1
|
Farghaly TA, Pashameah RA, Bayazeed A, Al-Soliemy AM, Alsaedi AMR, Harras MF. Design and Synthesis of New bis-oxindole and Spiro(triazole-oxindole) as CDK4 Inhibitors with Potent Anti-breast Cancer Activity. Med Chem 2024; 20:63-77. [PMID: 37723960 DOI: 10.2174/1573406419666230810124855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/18/2023] [Accepted: 07/05/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Since CDKs have been demonstrated to be overexpressed in a wide spectrum of human malignancies, their inhibition has been cited as an effective technique for anticancer drug development. METHODS In this context, new bis-oxindole/spiro-triazole-oxindole anti-breast cancer drugs with potential CDK4 inhibitory effects were produced in this work. The novel series of bis-oxindole/spirotriazole- oxindole were synthesized from the reaction of bis-oxindole with the aniline derivatives then followed by 1,3-dipolar cycloaddition of hydrazonoyl chloride. RESULTS The structure of these bis-oxindole/spiro-triazole-oxindole series was proven based on their spectral analyses. Most bis-oxindole and bis-spiro-triazole-oxindole compounds effectively inhibited the growth of MCF-7 (IC50 = 2.81-17.61 μM) and MDA-MB-231 (IC50 = 3.23-7.98 μM) breast cancer cell lines with low inhibitory activity against normal WI-38 cells. While the reference doxorubicin showed IC50 values of 7.43 μM against MCF-7 and 5.71 μM against the MDA-MB-231 cell line. Additionally, compounds 3b, 3c, 6b, and 6d revealed significant anti-CDK4 activity (IC50 = 0.157- 0.618 μM) compared to palbociclib (IC50 = 0.071 μM). Subsequent mechanistic investigations demonstrated that 3c was able to trigger tumor cell death through the induction of apoptosis. Moreover, it stimulated cancer cell cycle arrest in the G1 phase. Furthermore, western blotting disclosed that the 3c-induced cell cycle arrest may be mediated through p21 upregulation. CONCLUSION According to all of the findings, bis-oxindole 3c shows promise as a cancer treatment targeting CDK4.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Rami A Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Abrar Bayazeed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Amerah M Al-Soliemy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Amani M R Alsaedi
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Marwa F Harras
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Yang K, Li X, Xie K. Senescence program and its reprogramming in pancreatic premalignancy. Cell Death Dis 2023; 14:528. [PMID: 37591827 PMCID: PMC10435572 DOI: 10.1038/s41419-023-06040-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Tumor is a representative of cell immortalization, while senescence irreversibly arrests cell proliferation. Although tumorigenesis and senescence seem contrary to each other, they have similar mechanisms in many aspects. Pancreatic ductal adenocarcinoma (PDA) is highly lethal disease, which occurs and progresses through a multi-step process. Senescence is prevalent in pancreatic premalignancy, as manifested by decreased cell proliferation and increased clearance of pre-malignant cells by immune system. However, the senescent microenvironment cooperates with multiple factors and significantly contributes to tumorigenesis. Evidently, PDA progression requires to evade the effects of cellular senescence. This review will focus on dual roles that senescence plays in PDA development and progression, the signaling effectors that critically regulate senescence in PDA, the identification and reactivation of molecular targets that control senescence program for the treatment of PDA.
Collapse
Affiliation(s)
- Kailing Yang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China.
- The South China University of Technology Comprehensive Cancer Center, Guangdong, China.
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China.
| |
Collapse
|
3
|
Huang Y, Fan Y, Zhao Z, Zhang X, Tucker K, Staley A, Suo H, Sun W, Shen X, Deng B, Pierce SR, West L, Yin Y, Emanuele MJ, Zhou C, Bae-Jump V. Inhibition of CDK1 by RO-3306 Exhibits Anti-Tumorigenic Effects in Ovarian Cancer Cells and a Transgenic Mouse Model of Ovarian Cancer. Int J Mol Sci 2023; 24:12375. [PMID: 37569750 PMCID: PMC10418904 DOI: 10.3390/ijms241512375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Ovarian cancer is the deadliest gynecological malignancy of the reproductive organs in the United States. Cyclin-dependent kinase 1 (CDK1) is an important cell cycle regulatory protein that specifically controls the G2/M phase transition of the cell cycle. RO-3306 is a selective, ATP-competitive, and cell-permeable CDK1 inhibitor that shows potent anti-tumor activity in multiple pre-clinical models. In this study, we investigated the effect of CDK1 expression on the prognosis of patients with ovarian cancer and the anti-tumorigenic effect of RO-3306 in both ovarian cancer cell lines and a genetically engineered mouse model of high-grade serous ovarian cancer (KpB model). In 147 patients with epithelial ovarian cancer, the overexpression of CDK1 was significantly associated with poor prognosis compared with a low expression group. RO-3306 significantly inhibited cellular proliferation, induced apoptosis, caused cellular stress, and reduced cell migration. The treatment of KpB mice with RO-3306 for four weeks showed a significant decrease in tumor weight under obese and lean conditions without obvious side effects. Overall, our results demonstrate that the inhibition of CDK1 activity by RO-3306 effectively reduces cell proliferation and tumor growth, providing biological evidence for future clinical trials of CDK1 inhibitors in ovarian cancer.
Collapse
Affiliation(s)
- Yu Huang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, Chongqing 400044, China;
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
| | - Yali Fan
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100054, China
| | - Ziyi Zhao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100054, China
| | - Xin Zhang
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100054, China
| | - Katherine Tucker
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
| | - Allison Staley
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
| | - Hongyan Suo
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100054, China
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
| | - Xiaochang Shen
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100054, China
| | - Boer Deng
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100054, China
| | - Stuart R. Pierce
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
| | - Lindsay West
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
| | - Michael J. Emanuele
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
5
|
Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomed Pharmacother 2023; 158:114126. [PMID: 36521246 DOI: 10.1016/j.biopha.2022.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is a standard cytotoxic therapy against solid cancers. It uses ionizing radiation to kill tumor cells through damage to DNA, either directly or indirectly. Radioresistance is often associated with dysregulated DNA damage repair processes. Most radiosensitizers enhance radiation-mediated DNA damage and reduce the rate of DNA repair ultimately leading to accumulation of DNA damages, cell-cycle arrest, and cell death. Recently, agents targeting key signals in DNA damage response such as DNA repair pathways and cell-cycle have been developed. This new class of molecularly targeted radiosensitizing agents is being evaluated in preclinical and clinical studies to monitor their activity in potentiating radiation cytotoxicity of tumors and reducing normal tissue toxicity. The molecular pathways of DNA damage response are reviewed with a focus on the repair mechanisms, therapeutic targets under current clinical evaluation including ATM, ATR, CDK1, CDK4/6, CHK1, DNA-PKcs, PARP-1, Wee1, & MPS1/TTK and potential new targets (BUB1, and DNA LIG4) for radiation sensitization.
Collapse
|
6
|
Chen JLY, Pan CK, Lin LC, Tsai CY, Kuo CY, Huang YS, Lin YL. Therapeutic efficacy of cyclin-dependent kinase inhibition in combination with ionizing radiation for lung cancer. Int J Radiat Biol 2023; 99:1257-1266. [PMID: 36598432 DOI: 10.1080/09553002.2023.2161658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE To evaluate the therapeutic efficacy of cyclin-dependent kinase (CDK) inhibition in combination with ionizing radiation for lung cancer. MATERIALS AND METHODS Human lung adenocarcinoma (A549) and squamous cell carcinoma (H520) cells were used to evaluate the therapeutic efficacy of CDK inhibition in combination with ionizing radiation in vitro using colony formation assay, γH2AX immunofluorescence staining, western blotting, and cell cycle phase analysis. We also performed in vivo evaluations of ectopic tumor growth. RESULTS In vitro pretreatment with the CDK inhibitor, seliciclib, before irradiation significantly decreased the survival of A549 and H520 cells in a dose-dependent manner. Although CDK inhibition alone did not increase the intensity of γH2AX foci, its combination with ionizing radiation increased DNA double-strand breaks, as shown by γH2AX immunofluorescence staining and western blotting. The combination of CDK inhibition and ionizing radiation-induced G2/M arrest and increased apoptosis, as evidenced by the increased proportion of cells in G2/M arrest, subG1 apoptotic population, and expression of apoptotic markers (cleaved PARP-1 and cleaved caspase-3). Mechanistic studies showed reduced expression of cyclin A with combined treatment, indicating cell cycle shifting effects. An in vivo xenograft model showed that the combination of CDK inhibition and ionizing radiation delayed xenograft tumor growth, and increased the proportion of cleaved PARP-1- and cleaved caspase-3-positive cells, compared to either treatment alone. CONCLUSIONS We provide preclinical tumoricidal evidence that the combination of CDK inhibition and ionizing radiation is an efficacious treatment for lung cancer.
Collapse
Affiliation(s)
- Jenny Ling-Yu Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
- National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chun-Kai Pan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Cheng Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Yi Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Sen Huang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Xie F, Zhou L, Ge C, Song X, Yan H. Development of pyrazolo[3,4-d]pyrimidin-4-one scaffold as novel CDK2 inhibitors: Design, synthesis, and biological evaluation. Bioorg Med Chem Lett 2022; 70:128803. [PMID: 35598793 DOI: 10.1016/j.bmcl.2022.128803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022]
Abstract
A series of pyrazolo[3,4-d]pyrimidin-4-one scaffold were designed and synthesized as novel CDK2 inhibitors. By analyzing the common motifs of various known inhibitors, the designed compounds 1 were virtually screen for their inhibitory activity by docking into the active pocket of CDK2. The influence of different substitutes on the docking results was investigated. A total of 15 pyrazolo[3,4-d]pyrimidin-4-ones 1 were synthesized by Paal-Knorr reaction, pyrimidine ring closure, bromination, Suzuki coupling reaction, amide formation and Knoevenagel condensation. The Cell Counting Kit-8 (CCK-8) was used to evaluate the inhibitory activity of pyrazolo[3,4-d]pyrimidin-4-ones 1 in the breast cancer cell line MCF-7 in vitro using Etoposide as a reference control substance. The screening results demonstrated that the designed compounds have significant antiproliferative activity, and compounds 1e and 1j were the most active compounds with IC50 values of 10.79 μM and 10.88 μM, respectively, being better than that of Etoposide (IC50 = 18.75 μM). The enzyme inhibition assay was carried out against CDK2, the results indicated that the compounds 1e and 1j significantly inhibited CDK2 with IC50 values of 1.71 μM and 1.60 μM.
Collapse
Affiliation(s)
- Fan Xie
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Liying Zhou
- Beijing Tide Pharmaceutical Co., Ltd, No. 8 East Rongjing Street, Beijing Economic Technological Development Area (BDA), Beijing 100176, PR China
| | - Changwei Ge
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiuqing Song
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Hong Yan
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
8
|
Shi Z, Tian L, Qiang T, Li J, Xing Y, Ren X, Liu C, Liang C. From Structure Modification to Drug Launch: A Systematic Review of the Ongoing Development of Cyclin-Dependent Kinase Inhibitors for Multiple Cancer Therapy. J Med Chem 2022; 65:6390-6418. [PMID: 35485642 DOI: 10.1021/acs.jmedchem.1c02064] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we discuss more than 50 cyclin-dependent kinase (CDK) inhibitors that have been approved or have undergone clinical trials and their therapeutic application in multiple cancers. This review discusses the design strategies, structure-activity relationships, and efficacy performances of these selective or nonselective CDK inhibitors. The theoretical basis of early broad-spectrum CDK inhibitors is similar to the scope of chemotherapy, but because their toxicity is greater than the benefit, there is no clinical therapeutic window. The notion that selective CDK inhibitors have a safer therapeutic potential than pan-CDK inhibitors has been widely recognized during the research process. Four CDK4/6 inhibitors have been approved for the treatment of breast cancer or for prophylactic administration during chemotherapy to protect bone marrow and immune system function. Furthermore, the emerging strategies in the field of CDK inhibitors are summarized briefly, and CDKs continue to be widely pursued as emerging anticancer drug targets for drug discovery.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, P. R. China
| | - Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yue Xing
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, P. R. China
| | - Chang Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Zhuhai 519030, P. R. China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| |
Collapse
|
9
|
Wang S, Han S, Cheng W, Miao R, Li S, Tian X, Kan Q. Design, Synthesis, and Biological Evaluation of 2-Anilino-4-Triazolpyrimidine Derivatives as CDK4/HDACs Inhibitors. Drug Des Devel Ther 2022; 16:1083-1097. [PMID: 35431540 PMCID: PMC9012344 DOI: 10.2147/dddt.s351049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose To enhance the cytotoxicities of our obtained CDK4 inhibitors and get CDK4/HDACs inhibitors with potent enzymatic inhibitory and anti-proliferative activities. Methods A series of novel CDK4/HDACs inhibitors were designed and synthesized by incorporating the HDAC pharmacophores (hydroxylamine or o-diaminoaniline) into the basic structure of our newly obtained 2-anilino-4-triazolpyrimidine based CDK4 inhibitors. The enzymatic inhibitory (HDAC1, CDK2, CDK4, and CDK6) activities and cytotoxicities of these compounds were evaluated. Moreover, HDAC isoforms inhibitory activity, cell cycle arrest assay, cell apoptosis analysis, cell migration, and cell colony formation assay were performed for the representative compound 11k. Results Most of these compounds showed excellent HDAC1 inhibitory activities (IC50s: 0.68~244.5 nM) and anti-proliferative activities against cancer cell lines. Some compounds displayed potent CDK4 inhibitory activities and a certain selectivity towards CDK2 and CDK6. Compound 11k exhibited potent enzymatic (CDK4: IC50=23.59 nM; HDAC1: IC50=61.11 nM; HDAC2: IC50=80.62 nM; HDAC6: IC50=45.33 nM) and anti-proliferative activities against H460, MDA-MB-468, HCT116, and HepG2 cell lines with IC50 values 1.20, 1.34, 2.07, and 2.66 μM, respectively. Further mechanistic studies revealed that compound 11k could arrest the cell cycle in G0/G1 phase and induce apoptosis in HCT116 and MDA-MB-468 cells. In addition, compound 11k significantly inhibited the migration and cell colony formation of H460 and HCT116 cells. Conclusion This study suggested that the incorporation of the HDAC pharmacophore into CDK4 inhibitor scaffold to design CDK/HDAC inhibitors might be a tractable strategy to enhance the antitumor potency of compounds.
Collapse
Affiliation(s)
- Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Siyuan Han
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Ruoyang Miao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Shasha Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
- Correspondence: Xin Tian; Quancheng Kan, Email ;
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| |
Collapse
|
10
|
Cyclin Dependent Kinase-1 (CDK-1) Inhibition as a Novel Therapeutic Strategy against Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel) 2021; 13:cancers13174389. [PMID: 34503199 PMCID: PMC8430873 DOI: 10.3390/cancers13174389] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023] Open
Abstract
The role of CDK1 in PDAC onset and development is two-fold. Firstly, since CDK1 activity regulates the G2/M cell cycle checkpoint, overexpression of CDK1 can lead to progression into mitosis even in cells with DNA damage, a potentially tumorigenic process. Secondly, CDK1 overexpression leads to the stimulation of a range of proteins that induce stem cell properties, which can contribute to the development of cancer stem cells (CSCs). CSCs promote tumor-initiation and metastasis and play a crucial role in the development of PDAC. Targeting CDK1 showed promising results for PDAC treatment in different preclinical models, where CDK1 inhibition induced cell cycle arrest in the G2/M phase and led to induction of apoptosis. Next to this, PDAC CSCs are uniquely sensitive to CDK1 inhibition. In addition, targeting of CDK1 has shown potential for combination therapy with both ionizing radiation treatment and conventional chemotherapy, through sensitizing tumor cells and reducing resistance to these treatments. To conclude, CDK1 inhibition induces G2/M cell cycle arrest, stimulates apoptosis, and specifically targets CSCs, which makes it a promising treatment for PDAC. Screening of patients for CDK1 overexpression and further research into combination treatments is essential for optimizing this novel targeted therapy.
Collapse
|
11
|
Martínez-Chávez A, Broeders J, Lebre MC, Tibben MT, Rosing H, Beijnen JH, Schinkel AH. The role of drug efflux and uptake transporters ABCB1 (P-gp), ABCG2 (BCRP) and OATP1A/1B and of CYP3A4 in the pharmacokinetics of the CDK inhibitor milciclib. Eur J Pharm Sci 2021; 159:105740. [PMID: 33524505 DOI: 10.1016/j.ejps.2021.105740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/06/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
The promising anticancer drug milciclib potently inhibits cyclin-dependent kinase (CDK) 2 and tropomyosin receptor kinase (TRK) A, and is currently in phase II clinical studies. To characterize factors affecting milciclib pharmacokinetics, we investigated whether milciclib is a substrate of the multidrug efflux and uptake transporters ABCB1 (P-gp), ABCG2 (BCRP), and OATP1A/1B, and the drug-metabolizing enzyme CYP3A, using genetically-modified mouse models and Madin-Darby Canine Kidney (MDCK-II) cells. In vitro, milciclib was transported by mAbcg2, and this was inhibited by the ABCG2 inhibitor Ko143. Upon oral administration of milciclib, its plasma exposure in Abcb1a/1b-/-, Abcg2-/-, and Abcb1a/1b;Abcg2-/- mice was similar to that found in wild-type mice. Milciclib showed good brain penetration even in wild-type mice (brain-to-plasma ratio of 1.2), but this was further increased by 5.2-fold when both Abcb1 and Abcg2 were ablated, and to a lesser extent in single Abcb1- or Abcg2-deficient mice. Oatp1a/1b deficiency had only a minor impact on the milciclib plasma AUC0-24h and Cmax. The milciclib AUC0-8h increased 1.9-fold in Cyp3a-/- mice but decreased only 1.3-fold upon overexpression of human CYP3A4. Thus, ABCB1 and ABCG2 cooperatively limit milciclib brain penetration. The low impact of OATP1 and CYP3A could be clinically favorable for milciclib, reducing the risks of unintended drug-drug interactions or interindividual variation in CYP3A4 activity.
Collapse
Affiliation(s)
- Alejandra Martínez-Chávez
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jelle Broeders
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maria C Lebre
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Matthijs T Tibben
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Al-Sanea MM, Obaidullah AJ, Shaker ME, Chilingaryan G, Alanazi MM, Alsaif NA, Alkahtani HM, Alsubaie SA, Abdelgawad MA. A New CDK2 Inhibitor with 3-Hydrazonoindolin-2-One Scaffold Endowed with Anti-Breast Cancer Activity: Design, Synthesis, Biological Evaluation, and In Silico Insights. Molecules 2021; 26:molecules26020412. [PMID: 33466812 PMCID: PMC7830330 DOI: 10.3390/molecules26020412] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Cyclin-dependent kinases (CDKs) regulate mammalian cell cycle progression and RNA transcription. Based on the structural analysis of previously reported CDK2 inhibitors, a new compound with 3-hydrazonoindolin-2-one scaffold (HI 5) was well designed, synthesized, and biologically evaluated as a promising anti-breast cancer hit compound. Methods: The potential anti-cancerous effect of HI 5 was evaluated using cytotoxicity assay, flow cytometric analysis of apoptosis and cell cycle distribution, ELISA immunoassay, in vitro CDK2/cyclin A2 activity, and molecular operating environment (MOE) virtual docking studies. Results: The results revealed that HI 5 exhibits pronounced CDK2 inhibitory activity and cytotoxicity in human breast cancer MCF-7 cell line. The cytotoxicity of HI 5 was found to be intrinsically mediated apoptosis, which in turn, is associated with low Bcl-2 expression and high activation of caspase 3 and p53. Besides, HI 5 blocked the proliferation of the MCF-7 cell line and arrested the cell cycle at the G2/M phase. The docking studies did not confirm which one of geometric isomers (syn and anti) is responsible for binding affinity and intrinsic activity of HI 5. However, the molecular dynamic studies have confirmed that the syn-isomer has more favorable binding interaction and thus is responsible for CDK2 inhibitory activity. Discussion: These findings displayed a substantial basis of synthesizing further derivatives based on the 3-hydrazonoindolin-2-one scaffold for favorable targeting of breast cancer.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf Province, Saudi Arabia;
- Correspondence: (M.M.A.-S.); (A.J.O.); Tel.: +966-594076460 (M.M.A.-S.)
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
- Correspondence: (M.M.A.-S.); (A.J.O.); Tel.: +966-594076460 (M.M.A.-S.)
| | - Mohamed E. Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Garri Chilingaryan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia;
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
| | - Sultan A. Alsubaie
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf Province, Saudi Arabia;
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
13
|
Synthesis, characterization and in-silico assessment of novel thiazolidinone derivatives for cyclin-dependent kinases-2 inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Martínez-Chávez A, Tibben MM, Broeders J, Rosing H, Schinkel AH, Beijnen JH. Development and validation of an LC-MS/MS method for the quantitative analysis of milciclib in human and mouse plasma, mouse tissue homogenates and tissue culture medium. J Pharm Biomed Anal 2020; 190:113516. [DOI: 10.1016/j.jpba.2020.113516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
|
15
|
Ji D, Zhong X, Huang P, Kang P, Leng K, Zheng W, Wang Z, Xu Y, Cui Y. Deoxyelephantopin induces apoptosis via oxidative stress and enhances gemcitabine sensitivity in vitro and in vivo through targeting the NF-κB signaling pathway in pancreatic cancer. Aging (Albany NY) 2020; 12:11116-11138. [PMID: 32526702 PMCID: PMC7346037 DOI: 10.18632/aging.103327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/29/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is a highly invasive malignant tumor of the digestive system with an unfavorable prognosis worldwide. This trait is thought to be largely attributed to chemoresistance. Chemotherapy is the only hope for patients with advanced pancreatic cancer. Therefore, seeking new effective chemotherapy drugs has become an urgent need. The purpose of our study was to explore whether deoxyelephantopin (DET), a sesquiterpene lactone, has a potential antitumor effect in pancreatic cancer. Additionally, the antitumor effects of DET alone or in combination with gemcitabine (GEM) and the potential mechanism of this combination were revealed. In vitro experiments showed that DET suppressed the proliferation, invasion and metastasis of pancreatic cancer cells, induced cell apoptosis via oxidative stress, and enhanced GEM sensitivity by inhibiting the NF-κB signaling pathway. Beyond that, in vivo experiments showed that DET not only inhibited pancreatic tumor growth and metastasis but also amplified the antitumor capacity of GEM, which was related to the downregulation of NF-κB and its downstream gene products. In summary, it is possible that DET could be developed as a single agent or combined with conventional chemotherapy drugs to improve the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Daolin Ji
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Peng Huang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kaiming Leng
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Wangyang Zheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Zhidong Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Qin A, Reddy HG, Weinberg FD, Kalemkerian GP. Cyclin-dependent kinase inhibitors for the treatment of lung cancer. Expert Opin Pharmacother 2020; 21:941-952. [PMID: 32164461 DOI: 10.1080/14656566.2020.1738385] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cyclin-dependent kinases (CDKs) are critical regulators of cell cycle progression in both normal and malignant cells, functioning through complex molecular interactions. Deregulation of CDK-dependent pathways is commonly found in both non-small cell and small cell lung cancer, and these derangements suggest vulnerabilities that can be exploited for clinical benefit. AREAS COVERED In this review, the authors present an overview of the biology of CDKs in normal and malignant cells, with a focus on lung cancer, followed by an assessment of preclinical work that has demonstrated the vital role of CDKs in lung cancer development and progression, and the activity of CDK inhibitors in a variety of lung cancer models. Finally, the experience with clinical trials of CDK inhibitors in lung cancer is discussed along with the current status of these agents in cancer therapy. EXPERT OPINION Despite strong biological rationale and promising preclinical studies, the results of clinical trials of CDK inhibitors in lung cancer have thus far been disappointing. Further clinical development of CDK inhibitors in lung cancer will depend on the identification of predictive biomarkers and the design of combination regimens that take advantage of the unique molecular alterations that drive lung cancer growth and survival.
Collapse
Affiliation(s)
- Angel Qin
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan , Ann Arbor, MI, USA
| | - Haritha G Reddy
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan , Ann Arbor, MI, USA
| | - Frank D Weinberg
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan , Ann Arbor, MI, USA
| | - Gregory P Kalemkerian
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
17
|
Weiss A, Boehm M, Egemnazarov B, Grimminger F, Savai Pullamsetti S, Kwapiszewska G, Schermuly RT. Kinases as potential targets for treatment of pulmonary hypertension and right ventricular dysfunction. Br J Pharmacol 2020; 178:31-53. [PMID: 31709514 DOI: 10.1111/bph.14919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive pulmonary vasculopathy that causes chronic right ventricular pressure overload and often leads to right ventricular failure. Various kinase inhibitors have been studied in the setting of PH and either improved or worsened the disease, highlighting the importance of understanding the specific role of the respective kinases in a spatiotemporal cellular context. In this review, we will summarize the knowledge on the role of kinases in PH and focus on druggable targets for which certain criteria are met: (a) deregulation of the kinase in PH; (b) small-molecule inhibitors are available (e.g. from the oncology field); (c) preclinical studies have shown their efficacy in PH models; and (d) when available, therapeutic exploitation in human PH has been initiated. Along this line, clinical considerations such as personalized medicine approaches to predict therapy response and adverse side events such as cardiotoxicity together with their clinical management are discussed. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Astrid Weiss
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Mario Boehm
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | | | - Friedrich Grimminger
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | | | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Otto Loewi Center, Physiology, Medical University of Graz, Graz, Austria
| | - Ralph T Schermuly
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
18
|
Jindal A, Thadi A, Shailubhai K. Hepatocellular Carcinoma: Etiology and Current and Future Drugs. J Clin Exp Hepatol 2019; 9:221-232. [PMID: 31024205 PMCID: PMC6477125 DOI: 10.1016/j.jceh.2019.01.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is swiftly increasing in prevalence globally with a high mortality rate. The progression of HCC in patients is induced with advanced fibrosis, mainly cirrhosis, and hepatitis. The absence of proper preventive or curative treatment methods encouraged extensive research against HCC to develop new therapeutic strategies. The Food and Drug Administration-approved Nexavar (sorafenib) is used in the treatment of patients with unresectable HCC. In 2017, Stivarga (regorafenib) and Opdivo (nivolumab) got approved for patients with HCC after being treated with sorafenib, and in 2018, Lenvima (lenvatinib) got approved for patients with unresectable HCC. But, owing to the rapid drug resistance development and toxicities, these treatment options are not completely satisfactory. Therefore, there is an urgent need for new systemic combination therapies that target different signaling mechanisms, thereby decreasing the prospect of cancer cells developing resistance to treatment. In this review, HCC etiology and new therapeutic strategies that include currently approved drugs and other potential candidates of HCC such as Milciclib, palbociclib, galunisertib, ipafricept, and ramucirumab are evaluated.
Collapse
Key Words
- AMP, adenosine monophosphate
- AMPK, AMP-activated protein kinase
- ATP, adenosine 5′-triphosphate
- BMF, Bcl2 modifying factor
- BMI, body mass index
- CDK, cyclin-dependent kinase
- CTGF, connective tissue growth factor
- CTL, cytotoxic T lymphocyte
- CTLA, cytotoxic T-lymphocyte-associated protein
- ECM, extracellular matrix
- EFGR, endothelial growth factor receptor
- EGFR, epidermal growth factor receptor
- EMT, Epithelial–mesenchymal transition
- ERK, extracellular signal-regulated kinase
- FDA, Food and Drug Administration
- GFG, fibroblast growth factor
- HBV, hepatitis B virus
- HBcAg, hepatitis B core antibody
- HBsAg, HBV surface antigen
- HCC, Hepatocellular carcinoma
- HCV, hepatitis B virus
- HDV, hepatitis D virus
- HIF, hypoxia-inducible factor
- HIV, human immunodeficiency virus
- IGFR, insulin-like growth factor
- JAK, janus kinase
- MAPK, mitogen-activated protein kinase
- MDSC, myeloid-derived suppressor cell
- NASH, nonalcoholic steatohepatitis
- NK, natural killer
- NKT, natural killer T cell
- ORR, objective response rate
- OS, overall survival
- PAPSS1, 3′-phosphoadenosine 5′-phosphosulfate synthase 1
- PD-L1, programmed death ligand1
- PD1, programmed cell death protein 1
- PDGFR, platelet-derived growth factor receptor
- PEDF, pigment epithelium-derived factor
- PFS, progression-free survival
- PI3K, phosphoinositide 3-kinases
- PTEN, phosphatase and tensin homolog
- PUMA, p53 upregulated modulator of apoptosis
- RFA, radiofrequency ablation
- Rb, retinoblastoma protein
- SCF, stem cell factor
- SHP1, src homology 2 domain–containing phosphatase 1
- STAT3, signal transducer and activator of transcription 3
- TACE, transarterial chemoembolization
- TGF 1, transforming growth factor-1
- TK, tyrosine kinase
- TKI, Tyrosine kinase inhibitor
- TRKA, tropomyosin receptor kinase A
- Treg, regulatory T cells
- VEGF, vascular endothelial growth factor
- VEGFR, vascular endothelial growth factor receptor
- bFGF, basic fibroblast growth factor
- combination therapy
- cyclin-dependent kinase inhibitors
- hepatocellular carcinoma
- hepatology
- tyrosine kinase inhibitors
Collapse
Affiliation(s)
- Aastha Jindal
- Research and Development Center, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
- Address for correspondence: Aastha Jindal, Research and Development Center, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA.
| | - Anusha Thadi
- Research and Development Center, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| | - Kunwar Shailubhai
- Research and Development Center, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
- Research & Development, Tiziana Lifesciences, Doylestown, PA 18902, USA
| |
Collapse
|
19
|
Synthesis and biological evaluation of novel 5,6-dihydropyrimido[4,5-f]quinazoline derivatives as potent CDK2 inhibitors. Bioorg Med Chem Lett 2018; 28:3385-3390. [DOI: 10.1016/j.bmcl.2018.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/19/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
|
20
|
García-Reyes B, Kretz AL, Ruff JP, von Karstedt S, Hillenbrand A, Knippschild U, Henne-Bruns D, Lemke J. The Emerging Role of Cyclin-Dependent Kinases (CDKs) in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2018; 19:E3219. [PMID: 30340359 PMCID: PMC6214075 DOI: 10.3390/ijms19103219] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
The family of cyclin-dependent kinases (CDKs) has critical functions in cell cycle regulation and controlling of transcriptional elongation. Moreover, dysregulated CDKs have been linked to cancer initiation and progression. Pharmacological CDK inhibition has recently emerged as a novel and promising approach in cancer therapy. This idea is of particular interest to combat pancreatic ductal adenocarcinoma (PDAC), a cancer entity with a dismal prognosis which is owed mainly to PDAC's resistance to conventional therapies. Here, we review the current knowledge of CDK biology, its role in cancer and the therapeutic potential to target CDKs as a novel treatment strategy for PDAC.
Collapse
Affiliation(s)
- Balbina García-Reyes
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Jan-Philipp Ruff
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Silvia von Karstedt
- Department of Translational Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany.
| | - Andreas Hillenbrand
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
21
|
Xu JW, Wang L, Cheng YG, Zhang GY, Hu SY, Zhou B, Zhan HX. Immunotherapy for pancreatic cancer: A long and hopeful journey. Cancer Lett 2018; 425:143-151. [PMID: 29605510 DOI: 10.1016/j.canlet.2018.03.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/28/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Multiple therapeutic strategies have been developed to treat pancreatic cancer. However, the outcomes of these approaches are disappointing. Due to deeper understandings of the pivotal roles of the immune system in pancreatic cancer tumorigenesis and progression, novel therapeutic strategies based on immune cells and the tumor microenvironment are being investigated. Some of these approaches, such as checkpoint inhibitors, chimeric antigen receptor T-cell therapy, and BiTE antibodies, have achieved exciting outcomes in preclinical and clinical trials. The current review describes the roles of immune cells and the immunosuppressive microenvironment in the development of pancreatic cancer, as well as the preclinical and clinical outcomes and benefits of recent immunotherapeutic approaches, which may help us further disclose the mechanisms of pancreatic cancer progression and the dialectical views of feasibility and effectiveness of immunotherapy in treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jian-Wei Xu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Lei Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Yu-Gang Cheng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Guang-Yong Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - San-Yuan Hu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Bin Zhou
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China.
| | - Han-Xiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
22
|
Abstract
Inhibition of CDKs is an attractive approach to cancer therapy due to their vital role in cell growth and transcription. Pan-CDK inhibitors have shown some clinical benefit, and trials are ongoing. Selective CDK4 and CDK6 inhibitors have been licensed for the treatment of hormone responsive, RB-positive breast cancer in combination with antihormonal agents. Selective inhibitors of CDKs 5, 7, 8, 9 and 12 have been identified across a range of chemotypes.
Collapse
|
23
|
Zha C, Deng W, Fu Y, Tang S, Lan X, Ye Y, Su Y, Jiang L, Chen Y, Huang Y, Ding J, Geng M, Huang M, Wan H. Design, synthesis and biological evaluation of tetrahydronaphthyridine derivatives as bioavailable CDK4/6 inhibitors for cancer therapy. Eur J Med Chem 2018; 148:140-153. [PMID: 29459274 DOI: 10.1016/j.ejmech.2018.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
Abstract
CDK4/6 pathway is an attractive chemotherapeutic target for antitumor drug discovery and development. Herein, we reported the structure-based design and synthesis of a series of novel tetrahydronaphthyridine analogues as selective CDK4/6 inhibitors. Compound 5 was identified as a hit and then systematically structure optimization study was conducted. These efforts led to compound 28, which exhibited excellent in vitro potencies against CDK4/6 enzymatic activity with high selectivity over CDK1, and against Colo-205 cell growth. The compound demonstrated favorable in vitro metabolic and robust mice pharmacokinetic properties. In Colo-205 xenograft models, compound 28 showed potent tumor growth inhibition with acceptable toxic effects, which could serve as a novel anticancer agent for further preclinical study.
Collapse
Affiliation(s)
- Chuantao Zha
- Shanghai HaiHe Pharmaceutical, Co. Ltd, No. 421 Newton Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Wenjia Deng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Fu
- Shanghai HaiHe Pharmaceutical, Co. Ltd, No. 421 Newton Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Shuai Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Xiaojing Lan
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Yan Ye
- Shanghai HaiHe Pharmaceutical, Co. Ltd, No. 421 Newton Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Yi Su
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Lei Jiang
- Shanghai HaiHe Pharmaceutical, Co. Ltd, No. 421 Newton Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Yi Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Ying Huang
- Shanghai HaiHe Pharmaceutical, Co. Ltd, No. 421 Newton Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Meiyu Geng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Min Huang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China.
| | - Huixin Wan
- Shanghai HaiHe Pharmaceutical, Co. Ltd, No. 421 Newton Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
24
|
Zhu JY, Cuellar RA, Berndt N, Lee HE, Olesen SH, Martin MP, Jensen JT, Georg GI, Schönbrunn E. Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors. J Med Chem 2017; 60:7863-7875. [PMID: 28792760 PMCID: PMC6200136 DOI: 10.1021/acs.jmedchem.7b00996] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Members of the Wee family of kinases negatively regulate the cell cycle via phosphorylation of CDK1 and are considered potential drug targets. Herein, we investigated the structure-function relationship of human Wee1, Wee2, and Myt1 (PKMYT1). Purified recombinant full-length proteins and kinase domain constructs differed substantially in phosphorylation states and catalytic competency, suggesting complex mechanisms of activation. A series of crystal structures reveal unique features that distinguish Wee1 and Wee2 from Myt1 and establish the structural basis of differential inhibition by the widely used Wee1 inhibitor MK-1775. Kinome profiling and cellular studies demonstrate that, in addition to Wee1 and Wee2, MK-1775 is an equally potent inhibitor of the polo-like kinase PLK1. Several previously unrecognized inhibitors of Wee kinases were discovered and characterized. Combined, the data provide a comprehensive view on the catalytic and structural properties of Wee kinases and a framework for the rational design of novel inhibitors thereof.
Collapse
Affiliation(s)
- Jin-Yi Zhu
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Rebecca A. Cuellar
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Norbert Berndt
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Hee Eun Lee
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Sanne H. Olesen
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Mathew P. Martin
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Jeffrey T. Jensen
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, Oregon 97006, United States
| | - Gunda I. Georg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Ernst Schönbrunn
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| |
Collapse
|