1
|
Lin GL, Chang HH, Lin WT, Liou YS, Lai YL, Hsieh MH, Chen PK, Liao CY, Tsai CC, Wang TF, Chu SC, Kau JH, Huang HH, Hsu HL, Sun DS. Dachshund Homolog 1: Unveiling Its Potential Role in Megakaryopoiesis and Bacillus anthracis Lethal Toxin-Induced Thrombocytopenia. Int J Mol Sci 2024; 25:3102. [PMID: 38542074 PMCID: PMC10970148 DOI: 10.3390/ijms25063102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Lethal toxin (LT) is the critical virulence factor of Bacillus anthracis, the causative agent of anthrax. One common symptom observed in patients with anthrax is thrombocytopenia, which has also been observed in mice injected with LT. Our previous study demonstrated that LT induces thrombocytopenia by suppressing megakaryopoiesis, but the precise molecular mechanisms behind this phenomenon remain unknown. In this study, we utilized 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced megakaryocytic differentiation in human erythroleukemia (HEL) cells to identify genes involved in LT-induced megakaryocytic suppression. Through cDNA microarray analysis, we identified Dachshund homolog 1 (DACH1) as a gene that was upregulated upon TPA treatment but downregulated in the presence of TPA and LT, purified from the culture supernatants of B. anthracis. To investigate the function of DACH1 in megakaryocytic differentiation, we employed short hairpin RNA technology to knock down DACH1 expression in HEL cells and assessed its effect on differentiation. Our data revealed that the knockdown of DACH1 expression suppressed megakaryocytic differentiation, particularly in polyploidization. We demonstrated that one mechanism by which B. anthracis LT induces suppression of polyploidization in HEL cells is through the cleavage of MEK1/2. This cleavage results in the downregulation of the ERK signaling pathway, thereby suppressing DACH1 gene expression and inhibiting polyploidization. Additionally, we found that known megakaryopoiesis-related genes, such as FOSB, ZFP36L1, RUNX1, FLI1, AHR, and GFI1B genes may be positively regulated by DACH1. Furthermore, we observed an upregulation of DACH1 during in vitro differentiation of CD34-megakaryocytes and downregulation of DACH1 in patients with thrombocytopenia. In summary, our findings shed light on one of the molecular mechanisms behind LT-induced thrombocytopenia and unveil a previously unknown role for DACH1 in megakaryopoiesis.
Collapse
Affiliation(s)
- Guan-Ling Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Hsin-Hou Chang
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Wei-Ting Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Yi-Ling Lai
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Min-Hua Hsieh
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Po-Kong Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
| | - Chi-Yuan Liao
- Department of Obstetrics and Gynecology, Mennonite Christian Hospital, Hualien 97004, Taiwan; (C.-Y.L.); (C.-C.T.)
| | - Chi-Chih Tsai
- Department of Obstetrics and Gynecology, Mennonite Christian Hospital, Hualien 97004, Taiwan; (C.-Y.L.); (C.-C.T.)
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (T.-F.W.); (S.-C.C.)
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (T.-F.W.); (S.-C.C.)
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (J.-H.K.); (H.-H.H.); (H.-L.H.)
| | - Hsin-Hsien Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (J.-H.K.); (H.-H.H.); (H.-L.H.)
| | - Hui-Ling Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (J.-H.K.); (H.-H.H.); (H.-L.H.)
| | - Der-Shan Sun
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| |
Collapse
|
2
|
Lopardo V, Montella F, Esposito RM, Zannella C, Aliberti SM, Capunzo M, Franci G, Puca AA, Ciaglia E. SARS-CoV-2 Lysate Stimulation Impairs the Release of Platelet-like Particles and Megakaryopoiesis in the MEG-01 Cell Line. Int J Mol Sci 2023; 24:4723. [PMID: 36902151 PMCID: PMC10003077 DOI: 10.3390/ijms24054723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
SARS-CoV-2 infection causes a considerable inflammatory response coupled with impaired platelet reactivity, which can lead to platelet disorders recognized as negative prognostic factors in COVID-19 patients. The virus may cause thrombocytopenia or thrombocytosis during the different disease stages by destroying or activating platelets and influencing platelet production. While it is known that several viruses can impair megakaryopoiesis by generating an improper production and activation of platelets, the potential involvement of SARS-CoV-2 in affecting megakaryopoiesis is poorly understood. To this purpose, we explored, in vitro, the impact of SARS-CoV-2 stimulation in the MEG-01 cell line, a human megakaryoblastic leukemia cell line, considering its spontaneous capacity of releasing platelet-like particles (PLPs). We interrogated the effect of heat-inactivated SARS-CoV-2 lysate in the release of PLPs and activation from MEG-01, the signaling pathway influenced by SARS-CoV-2, and the functional effect on macrophagic skewing. The results highlight the potential influence of SARS-CoV-2 in the early stages of megakaryopoiesis by enhancing the production and activation of platelets, very likely due to the impairment of STATs signaling and AMPK activity. Overall, these findings provide new insight into the role of SARS-CoV-2 in affecting megakaryocyte-platelet compartment, possibly unlocking another avenue by which SARS-CoV-2 moves.
Collapse
Affiliation(s)
- Valentina Lopardo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy
| | - Roberta Maria Esposito
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Silvana Mirella Aliberti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy
| |
Collapse
|
3
|
Kao CY, Jiang J, Thompson W, Papoutsakis ET. miR-486-5p and miR-22-3p Enable Megakaryocytic Differentiation of Hematopoietic Stem and Progenitor Cells without Thrombopoietin. Int J Mol Sci 2022; 23:ijms23105355. [PMID: 35628168 PMCID: PMC9141330 DOI: 10.3390/ijms23105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/07/2022] [Indexed: 12/10/2022] Open
Abstract
Megakaryocytes release submicron size microparticles (MkMPs) in circulation. We have shown that MkMPs target CD34+ hematopoietic stem/progenitor cells (HSPCs) to induce megakaryocytic differentiation, and that small RNAs in MkMPs play an important role in the development of this phenotype. Here, using single-molecule real-time (SMRT) RNA sequencing (RNAseq), we identify the synergetic effect of two microRNAs (miRs), miR-486-5p and miR-22-3p (highly enriched in MkMPs), in driving the Mk differentiation of HSPCs in the absence of thrombopoietin (TPO). Separately, our data suggest that the MkMP-induced Mk differentiation of HSPCs is enabled through JNK and PI3K/Akt/mTOR signaling. The interaction between the two signaling pathways is likely mediated by a direct target of miR-486-5p and a negative regulator of PI3K/Akt signaling, the phosphatase and tensin homologue (PTEN) protein. Our data provide a possible mechanistic explanation of the biological effect of MkMPs in inducing megakaryocytic differentiation of HSPCs, a phenotype of potential physiological significance in stress megakaryopoiesis.
Collapse
Affiliation(s)
- Chen-Yuan Kao
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Ave. 1743, Newark, DE 19713, USA; (C.-Y.K.); (J.J.); (W.T.)
| | - Jinlin Jiang
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Ave. 1743, Newark, DE 19713, USA; (C.-Y.K.); (J.J.); (W.T.)
| | - Will Thompson
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Ave. 1743, Newark, DE 19713, USA; (C.-Y.K.); (J.J.); (W.T.)
| | - Eleftherios T. Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Ave. 1743, Newark, DE 19713, USA; (C.-Y.K.); (J.J.); (W.T.)
- Department of Biological Sciences, University of Delaware, 590 Ave. 1743, Newark, DE 19713, USA
- Correspondence: ; Tel.: +1-302-831-8376
| |
Collapse
|
4
|
Moroi AJ, Newman PJ. Conditional CRISPR-mediated deletion of Lyn kinase enhances differentiation and function of iPSC-derived megakaryocytes. J Thromb Haemost 2022; 20:182-195. [PMID: 34624170 PMCID: PMC8712352 DOI: 10.1111/jth.15546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Thrombocytopenia leading to life-threatening excessive bleeding can be treated by platelet transfusion. Currently, such treatments are totally dependent on donor-derived platelets. To support future applications in the use of in vitro-derived platelets, we sought to identify genes whose manipulation might improve the efficiency of megakaryocyte production and resulting hemostatic effectiveness. Disruption of Lyn kinase has previously been shown to improve cell survival, megakaryocyte ploidy and TPO-mediated activation in mice, but its role in human megakaryocytes and platelets has not been examined. METHODS To analyze the role of Lyn at defined differentiation stages during human megakaryocyte differentiation, conditional Lyn-deficient cells were generated using CRISPR/Cas9 technology in iPS cells. The efficiency of Lyn-deficient megakaryocytes to differentiate and become activated in response to a range of platelet agonists was analyzed in iPSC-derived megakaryocytes. RESULTS Temporally controlled deletion of Lyn improved the in vitro differentiation of hematopoietic progenitor cells into mature megakaryocytes, as measured by the rate and extent of appearance of CD41+ CD42+ cells. Lyn-deficient megakaryocytes also demonstrated improved hemostatic effectiveness, as reported by their ability to mediate clot formation in rotational thromboelastometry. Finally, Lyn-deficient megakaryocytes produced increased numbers of platelet-like particles (PLP) in vitro. CONCLUSIONS Conditional deletion of Lyn kinase increases the hemostatic effectiveness of megakaryocytes and their progeny as well as improving their yield. Adoption of this system during generation of in vitro-derived platelets may contribute to both their efficiency of production and their ability to support hemostasis.
Collapse
Affiliation(s)
- Alyssa J. Moroi
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI
| | - Peter J. Newman
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI
- Department of Cell biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
5
|
Sun Q, Zhou Y, Xiong M, Chen Y, Tan WS, Cai H. MEK1 activation enhances the ex vivo proliferation of haematopoietic stem/progenitor cell. Cell Biochem Funct 2021; 40:79-89. [PMID: 34855220 DOI: 10.1002/cbf.3677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/11/2022]
Abstract
Haematopoietic stem/progenitor cell (HSPC) integrates intracellular signal network from growth factors (GFs) and utilizes its proliferation feature to generate high yields of transplantable cells upon ex vivo culture. However, the molecular basis for HSPC activation and proliferation is not completely understood. The goal of this study was to investigate proliferation regulator in the downstream of GFs and develop HSPC expansion strategy. Microarray and Ingenuity Pathway Analysis were performed to evaluate differentially expressed genes in cytokine-induced CD34+ cells after ex vivo culture. We identified that MEK1 was a potential HSPC proliferation regulator, which represented indispensable roles and MEK1 silence attenuated the proliferation of HSPC. Notably, 500 nM MEK1 agonist, PAF C-16, increased the numbers of phenotypic HSPC and induced cell cycling of HSPC. The PAF C-16 expanded HSPC demonstrated comparative clonal formation ability and secondary expansion capacity compared to the vehicle control. Our results provide insights into regulating the balance between proliferation and commitment of HSPC by targeting the HSPC proliferation-controlling network. This study demonstrates that MEK1 critically regulates HSPC proliferation and cell production in the ex vivo condition for transplantation.
Collapse
Affiliation(s)
- Qihao Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiran Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Minghao Xiong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuying Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Su H, Jiang M, Senevirathne C, Aluri S, Zhang T, Guo H, Xavier-Ferrucio J, Jin S, Tran NT, Liu SM, Sun CW, Zhu Y, Zhao Q, Chen Y, Cable L, Shen Y, Liu J, Qu CK, Han X, Klug CA, Bhatia R, Chen Y, Nimer SD, Zheng YG, Iancu-Rubin C, Jin J, Deng H, Krause DS, Xiang J, Verma A, Luo M, Zhao X. Methylation of dual-specificity phosphatase 4 controls cell differentiation. Cell Rep 2021; 36:109421. [PMID: 34320342 PMCID: PMC9110119 DOI: 10.1016/j.celrep.2021.109421] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/17/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are inactivated by dual-specificity phosphatases (DUSPs), the activities of which are tightly regulated during cell differentiation. Using knockdown screening and single-cell transcriptional analysis, we demonstrate that DUSP4 is the phosphatase that specifically inactivates p38 kinase to promote megakaryocyte (Mk) differentiation. Mechanistically, PRMT1-mediated methylation of DUSP4 triggers its ubiquitinylation by an E3 ligase HUWE1. Interestingly, the mechanistic axis of the DUSP4 degradation and p38 activation is also associated with a transcriptional signature of immune activation in Mk cells. In the context of thrombocytopenia observed in myelodysplastic syndrome (MDS), we demonstrate that high levels of p38 MAPK and PRMT1 are associated with low platelet counts and adverse prognosis, while pharmacological inhibition of p38 MAPK or PRMT1 stimulates megakaryopoiesis. These findings provide mechanistic insights into the role of the PRMT1-DUSP4-p38 axis on Mk differentiation and present a strategy for treatment of thrombocytopenia associated with MDS.
Collapse
Affiliation(s)
- Hairui Su
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ming Jiang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Chamara Senevirathne
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Srinivas Aluri
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Tuo Zhang
- Genomics and Epigenomics Core Facility, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Han Guo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Juliana Xavier-Ferrucio
- Department of Laboratory Medicine, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shuiling Jin
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ngoc-Tung Tran
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Szu-Mam Liu
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chiao-Wang Sun
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yongxia Zhu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Qing Zhao
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yuling Chen
- Department of School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | - Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cheng-Kui Qu
- Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Xiaosi Han
- Department of Neurology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher A Klug
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ravi Bhatia
- Division of Hematology and Oncology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yabing Chen
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Veterans Affairs Birmingham Medical Center, Research Department, Birmingham, AL 35294, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146 USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Camelia Iancu-Rubin
- Department of Medicine, Hematology and Oncology Division, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haiteng Deng
- Department of School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Diane S Krause
- Department of Laboratory Medicine, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jenny Xiang
- Genomics and Epigenomics Core Facility, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA.
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA.
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
7
|
Pawinwongchai J, Mekchay P, Nilsri N, Israsena N, Rojnuckarin P. Regulation of platelet numbers and sizes by signaling pathways. Platelets 2020; 32:1073-1083. [PMID: 33222582 DOI: 10.1080/09537104.2020.1841893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Either the glycoprotein (GP) Ib deficiency or hyper-function in humans can cause macrothrombocytopenia, the molecular mechanisms of which remain unclear. Herein, the investigations for disease pathogenesis were performed in the human induced pluripotent stem cell (hiPSC) model. The hiPSCs carrying a gain-of-function GP1BA p.M255V mutation which was described in platelet-type von Willebrand disease (PT-VWD) were generated using CRISPR/Cas9. The GP1BA-null hiPSCs were previously derived from a Bernard-Soulier syndrome (BSS) patient. After full megakaryocyte differentiation in culture, both hiPSC mutations showed large proplatelet tips under fluorescence microscopy and yielded fewer but larger platelets compared with those of wild-type cells. The Capillary Western analyses revealed the lower ERK1/2 activation and higher MLC2 (Myosin light chain 2) phosphorylation in megakaryocytes with mutated GPIb. Adding a mitogen-activated protein kinase (MAPK) pathway inhibitor to wild-type hiPSCs recapitulated the phenotypes of GPIb mutations and increased MLC2 phosphorylation. Notably, a ROCK inhibitor which could inhibit MLC2 phosphorylation rescued the macrothrombocytopenia phenotypes of both GPIb alterations and wild-type hiPSCs with a MAPK inhibitor. In conclusion, the genetically modified hiPSCs can be used to model disorders of proplatelet formation. Both loss- and gain-of-function GPIb reduced MAPK/ERK activation but enhanced ROCK/MLC2 phosphorylation resulting in dysregulated platelet generation.
Collapse
Affiliation(s)
- Jaturawat Pawinwongchai
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Ponthip Mekchay
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nungruthai Nilsri
- Doctor of Philosophy Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Nipan Israsena
- Stem Cell and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Manne BK, Bhatlekar S, Middleton EA, Weyrich AS, Borst O, Rondina MT. Phospho-inositide-dependent kinase 1 regulates signal dependent translation in megakaryocytes and platelets. J Thromb Haemost 2020; 18:1183-1196. [PMID: 31997536 PMCID: PMC7192796 DOI: 10.1111/jth.14748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/19/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Regulated protein synthesis is essential for megakaryocyte (MK) and platelet functions, including platelet production and activation. PDK1 (phosphoinositide-dependent kinase 1) regulates platelet functional responses and has been associated with circulating platelet counts. Whether PDK1 also directly regulates protein synthetic responses in MKs and platelets, and platelet production by MKs, remains unknown. OBJECTIVE To determine if PDK1 regulates protein synthesis in MKs and platelets. METHODS Pharmacologic PDK1 inhibitors (BX-795) and mice where PDK1 was selectively ablated in MKs and platelets (PDK1-/- ) were used. PDK1 signaling in MKs and platelets (human and murine) were assessed by immunoblots. Activation-dependent translation initiation and protein synthesis in MKs and platelets was assessed by probing for dissociation of eIF4E from 4EBP1, and using m7-GTP pulldowns and S35 methionine incorporation assays. Proplatelet formation by MKs, synthesis of Bcl-3 and MARCKs protein, and clot retraction were employed for functional assays. RESULTS Inhibiting or ablating PDK1 in MKs and platelets abolished the phosphorylation of 4EBP1 and eIF4E by preventing activation of the PI3K and MAPK pathways. Inhibiting PDK1 also prevented dissociation of eIF4E from 4EBP1, decreased binding of eIF4E to m7GTP (required for translation initiation), and significantly reduced de novo protein synthesis. Inhibiting PDK1 reduced proplatelet formation by human MKs and blocked MARCKs protein synthesis. In both human and murine platelets, PDK1 controlled Bcl-3 synthesis. Inhibition of PDK1 led to complete failure of clot retraction in vitro. CONCLUSIONS PDK1 is a previously unidentified translational regulator in MKs and platelets, controlling protein synthetic responses, proplatelet formation, and clot retraction.
Collapse
Affiliation(s)
- Bhanu Kanth Manne
- Department of Internal Medicine & The Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
| | - Seema Bhatlekar
- Department of Internal Medicine & The Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
| | - Elizabeth A. Middleton
- Department of Internal Medicine & The Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
| | - Andrew S. Weyrich
- Department of Internal Medicine & The Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112 USA
| | - Oliver Borst
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, 72076 Germany
| | - Matthew T. Rondina
- Department of Internal Medicine & The Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Internal Medicine, GRECC, George E. Wahlen VAMC, Salt Lake City, UT, 84148
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112 USA
| |
Collapse
|
9
|
Zarrabi M, Afzal E, Asghari MH, Mohammad M, Es HA, Ebrahimi M. Inhibition of MEK/ERK signalling pathway promotes erythroid differentiation and reduces HSCs engraftment in ex vivo expanded haematopoietic stem cells. J Cell Mol Med 2018; 22:1464-1474. [PMID: 28994199 PMCID: PMC5824365 DOI: 10.1111/jcmm.13379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 08/06/2017] [Indexed: 12/23/2022] Open
Abstract
The MEK/ERK pathway is found to be important in regulating different biological processes such as proliferation, differentiation and survival in a wide variety of cells. However, its role in self-renewal of haematopoietic stem cells is controversial and remains to be clarified. The aim of this study was to understand the role of MEK/ERK pathway in ex vivo expansion of mononuclear cells (MNCs) and purified CD34+ cells, both derived from human umbilical cord blood (hUCB). Based on our results, culturing the cells in the presence of an inhibitor of MEK/ERK pathway-PD0325901 (PD)-significantly reduces the expansion of CD34+ and CD34+ CD38- cells, while there is no change in the expression of stemness-related genes (HOXB4, BMI1). Moreover, in vivo analysis demonstrates that PD reduces engraftment capacity of ex vivo expanded CD34+ cells. Notably, when ERK pathway is blocked in UCB-MNCs, spontaneous erythroid differentiation is promoted, found in concomitant with increasing number of burst-forming unit-erythroid colony (BFU-E) as well as enhancement of erythroid glycophorin-A marker. These results are in total conformity with up-regulation of some erythroid enhancer genes (TAL1, GATA2, LMO2) and down-regulation of some erythroid repressor genes (JUN, PU1) as well. Taken together, our results support the idea that MEK/ERK pathway has a critical role in achieving the correct balance between self-renewal and differentiation of UCB cells. Also, we suggest that inhibition of ERK signalling could likely be a new key for erythroid induction of UCB-haematopoietic progenitor cells.
Collapse
Affiliation(s)
- Morteza Zarrabi
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Royan Stem Cell Technology Company, Cord Blood BankTehranIran
| | - Elaheh Afzal
- Royan Stem Cell Technology Company, Cord Blood BankTehranIran
| | - Mohammad Hossein Asghari
- Animal Core FacilityReproductive Biomedicine Research CenterRoyan Institute for Animal Biotechnology, ACECRTehranIran
| | - Monireh Mohammad
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Hamidreza Aboulkheyr Es
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| |
Collapse
|
10
|
Han JW, Gurunathan S, Choi YJ, Kim JH. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy. Int J Nanomedicine 2017; 12:7529-7549. [PMID: 29066898 PMCID: PMC5644540 DOI: 10.2147/ijn.s145147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Silver nanoparticles (AgNPs) exhibit strong antibacterial and anticancer activity owing to their large surface-to-volume ratios and crystallographic surface structure. Owing to their various applications, understanding the mechanisms of action, biological interactions, potential toxicity, and beneficial effects of AgNPs is important. Here, we investigated the toxicity and differentiation-inducing effects of AgNPs in teratocarcinoma stem cells. Materials and methods AgNPs were synthesized and characterized using various analytical techniques such as UV–visible spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The cellular responses of AgNPs were analyzed by a series of cellular and biochemical assays. Gene and protein expressions were analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Results The AgNPs showed typical crystalline structures and spherical shapes (average size =20 nm). High concentration of AgNPs induced cytotoxicity in a dose-dependent manner by increasing lactate dehydrogenase leakage and reactive oxygen species. Furthermore, AgNPs caused mitochondrial dysfunction, DNA fragmentation, increased expression of apoptotic genes, and decreased expression of antiapoptotic genes. Lower concentrations of AgNPs induced neuronal differentiation by increasing the expression of differentiation markers and decreasing the expression of stem cell markers. Cisplatin reduced the viability of F9 cells that underwent AgNPs-induced differentiation. Conclusion The results showed that AgNPs caused differentially regulated cytotoxicity and induced neuronal differentiation of F9 cells in a concentration-dependent manner. Therefore, AgNPs can be used for differentiation therapy, along with chemotherapeutic agents, for improving cancer treatment by targeting specific chemotherapy-resistant cells within a tumor. Furthermore, understanding the molecular mechanisms of apoptosis and differentiation in stem cells could also help in developing new strategies for cancer stem cell (CSC) therapies. The findings of this study could significantly contribute to the nanomedicine because this study is the first of its kind, and our results will lead to new strategies for cancer and CSC therapies.
Collapse
Affiliation(s)
- Jae Woong Han
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Kollmann K, Warsch W, Gonzalez-Arias C, Nice FL, Avezov E, Milburn J, Li J, Dimitropoulou D, Biddie S, Wang M, Poynton E, Colzani M, Tijssen MR, Anand S, McDermott U, Huntly B, Green T. A novel signalling screen demonstrates that CALR mutations activate essential MAPK signalling and facilitate megakaryocyte differentiation. Leukemia 2017; 31:934-944. [PMID: 27740635 PMCID: PMC5383931 DOI: 10.1038/leu.2016.280] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022]
Abstract
Most myeloproliferative neoplasm (MPN) patients lacking JAK2 mutations harbour somatic CALR mutations that are thought to activate cytokine signalling although the mechanism is unclear. To identify kinases important for survival of CALR-mutant cells, we developed a novel strategy (KISMET) that utilizes the full range of kinase selectivity data available from each inhibitor and thus takes advantage of off-target noise that limits conventional small-interfering RNA or inhibitor screens. KISMET successfully identified known essential kinases in haematopoietic and non-haematopoietic cell lines and identified the mitogen activated protein kinase (MAPK) pathway as required for growth of the CALR-mutated MARIMO cells. Expression of mutant CALR in murine or human haematopoietic cell lines was accompanied by myeloproliferative leukemia protein (MPL)-dependent activation of MAPK signalling, and MPN patients with CALR mutations showed increased MAPK activity in CD34 cells, platelets and megakaryocytes. Although CALR mutations resulted in protein instability and proteosomal degradation, mutant CALR was able to enhance megakaryopoiesis and pro-platelet production from human CD34+ progenitors. These data link aberrant MAPK activation to the MPN phenotype and identify it as a potential therapeutic target in CALR-mutant positive MPNs.
Collapse
Affiliation(s)
- K Kollmann
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - W Warsch
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - C Gonzalez-Arias
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - F L Nice
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - E Avezov
- Cambridge Institute for Medical Research, Wellcome Trust MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - J Milburn
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - J Li
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - D Dimitropoulou
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - S Biddie
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - M Wang
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - E Poynton
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - M Colzani
- Department of Haematology, University of Cambridge, and National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - M R Tijssen
- Department of Haematology, University of Cambridge, and National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - S Anand
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - U McDermott
- Cancer Genome Project, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, UK
| | - B Huntly
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - T Green
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
12
|
Hirata S, Murata T, Suzuki D, Nakamura S, Jono‐Ohnishi R, Hirose H, Sawaguchi A, Nishimura S, Sugimoto N, Eto K. Selective Inhibition of ADAM17 Efficiently Mediates Glycoprotein Ibα Retention During Ex Vivo Generation of Human Induced Pluripotent Stem Cell-Derived Platelets. Stem Cells Transl Med 2016; 6:720-730. [PMID: 28297575 PMCID: PMC5442763 DOI: 10.5966/sctm.2016-0104] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/01/2016] [Indexed: 12/17/2022] Open
Abstract
Donor‐independent platelet concentrates for transfusion can be produced in vitro from induced pluripotent stem cells (iPSCs). However, culture at 37°C induces ectodomain shedding on platelets of glycoprotein Ibα (GPIbα), the von Willebrand factor receptor critical for adhesive function and platelet lifetime in vivo, through temperature‐dependent activation of a disintegrin and metalloproteinase 17 (ADAM17). The shedding can be suppressed by using inhibitors of panmetalloproteinases and possibly of the upstream regulator p38 mitogen‐activated protein kinase (p38 MAPK), but residues of these inhibitors in the final platelet products may be accompanied by harmful risks that prevent clinical application. Here, we optimized the culture conditions for generating human iPSC‐derived GPIbα+ platelets, focusing on culture temperature and additives, by comparing a new and safe selective ADAM17 inhibitor, KP‐457, with previous inhibitors. Because cultivation at 24°C (at which conventional platelet concentrates are stored) markedly diminished the yield of platelets with high expression of platelet receptors, 37°C was requisite for normal platelet production from iPSCs. KP‐457 blocked GPIbα shedding from iPSC platelets at a lower half‐maximal inhibitory concentration than panmetalloproteinase inhibitor GM‐6001, whereas p38 MAPK inhibitors did not. iPSC platelets generated in the presence of KP‐457 exhibited improved GPIbα‐dependent aggregation not inferior to human fresh platelets. A thrombus formation model using immunodeficient mice after platelet transfusion revealed that iPSC platelets generated with KP‐457 exerted better hemostatic function in vivo. Our findings suggest that KP‐457, unlike GM‐6001 or p38 MAPK inhibitors, effectively enhances the production of functional human iPSC‐derived platelets at 37°C, which is an important step toward their clinical application. Stem Cells Translational Medicine2017;6:720–730
Collapse
Affiliation(s)
- Shinji Hirata
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Kaken Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | - Daisuke Suzuki
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Sou Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ryoko Jono‐Ohnishi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hidenori Hirose
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Kyoto Development Center, Megakaryon Co., Ltd., Kyoto, Japan
| | - Akira Sawaguchi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Satoshi Nishimura
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Naoshi Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Innovation Stem Cell Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
13
|
Podoplanin-positive periarteriolar stromal cells promote megakaryocyte growth and proplatelet formation in mice by CLEC-2. Blood 2016; 127:1701-10. [DOI: 10.1182/blood-2015-08-663708] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 01/16/2016] [Indexed: 12/14/2022] Open
Abstract
Key Points
BM FRC-like cells regulate megakaryocytic clonal expansion via CLEC-2/PDPN interactions. CLEC-2/PDPN binding stimulates BM FRC-like cells to secrete the proplatelet formation-promoting factor, CCL5.
Collapse
|
14
|
Chaman N, Iqbal MA, Siddiqui FA, Gopinath P, Bamezai RNK. ERK2-Pyruvate Kinase Axis Permits Phorbol 12-Myristate 13-Acetate-induced Megakaryocyte Differentiation in K562 Cells. J Biol Chem 2015; 290:23803-15. [PMID: 26269597 DOI: 10.1074/jbc.m115.657411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 11/06/2022] Open
Abstract
Metabolic changes that contribute to differentiation are not well understood. Overwhelming evidence shows the critical role of glycolytic enzyme pyruvate kinase (PK) in directing metabolism of proliferating cells. However, its role in metabolism of differentiating cells is unclear. Here we studied the role of PK in phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation in human leukemia K562 cells. We observed that PMA treatment decreased cancer-type anabolic metabolism but increased ATP production, along with up-regulated expression of two PK isoforms (PKM2 and PKR) in an ERK2-dependent manner. Interestingly, silencing of PK (PKM2 and PKR) inhibited PMA-induced megakaryocytic differentiation, as revealed by decreased expression of megakaryocytic differentiation marker CD61 and cell cycle behavior. Further, PMA-induced ATP production reduced greatly upon PK silencing, suggesting that PK is required for ATP synthesis. In addition to metabolic effects, PMA treatment also translocated PKM2, but not PKR, into nucleus. ERK1/2 knockdowns independently and together suggested the role of ERK2 in the up-regulation of both the isoforms of PK, proposing a role of ERK2-PK isoform axis in differentiation. Collectively, our findings unravel ERK2 guided PK-dependent metabolic changes during PMA induction, which are important in megakaryocytic differentiation.
Collapse
Affiliation(s)
- Noor Chaman
- From the National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohammad Askandar Iqbal
- From the National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Farid Ahmad Siddiqui
- From the National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prakasam Gopinath
- From the National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rameshwar N K Bamezai
- From the National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
15
|
Novel function of the chromosome 7 open reading frame 41 gene to promote leukemic megakaryocyte differentiation by modulating TPA-induced signaling. Blood Cancer J 2014; 4:e198. [PMID: 24681962 PMCID: PMC3972703 DOI: 10.1038/bcj.2014.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 01/14/2023] Open
Abstract
12-O-tetradecanoylphorbol-13-acetate (TPA) activates multiple signaling pathways, alters gene expression and causes leukemic cell differentiation. How TPA-induced genes contribute to leukemic cell differentiation remains elusive. We noticed that chromosome 7 open reading frame 41 (C7ORF41) was a TPA-responsive gene and its upregulation concurred with human megakaryocyte differentiation. In K562 cells, ectopic expression of C7ORF41 significantly increased CD61 expression, enhanced ERK and JNK signaling, and upregulated RUNX1 and FLI1, whereas C7ORF41 knockdown caused an opposite phenotype. These observations suggest that C7ORF41 may promote megakaryocyte differentiation partially through modulating ERK and JNK signaling that leads to upregulation of RUNX1 and FLI1. In supporting this, C7ORF41 overexpression rescued megakaryocyte differentiation blocked by ERK inhibition while JNK inhibition abrogated the upregulation of FLI1 by C7ORF41. Furthermore, we found that Y34F mutant C7ORF41 inhibited megakaryocyte differentiation. nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was the major activator of C7ORF41 that in turn repressed NF-κB activity by inhibiting its phosphorylation at serine 536, while MAPK/ERK was the potent repressor of C7ORF41. Finally, we showed that C7ORF41 knockdown in mouse fetal liver cells impaired megakaryocyte differentiation. Taken together, we have identified the function of a novel gene C7ORF41 that forms interplaying regulatory network in TPA-induced signaling and promotes leukemic and normal megakaryocyte differentiation.
Collapse
|
16
|
Zhou RQ, Wu JH, Gong YP, Guo Y, Xing HY. Transcription factor SCL/TAL1 mediates the phosphorylation of MEK/ERK pathway in umbilical cord blood CD34⁺ stem cells during hematopoietic differentiation. Blood Cells Mol Dis 2014; 53:39-46. [PMID: 24405580 DOI: 10.1016/j.bcmd.2013.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/29/2013] [Accepted: 12/12/2013] [Indexed: 02/05/2023]
Abstract
Transcription factor stem cell leukemia (SCL), also known as the T-cell acute lymphocytic leukemia 1 (TAL1), plays a key role in the regulation of hematopoiesis, but the molecular mechanisms are not well understood. The aim of the present study is to elucidate the effects of the epidermal growth factor receptor (EGFR) signal pathways underlying the biologic activity of SCL/TAL1 on normal hematopoietic development. Lentiviral vectors with up or down-regulation of SCL/TAL1 were transfected into umbilical cord blood CD34 stem cells. EGFR signaling pathways (including MEK/ERK and Akt/mTOR) and surface hematopoietic markers were analyzed in the process of hematopoietic differentiation. The data revealed that up or down-regulation of SCL/TAL1 gene was accompanied positively by the expressions of p-MEK and p-ERK1/2 protein, but the changes of Akt/mTOR were unobvious. MEK/ERK inhibitor U0126 and SCL/TAL1 down-regulation showed similar inhibitory effects on erythroid, myeloid, and megakaryoid differentiation. However, Akt/mTOR pathway altered insignificantly. MEK/ERK inhibitor U0126 could not affect the expression of SCL/TAL1 mRNA or protein. Taken together, these findings fully illustrated that SCL/TAL1 is located in the up-stream of MEK/ERK pathway and partially regulates hematopoiesis by modulating the phosphorylation level of the key proteins in MEK/ERK pathway.
Collapse
Affiliation(s)
- Rui Qing Zhou
- Department of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Jia Hui Wu
- Department of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Yu Ping Gong
- Department of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Yong Guo
- Department of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Hong Yun Xing
- Department of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Young PR. Perspective on the Discovery and Scientific Impact of p38 MAP Kinase. ACTA ACUST UNITED AC 2013; 18:1156-63. [DOI: 10.1177/1087057113497401] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has now been almost 20 years since the discovery of p38 MAP kinase and its role in inflammatory cytokine synthesis through reverse pharmacology and its subsequent exploration as a potential target for autoimmune and other diseases. At the time of its discovery, the use of cell-based phenotypic screens to identify new molecular targets was at its infancy, and while p38 MAP kinase was not the first target to be identified this way, it provides a useful model for reviewing the pros and cons of this approach and the subsequent impact it can have on discovering new medicines.
Collapse
|
18
|
MR-1 blocks the megakaryocytic differentiation and transition of CML from chronic phase to blast crisis through MEK dephosphorylation. Blood Cancer J 2013; 3:e107. [PMID: 23542180 PMCID: PMC3615218 DOI: 10.1038/bcj.2013.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic myelogenous leukemia (CML) evolves from a chronic phase characterized by the Philadelphia chromosome as the sole genetic abnormality and the accumulation of mature cells in peripheral blood into blast crisis, which is characterized by the rapid expansion of myeloid- or lymphoid-differentiation-arrested blast cells. Although ample studies have been conducted on the disease progress mechanisms, the underlying molecular mechanisms of the malignant phenotype transition are still unclear. In this study, we have shown that myofibrillogenesis regulator-1 (MR-1) was overexpressed in blast crisis patients and leukemic cells, but there was little trace expressed in healthy individuals and in most patients in CML chronic phase. MR-1 could inhibit the differentiation of myeloid cells into megakaryocytic lineages and accelerate cell proliferation. The molecular mechanism responsible for these effects was the interaction of MR-1 with MEK, which blocked the MEK/ERK signaling pathway by dephosphorylating MEK. Our results provide compelling and important evidence that MR-1 might act as a diagnostic marker and potential target of CML progression from chronic phase to blast crisis.
Collapse
|
19
|
Chen PK, Chang HH, Lin GL, Wang TP, Lai YL, Lin TK, Hsieh MC, Kau JH, Huang HH, Hsu HL, Liao CY, Sun DS. Suppressive effects of anthrax lethal toxin on megakaryopoiesis. PLoS One 2013; 8:e59512. [PMID: 23555687 PMCID: PMC3605335 DOI: 10.1371/journal.pone.0059512] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 02/15/2013] [Indexed: 01/14/2023] Open
Abstract
Anthrax lethal toxin (LT) is a major virulence factor of Bacillus anthracis. LT challenge suppresses platelet counts and platelet function in mice, however, the mechanism responsible for thrombocytopenia remains unclear. LT inhibits cellular mitogen-activated protein kinases (MAPKs), which are vital pathways responsible for cell survival, differentiation, and maturation. One of the MAPKs, the MEK1/2-extracellular signal-regulated kinase pathway, is particularly important in megakaryopoiesis. This study evaluates the hypothesis that LT may suppress the progenitor cells of platelets, thereby inducing thrombocytopenic responses. Using cord blood-derived CD34(+) cells and mouse bone marrow mononuclear cells to perform in vitro differentiation, this work shows that LT suppresses megakaryopoiesis by reducing the survival of megakaryocytes. Thrombopoietin treatments can reduce thrombocytopenia, megakaryocytic suppression, and the quick onset of lethality in LT-challenged mice. These results suggest that megakaryocytic suppression is one of the mechanisms by which LT induces thrombocytopenia. These findings may provide new insights for developing feasible approaches against anthrax.
Collapse
Affiliation(s)
- Po-Kong Chen
- Institute of Medical Science, Tzu-Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Science, Tzu-Chi University, Hualien, Taiwan
| | - Guan-Ling Lin
- Institute of Medical Science, Tzu-Chi University, Hualien, Taiwan
| | - Tsung-Pao Wang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Yi-Ling Lai
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Ting-Kai Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Ming-Chun Hsieh
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Jyh-Hwa Kau
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Hsien Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hui-Ling Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Yuan Liao
- Department of Obstetrics and Gynecology, Mennonite Christian Hospital, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Science, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
20
|
Eliades A, Papadantonakis N, Matsuura S, Mi R, Bais MV, Trackman P, Ravid K. Megakaryocyte polyploidy is inhibited by lysyl oxidase propeptide. Cell Cycle 2013; 12:1242-50. [PMID: 23518500 DOI: 10.4161/cc.24312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Megakaryocytes (MKs), the platelet precursors, undergo an endomitotic cell cycle that leads to polyploidy. Lysyl oxidase propeptide (LOX-PP) is generated from lysyl oxidase (LOX) pro-enzyme after proteolytical cleavage. We recently reported that LOX, a known matrix cross-linking enzyme, contributes to MK lineage expansion. In addition, LOX expression levels are ploidy-dependent, with polyploidy MKs having minimal levels. This led us to test the effects of LOX-PP on the number and ploidy of primary MKs. LOX-PP significantly decreases mouse bone marrow MK ploidy coupled with a reduction in MK size. MK number is unchanged upon LOX-PP treatment. Analysis of LOX-PP- or vehicle-treated MKs by western blotting revealed a reduction in ERK1/2 phosphorylation and in the levels of its downstream targets, cyclin D3 and cyclin E, which are known to play a central role in MK endomitosis. Pull-down assays and immunochemistry staining indicated that LOX-PP interacts with α-tubulin and the mictotubules, which can contribute to decreased MK ploidy. Thus, our findings defined a role for LOX-PP in reducing MK ploidy. This suggests that high-level expression of LOX in aberrantly proliferating MKs could play a part in inhibiting their polyploidization via LOX-PP.
Collapse
Affiliation(s)
- Alexia Eliades
- Department of Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Potentiated activation of VLA-4 and VLA-5 accelerates proplatelet-like formation. Ann Hematol 2012; 91:1633-43. [PMID: 22644786 DOI: 10.1007/s00277-012-1498-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
Abstract
Fibronectin (FN) plays important roles in the proliferation, differentiation, and maintenance of megakaryocytic-lineage cells through FN receptors. However, substantial role of FN receptors and their functional assignment in proplatelet-like formation (PPF) of megakaryocytes are not yet fully understood. Herein, we investigated the effects of FN receptors on PPF using the CHRF-288 human megakaryoblastic cell line, which expresses VLA-4 and VLA-5 as FN receptors. FN and phorbol 12-myristate 13-acetate (PMA) were essential for inducing PPF in CHRF-288 cells. Blocking experiments using anti-β1-integrin monoclonal antibodies indicated that the adhesive interaction with FN via VLA-4 and VLA-5 were required for PPF. PPF induced by FN plus PMA was accelerated when CHRF-288 cells were enforced adhering to FN by TNIIIA2, a peptide derived from tenascin-C, which we recently found to induce β1-integrin activation. Adhesion to FN enhanced PMA-stimulated activation of extracellular signal-regulated protein kinase 1 (ERK1)/2 and enforced adhesion to FN via VLA-4 and VLA-5 by TNIIIA2-accelerated activation of ERK1/2 with FN plus PMA. However, c-Jun amino-terminal kinase 1 (JNK1), p38, and phosphoinositide-3 kinase (PI3K)/Akt were not stimulated by FN plus PMA, even with TNIIIA2. Thus, the enhanced activation of ERK1/2 by FN, PMA plus TNIIIA2 was responsible for acceleration of PPF with FN plus PMA.
Collapse
|
22
|
Fibronectin promotes proplatelet formation in the human megakaryocytic cell line UT-7/TPO. Cell Biol Int 2012; 36:39-45. [PMID: 21970435 DOI: 10.1042/cbi20110383] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated PPF (proplatelet formation) in the human megakaryocytic cell line UT-7/TPO in vitro and signal transduction pathways responsible for PPF. The megakaryocytic cell lines are useful for studying megakaryocyte biology, although PPF is induced only in the presence of phorbol ester. TPO (thrombopoietin) stimulates megakaryocyte proliferation and differentiation; however, no PPF occurred in the megakaryocytic cell lines, even after the addition of TPO. Therefore, factors other than TPO may play an important role in the process of PPF. As PPF occurs in the bone marrow in vivo, we noted extracellular matrix proteins and found that soluble FN (fibronectin) induced potent PPF in UT-7/TPO without phorbol ester. A Western blot analysis showed that the expression of integrins was not increased by FN treatment. Anti-β1 antibody and the RGD (arginine-glycine-aspartate) peptide inhibited FN-induced PPF. This result indicates that the signal originated from integrin β1, which is essential to inducing PPF in UT-7/TPO. Results of the experiments using several inhibitors suggest that activation of the MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]-ERK and PI3K (phosphoinositide 3-kinase) pathways are necessary for PPF. The phosphorylation of ERK gradually increased for 2 h after the addition of soluble FN, which suggests that activation of ERK is essential for the initial induction of FN-induced PPF in UT-7/TPO. UT-7/TPO is a useful cell line that enables us to study the signals of PPF without effects of chemical compounds.
Collapse
|
23
|
Chung E, Kondo M. Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development. Immunol Res 2011; 49:248-68. [PMID: 21170740 DOI: 10.1007/s12026-010-8187-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent research on hematological malignancies has shown that malignant cells often co-opt physiological pathways to promote their growth and development. Bone marrow homeostasis requires a fine balance between cellular differentiation and self-renewal; cell survival and apoptosis; and cellular proliferation and senescence. The Ras/Raf/MEK/ERK pathway has been shown to be important in regulating these biological functions. Moreover, the Ras/Raf/MEK/ERK pathway has been estimated to be mutated in 30% of all cancers, thus making it the focus of many scientific studies which have lead to a deeper understanding of cancer development and help to elucidate potential weaknesses that can be targeted by pharmacological agents [1]. In this review, we specifically focus on the role of this pathway in physiological hematopoiesis and how augmentation of the pathway may lead to hematopoietic malignancies. We also discuss the challenges and success of targeting this pathway.
Collapse
Affiliation(s)
- Eva Chung
- Department of Immunology, Duke University Medical Center, 101 Jones Building, DUMC Box 3010, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
24
|
Lindsey S, Papoutsakis ET. The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization. Br J Haematol 2011; 152:469-84. [PMID: 21226706 PMCID: PMC3408620 DOI: 10.1111/j.1365-2141.2010.08548.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild-type mice, AHR-null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower-ploidy megakaryocytes (Mks). AHR mRNA increased 3·6-fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked-down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations.
Collapse
Affiliation(s)
- Stephan Lindsey
- Department of Chemical Engineering and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.
| | | |
Collapse
|
25
|
Chang YI, Hua WK, Yao CL, Hwang SM, Hung YC, Kuan CJ, Leou JS, Lin WJ. Protein-arginine methyltransferase 1 suppresses megakaryocytic differentiation via modulation of the p38 MAPK pathway in K562 cells. J Biol Chem 2010; 285:20595-606. [PMID: 20442406 DOI: 10.1074/jbc.m109.092411] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Protein-arginine methyltransferase 1 (PRMT1) plays pivotal roles in various cellular processes. However, its role in megakaryocytic differentiation has yet to be investigated. Human leukemia K562 cells have been used as a model to study hematopoietic differentiation. In this study, we report that ectopic expression of HA-PRMT1 in K562 cells suppressed phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation as demonstrated by changes in cytological characteristics, adhesive properties, and CD41 expression, whereas knockdown of PRMT1 by small interference RNA promoted differentiation. Impairment of the methyltransferase activity of PRMT1 diminished the suppressive effect. These results provide evidence for a novel role of PRMT1 in negative regulation of megakaryocytic differentiation. Activation of ERK MAPK has been shown to be essential for megakaryocytic differentiation, although the role of p38 MAPK is still poorly understood. We show that knockdown of p38alpha MAPK or treatment with the p38 inhibitor SB203580 significantly enhanced PMA-induced megakaryocytic differentiation. Further investigation revealed that PRMT1 promotes activation of p38 MAPK without inhibiting activation of ERK MAPK. In p38alpha knockdown cells, PRMT1 could no longer suppress differentiation. In contrast, enforced expression of p38alpha MAPK suppressed PMA-induced megakaryocytic differentiation of parental K562 as well as PRMT1-knockdown cells. We propose modulation of the p38 MAPK pathway by PRMT1 as a novel mechanism regulating megakaryocytic differentiation. This study thus provides a new perspective on the promotion of megakaryopoiesis.
Collapse
Affiliation(s)
- Yuan-I Chang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pro-inflammatory cytokine-mediated anemia: regarding molecular mechanisms of erythropoiesis. Mediators Inflamm 2010; 2009:405016. [PMID: 20204172 PMCID: PMC2830572 DOI: 10.1155/2009/405016] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 12/17/2009] [Indexed: 12/26/2022] Open
Abstract
Anemia of cancer and chronic inflammatory diseases is a frequent complication affecting quality of life. For cancer patients it represents a particularly bad prognostic. Low level of erythropoietin is considered as one of the causes of anemia in these pathologies. The deficiency in erythropoietin production results from pro-inflammatory cytokines effect. However, few data is available concerning molecular mechanisms involved in cytokine-mediated anemia. Some recent publications have demonstrated the direct effect of pro-inflammatory cytokines on cell differentiation towards erythroid pathway, without erythropoietin defect. This suggested that pro-inflammatory cytokine-mediated signaling pathways affect erythropoietin activity. They could interfere with erythropoietin-mediated signaling pathways, inducing early apoptosis and perturbing the expression and regulation of specific transcription factors involved in the control of erythroid differentiation. In this review we summarize the effect of tumor necrosis factor (TNF)α, TNF-related apoptosis-inducing ligand (TRAIL), and interferon (IFN)-γ on erythropoiesis with a particular interest for molecular feature.
Collapse
|
27
|
Séverin S, Ghevaert C, Mazharian A. The mitogen-activated protein kinase signaling pathways: role in megakaryocyte differentiation. J Thromb Haemost 2010; 8:17-26. [PMID: 19874462 DOI: 10.1111/j.1538-7836.2009.03658.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Megakaryopoiesis is a process by which bone marrow progenitor cells develop into mature megakaryocytes (MKs), which in turn produce platelets required for normal hemostasis. The mitogen-activated protein kinases (MAPKs) family comprises four main groups of proteins: extracellular signal-related kinases (ERKs) (ERK1/2 or p44/p42), ERK5, p38MAPKs (alpha, beta, gamma, delta) and c-Jun amino-terminal kinases (JNKs) (JNK 1, 2, 3). These intracellular signaling pathways play a pivotal role in many essential cellular processes including proliferation and differentiation. The purpose of this review is to summarize our current knowledge on the role of MAPKs in MKs, specifically regarding differentiation in immortalized cell lines and primary MKs. A critical role of the MEK (MAPK kinase)-ERK1/2 pathway in MK development has been demonstrated although the details remain controversial. There is at present no functional evidence for a role of p38MAPKs whereas the role of JNKs and ERK5 in MK development is not known. Characterization of these molecular event cascades remains crucial for the understanding of the megakaryopoiesis process.
Collapse
Affiliation(s)
- S Séverin
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
28
|
Mazharian A, Watson SP, Séverin S. Critical role for ERK1/2 in bone marrow and fetal liver-derived primary megakaryocyte differentiation, motility, and proplatelet formation. Exp Hematol 2009; 37:1238-1249.e5. [PMID: 19619605 PMCID: PMC2755112 DOI: 10.1016/j.exphem.2009.07.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 07/01/2009] [Accepted: 07/07/2009] [Indexed: 12/12/2022]
Abstract
Objective Megakaryopoiesis and platelet formation is a multistep process through which hematopoietic progenitor cells develop into mature megakaryocytes (MKs) and form proplatelets. The present study investigates the regulation of different steps of megakaryopoiesis (i.e., differentiation, migration, and proplatelet formation) by extracellar signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) in two models of primary murine MKs derived from bone marrow (BM) cells and fetal liver (FL) cells. Materials and Methods A preparation of MKs was generated from BM obtained from femora and tibiae of C57BL6 mice. FL-derived MKs were obtained from the liver of mouse fetuses aged 13 to 15 days. Results For both cell populations, activation of MEK-ERK1/2 pathway by thrombopoietin was found to have a critical role in MK differentiation, regulating polyploidy and surface expression of CD34, GPIIb, and GPIb. The MEK-ERK1/2 pathway plays a major role in migration of BM-derived MKs toward a stromal-cell−derived factor 1α (SDF1α) gradient, whereas unexpectedly, FL-derived cells fail to migrate in response to the chemokine due to negligible expression of its receptor, CXCR4. The MEK-ERK1/2 pathway also plays a critical role in the generation of proplatelets. In contrast, p38MAPK pathway was not involved in any of these processes. Conclusion This report demonstrates a critical role of MEK-ERK1/2 pathway in MK differentiation, motility, and proplatelet formation. This study highlights several differences between BM- and FL-derived MKs, which are discussed.
Collapse
Affiliation(s)
| | | | - Sonia Séverin
- Offprint requests to: Sonia Séverin, Ph.D., Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
29
|
Corallini F, Milani D, Nicolin V, Secchiero P. TRAIL, caspases and maturation of normal and leukemic myeloid precursors. Leuk Lymphoma 2009; 47:1459-68. [PMID: 16966254 DOI: 10.1080/10428190500513611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a membrane-bound cytokine molecule that belongs to the family of tumor necrosis factor (TNF). Members of this family share diverse biological effects, including induction of apoptosis and/or promotion of cell survival. Identification of TRAIL has generated considerable enthusiasm for its ability to induce apoptotic cell death in a variety of tumor cells, by engaging the death receptors TRAIL-R1/DR4 and TRAIL-R2/DR5, while sparing most normal cells. Beside its anticancer activity, several studies have suggested a role for endogenously expressed TRAIL in hemopoiesis. In this review, we summarize the knowledge about the different lineage-specific roles of TRAIL and its receptors in hemopoiesis regulation. Moreover, the complex interplay among the signaling pathways triggered by TRAIL/TRAIL-receptors in myeloid cells is discussed in some detail.
Collapse
Affiliation(s)
- Federica Corallini
- Department of Morphology and Embryology, University of Ferrara, Via Fossato di Mortara 66, 44100, Ferrara, Italy
| | | | | | | |
Collapse
|
30
|
Meshkini A, Yazdanparast R. Involvement of ERK/MAPK pathway in megakaryocytic differentiation of K562 cells induced by 3-hydrogenkwadaphnin. Toxicol In Vitro 2008; 22:1503-10. [DOI: 10.1016/j.tiv.2008.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/09/2008] [Accepted: 05/14/2008] [Indexed: 10/22/2022]
|
31
|
Vulcano F, Ciccarelli C, Mattia G, Marampon F, Giampiero M, Milazzo L, Pascuccio M, Zani BM, Giampaolo A, Hassan HJ. HDAC inhibition is associated to valproic acid induction of early megakaryocytic markers. Exp Cell Res 2006; 312:1590-7. [PMID: 16739251 DOI: 10.1016/j.yexcr.2006.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Valproic acid (VPA), a histone deacetylase inhibitor, causes differentiation in different cell lines and in a cell-specific manner; yet, its effect on megakaryocytic (MK) differentiation has not been studied. We evaluated whether VPA induces MK differentiation in a UT-7 cell line through histone acetylation in the GpIIIa gene region and activation of the ERK pathway. UT-7 cells, derived from megakaryoblastic leukemia, were treated with VPA at various concentrations, and the expression of differentiation markers as well as the gene expression profile was assessed. Flow cytometry, immunoblot analysis, and RT-PCR demonstrated that VPA induced the expression of the early MK markers GpIIIa (CD61) and GpIIb/IIIa (CD41) in a dose-dependent manner. The VPA-treated cells showed hyperacetylation of the histones H3 and H4; in particular, histone acetylation was found to have been associated with CD61 expression, in that the GpIIIa promoter showed H4 hyperacetylation, as demonstrated by the chromatin immunoprecipitation assay. Furthermore, activation of the ERK pathway was involved in VPA-mediated CD61/CD41 expression and in cell adhesion, as demonstrated by using the MEK/ERK inhibitor U0126. In conclusion, the capacity of VPA to commit UT-7 cells to MK differentiation is mediated by its inhibitory action on HDAC and the long-lived activation of ERK1/2.
Collapse
Affiliation(s)
- Francesca Vulcano
- Section of Transfusion Methodologies, Department of Hermatology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Williams CA, Mondal D, Agrawal KC. The HIV-1 Tat protein enhances megakaryocytic commitment of K562 cells by facilitating CREB transcription factor coactivation by CBP. Exp Biol Med (Maywood) 2006; 230:872-84. [PMID: 16339753 DOI: 10.1177/153537020523001113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Tat protein regulates transcription factor functions and alters cellular gene expression. Because hematopoietic progenitor cell (HPC) differentiation requires activation of lineage-specific transcription factors, Tat may affect hematopoiesis in HIV-1-infected micro-environments. We have monitored the molecular effects of Tat on megakaryocytic differentiation in the HPC line, K562. Flow cytometry analysis of CD61 indicated that phorbol myristate acetate (PMA) (16 nM) stimulated megakaryocytic commitment of K562 cells was increased (3- to 4-fold) following exposure to Tat (1-100 ng/ml). Activation of the megakaryocytic transcription factor cAMP regulatory element binding protein (CREB) and its coactivation by the CREB binding protein (CBP) was subsequently monitored. CREB phosphorylation and DNA binding were measured by Western immunodetection and electrophoretic mobility shift assays (EMSA), respectively. Within 2 hrs after stimulation, Tat increased both CREB phosphorylation and DNA binding by 7- to 10-fold. Transient cotransfection with CREB reporter and CBP expression plasmids demonstrated that Tat treatment increases (3- to 4-fold) both PMA-stimulated and CBP-mediated transcription via the cAMP regulatory element. Histone acetyl transferase (HAT) activity was increased (8- to 10-fold) in Tat-stimulated cells, which suggested increased chromosomal accessibility of transcription factors. Two-hybrid cotransfection assays using reporter plasmid containing the GAL4 DNA-binding domain and expression plasmid coding for the GAL4-CBP fusion protein, showed that Tat increases (2-fold) CBP-mediated coactivation of CREB. Both reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis showed that Tat treatment increases CBP gene expression (7- to 9-fold) and protein levels (5- to 7-fold) within 6-12 hrs after stimulation. Our findings indicated that Tat treatment increases both CREB function and CREB coactivation by CBP, which may facilitate megakaryocytic commitment of K562 cells. Induction of this molecular signaling by HIV-1 Tat protein may have relevance in understanding the HIV-induced hematologic manifestations and possibly in regulation of viral infectivity parameters in progenitor cell reservoirs.
Collapse
Affiliation(s)
- Christopher A Williams
- Department of Pharmacology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
33
|
Mondal D, Williams CA, Ali M, Eilers M, Agrawal KC. The HIV-1 Tat protein selectively enhances CXCR4 and inhibits CCR5 expression in megakaryocytic K562 cells. Exp Biol Med (Maywood) 2005; 230:631-44. [PMID: 16179731 DOI: 10.1177/153537020523000905] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The hematopoietic compartments act as long-term reservoirs for human immunodeficiency virus type-1 (HIV-1). Although hematopoietic progenitor cells (HPCs) are rarely infectable, HPCs committed to the megakaryocytic lineage can be infected and support a productive infection by both the X4 and R5 strains of HIV-1. Indeed, in contrast to the CD34+ progenitors, the lineage-committed HPCs express high levels of the HIV-1 co-receptors, CXCR4 and CCR5. The HIV-1 transactivator (Tat) protein has been shown to alter co-receptor expression in T lymphocytes and macrophages. We hypothesized that Tat may regulate co-receptor expression in lineage-specific HPCs as well. We have monitored the effects of Tat protein on co-receptor expression and on lineage-specific differentiation, using the HPC cell line, K562. Butyric acid (BA)-induced erythroid differentiation in K562 cells was suppressed by 1-100 ng/ml of Tat, as evident from a 70-80% decrease in hemoglobin (Hb) production and a 10-30-fold decrease in glycophorin-A expression. However, Tat treatment enhanced phorbol myristate acetate (PMA)-induced megakaryocytic differentiation, as evident from a 180-210% increase in 3H-serotonin uptake and a 5-12-fold increase in CD61 expression. Tat did not significantly alter co-receptor expression in erythroid cells. However, Tat co-treatment profoundly effected both CXCR4 and CCR5 gene expression and protein levels in megakaryocytic cells. In PMA-stimulated cells, Tat increased CXCR4 and decreased in CCR5 expression, this was potentiated in cells chronically exposed to Tat. In conclusion, Tat protein suppresses erythroid and facilitates megakaryocytic differentiation of K562 cells. In megakaryocytic cells, Tat differentially effected CXCR4 and CCR5 expression. Because megakaryocytes may play a crucial role in HIV-1 infectivity in viral reservoirs, our findings implicate a role for Tat protein in dictating co-receptor usage in lineage-committed HPCs.
Collapse
Affiliation(s)
- Debasis Mondal
- Department of Pharmacology, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | |
Collapse
|
34
|
Lennartsson J, Jelacic T, Linnekin D, Shivakrupa R. Normal and Oncogenic Forms of the Receptor Tyrosine Kinase Kit. Stem Cells 2005; 23:16-43. [PMID: 15625120 DOI: 10.1634/stemcells.2004-0117] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kit is a receptor tyrosine kinase (RTK) that binds stem cell factor. This receptor ligand combination is important for normal hematopoiesis, as well as pigmentation, gut function, and reproduction. Structurally, Kit has both an extracellular and intracellular region. Theintra-cellular region is comprised of a juxtamembrane domain (JMD), a kinase domain, a kinase insert, and a carboxyl tail. Inappropriate expression or activation of Kit is associated with a variety of diseases in humans. Activating mutations in Kit have been identified primarily in the JMD and the second part of the kinase domain and have been associated with gastrointestinal stromal cell tumors and mastocytosis, respectively. There are also reports of activating mutations in some forms of germ cell tumors and core binding factor leukemias. Since the cloning of the Kit ligand in the early 1990s, there has been an explosion of information relating to the mechanism of action of normal forms of Kit as well as activated mutants. This is important because understanding this RTK at the biochemical level could assist in the development of therapeutics to treat primary and secondary defects in the tissues that require Kit. Furthermore, understanding the mechanisms mediating transformation of cells by activated Kit mutants will help in the design of interventions for human disease associated with these mutations. The objective of this review is to summarize what is known about normal and oncogenic forms of Kit. We will place particular emphasis on recent developments in understanding the mechanisms of action of normal and activated forms of this RTK and its association with human disease, particularly in hematopoietic cells.
Collapse
Affiliation(s)
- Johan Lennartsson
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Maryland, USA.
| | | | | | | |
Collapse
|
35
|
Melloni E, Secchiero P, Celeghini C, Campioni D, Grill V, Guidotti L, Zauli G. Functional expression of TRAIL and TRAIL-R2 during human megakaryocytic development. J Cell Physiol 2005; 204:975-82. [PMID: 15828026 DOI: 10.1002/jcp.20358] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The expression and function of surface TRAIL and TRAIL receptors were investigated in primary megakaryocytic cells, generated in serum-free liquid phase from peripheral human CD34(+) cells. The surface expression of both TRAIL and "death receptor" TRAIL-R2 became detectable starting from the early phase of megakaryocytic differentiation (day 6 of culture) and persisted at later (days10-14) culture times. On the other hand, "death receptor" TRAIL-R1, "decoy receptors" TRAIL-R3, and TRAIL-R4 were barely detectable or undetectable at any time point examined. Addition of recombinant TRAIL at day 6 of culture increased the rate of spontaneous apoptosis of CD34(+)/CD41(dim) megakaryoblasts and it significantly decreased the total output of mature megakaryocytic cells evaluated after additional 4-8 days of culture. Conversely, addition in culture of TRAIL-R2-Fc chimera, which blocked the interaction between endogenous TRAIL and TRAIL-R2 on the surface of cultured megakaryocytic cells, increased the total megakaryocytic cell count. In addition, recombinant TRAIL promoted a small but reproducible increase of maturation in the surviving megakaryocytic cell population, evaluated by both phenotypic analysis and morphology. A similar pro-maturation effect was observed when TRAIL was added to bone marrow-derived CD61(+) megakaryocytic cells. Thus, our data suggest a role of TRAIL as a regulator of megakaryocytopoiesis.
Collapse
Affiliation(s)
- Elisabetta Melloni
- Department of Morphology and Embryology, Human Anatomy Section, University of Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Sabri S, Jandrot-Perrus M, Bertoglio J, Farndale RW, Mas VMD, Debili N, Vainchenker W. Differential regulation of actin stress fiber assembly and proplatelet formation by alpha2beta1 integrin and GPVI in human megakaryocytes. Blood 2004; 104:3117-25. [PMID: 15265786 DOI: 10.1182/blood-2003-12-4398] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The actin cytoskeleton plays a major role in platelet function. In contrast, its precise role in the function of megakaryocytes (MKs) is less understood but may be important for a chemoattractive response and an efficient proplatelet formation. In the marrow microenvironment, mature MKs are in contact with the extracellular matrix, including fibrillar collagen type I. MKs express alpha2beta1 integrin and the immunoglobulin superfamily member glycoprotein VI (GPVI), the main receptors for collagen. Using function-blocking antibodies or specific ligands, we investigated in primary human MKs how alpha2beta1 integrin and GPVI regulate stress fiber formation, the primary actin structures needed for cell contraction. Stress fiber assembly requires synergistic activation of the MAPK/Erk1/2 pathway and the small guanosine triphosphatase Rho via its effector, Rho-associated coiled-coil kinase (ROCK). alpha2beta1 integrin is crucial for stress fiber formation, whereas GPVI triggers rapid and sustained activation of the Erk1/2 pathway. Strikingly, after a longer adhesion time, proplatelet formation was significantly inhibited by the engagement of alpha2beta1 integrin, not by GPVI, likely through the Rho/ROCK pathway. Thus, proplatelet formation in human MKs could be tightly regulated by differential interactions with their collagen receptors. We propose that this interaction with collagen prevents proplatelet formation within the marrow.
Collapse
Affiliation(s)
- Siham Sabri
- Institut National de la Santé et de la Recherche Médicale, U362, Institut Gustave Roussy, rue Camille Desmoulins, 94800 Villejuif, France.
| | | | | | | | | | | | | |
Collapse
|
37
|
Maki K, Arai H, Waga K, Sasaki K, Nakamura F, Imai Y, Kurokawa M, Hirai H, Mitani K. Leukemia-related transcription factor TEL is negatively regulated through extracellular signal-regulated kinase-induced phosphorylation. Mol Cell Biol 2004; 24:3227-37. [PMID: 15060146 PMCID: PMC381595 DOI: 10.1128/mcb.24.8.3227-3237.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2003] [Revised: 07/17/2003] [Accepted: 01/13/2004] [Indexed: 11/20/2022] Open
Abstract
TEL is an ETS family transcription factor that possesses multiple putative mitogen-activated protein kinase phosphorylation sites. We here describe the functional regulation of TEL via ERK pathways. Overexpressed TEL becomes phosphorylated in vivo by activated ERK. TEL is also directly phosphorylated in vitro by ERK. The inducible phosphorylation sites are Ser(213) and Ser(257). TEL binds to a common docking domain in ERK. In vivo ERK-dependent phosphorylation reduces trans-repressional and DNA-binding abilities of TEL for ETS-binding sites. A mutant carrying substituted glutamates on both Ser(213) and Ser(257) functionally mimics hyperphosphorylated TEL and also shows a dominant-negative effect on TEL-induced transcriptional suppression. Losing DNA-binding affinity through phosphorylation but heterodimerizing with unmodified TEL could be an underlying mechanism. Moreover, the glutamate mutant dominantly interferes with TEL-induced erythroid differentiation in MEL cells and growth suppression in NIH 3T3 cells. Finally, endogenous TEL is dephosphorylated in parallel with ERK inactivation in differentiating MEL cells and is phosphorylated through ERK activation in Ras-transformed NIH 3T3 cells. These data indicate that TEL is a constituent downstream of ERK in signal transduction systems and is physiologically regulated by ERK in molecular and biological features.
Collapse
Affiliation(s)
- Kazuhiro Maki
- Department of Hematology, Dokkyo University School of Medicine, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Secchiero P, Melloni E, Heikinheimo M, Mannisto S, Di Pietro R, Iacone A, Zauli G. TRAIL regulates normal erythroid maturation through an ERK-dependent pathway. Blood 2004; 103:517-522. [PMID: 12969966 DOI: 10.1182/blood-2003-06-2137] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In order to investigate the biologic activity of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on human erythropoiesis, glycophorin A (GPA)+ erythroid cells were generated in serum-free liquid phase from human cord blood (CB) CD34+ progenitor cells. The surface expression of TRAIL-R1 was weakly detectable in the early-intermediate phase of erythroid differentiation (days 4-6; dim-intermediate GPA expression), whereas a clear-cut expression of TRAIL-R2 was observed through the entire course of erythroid differentiation (up to days 12-14; bright GPA expression). On the other hand, surface TRAIL-R3 and -R4 were not detected at any culture time. Besides inducing a rapid but small increase of apoptotic cell death, which was abrogated by the pan-caspase inhibitor z-VAD-fmk, the addition of recombinant TRAIL at day 6 of culture inhibited the generation of morphologically mature erythroblasts. Among the intracellular pathways investigated, TRAIL significantly stimulated the extracellular signal-regulated kinase 1/2 (ERK1/2) but not the p38/mitogen-activated protein kinase (MAPK) or the c-Jun NH2-terminal kinase (JNK) pathway. Consistently with a key role of ERK1/2 in mediating the negative effects of TRAIL on erythroid maturation, PD98059, a pharmacologic inhibitor of the ERK pathway, but not z-VAD-fmk or SB203580, a pharmacologic inhibitor of p38/MAPK, reverted the antidifferentiative effect of TRAIL on CB-derived erythroblasts.
Collapse
Affiliation(s)
- Paola Secchiero
- Dept of Morphology and Embryology, Human Anatomy Section, University of Ferrara, Via Fossato di Mortara 66, 44100 Ferrara, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Mitogen-activated protein (Map) kinases are widely expressed serine-threonine kinases that mediate important regulatory signals in the cell. Three major groups of Map kinases exist: the p38 Map kinase family, the extracellular signal-regulated kinase (Erk) family, and the c-Jun NH2-terminal kinase (JNK) family. The members of the different Map kinase groups participate in the generation of various cellular responses, including gene transcription, induction of cell death or maintenance of cell survival, malignant transformation, and regulation of cell-cycle progression. Depending on the specific family isoform involved and the cellular context, Map kinase pathways can mediate signals that either promote or suppress the growth of malignant hematopoietic cells. Over the last few years, extensive work by several groups has established that Map kinase pathways play critical roles in the pathogenesis of various hematologic malignancies, providing new molecular targets for future therapeutic approaches. In this review, the involvement of various Map kinase pathways in the pathophysiology of hematologic malignances is summarized and the clinical implications of the recent advances in the field are discussed.
Collapse
Affiliation(s)
- Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago IL 60611, USA.
| |
Collapse
|
40
|
Kim JA, Jung YJ, Seoh JY, Woo SY, Seo JS, Kim HL. Gene expression profile of megakaryocytes from human cord blood CD34(+) cells ex vivo expanded by thrombopoietin. Stem Cells 2003; 20:402-16. [PMID: 12351811 DOI: 10.1634/stemcells.20-5-402] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Previously, we investigated the process of megakaryocytopoiesis during ex vivo expansion of human cord blood (CB) CD34(+) cells using thrombopoietin (TPO) and found that megakaryocytopoiesis was closely associated with apoptosis. To understand megakaryocytopoiesis at the molecular level, we performed a microserial analysis of gene expression (microSAGE) in megakaryocytes (MKs) and nonmegakaryocytes (non-MKs) derived from human CB CD34(+) cells by ex vivo expansion using TPO, and a total of 38909 tags, representing 8976 unique genes, were identified. In MKs, many of the known genes, including coagulation factor VII, P-selectin (CD62P), pim-1, azurocidin, defensin, and CD48 were highly expressed; meanwhile, those genes encoding some small G proteins of the Ras family (Rab 7 and Rab 11A) and glutathione S transferase family (1, 4, A2, omega, and pi) showed lower expression levels in MKs. These gene expression profiles will be useful to understand megakaryocytopoiesis at the molecular level, including apoptosis and related signal transduction pathways.
Collapse
Affiliation(s)
- Jeong-Ah Kim
- Departments of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Pettiford SM, Herbst R. The protein tyrosine phosphatase HePTP regulates nuclear translocation of ERK2 and can modulate megakaryocytic differentiation of K562 cells. Leukemia 2003; 17:366-78. [PMID: 12592337 DOI: 10.1038/sj.leu.2402767] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2001] [Accepted: 07/23/2002] [Indexed: 11/09/2022]
Abstract
In response to PMA treatment K562 myelogenous leukemia cells undergo megakaryocytic differentiation, which is dependent on prolonged ERK activation and is characterized by growth arrest, upregulation of CD41 and IL-6, and, finally, by characteristic changes in cell morphology. The tyrosine phosphatase HePTP was recently demonstrated to regulate ERK activity and changes in HePTP expression have been associated with hematopoietic malignancies. Here, we have studied the function of HePTP during PMA-induced megakaryocytic differentiation of K562 cells. Overexpression of HePTP or inhibition of HePTP expression with antisense cDNA had no effect on PMA-induced cell cycle arrest or upregulation of cyclin D in K562 cells. The expression of megakaryocytic markers such as CD41 and IL6, however, were highly reduced in cells overexpressing HePTP, due to reduced ERK activation, and the cells were impaired in their ability to differentiate. Compared to control cells, HePTP antisense expressing cells did not show increased basal or PMA-induced ERK activity. However, antisense inhibition of HePTP enhanced nuclear translocation of ERK and the expression of the megakaryocytic markers CD41 and IL-6. Interestingly, like cells overexpressing HePTP, morphological differentiation was also impaired in HePTP antisense expressing cells. The results for the first time demonstrate that different aspects of megakaryocytic differentiation have distinct requirements for ERK activity. They further show that HePTP is involved in the regulation of nuclear translocation of ERK2 and that HePTP protein levels can modulate K562 cell differentiation.
Collapse
Affiliation(s)
- S M Pettiford
- DNAX Research Institute, 901 California Avenue, Palo Alto, CA 94304, USA
| | | |
Collapse
|
42
|
Buitenhuis M, Baltus B, Lammers JWJ, Coffer PJ, Koenderman L. Signal transducer and activator of transcription 5a (STAT5a) is required for eosinophil differentiation of human cord blood-derived CD34+ cells. Blood 2003; 101:134-42. [PMID: 12393707 DOI: 10.1182/blood-2002-03-0740] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal transducers and activators of transcription (STATs) have been reported to play a critical role in the differentiation of several myeloid cell lines, although the importance of STATs in the differentiation of primary human hematopoietic cells remains to be established. Terminal eosinophil differentiation is induced by interleukin-5 (IL-5), which has also been demonstrated to activate STAT5. We have investigated whether STAT5 plays a critical role during eosinophil differentiation using umbilical cord blood-derived CD34(+) cells. In this ex vivo system, STAT5 expression and activation are high early during differentiation, and STAT5 protein expression is down-regulated during the final stages of eosinophil differentiation. Retroviral transductions were performed to ectopically express wild-type and dominant-negative STAT5a (STAT5aDelta750) in CD34(+) cells. Transduction of cells with STAT5a resulted in enhanced proliferation compared with cells transduced with empty vector alone. Interestingly, ectopic expression of STAT5a also resulted in accelerated differentiation. In contrast, ectopic expression of STAT5aDelta750 resulted in a block in differentiation, whereas proliferation was also severely inhibited. Similar results were obtained with dominant-negative STAT5b. Forced expression of STAT5a enhanced expression of the STAT5 target genes Bcl-2 and p21(WAF/Cip1), suggesting they may be important in STAT5a-mediated eosinophil differentiation. These results demonstrate that STAT5 plays a critical role in eosinophil differentiation of primary human hematopoietic cells.
Collapse
Affiliation(s)
- Miranda Buitenhuis
- Department of Pulmonary Diseases, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|