PMC6469653 DOI: 10.1007/s00277-019-03622-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
Abstract
Sepsis and septic shock are major causes of mortality during chemotherapy-induced neutropenia for malignancies requiring urgent treatment. Thus, awareness of the presenting characteristics and prompt management is most important. Improved management of sepsis during neutropenia may reduce the mortality of cancer therapies. However, optimal management may differ between neutropenic and non-neutropenic patients. The aim of the current guideline is to give evidence-based recommendations for hematologists, oncologists, and intensive care physicians on how to manage adult patients with neutropenia and sepsis.
Collapse
Affiliation(s)
- Matthias Kochanek
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany.
| | - E Schalk
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - M von Bergwelt-Baildon
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany
- Medical Department III, University Medical Center & Comprehensive Cancer Center Munich, Munich, Germany
| | - G Beutel
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany
- Department for Hematology, Hemostasis, Oncology and Stem Cell Transplantation Hannover Medical School, Hannover, Germany
| | - D Buchheidt
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany
- Department of Hematology and Oncology, Mannheim University Hospital, Mannheim, Germany
| | - M Hentrich
- Department of Medicine III - Hematology and Oncology, Red Cross Hospital, Munich, Germany
| | - L Henze
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - M Kiehl
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany
- Department of Internal Medicine I, Clinic Frankfurt (Oder), Frankfurt, Germany
| | - T Liebregts
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany
- Department of Bone Marrow Transplantation, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - M von Lilienfeld-Toal
- Department for Hematology and Medical Oncology, University Hospital Jena, Jena, Germany
| | - A Classen
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - S Mellinghoff
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - O Penack
- Department for Hematology, Oncology and Tumorimmunology, Campus Virchow Clinic, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - C Piepel
- Department of Hematology, Oncology and Infectious Diseases, Klinikum Bremen-Mitte, Bremen, Germany
| | - B Böll
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany
| |
Collapse
|
41
|
von Lilienfeld-Toal M, Wagener J, Einsele H, A. Cornely O, Kurzai O. Invasive Fungal Infection. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 116:271-278. [PMID: 31159914 PMCID: PMC6549129 DOI: 10.3238/arztebl.2019.0271] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 06/29/2018] [Accepted: 02/14/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The incidence of invasive fungal infection is approximately 6 cases per 100 000 persons per year. It is estimated that only half of such infections are detected during the patient's lifetime, making this one of the more common overlooked causes of death in intensive-care patients. The low detection rate is due in part to the complexity of the diagnostic work-up, in which the clinical, radiological, and microbiological findings must be considered. Fungi with resistance to antimycotic drugs have been found to be on the rise around the world. METHODS This review is based on pertinent publications retrieved from a selective search in PubMed, with special attention to guidelines on the diagnosis and treatment of invasive fungal infections caused by Candida spp., Aspergillus spp., Mucorales, and Fusarium spp. RESULTS The clinical risk factors for invasive fungal infection include, among others, congenital immune deficiency, protracted (>10 days) marked granulocytopenia (<0.5 x 109/L), allogeneic stem-cell transplantation, and treatment with immunosuppressive drugs or corticosteroids. High-risk groups include patients in intensive care and those with structural pulmonary disease and/or compli- cated influenza. The first line of treatment, supported by the findings of randomized clinical trials, consists of echinocandins for in- fections with Candida spp. (candidemia response rates: 75.6% for anidulafungin vs. 60.2% for fluconazole) and azole antimycotic drugs for infections with Aspergillus spp. (response rates: 52.8% for voriconazole vs. 31.6% for conventional amphotericin B). The recommended first-line treatment also depends on the local epidemiology. This challenge should be met by interdisciplinary collaboration. Therapeutic decision-making should also take account of the often severe undesired effects of antimycotic drugs (including impairment of hepatic and/or renal function) and the numerous interactions that some of them have with other drugs. CONCLUSION Invasive fungal infections are often overlooked in routine hospital care. They should be incorporated into antimicro- bial stewardship programs as an essential component. There is also a pressing need for the development of new classes of antimycotic drug.
Collapse
Affiliation(s)
- Marie von Lilienfeld-Toal
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena
- Clinic of Internal Medicine II, University Hospital Jena
| | - Johannes Wagener
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena
- Institute for Hygiene and Microbiology, University of Würzburg, Chair of Medical Microbiology and Mycology, Würzburg
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg
- InfectControl 2020, Jena/Würzburg
| | - Oliver A. Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Department I of Internal Medicine, at the University Hospital of Cologne, European Excellence Center for Medical Mycology (ECMM), DGerman Center for Infection Research(DZIF) Partner Site Bonn Köln, Cologne University
| | - Oliver Kurzai
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena
- Institute for Hygiene and Microbiology, University of Würzburg, Chair of Medical Microbiology and Mycology, Würzburg
- InfectControl 2020, Jena/Würzburg
| |
Collapse
|
42
|
Villa P, Arumugam N, Almansour AI, Suresh Kumar R, Mahalingam S, Maruoka K, Thangamani S. Benzimidazole tethered pyrrolo[3,4-b]quinoline with broad-spectrum activity against fungal pathogens. Bioorg Med Chem Lett 2019; 29:729-733. [DOI: 10.1016/j.bmcl.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 02/07/2023]
|
43
|
El tratamiento de la mucormicosis (cigomicosis) en el siglo xxi. Rev Iberoam Micol 2018; 35:217-221. [DOI: 10.1016/j.riam.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/26/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
|
44
|
Blau IW, Heinz WJ, Schwartz S, Lipp HP, Schafhausen P, Maschmeyer G. [Pulmonary infiltrates in haematological patients]. MMW Fortschr Med 2018; 160:12-17. [PMID: 29974434 DOI: 10.1007/s15006-018-0727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Pulmonary complications are frequent in haematologic patients. METHOD This review article summarizes the outcome of a discussion that took place during an expert meeting on the subject of pulmonary infiltrates. RESULTS AND CONCLUSIONS The most common causes of pulmonary infiltrates in haematologic patients are bacterial infections. Viral infections are subject to relevant seasonal variations, but they may also cause an important proportion of pulmonary infiltrates. Microbiological examination of respiratory tract material (if possible, bronchoalveolar lavage, BAL) is the most important diagnostic procedure. Particularly in the case of prolonged (> 7 days) neutropenia, the likelihood of infiltrates being caused by fungal infections increases. For a differential diagnosis, however, also non-infectious causes, e.g. drug-induced infiltrates, have to be taken into consideration. The diagnostic workup, however, should not delay a timely start of an adequate antimicrobial therapy.
Collapse
Affiliation(s)
- Igor-Wolfgang Blau
- Medizinische Klinik für Hämatologie, Onkologie und Tumorimmunologie, Leitender Oberarzt Knochenmarktransplantation, Campus Virchow Klinikum der Charité - Universitätsmedizin Berlin, Berlin, Deutschland.
- Klinik für Hämatologie, Onkologie und Tumorimmunologie, Campus Virchow Klinikum der Charité - Universitätsmedizin Berlin, Augustenburgerplatz 1, D-13353, Berlin, Deutschland.
| | - Werner J Heinz
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Stefan Schwartz
- Medizinische Klinik für Hämatologie, Onkologie und Tumorimmunologie, Campus Benjamin Franklin der Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | | | - Philippe Schafhausen
- Zentrum für Onkologie, II. Medizinische Klinik und Poliklinik, UKE Hamburg, Hamburg, Deutschland
| | - Georg Maschmeyer
- Klinik für Hämatologie, Onkologie und Palliativmedizin, Klinikum Ernst von Bergmann gemeinnützige GmbH, Potsdam, Deutschland
| |
Collapse
|
45
|
Kiehl MG, Beutel G, Böll B, Buchheidt D, Forkert R, Fuhrmann V, Knöbl P, Kochanek M, Kroschinsky F, La Rosée P, Liebregts T, Lück C, Olgemoeller U, Schalk E, Shimabukuro-Vornhagen A, Sperr WR, Staudinger T, von Bergwelt Baildon M, Wohlfarth P, Zeremski V, Schellongowski P. Consensus statement for cancer patients requiring intensive care support. Ann Hematol 2018; 97:1271-1282. [PMID: 29704018 PMCID: PMC5973964 DOI: 10.1007/s00277-018-3312-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/19/2018] [Indexed: 02/06/2023]
Abstract
This consensus statement is directed to intensivists, hematologists, and oncologists caring for critically ill cancer patients and focuses on the management of these patients.
Collapse
Affiliation(s)
- M G Kiehl
- Department of Internal Medicine I, Clinic Frankfurt/Oder GmbH, Müllroser Chaussee 7, 15236, Frankfurt (Oder), Germany.
| | - G Beutel
- Hannover Medical School (MHH) Clinic for Hematology, Coagulation, Oncology and Stem Cell Transplantation, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - B Böll
- Department of Internal Medicine I, University Hospital, Kerpener Str. 62, 50937, Cologne, Germany
| | - D Buchheidt
- III. Medical Clinic, Medical Faculty Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - R Forkert
- Johanniter-Hospital, Johanniterstr. 3-5, 53113, Bonn, Germany
| | - V Fuhrmann
- Clinic for Intensive Care Medicine, University Hamburg, Martinistr. 52, 20246, Hamburg, Germany
| | - P Knöbl
- Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - M Kochanek
- Department of Internal Medicine I, University Hospital, Kerpener Str. 62, 50937, Cologne, Germany
| | - F Kroschinsky
- Department of Internal Medicine I, University Hospital, Fetschertstr. 74, 01307, Dresden, Germany
| | - P La Rosée
- Department of Internal Medicine III, Schwarzwald-Baar-Klinikum, Klinikstr. 11, 78052, Villingen-Schwenningen, Germany
| | - T Liebregts
- Clinic for Stem Cell Transplantation, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - C Lück
- Hannover Medical School (MHH) Clinic for Hematology, Coagulation, Oncology and Stem Cell Transplantation, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - U Olgemoeller
- Department of Cardiology and Pulmonary Medicine, University Hospital, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - E Schalk
- Department of Hematology and Oncology, University Hospital, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - A Shimabukuro-Vornhagen
- Department of Internal Medicine I, University Hospital, Kerpener Str. 62, 50937, Cologne, Germany
| | - W R Sperr
- Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - T Staudinger
- Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - M von Bergwelt Baildon
- Department of Internal Medicine I, University Hospital, Kerpener Str. 62, 50937, Cologne, Germany
| | - P Wohlfarth
- Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - V Zeremski
- Department of Hematology and Oncology, University Hospital, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - P Schellongowski
- Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | |
Collapse
|
46
|
Acylhydrazones as Antifungal Agents Targeting the Synthesis of Fungal Sphingolipids. Antimicrob Agents Chemother 2018; 62:AAC.00156-18. [PMID: 29507066 PMCID: PMC5923120 DOI: 10.1128/aac.00156-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/21/2018] [Indexed: 01/19/2023] Open
Abstract
The incidence of invasive fungal infections has risen dramatically in recent decades. Current antifungal drugs are either toxic, likely to interact with other drugs, have a narrow spectrum of activity, or induce fungal resistance. Hence, there is a great need for new antifungals, possibly with novel mechanisms of action. Previously our group reported an acylhydrazone called BHBM that targeted the sphingolipid pathway and showed strong antifungal activity against several fungi. In this study, we screened 19 derivatives of BHBM. Three out of 19 derivatives were highly active against Cryptococcus neoformansin vitro and had low toxicity in mammalian cells. In particular, one of them, called D13, had a high selectivity index and showed better activity in an animal model of cryptococcosis, candidiasis, and pulmonary aspergillosis. D13 also displayed suitable pharmacokinetic properties and was able to pass through the blood-brain barrier. These results suggest that acylhydrazones are promising molecules for the research and development of new antifungal agents.
Collapse
|
47
|
Lachenmayr SJ, Berking S, Horns H, Strobach D, Ostermann H, Berger K. Antifungal treatment in haematological and oncological patients: Need for quality assessment in routine care. Mycoses 2018; 61:464-471. [PMID: 29575106 DOI: 10.1111/myc.12768] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/27/2018] [Accepted: 03/11/2018] [Indexed: 11/30/2022]
Abstract
Invasive fungal infections in haematological and oncological patients have a major impact on morbidity, mortality and treatment costs. Therefore, rational use of antifungal agents is important for optimal patient care and resource use. The study's objective was to analyse antifungal usage in a German tertiary teaching hospital, department of haematology and oncology, to evaluate quality of antifungal treatment and to assess the need for an antifungal stewardship programme. This retrospective observational study included patients ≥18 years receiving systemic antifungals for prophylaxis or therapy of invasive fungal infection between January and June 2016. Appropriateness of antifungal prescriptions was evaluated in accordance with guidelines of the German Society of Haematology and Oncology (DGHO) and drug labelling. In total, 104/1278 (8.1%) patients received antifungals. One hundred seventy-one antifungals were prescribed: 48 for prophylaxis, 104 for empirical and 19 for targeted therapy. In 127 (74.3%) prescriptions, indication was appropriate, and in 132 (77.2%), choice of drug. Antifungals were correctly dosed in 131 prescriptions (76.6%). Thirty-four antifungals (20.0%) were co-administrated with interacting drugs (5 mild to moderate, 29 severe interactions). Results of this analysis demonstrate that use of systemic antifungals in routine care differs in a substantial number of patients from guideline and labelling recommendations. To optimise antifungal use, the implementation of antifungal stewardship programmes seems to be justified.
Collapse
Affiliation(s)
- Sarah J Lachenmayr
- Department of Haematology/Oncology, University Hospital of Munich, Munich, Germany.,Department of Pharmacy, University Hospital of Munich, Munich, Germany
| | - Sophie Berking
- Department of Haematology/Oncology, University Hospital of Munich, Munich, Germany
| | - Heidi Horns
- Department of Haematology/Oncology, University Hospital of Munich, Munich, Germany
| | - Dorothea Strobach
- Department of Pharmacy, University Hospital of Munich, Munich, Germany
| | - Helmut Ostermann
- Department of Haematology/Oncology, University Hospital of Munich, Munich, Germany
| | - Karin Berger
- Department of Haematology/Oncology, University Hospital of Munich, Munich, Germany
| |
Collapse
|
48
|
Raveendran S, Lu Z. CT findings and differential diagnosis in adults with invasive pulmonary aspergillosis. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.jrid.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Rothenbühler C, Held U, Manz MG, Schanz U, Gerber B. Continuously infused amphotericin B deoxycholate for primary treatment of invasive fungal disease in acute myeloid leukaemia. Hematol Oncol 2018; 36:471-480. [PMID: 29431860 DOI: 10.1002/hon.2500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 11/06/2022]
Abstract
Continuous administration of amphotericin B deoxycholate over 24 hours (24 h-D-AmB) is better tolerated than rapid infusions. However, toxicity and outcome have not been assessed in a homogenous patient population with acute myeloid leukaemia (AML). We retrospectively analysed renal function and outcome in all adult patients with AML undergoing intensive chemotherapy between 2007 and 2012 at our institution. We compared a patient group with exposure to 24 h-D-AmB to a patient group without exposure to 24 h-D-AmB. One hundred and eighty-one consecutive patients were analysed, 133 (73.5%) received at least 1 dose of 24 h-D-AmB, and 48 (26.5%) did not. Reasons for 24 h-D-AmB initiation were invasive fungal disease (IFD) in 63.5% and empirical treatment for febrile neutropenia in 36.5% of the cases. Most patients with IFD received an oral triazole drug at hospital discharge. Baseline characteristics were well matched. Amphotericin B deoxycholate over 24 hours was given for a median 7 days (interquartile range 3-13). Peak creatinine concentration was higher in the 24 h-D-AmB-group (104.5 vs. 76 μmol/L, P < .001) but normalized within 1 month after therapy (65.5 vs. 65 μmol/L, P = .979). In neither of the 2 groups, end-stage renal disease occurred. There was no difference in 60-day survival (90% vs. 90%) and 2-year survival (58% vs. 58%). Invasive fungal disease partial response or better was observed in 68% of the patients. We conclude that antifungal therapy with continuously infused amphotericin B deoxycholate is safe in patients with AML. An antiinfective strategy based on 24 h-D-AmB in first line followed by an oral triazole compound represents an economically attractive treatment option.
Collapse
Affiliation(s)
| | - Ulrike Held
- Department of Internal Medicine, Horten Center for Patient Oriented Research and Knowledge Transfer, University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Division of Hematology, University Hospital Zurich, Switzerland
| | - Urs Schanz
- Division of Hematology, University Hospital Zurich, Switzerland
| | - Bernhard Gerber
- Division of Hematology, University Hospital Zurich, Switzerland.,Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|
50
|
Wagener J, Loiko V. Recent Insights into the Paradoxical Effect of Echinocandins. J Fungi (Basel) 2017; 4:jof4010005. [PMID: 29371498 PMCID: PMC5872308 DOI: 10.3390/jof4010005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022] Open
Abstract
Echinocandin antifungals represent one of the most important drug classes for the treatment of invasive fungal infections. The mode of action of the echinocandins relies on inhibition of the β-1,3-glucan synthase, an enzyme essentially required for the synthesis of the major fungal cell wall carbohydrate β-1,3-glucan. Depending on the species, echinocandins may exert fungicidal or fungistatic activity. Apparently independent of this differential activity, a surprising in vitro phenomenon called the “paradoxical effect” can be observed. The paradoxical effect is characterized by the ability of certain fungal isolates to reconstitute growth in the presence of higher echinocandin concentrations, while being fully susceptible at lower concentrations. The nature of the paradoxical effect is not fully understood and has been the focus of multiple studies in the last two decades. Here we concisely review the current literature and propose an updated model for the paradoxical effect, taking into account recent advances in the field.
Collapse
Affiliation(s)
- Johannes Wagener
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, 80336 Munich, Germany.
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany.
| | - Veronika Loiko
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, 80336 Munich, Germany.
| |
Collapse
|