1
|
Klimak M, Cimino A, Lenz KL, Springer LE, Collins KH, Harasymowicz NS, Xu N, Pham CTN, Guilak F. Engineered self-regulating macrophages for targeted anti-inflammatory drug delivery. Arthritis Res Ther 2024; 26:190. [PMID: 39501398 PMCID: PMC11539832 DOI: 10.1186/s13075-024-03425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by increased levels of inflammation that primarily manifests in the joints. Macrophages act as key drivers for the progression of RA, contributing to the perpetuation of chronic inflammation and dysregulation of pro-inflammatory cytokines such as interleukin 1 (IL-1). The goal of this study was to develop a macrophage-based cell therapy for biologic drug delivery in an autoregulated manner. METHODS For proof-of-concept, we developed "smart" macrophages to mitigate the effects of IL-1 by delivering its inhibitor, IL-1 receptor antagonist (IL-1Ra). Bone marrow-derived macrophages were lentivirally transduced with a synthetic gene circuit that uses an NF-κB inducible promoter upstream of either the Il1rn or firefly luciferase transgenes. Two types of joint like cells were utilized to examine therapeutic protection in vitro, miPSCs derived cartilage and isolated primary mouse synovial fibroblasts while the K/BxN mouse model of RA was utilized to examine in vivo therapeutic protection. RESULTS These engineered macrophages were able to repeatably produce therapeutic levels of IL-1Ra that could successfully mitigate inflammatory activation in co-culture with both tissue-engineered cartilage constructs and synovial fibroblasts. Following injection in vivo, macrophages homed to sites of inflammation and mitigated disease severity in the K/BxN mouse model of RA. CONCLUSION These findings demonstrate the successful development of engineered macrophages that possess the ability for controlled, autoregulated production of IL-1 based on inflammatory signaling such as via the NF-κB pathway to mitigate the effects of this cytokine for applications in RA or other inflammatory diseases. This system provides proof of concept for applications in other immune cell types as self-regulating delivery systems for therapeutic applications in a range of diseases.
Collapse
Affiliation(s)
- Molly Klimak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg., Room 3121, St. Louis, MO, 63110, USA
| | - Amanda Cimino
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg., Room 3121, St. Louis, MO, 63110, USA
| | - Kristin L Lenz
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg., Room 3121, St. Louis, MO, 63110, USA
| | - Luke E Springer
- Center of Regenerative Medicine, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg., Room 3121, St. Louis, MO, 63110, USA
- Division of Rheumatology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg., Room 3121, St. Louis, MO, 63110, USA
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg., Room 3121, St. Louis, MO, 63110, USA
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, 84108, USA
| | - Nathan Xu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA
| | - Christine T N Pham
- Center of Regenerative Medicine, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg., Room 3121, St. Louis, MO, 63110, USA
- Division of Rheumatology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA.
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA.
- Center of Regenerative Medicine, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg., Room 3121, St. Louis, MO, 63110, USA.
| |
Collapse
|
2
|
Klimak M, Cimino A, Lenz K, Springer L, Collins K, Harasymowicz N, Xu N, Pham C, Guilak F. Engineered Self-Regulating Macrophages for Targeted Anti-inflammatory Drug Delivery. RESEARCH SQUARE 2024:rs.3.rs-4385938. [PMID: 38854124 PMCID: PMC11160898 DOI: 10.21203/rs.3.rs-4385938/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by increased levels of inflammation that primarily manifests in the joints. Macrophages act as key drivers for the progression of RA, contributing to the perpetuation of chronic inflammation and dysregulation of pro-inflammatory cytokines such as interleukin 1 (IL-1). The goal of this study was to develop a macrophage-based cell therapy for biologic drug delivery in an autoregulated manner. Methods For proof-of-concept, we developed "smart" macrophages to mitigate the effects of IL-1 by delivering its inhibitor, IL-1 receptor antagonist (IL-1Ra). Bone marrow-derived macrophages were lentivirally transduced with a synthetic gene circuit that uses an NF-κB inducible promoter upstream of either the Il1rn or firefly luciferase transgenes. Two types of joint like cells were utilized to examine therapeutic protection in vitro, miPSCs derived cartilage and isolated primary mouse synovial fibroblasts while the K/BxN mouse model of RA was utilized to examine in vivo therapeutic protection. Results These engineered macrophages were able to repeatably produce therapeutic levels of IL-1Ra that could successfully mitigate inflammatory activation in co-culture with both tissue engineered cartilage constructs and synovial fibroblasts. Following injection in vivo, macrophages homed to sites of inflammation and mitigated disease severity in the K/BxN mouse model of RA. Conclusion These findings demonstrate the successful development of engineered macrophages that possess the ability for controlled, autoregulated production of IL-1 based on inflammatory signaling such as the NF-κB pathway to mitigate the effects of this cytokine for applications in RA or other inflammatory diseases. This system provides proof of concept for applications in other immune cell types as self-regulating delivery systems for therapeutic applications in a range of diseases.
Collapse
|
3
|
Lee JE, Lee JH, Koh JM, Im DS. Free Fatty Acid 4 Receptor Activation Attenuates Collagen-Induced Arthritis by Rebalancing Th1/Th17 and Treg Cells. Int J Mol Sci 2024; 25:5866. [PMID: 38892051 PMCID: PMC11172425 DOI: 10.3390/ijms25115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Dietary supplementation with n-3 polyunsaturated fatty acids (PUFA) has been found to be beneficial in rodent rheumatoid arthritis models and human trials. However, the molecular targets of n-3 PUFAs and their beneficial effects on rheumatoid arthritis are under-researched. Free fatty acid receptor 4 (FFA4, also known as GPR120) is a receptor for n-3 PUFA. We aim to investigate whether FFA4 activation reduces collagen-induced rheumatoid arthritis (CIA) by using an FFA4 agonist, compound A (CpdA), in combination with DBA-1J Ffa4 gene wild-type (WT) and Ffa4 gene knock-out (KO) mice. CIA induced an increase in the arthritis score, foot edema, synovial hyperplasia, pannus formation, proteoglycan loss, cartilage damage, and bone erosion, whereas the administration of CpdA significantly suppressed those increases in Ffa4 WT mice but not Ffa4 gene KO mice. CIA increased mRNA expression levels of pro-inflammatory Th1/Th17 cytokines, whereas CpdA significantly suppressed those increases in Ffa4 WT mice but not Ffa4 gene KO mice. CIA induced an imbalance between Th1/Th17 and Treg cells, whereas CpdA rebalanced them in spleens from Ffa4 WT mice but not Ffa4 gene KO mice. In SW982 synovial cells, CpdA reduced the LPS-induced increase in pro-inflammatory cytokine levels. In summary, the present results suggest that the activation of FFA4 in immune and synovial cells could suppress the characteristics of rheumatoid arthritis and be an adjuvant therapy.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/pathology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/drug therapy
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Th17 Cells/drug effects
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/agonists
- Mice
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th1 Cells/drug effects
- Mice, Knockout
- Mice, Inbred DBA
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Male
- Cytokines/metabolism
Collapse
Affiliation(s)
- Jung-Eun Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-E.L.); (J.-H.L.)
| | - Ju-Hyun Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-E.L.); (J.-H.L.)
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea;
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-E.L.); (J.-H.L.)
- Division of Endocrinology and Metabolism, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea;
| |
Collapse
|
4
|
Lee JH, Lee JE, Son SE, Son SH, Kim NJ, Im DS. NJK14047 inhibition of p38 MAPK ameliorates inflammatory immune diseases by suppressing T cell differentiation. Int Immunopharmacol 2024; 130:111800. [PMID: 38447416 DOI: 10.1016/j.intimp.2024.111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
p38 MAPK has been implicated in the pathogenesis of rheumatoid arthritis and psoriasis. To assess the therapeutic efficacy of the p38 MAPK inhibitor NJK14047 in the treatment of rheumatoid arthritis and psoriasis, we developed mouse models of collagen-induced rheumatoid arthritis (CIA) and imiquimod-induced psoriasis (IIP). NJK14047 was found to suppress arthritis development and psoriasis symptoms and also suppressed histopathological changes induced by CIA and IIP. Furthermore, we established that CIA and IIP evoked increases in the mRNA expression levels of Th1/Th17 inflammatory cytokines in the joints and skin, which was again suppressed by NJK14047. NJK14047 reversed the enlargement of spleens induced by CIA and IIP as well as increases in the levels of inflammatory cytokine in spleens following induction by CIA and IIP. In human SW982 synovial cells, NJK14047 was found to suppress lipopolysaccharide-induced increases in the mRNA expression of proinflammatory cytokines. NJK14047 inhibition of p38 MAPK suppressed the differentiation of naïve T cells to Th17 and Th1 cells. Our findings in this study provide convincing evidence indicating the therapeutic efficacy of the p38 MAPK inhibitor NJK14047 against CIA and IIP, which we speculate could be associated with the suppression on T-cell differentiation.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| | - Jung-Eun Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| | - So-Eun Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| | - Seung-Hwan Son
- Department of Basic Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| | - Nam-Jung Kim
- Department of Basic Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea; Department of Basic Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea.
| |
Collapse
|
5
|
Thoma G, Markert C, Lueoend R, Miltz W, Spanka C, Bollbuck B, Wolf RM, Srinivas H, Penno CA, Kiffe M, Gajewska M, Bednarczyk D, Wieczorek G, Evans A, Beerli C, Röhn TA. Discovery of Amino Alcohols as Highly Potent, Selective, and Orally Efficacious Inhibitors of Leukotriene A4 Hydrolase. J Med Chem 2023; 66:16410-16425. [PMID: 38015154 DOI: 10.1021/acs.jmedchem.3c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The discovery of chiral amino alcohols derived from our previously disclosed clinical LTA4H inhibitor LYS006 is described. In a biochemical assay, their optical antipodes showed similar potencies, which could be rationalized by the cocrystal structures of these compounds bound to LTA4H. Despite comparable stabilities in liver microsomes, they showed distinct in vivo PK properties. Selective O-phosphorylation of the (R)-enantiomers in blood led to clearance values above the hepatic blood flow, whereas the (S)-enantiomers were unaffected and exhibited satisfactory metabolic stabilities in vivo. Introduction of two pyrazole rings led to compound (S)-2 with a more balanced distribution of polarity across the molecule, exhibiting high selectivity and excellent potency in vitro and in vivo. Furthermore, compound (S)-2 showed favorable profiles in 16-week IND-enabling toxicology studies in dogs and rats. Based on allometric scaling and potency in whole blood, compound (S)-2 has the potential for a low oral efficacious dose administered once daily.
Collapse
Affiliation(s)
- Gebhard Thoma
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Christian Markert
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Rainer Lueoend
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Wolfgang Miltz
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Carsten Spanka
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Birgit Bollbuck
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Romain M Wolf
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Honnappa Srinivas
- Chemical Biology & Therapeutics, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Carlos A Penno
- Chemical Biology & Therapeutics, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Michael Kiffe
- PK Sciences, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Monika Gajewska
- PK Sciences, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Dallas Bednarczyk
- Discovery & Translational Lab, Biomedical Research, Novartis Pharma AG, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Grazyna Wieczorek
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Amanda Evans
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Christian Beerli
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Till A Röhn
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| |
Collapse
|
6
|
Collins KH, Pferdehirt L, Saleh LS, Savadipour A, Springer LE, Lenz KL, Thompson DM, Oswald SJ, Pham CTN, Guilak F. Hydrogel Encapsulation of Genome-Engineered Stem Cells for Long-Term Self-Regulating Anti-Cytokine Therapy. Gels 2023; 9:169. [PMID: 36826339 PMCID: PMC9956980 DOI: 10.3390/gels9020169] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Biologic therapies have revolutionized treatment options for rheumatoid arthritis (RA) but their continuous administration at high doses may lead to adverse events. Thus, the development of improved drug delivery systems that can sense and respond commensurately to disease flares represents an unmet medical need. Toward this end, we generated induced pluripotent stem cells (iPSCs) that express interleukin-1 receptor antagonist (IL-1Ra, an inhibitor of IL-1) in a feedback-controlled manner driven by the macrophage chemoattractant protein-1 (Ccl2) promoter. Cells were seeded in agarose hydrogel constructs made from 3D printed molds that can be injected subcutaneously via a blunt needle, thus simplifying implantation of the constructs, and the translational potential. We demonstrated that the subcutaneously injected agarose hydrogels containing genome-edited Ccl2-IL1Ra iPSCs showed significant therapeutic efficacy in the K/BxN model of inflammatory arthritis, with nearly complete abolishment of disease severity in the front paws. These implants also exhibited improved implant longevity as compared to the previous studies using 3D woven scaffolds, which require surgical implantation. This minimally invasive cell-based drug delivery strategy may be adapted for the treatment of other autoimmune or chronic diseases, potentially accelerating translation to the clinic.
Collapse
Affiliation(s)
- Kelsey H. Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Lara Pferdehirt
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Leila S. Saleh
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Alireza Savadipour
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63110, USA
| | - Luke E. Springer
- Division of Rheumatology, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Kristin L. Lenz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
| | - Dominic M. Thompson
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
| | - Sara J. Oswald
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
| | - Christine T. N. Pham
- Division of Rheumatology, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Willemsen J, Neuhoff MT, Hoyler T, Noir E, Tessier C, Sarret S, Thorsen TN, Littlewood-Evans A, Zhang J, Hasan M, Rush JS, Guerini D, Siegel RM. TNF leads to mtDNA release and cGAS/STING-dependent interferon responses that support inflammatory arthritis. Cell Rep 2021; 37:109977. [PMID: 34758308 DOI: 10.1016/j.celrep.2021.109977] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor (TNF) is a key driver of several inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, in which affected tissues show an interferon-stimulated gene signature. Here, we demonstrate that TNF triggers a type-I interferon response that is dependent on the cyclic guanosine monophosphate-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. We show that TNF inhibits PINK1-mediated mitophagy and leads to altered mitochondrial function and to an increase in cytosolic mtDNA levels. Using cGAS-chromatin immunoprecipitation (ChIP), we demonstrate that cytosolic mtDNA binds to cGAS after TNF treatment. Furthermore, TNF induces a cGAS-STING-dependent transcriptional response that mimics that of macrophages from rheumatoid arthritis patients. Finally, in an inflammatory arthritis mouse model, cGAS deficiency blocked interferon responses and reduced inflammatory cell infiltration and joint swelling. These findings elucidate a molecular mechanism linking TNF to type-I interferon signaling and suggest a potential benefit for therapeutic targeting of cGAS/STING in TNF-driven diseases.
Collapse
Affiliation(s)
- Joschka Willemsen
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland.
| | - Marie-Therese Neuhoff
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Thomas Hoyler
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Emma Noir
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Clemence Tessier
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Sophie Sarret
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Tara N Thorsen
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | | | - Juan Zhang
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Maroof Hasan
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - James S Rush
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Danilo Guerini
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Richard M Siegel
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| |
Collapse
|
8
|
Choi YR, Collins KH, Springer LE, Pferdehirt L, Ross AK, Wu CL, Moutos FT, Harasymowicz NS, Brunger JM, Pham CTN, Guilak F. A genome-engineered bioartificial implant for autoregulated anticytokine drug delivery. SCIENCE ADVANCES 2021; 7:eabj1414. [PMID: 34516920 PMCID: PMC8442875 DOI: 10.1126/sciadv.abj1414] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/19/2021] [Indexed: 05/28/2023]
Abstract
Biologic drug therapies are increasingly used for inflammatory diseases such as rheumatoid arthritis but may cause significant adverse effects when delivered continuously at high doses. We used CRISPR-Cas9 genome editing of iPSCs to create a synthetic gene circuit that senses changing levels of endogenous inflammatory cytokines to trigger a proportional therapeutic response. Cells were engineered into cartilaginous constructs that showed rapid activation and recovery in response to inflammation in vitro or in vivo. In the murine K/BxN model of inflammatory arthritis, bioengineered implants significantly mitigated disease severity as measured by joint pain, structural damage, and systemic and local inflammation. Therapeutic implants completely prevented increased pain sensitivity and bone erosions, a feat not achievable by current clinically available disease-modifying drugs. Combination tissue engineering and synthetic biology promises a range of potential applications for treating chronic diseases via custom-designed cells that express therapeutic transgenes in response to dynamically changing biological signals.
Collapse
Affiliation(s)
- Yun-Rak Choi
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Kelsey H. Collins
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Luke E. Springer
- Division of Rheumatology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Lara Pferdehirt
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alison K. Ross
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Natalia S. Harasymowicz
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jonathan M. Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Christine T. N. Pham
- Division of Rheumatology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Cytex Therapeutics Inc., Durham, NC 27704, USA
| |
Collapse
|
9
|
Nehmar R, Fauconnier L, Alves‐Filho J, Togbe D, DeCauwer A, Bahram S, Le Bert M, Ryffel B, Georgel P. Aryl hydrocarbon receptor (Ahr)-dependent Il-22 expression by type 3 innate lymphoid cells control of acute joint inflammation. J Cell Mol Med 2021; 25:4721-4731. [PMID: 33734594 PMCID: PMC8107095 DOI: 10.1111/jcmm.16433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) controls several inflammatory and metabolic pathways involved in various diseases, including the development of arthritis. Here, we investigated the role of AHR activation in IL-22-dependent acute arthritis using the K/BxN serum transfer model. We observed an overall reduction of cytokine expression in Ahr-deficient mice, along with decreased signs of joint inflammation. Conversely, we report worsened arthritis symptoms in Il-22 deficient mice. Pharmacological stimulation of AHR with the agonist VAG539, as well as injection of recombinant IL-22, given prior arthritogenic triggering, attenuated inflammation and reduced joint destruction. The protective effect of VAG539 was abrogated in Il-22 deficient mice. Finally, conditional Ahr depletion of Rorc-expressing cells was sufficient to attenuate arthritis, thereby uncovering a previously unsuspected role of AHR in type 3 innate lymphoid cells during acute arthritis.
Collapse
Affiliation(s)
- Ramzi Nehmar
- Laboratoire d’ImmunoRhumatologie MoléculaireInstitut national de la santé et de la recherche médicale (INSERM) UMR_S 1109Institut thématique interdisciplinaire (ITI) de Médecine de Précision de StrasbourgTransplantex NGFaculté de MédecineFédération Hospitalo‐Universitaire OMICAREFédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance
| | | | - Jose Alves‐Filho
- Department of PharmacologyRibeirao Preto Medical School, University of Sao PauloRibeirao PretoBrazil
| | | | - Aurore DeCauwer
- Laboratoire d’ImmunoRhumatologie MoléculaireInstitut national de la santé et de la recherche médicale (INSERM) UMR_S 1109Institut thématique interdisciplinaire (ITI) de Médecine de Précision de StrasbourgTransplantex NGFaculté de MédecineFédération Hospitalo‐Universitaire OMICAREFédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance
| | - Seiamak Bahram
- Laboratoire d’ImmunoRhumatologie MoléculaireInstitut national de la santé et de la recherche médicale (INSERM) UMR_S 1109Institut thématique interdisciplinaire (ITI) de Médecine de Précision de StrasbourgTransplantex NGFaculté de MédecineFédération Hospitalo‐Universitaire OMICAREFédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance
| | - Marc Le Bert
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM)UMR 7355CNRS‐University of OrléansOrleansFrance
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM)UMR 7355CNRS‐University of OrléansOrleansFrance
| | - Philippe Georgel
- Laboratoire d’ImmunoRhumatologie MoléculaireInstitut national de la santé et de la recherche médicale (INSERM) UMR_S 1109Institut thématique interdisciplinaire (ITI) de Médecine de Précision de StrasbourgTransplantex NGFaculté de MédecineFédération Hospitalo‐Universitaire OMICAREFédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance
| |
Collapse
|
10
|
The neuropathic phenotype of the K/BxN transgenic mouse with spontaneous arthritis: pain, nerve sprouting and joint remodeling. Sci Rep 2020; 10:15596. [PMID: 32973194 PMCID: PMC7515905 DOI: 10.1038/s41598-020-72441-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/13/2020] [Indexed: 01/11/2023] Open
Abstract
The adult K/BxN transgenic mouse develops spontaneous autoimmune arthritis with joint remodeling and profound bone loss. We report that both males and females display a severe sustained tactile allodynia which is reduced by gabapentin but not the potent cyclooxygenase inhibitor ketorolac. In dorsal horn, males and females show increased GFAP+ astrocytic cells; however, only males demonstrate an increase in Iba1+ microglia. In dorsal root ganglia (DRG), there is an increase in CGRP+, TH+, and Iba1+ (macrophage) labeling, but no increase in ATF3+ cells. At the ankle there is increased CGRP+, TH+, and GAP-43+ fiber synovial innervation. Thus, based on the changes in dorsal horn, DRG and peripheral innervation, we suggest that the adult K/BxN transgenic arthritic mice display a neuropathic phenotype, an assertion consistent with the analgesic pharmacology seen in this animal. These results indicate the relevance of this model to our understanding of the nociceptive processing which underlies the chronic pain state that evolves secondary to persistent joint inflammation.
Collapse
|
11
|
Merlo LM, Bowers J, Stefanoni T, Getts R, Mandik-Nayak L. B-Cell-Targeted 3DNA Nanotherapy Against Indoleamine 2,3-Dioxygenase 2 (IDO2) Ameliorates Autoimmune Arthritis in a Preclinical Model. CLINICAL PATHOLOGY 2020; 13:2632010X20951812. [PMID: 32924009 PMCID: PMC7457693 DOI: 10.1177/2632010x20951812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
Abstract
The tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase 2 (IDO2) has been identified as an immunomodulatory agent promoting autoimmunity in preclinical models. As such, finding ways to target the expression of IDO2 in B cells promises a new avenue for therapy for debilitating autoimmune disorders such as rheumatoid arthritis. IDO2, like many drivers of disease, is an intracellular protein expressed in a range of cells, and thus therapeutic inhibition of IDO2 requires a mechanism for targeting this intracellular protein in specific cell types. DNA nanostructures are a promising novel way of delivering small molecule drugs, antibodies, or siRNAs to the cytoplasm of a cell. These soluble, branched structures can carry cell-specific targeting moieties along with their therapeutic deliverable. Here, we examined a 3DNA nanocarrier specifically targeted to B cells with an anti-CD19 antibody. We find that this 3DNA is successfully delivered to and internalized in B cells. To test whether these nanostructures can deliver an efficacious therapeutic dose to alter autoimmune responses, a modified anti-IDO2 siRNA was attached to B-cell-directed 3DNA nanocarriers and tested in an established preclinical model of autoimmune arthritis, KRN.g7. The anti-IDO2 3DNA formulation ameliorates arthritis in this system, delaying the onset of joint swelling and reducing total arthritis severity. As such, a 3DNA nanocarrier system shows promise for delivery of targeted, specific, low-dose therapy for autoimmune disease.
Collapse
|
12
|
Liu L, Jia J, Jiang M, Liu X, Dai C, Wise BL, Lane NE, Yao W. High susceptibility to collagen-induced arthritis in mice with progesterone receptors selectively inhibited in osteoprogenitor cells. Arthritis Res Ther 2020; 22:165. [PMID: 32616012 PMCID: PMC7331177 DOI: 10.1186/s13075-020-02242-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
Background Progesterone receptor (PR) affects immunomodulation, and lack of PR in osteoprogenitor cells primarily affects pathways associated with immunomodulation, especially in males. In this study, we selectively deleted PR from osteoprogenitor cells using Prx1-Cre to evaluate the tissue-specific effects of PR on the pathegenesis of inflammatary arthritis (IA). Methods Collagen-induced arthritis (CIA) was used as an IA animal model. Both male and female PRΔPrx1 mice and their wild-type (WT) littermates were immunized with collagen II (CII) emulsified complete Freund’s adjuvant (CFA). Joint erosion, inflammation, and cartilage damage were assessed using a semiquantitative histologic scoring system. Bone volume and erosions in knee and ankle joints were quantitated using microCT and histology. Results Bone erosions developed in both paw joints in 37.5% and 41.7% of the WT and PRΔPrx1 female mice and in 45.4 and 83.3% of the WT and PRΔPrx1 male mice, respectively. Also, both joint damage and subchondral bone erosions were significantly more severe in male PRcKO-CIA mice than in male WT-CIA mice. Female PRΔPrx1 mice also developed higher bone loss in the knee joints than the KO-normal or WT-CIA females although with less severity compared to the male mice. Conclusions The presence of PR in osteoprogenitor cells decreased the development of collagen-induced arthritis and might help to explain the sex differences observed in human inflammatory arthritis.
Collapse
Affiliation(s)
- Lixian Liu
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Junjing Jia
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China
| | - Min Jiang
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Xueping Liu
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Chenling Dai
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Barton L Wise
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA.,Department of Orthopaedic Surgery, UC Davis Medical Center, Sacramento, 95817, USA
| | - Nancy E Lane
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Wei Yao
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA.
| |
Collapse
|
13
|
Temporomandibular joint damage in K/BxN arthritic mice. Int J Oral Sci 2020; 12:5. [PMID: 32024813 PMCID: PMC7002582 DOI: 10.1038/s41368-019-0072-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 11/30/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease affecting 1% of the world population and is characterized by chronic inflammation of the joints sometimes accompanied by extra-articular manifestations. K/BxN mice, originally described in 1996 as a model of polyarthritis, exhibit knee joint alterations. The aim of this study was to describe temporomandibular joint (TMJ) inflammation and damage in these mice. We used relevant imaging modalities, such as micro-magnetic resonance imaging (μMRI) and micro-computed tomography (μCT), as well as histology and immunofluorescence techniques to detect TMJ alterations in this mouse model. Histology and immunofluorescence for Col-I, Col-II, and aggrecan showed cartilage damage in the TMJ of K/BxN animals, which was also evidenced by μCT but was less pronounced than that seen in the knee joints. μMRI observations suggested an increased volume of the upper articular cavity, an indicator of an inflammatory process. Fibroblast-like synoviocytes (FLSs) isolated from the TMJ of K/BxN mice secreted inflammatory cytokines (IL-6 and IL-1β) and expressed degradative mediators such as matrix metalloproteinases (MMPs). K/BxN mice represent an attractive model for describing and investigating spontaneous damage to the TMJ, a painful disorder in humans with an etiology that is still poorly understood.
Collapse
|
14
|
Akk A, Springer LE, Yang L, Hamilton-Burdess S, Lambris JD, Yan H, Hu Y, Wu X, Hourcade DE, Miller MJ, Pham CTN. Complement activation on neutrophils initiates endothelial adhesion and extravasation. Mol Immunol 2019; 114:629-642. [PMID: 31542608 PMCID: PMC6815348 DOI: 10.1016/j.molimm.2019.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/08/2019] [Accepted: 09/08/2019] [Indexed: 01/07/2023]
Abstract
Neutrophils are essential to the pathogenesis of many inflammatory diseases. In the autoantibody-mediated K/BxN model of inflammatory arthritis, the alternative pathway (AP) of complement and Fc gamma receptors (FcγRs) are required for disease development while the classical pathway is dispensable. The reason for this differential requirement is unknown. We show that within minutes of K/BxN serum injection complement activation (CA) is detected on circulating neutrophils, as evidenced by cell surface C3 fragment deposition. CA requires the AP factor B and FcγRs but not C4, implying that engagement of FcγRs by autoantibody or immune complexes directly triggers AP C3 convertase assembly. The absence of C5 does not prevent CA on neutrophils but diminishes the upregulation of adhesion molecules. In vivo two-photon microscopy reveals that CA on neutrophils is critical for neutrophil extravasation and generation of C5a at the site of inflammation. C5a stimulates the release of neutrophil proteases, which contribute to the degradation of VE-cadherin, an adherens junction protein that regulates endothelial barrier integrity. C5a receptor antagonism blocks the extracellular release of neutrophil proteases, suppressing VE-cadherin degradation and neutrophil transendothelial migration in vivo. These results elucidate the AP-dependent intravascular neutrophil-endothelial interactions that initiate the inflammatory cascade in this disease model but may be generalizable to neutrophil extravasation in other inflammatory processes.
Collapse
Affiliation(s)
- Antonina Akk
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Luke E Springer
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lihua Yang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Samantha Hamilton-Burdess
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Huimin Yan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ying Hu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Dennis E Hourcade
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mark J Miller
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Christine T N Pham
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA; John Cochran VA Medical Center, Saint Louis, MO, USA.
| |
Collapse
|
15
|
Evans-Marin H, Rogier R, Koralov SB, Manasson J, Roeleveld D, van der Kraan PM, Scher JU, Koenders MI, Abdollahi-Roodsaz S. Microbiota-Dependent Involvement of Th17 Cells in Murine Models of Inflammatory Arthritis. Arthritis Rheumatol 2019; 70:1971-1983. [PMID: 29975009 PMCID: PMC6587816 DOI: 10.1002/art.40657] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 06/28/2018] [Indexed: 12/20/2022]
Abstract
Objective Intestinal microbiota are associated with the development of inflammatory arthritis. The aim of this study was to dissect intestinal mucosal immune responses in the preclinical phase of arthritis and determine whether the presence of Th17 cells, beyond involvement of the cytokine interleukin‐17 (IL‐17), is required for arthritis development, and whether the involvement of Th17 cells in arthritis depends on the composition of the host microbiota. Methods Mucosal T cell production of IL‐17, interferon‐γ, tumor necrosis factor α (TNFα), IL‐22, and granulocyte–macrophage colony‐stimulating factor (GM‐CSF) was analyzed by flow cytometry and Luminex assay before arthritis onset in mice immunized to develop collagen‐induced arthritis (CIA). Pathogenic features of arthritis in mice with CIA and mice with antigen‐induced arthritis were compared between Th17 cell–deficient (CD4‐Cre+Rorcflox/flox) and Th17 cell–sufficient (CD4‐Cre−Rorcflox/flox) mice. In addition, the impact of intestinal microbiota on the Th17 cell dependence of CIA was assessed. Results Lamina propria CD4 T cells were activated before the onset of arthritis in mice with CIA, with marked up‐regulation of several cytokines, including IL‐17A, TNFα, and GM‐CSF. CD4‐Cre+Rorcflox/flox mice showed a specific reduction in intestinal mucosal levels of Th17 cells and partially reduced levels of IL‐17–producing CD8 T cells. However, total levels of IL‐17A, mostly produced by γδ T cells and neutrophils, were unaffected. The severity of arthritis was significantly reduced in Th17 cell–deficient mice, suggesting that Th17 cells have additional, IL‐17A–independent roles in inflammatory arthritis. Accordingly, antigen‐stimulated T cells from Th17 cell–deficient mice produced less IL‐17A, IL‐17F, and GM‐CSF. Importantly, the dependence of CIA on the involvement of Th17 cells was mitigated in the presence of an alternative microbiome. Conclusion These data from murine models suggest that activation of mucosal immunity precedes the development of arthritis, and also that Th17 cells have a microbiota‐dependent role in arthritis. Therefore, a microbiome‐guided stratification of patients might improve the efficacy of Th17‐targeted therapies.
Collapse
Affiliation(s)
| | - Rebecca Rogier
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Julia Manasson
- New York University School of Medicine, New York, New York
| | | | | | - Jose U Scher
- New York University School of Medicine, New York, New York
| | | | - Shahla Abdollahi-Roodsaz
- New York University School of Medicine and Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Valencia JC, Egbukichi N, Erwin-Cohen RA. Autoimmunity and Cancer, the Paradox Comorbidities Challenging Therapy in the Context of Preexisting Autoimmunity. J Interferon Cytokine Res 2018; 39:72-84. [PMID: 30562133 DOI: 10.1089/jir.2018.0060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Today, improvements in diagnostic and therapeutic options allow patients with autoimmune diseases (ADs) to live longer and have more active lives compared with patients receiving conventional anti-inflammatory therapy just two decades ago. Current therapies for ADs aim to inhibit immune cell activation and effector immune pathways, including those activated by cytokines and cytokine receptors. Understandably, such goals become more complicated in patients with long-term established ADs who develop parallel chronic or comorbid conditions, including life-threatening diseases, such as cancer. Compared with the general population, patients with ADs have an increased risk of developing hematological, lymphoproliferative disorders, and solid tumors. However, the aim of current cancer therapies is to activate the immune system to create autoimmune-like conditions and eliminate tumors. As such, their comorbid presentation creates a paradox on how malignancies must be addressed therapeutically in the context of autoimmunity. Because the physiopathology of malignancies is less understood in the context of autoimmunity than it is in the general population, we undertook this review to highlight the peculiarities and mechanisms governing immune cells in established ADs. Moreover, we examined the role of the autoimmune cytokine milieu in the development of immune-related adverse events during the implementation of conventional or immune-based therapy.
Collapse
Affiliation(s)
- Julio C Valencia
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Nkolika Egbukichi
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Rebecca A Erwin-Cohen
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| |
Collapse
|
17
|
Bustamante MF, Oliveira PG, Garcia-Carbonell R, Croft AP, Smith JM, Serrano RL, Sanchez-Lopez E, Liu X, Kisseleva T, Hay N, Buckley CD, Firestein GS, Murphy AN, Miyamoto S, Guma M. Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis. Ann Rheum Dis 2018; 77:1636-1643. [PMID: 30061164 PMCID: PMC6328432 DOI: 10.1136/annrheumdis-2018-213103] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Recent studies indicate that glucose metabolism is altered in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). Hexokinases (HKs) catalyse the first step in glucose metabolism, and HK2 constitutes the principal HK inducible isoform. We hypothesise that HK2 contributes to the synovial lining hypertrophy and plays a critical role in bone and cartilage damage. METHODS HK1 and HK2 expression were determined in RA and osteoarthritis (OA) synovial tissue by immunohistochemistry. RA FLS were transfected with either HK1 or HK2 siRNA, or infected with either adenovirus (ad)-GFP, ad-HK1 or ad-HK2. FLS migration and invasion were assessed. To study the role of HK2 in vivo, 108 particles of ad-HK2 or ad-GFP were injected into the knee of wild-type mice. K/BxN serum transfer arthritis was induced in HK2F/F mice harbouring Col1a1-Cre (HK2Col1), to delete HK2 in non-haematopoietic cells. RESULTS HK2 is particular of RA histopathology (9/9 RA; 1/8 OA) and colocalises with FLS markers. Silencing HK2 in RA FLS resulted in a less invasive and migratory phenotype. Consistently, overexpression of HK2 resulted in an increased ability to migrate and invade. It also increased extracellular lactate production. Intra-articular injection of ad-HK2 in normal knees dramatically increased synovial lining thickness, FLS activation and proliferation. HK2 was highly expressed in the synovial lining after K/BxN serum transfer arthritis. HK2Col1 mice significantly showed decreased arthritis severity, bone and cartilage damage. CONCLUSION HK2 is specifically expressed in RA synovial lining and regulates FLS aggressive functions. HK2 might be an attractive selective metabolic target safer than global glycolysis for RA treatment.
Collapse
Affiliation(s)
- Marta F. Bustamante
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | | | - Ricard Garcia-Carbonell
- Departments of Pharmacology and Surgery. University of California San Diego, San Diego, CA, USA
| | - Adam P Croft
- Rheumatology Research Group, Institute of inflammation and Ageing, College of Medical and dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Jeff M Smith
- Rheumatology Research Group, Institute of inflammation and Ageing, College of Medical and dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | | | - Elsa Sanchez-Lopez
- Departments of Pharmacology and Surgery. University of California San Diego, San Diego, CA, USA
| | - Xiao Liu
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Tatiana Kisseleva
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, UIC, Chicago, IL. USA
| | - Christopher D Buckley
- Rheumatology Research Group, Institute of inflammation and Ageing, College of Medical and dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | | | - Anne N Murphy
- Departments of Pharmacology and Surgery. University of California San Diego, San Diego, CA, USA
| | - Shigeki Miyamoto
- Departments of Pharmacology and Surgery. University of California San Diego, San Diego, CA, USA
| | - Monica Guma
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
18
|
Szczepanik M, Majewska-Szczepanik M, Wong FS, Kowalczyk P, Pasare C, Wen L. Regulation of contact sensitivity in non-obese diabetic (NOD) mice by innate immunity. Contact Dermatitis 2018; 79:197-207. [PMID: 29943459 DOI: 10.1111/cod.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/15/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Genetic background influences allergic immune responses to environmental stimuli. Non-obese diabetic (NOD) mice are highly susceptible to environmental stimuli. Little is known about the interaction of autoimmune genetic factors with innate immunity in allergies, especially skin hypersensitivity. OBJECTIVES To study the interplay of innate immunity and autoimmune genetic factors in contact hypersensitivity (CHS) by using various innate immunity-deficient NOD mice. METHODS Toll-like receptor (TLR) 2-deficient, TLR9-deficient and MyD88-deficient NOD mice were used to investigate CHS. The cellular mechanism was determined by flow cytometry in vitro and adoptive cell transfer in vivo. To investigate the role of MyD88 in dendritic cells (DCs) in CHS, we also used CD11cMyD88+ MyD88-/- NOD mice, in which MyD88 is expressed only in CD11c+ cells. RESULTS We found that innate immunity negatively regulates CHS, as innate immunity-deficient NOD mice developed exacerbated CHS accompanied by increased numbers of skin-migrating CD11c+ DCs expressing higher levels of major histocompatibility complex II and CD80. Moreover, MyD88-/- NOD mice had increased numbers of CD11c+ CD207- CD103+ DCs and activated T effector cells in the skin-draining lymph nodes. Strikingly, re-expression of MyD88 in CD11c+ DCs (CD11cMyD88+ MyD88-/- NOD mice) restored hyper-CHS to a normal level in MyD88-/- NOD mice. CONCLUSION Our results suggest that the autoimmune-prone NOD genetic background aggravates CHS regulated by innate immunity, through DCs and T effector cells.
Collapse
Affiliation(s)
- Marian Szczepanik
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut.,Department of Medical Biology, Health Science Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Majewska-Szczepanik
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut.,Department of Medical Biology, Health Science Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Florence S Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Paulina Kowalczyk
- Department of Medical Biology, Health Science Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Chandrashekhar Pasare
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Li Wen
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
19
|
Fruchon S, Poupot R. The ABP Dendrimer, a Drug-Candidate against Inflammatory Diseases That Triggers the Activation of Interleukin-10 Producing Immune Cells. Molecules 2018; 23:E1272. [PMID: 29799517 PMCID: PMC6100262 DOI: 10.3390/molecules23061272] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
The ABP dendrimer, which is built on a phosphorus-based scaffold and bears twelve azabisphosphonate groups at its surface, is one of the dendrimers that has been shown to display immuno-modulatory and anti-inflammatory effects towards the human immune system. Its anti-inflammatory properties have been successfully challenged in animal models of inflammatory disorders. In this review, we trace the discovery and the evaluation of the therapeutic effects of the ABP dendrimer in three different animal models of both acute and chronic inflammatory diseases. We emphasize that its therapeutic effects rely on the enhancement of the production of Interleukin-10, the paradigm of anti-inflammatory cytokines, by different subsets of immune cells, such as monocytes/macrophages and CD4+ T lymphocytes.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/chemical synthesis
- Anti-Inflammatory Agents/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Dendrimers/chemical synthesis
- Dendrimers/pharmacology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression
- Humans
- Interleukin-10/genetics
- Interleukin-10/immunology
- Lymphocyte Activation/drug effects
- Mice
- Monocytes/drug effects
- Monocytes/immunology
- Receptors, Interleukin-1/deficiency
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/immunology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Séverine Fruchon
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| | - Rémy Poupot
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| |
Collapse
|
20
|
Hayder M, Garzoni M, Bochicchio D, Caminade AM, Couderc F, Ong-Meang V, Davignon JL, Turrin CO, Pavan GM, Poupot R. Three-Dimensional Directionality Is a Pivotal Structural Feature for the Bioactivity of Azabisphosphonate-Capped Poly(PhosphorHydrazone) Nanodrug Dendrimers. Biomacromolecules 2018; 19:712-720. [PMID: 29443507 DOI: 10.1021/acs.biomac.7b01398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dendrimers are nanosized, nonlinear, hyperbranched polymers whose overall 3D shape is key for their biological activity. Poly(PhosphorHydrazone) (PPH) dendrimers capped with aza-bisphosphonate (ABP) end groups are known to have anti-inflammatory properties enabling the control of inflammatory diseases in different mouse models. Here we screen the anti-inflammatory activity of a series of PPH dendrimers bearing between 2 and 16 ABP end groups in a mouse model of arthritis and confront the biological results with atomistic simulations of the dendrimers. We show that only the PPH dendrimers capped with 10 and 12 ABP end groups can control the flare of the inflammatory disease. All-atom accelerated molecular dynamics simulations show that dendrimers with a low number of ABP end groups are directional but highly flexible/dynamic and have thereby limited efficiency in establishing multivalent interactions. The largest dendrimer appears as nondirectional, having 16 ABP end groups forming patches all over the dendrimer surface. Conversely, intermediate dendrimers having 10 or 12 ABP end groups reach the best compromise between the number of surface groups and their stable directional gathering, a real maximization of multivalency.
Collapse
Affiliation(s)
- Myriam Hayder
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS , Toulouse , France
| | - Matteo Garzoni
- Department of Innovative Technologies , University for Applied Sciences and Arts of Southern Switzerland (SUPSI) , Galleria 2, Via Cantonale 2c , CH-6928 Manno , Switzerland
| | - Davide Bochicchio
- Department of Innovative Technologies , University for Applied Sciences and Arts of Southern Switzerland (SUPSI) , Galleria 2, Via Cantonale 2c , CH-6928 Manno , Switzerland
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS , 205 Route de Narbonne, BP 44099 , 31077 Toulouse Cedex 4 , France.,LCC-CNRS, Université de Toulouse, CNRS , Toulouse , France
| | - François Couderc
- Laboratoire des Interactions Moléculaires et Réactivité, Chimique et Photochimique (IMRCP), Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Varravaddheay Ong-Meang
- Laboratoire des Interactions Moléculaires et Réactivité, Chimique et Photochimique (IMRCP), Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Jean-Luc Davignon
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS , Toulouse , France
| | - Cédric-Olivier Turrin
- Laboratoire de Chimie de Coordination du CNRS , 205 Route de Narbonne, BP 44099 , 31077 Toulouse Cedex 4 , France.,LCC-CNRS, Université de Toulouse, CNRS , Toulouse , France
| | - Giovanni M Pavan
- Department of Innovative Technologies , University for Applied Sciences and Arts of Southern Switzerland (SUPSI) , Galleria 2, Via Cantonale 2c , CH-6928 Manno , Switzerland
| | - Rémy Poupot
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS , Toulouse , France
| |
Collapse
|
21
|
Rogier R, Evans-Marin H, Manasson J, van der Kraan PM, Walgreen B, Helsen MM, van den Bersselaar LA, van de Loo FA, van Lent PL, Abramson SB, van den Berg WB, Koenders MI, Scher JU, Abdollahi-Roodsaz S. Alteration of the intestinal microbiome characterizes preclinical inflammatory arthritis in mice and its modulation attenuates established arthritis. Sci Rep 2017; 7:15613. [PMID: 29142301 PMCID: PMC5688157 DOI: 10.1038/s41598-017-15802-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022] Open
Abstract
Perturbations of the intestinal microbiome have been observed in patients with new-onset and chronic autoimmune inflammatory arthritis. However, it is currently unknown whether these alterations precede the development of arthritis or are rather a consequence of disease. Modulation of intestinal microbiota by oral antibiotics or germ-free condition can prevent arthritis in mice. Yet, the therapeutic potential of modulation of the microbiota after the onset of arthritis is not well characterized. We here show that the intestinal microbial community undergoes marked changes in the preclinical phase of collagen induced arthritis (CIA). The abundance of the phylum Bacteroidetes, specifically families S24-7 and Bacteroidaceae was reduced, whereas Firmicutes and Proteobacteria, such as Ruminococcaceae, Lachnospiraceae and Desulfovibrinocaceae, were expanded during the immune-priming phase of arthritis. In addition, we found that the abundance of lamina propria Th17, but not Th1, cells is highly correlated with the severity of arthritis. Elimination of the intestinal microbiota during established arthritis specifically reduced intestinal Th17 cells and attenuated arthritis. These effects were associated with reduced serum amyloid A expression in ileum and synovial tissue. Our observations suggest that intestinal microbiota perturbations precede arthritis, and that modulation of the intestinal microbiota after the onset of arthritis may offer therapeutic opportunities.
Collapse
Affiliation(s)
- Rebecca Rogier
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heather Evans-Marin
- Department of Medicine, Division of Rheumatology, New York University School of Medicine, New York, United States
| | - Julia Manasson
- Department of Medicine, Division of Rheumatology, New York University School of Medicine, New York, United States
| | - Peter M van der Kraan
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Birgitte Walgreen
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique M Helsen
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Fons A van de Loo
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter L van Lent
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Steven B Abramson
- Department of Medicine, Division of Rheumatology, New York University School of Medicine, New York, United States
| | - Wim B van den Berg
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marije I Koenders
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jose U Scher
- Department of Medicine, Division of Rheumatology, New York University School of Medicine, New York, United States
| | - Shahla Abdollahi-Roodsaz
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Medicine, Division of Rheumatology, New York University School of Medicine, New York, United States.
| |
Collapse
|
22
|
Garcia-Carbonell R, Divakaruni AS, Lodi A, Vicente-Suarez I, Saha A, Cheroutre H, Boss GR, Tiziani S, Murphy AN, Guma M. Critical Role of Glucose Metabolism in Rheumatoid Arthritis Fibroblast-like Synoviocytes. Arthritis Rheumatol 2017; 68:1614-26. [PMID: 26815411 DOI: 10.1002/art.39608] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Up-regulation of glucose metabolism has been implicated not only in tumor cell growth but also in immune cells upon activation. However, little is known about the metabolite profile in rheumatoid arthritis (RA), particularly in fibroblast-like synoviocytes (FLS). This study was undertaken to evaluate whether changes in glucose metabolism in RA FLS could play a role in inflammation and joint damage. METHODS Synovium and FLS were obtained from patients with RA and patients with osteoarthritis (OA). The rate of glycolysis after stimulation of FLS with lipopolysaccharide and platelet-derived growth factor BB was measured using glycolysis stress test technology. FLS function was evaluated using a glycolysis inhibitor, 2-deoxy-d-glucose (2-DG). After stimulation of the FLS, a migration scratch assay, MTT assay, and enzyme-linked immunosorbent assay were performed to measure the effect of 2-DG on FLS migration, viability of the FLS, and cytokine secretion, respectively. IRDye 800CW 2-DG was used to assess glucose uptake in the arthritic joints and stromal cells of mice after K/BxN mouse serum transfer. The mice were injected daily, intraperitoneally, with 3-bromopyruvate (BrPa; 5 mg/kg) to assess the effect of inhibition of glycolysis in vivo. RESULTS Compared to human OA FLS, the balance between glycolysis and oxidative phosphorylation was shifted toward glycolysis in RA FLS. Glucose transporter 1 (GLUT1) messenger RNA (mRNA) expression correlated with baseline functions of the RA FLS. Glucose deprivation or incubation of the FLS with glycolytic inhibitors impaired cytokine secretion and decreased the rate of proliferation and migration of the cells. In a mouse model of inflammatory arthritis, GLUT1 mRNA expression in the synovial lining cells was observed, and increased levels of glucose uptake and glycolytic gene expression were detected in the stromal compartment of the arthritic mouse joints. Inhibition of glycolysis by BrPa, administered in vivo, significantly decreased the severity of arthritis in this mouse model. CONCLUSION Targeting metabolic pathways is a novel approach to understanding the mechanisms of disease. Inhibition of glycolysis may directly modulate synoviocyte-mediated inflammatory functions and could be an effective treatment strategy for arthritis.
Collapse
Affiliation(s)
| | | | | | | | - Arindam Saha
- University of California, San Diego School of Medicine, La Jolla
| | - Hilde Cheroutre
- La Jolla Institute for Allergy & Immunology, La Jolla, California
| | - Gerry R Boss
- University of California, San Diego School of Medicine, La Jolla
| | | | - Anne N Murphy
- University of California, San Diego School of Medicine, La Jolla
| | - Monica Guma
- University of California, San Diego School of Medicine, La Jolla
| |
Collapse
|
23
|
Nyhoff LE, Barron B, Johnson EM, Bonami RH, Maseda D, Fensterheim BA, Han W, Blackwell TS, Crofford LJ, Kendall PL. Bruton's Tyrosine Kinase Deficiency Inhibits Autoimmune Arthritis in Mice but Fails to Block Immune Complex-Mediated Inflammatory Arthritis. Arthritis Rheumatol 2016; 68:1856-68. [PMID: 26945549 PMCID: PMC5668904 DOI: 10.1002/art.39657] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Bruton's tyrosine kinase (BTK) is a B cell signaling protein that also contributes to innate immunity. BTK inhibitors prevent autoimmune arthritis but have off-target effects, and the mechanisms of protection remain unknown. We undertook these studies using genetic deletion to investigate the role of BTK in adaptive and innate immune responses that drive inflammatory arthritis. METHODS BTK-deficient K/BxN mice were generated to study the role of BTK in a spontaneous model that requires both adaptive and innate immunity. The K/BxN serum-transfer model was used to bypass the adaptive system and elucidate the role of BTK in innate immune contributions to arthritis. RESULTS BTK deficiency conferred disease protection to K/BxN mice, confirming outcomes of BTK inhibitors. B lymphocytes were profoundly reduced, more than in other models of BTK deficiency. Subset analysis revealed loss of B cells at all developmental stages. Germinal center B cells were also decreased, with downstream effects on numbers of follicular helper T cells and greatly reduced autoantibodies. In contrast, total IgG was only mildly decreased. Strikingly, and in contrast to small molecule inhibitors, BTK deficiency had no effect in the serum-transfer model of arthritis. CONCLUSION BTK contributes to autoimmune arthritis primarily through its role in B cell signaling and not through innate immune components.
Collapse
Affiliation(s)
- Lindsay E. Nyhoff
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Bridgette Barron
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Elizabeth M. Johnson
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Rachel H. Bonami
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Damian Maseda
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Benjamin A. Fensterheim
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Wei Han
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Timothy S. Blackwell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Leslie J. Crofford
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Peggy L. Kendall
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
24
|
Elisia I, Nakamura H, Lam V, Hofs E, Cederberg R, Cait J, Hughes MR, Lee L, Jia W, Adomat HH, Guns ES, McNagny KM, Samudio I, Krystal G. DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis. PLoS One 2016; 11:e0152538. [PMID: 27031833 PMCID: PMC4816398 DOI: 10.1371/journal.pone.0152538] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/15/2016] [Indexed: 01/03/2023] Open
Abstract
Dimethyl sulfoxide (DMSO) is currently used as an alternative treatment for various inflammatory conditions as well as for cancer. Despite its widespread use, there is a paucity of data regarding its safety and efficacy as well as its mechanism of action in human cells. Herein, we demonstrate that DMSO has ex-vivo anti-inflammatory activity using Escherichia coli- (E. coli) and herpes simplex virus-1 (HSV-1)-stimulated whole human blood. Specifically, we found that between 0.5%-2%, DMSO significantly suppressed the expression of many pro-inflammatory cytokines/chemokines and prostaglandin E2 (PGE2). However, a significant reduction in monocyte viability was also observed at 2% DMSO, suggesting a narrow window of efficacy. Anti-inflammatory concentrations of DMSO suppressed E. coli-induced ERK1/2, p38, JNK and Akt phosphorylation, suggesting DMSO acts on these signaling pathways to suppress inflammatory cytokine/chemokine production. Although DMSO induces the differentiation of B16/F10 melanoma cells in vitro, topical administration of DMSO to mice subcutaneously implanted with B16 melanoma cells was ineffective at reducing tumor growth, DMSO was also found to block mouse macrophages from polarizing to either an M1- or an M2-phenotype, which may contribute to its inability to slow tumor growth. Topical administration of DMSO, however, significantly mitigated K/BxN serum-induced arthritis in mice, and this was associated with reduced levels of pro-inflammatory cytokines in the joints and white blood cell levels in the blood. Thus, while we cannot confirm the efficacy of DMSO as an anti-cancer agent, the use of DMSO in arthritis warrants further investigation to ascertain its therapeutic potential.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Hisae Nakamura
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Vivian Lam
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Elyse Hofs
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Rachel Cederberg
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Jessica Cait
- The Biomedical Research Centre, University of British Columbia, Vancouver, B.C., Canada
| | - Michael R. Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, B.C., Canada
| | - Leora Lee
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - William Jia
- The Brain Research Centre, University of British Columbia, Vancouver, B.C., Canada
| | - Hans H. Adomat
- The Vancouver Prostate Centre at Vancouver General Hospital, Vancouver, B.C., Canada
| | - Emma S. Guns
- The Vancouver Prostate Centre at Vancouver General Hospital, Vancouver, B.C., Canada
| | - Kelly M. McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, B.C., Canada
| | - Ismael Samudio
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| |
Collapse
|
25
|
Herman S, Fischer A, Presumey J, Hoffmann M, Koenders MI, Escriou V, Apparailly F, Steiner G. Inhibition of Inflammation and Bone Erosion by RNA Interference-Mediated Silencing of Heterogeneous Nuclear RNP A2/B1 in Two Experimental Models of Rheumatoid Arthritis. Arthritis Rheumatol 2015; 67:2536-46. [DOI: 10.1002/art.39223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/26/2015] [Indexed: 01/13/2023]
Affiliation(s)
| | | | - Jessy Presumey
- INSERM, U844, University Hospital of Montpellier and University of Montpellier I; Montpellier France
| | | | | | - Virginie Escriou
- INSERM, U1022, CNRS, UMR8151, Paris Descartes University, and Chimie ParisTech; Paris France
| | - Florence Apparailly
- INSERM, U844, University Hospital of Montpellier and University of Montpellier I; Montpellier France
| | | |
Collapse
|
26
|
Schubert N, Dudeck J, Liu P, Karutz A, Speier S, Maurer M, Tuckermann J, Dudeck A. Mast cell promotion of T cell-driven antigen-induced arthritis despite being dispensable for antibody-induced arthritis in which T cells are bypassed. Arthritis Rheumatol 2015; 67:903-13. [PMID: 25510234 DOI: 10.1002/art.38996] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/09/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The function of mast cells (MCs) in autoimmune disorders has been a subject of controversy recently. MC-deficient Kit(W/W-v) mice were found to be resistant to K/BxN serum-transfer arthritis, whereas Kit(W-sh/W-sh) mice and a genetic model of MC deficiency independent of the Kit mutation were found to be fully susceptible. This debate might lead to the assumption that MCs are dispensable in autoimmunity in general. Thus, the purpose of this study was to examine the relevance of MCs to arthritis using a genetic model of inducible MC deficiency without compromised Kit signaling. METHODS We compared MC functions in K/BxN serum-induced arthritis and in collagen-induced arthritis (CIA) in a mouse model of inducible MC deficiency by analyzing joint inflammation, parameters of cartilage degradation and bone erosion, and the autoreactive adaptive immune response. RESULTS We observed a redundant role of MCs in K/BxN serum-induced arthritis, where joint inflammation is triggered by cartilage-bound immune complexes independently of T cells. In contrast, we found MCs to be critically relevant in CIA, which is provoked by two arms of autoimmune attack: autoreactive antibodies and effector T cells. In addition to diminished joint inflammation in the absence of MCs, we found a dramatic loss of T cell expansion upon immunization, accompanied by reduced T cell cytokine responses. CONCLUSION In this analysis of an arthritis model in which the cellular arm of adaptive immunity was not bypassed, we identified MCs as important promoters of T cell-conditioned autoimmune disorders and, consequently, as potential therapeutic targets in rheumatoid arthritis.
Collapse
|
27
|
Loss of Murine FOXO3 in Cells of the Myeloid Lineage Enhances Myelopoiesis but Protects from K/BxN-Serum Transfer-Induced Arthritis. PLoS One 2015; 10:e0126728. [PMID: 25969990 PMCID: PMC4430473 DOI: 10.1371/journal.pone.0126728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 04/07/2015] [Indexed: 01/13/2023] Open
Abstract
FOXO transcription factors have a highly conserved role in regulating transcription of genes involved in differentiation, cell cycle arrest, apoptosis and DNA repair. Loss of FOXO3 in mice has previously been shown to result in a myeloproliferative disease. In agreement with this, we found that an independent Foxo3 null mouse strain, Foxo3Kca, exhibits an increase in neutrophils in the spleen, bone marrow and blood. This coincides with an expansion of myeloid progenitor cells including pre-granulocyte-macrophage progenitors (Pre-GMs) and granulocyte-macrophage progenitors (GMPs). Surprisingly, despite neutrophilia, the severity of passive serum transfer arthritis was markedly attenuated in Foxo3Kca mice. These defects appear to be at least partially intrinsic to the myeloid lineage, as deleting Foxo3 specifically from myeloid cells using LysMCre also leads to an elevated number of neutrophils and protection from K/BxN-serum transfer-induced arthritis.
Collapse
|
28
|
Martin WJ, Steer AC, Smeesters PR, Keeble J, Inouye M, Carapetis J, Wicks IP. Post-infectious group A streptococcal autoimmune syndromes and the heart. Autoimmun Rev 2015; 14:710-25. [PMID: 25891492 DOI: 10.1016/j.autrev.2015.04.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
There is a pressing need to reduce the high global disease burden of rheumatic heart disease (RHD) and its harbinger, acute rheumatic fever (ARF). ARF is a classical example of an autoimmune syndrome and is of particular immunological interest because it follows a known antecedent infection with group A streptococcus (GAS). However, the poorly understood immunopathology of these post-infectious diseases means that, compared to much progress in other immune-mediated diseases, we still lack useful biomarkers, new therapies or an effective vaccine in ARF and RHD. Here, we summarise recent literature on the complex interaction between GAS and the human host that culminates in ARF and the subsequent development of RHD. We contrast ARF with other post-infectious streptococcal immune syndromes - post-streptococcal glomerulonephritis (PSGN) and the still controversial paediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS), in order to highlight the potential significance of variations in the host immune response to GAS. We discuss a model for the pathogenesis of ARF and RHD in terms of current immunological concepts and the potential for application of in depth "omics" technologies to these ancient scourges.
Collapse
Affiliation(s)
- William John Martin
- Inflammation Division, Water and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Andrew C Steer
- Centre for International Child Health, Department of Pediatrics, University of Melbourne and Murdoch Childrens Research Institute, Parkville, VIC 3052, Australia; Group A Streptococcus Laboratory, Murdoch Childrens Research Institute, Parkville, VIC 3052, Australia
| | - Pierre Robert Smeesters
- Centre for International Child Health, Department of Pediatrics, University of Melbourne and Murdoch Childrens Research Institute, Parkville, VIC 3052, Australia; Group A Streptococcus Laboratory, Murdoch Childrens Research Institute, Parkville, VIC 3052, Australia
| | - Joanne Keeble
- Inflammation Division, Water and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Michael Inouye
- Medical Systems Biology, Department of Pathology and Department of Microbiology and Immunology, University of Melbourne, VIC 3010, Australia
| | | | - Ian P Wicks
- Inflammation Division, Water and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Rheumatology Unit, Royal Melbourne Hospital, Parkville, VIC 3052, Australia.
| |
Collapse
|
29
|
The Role of Poly(ADP-ribose) Polymerase-1 in Rheumatoid Arthritis. Mediators Inflamm 2015; 2015:837250. [PMID: 26339143 PMCID: PMC4539103 DOI: 10.1155/2015/837250] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/02/2015] [Indexed: 12/29/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme with a crucial role in the maintenance of genomic stability. In addition to the role of PARP-1 in DNA repair, multiple studies have also demonstrated its involvement in several inflammatory diseases, such as septic shock, asthma, atherosclerosis, and stroke, as well as in cancer. In these diseases, the pharmacological inhibition of PARP-1 has shown a beneficial effect, suggesting that PARP-1 regulates their inflammatory processes. In recent years, we have studied the role of PARP-1 in rheumatoid arthritis, as have other researchers, and the results have shown that PARP-1 has an important function in the development of this disease. This review summarizes current knowledge on the effects of PARP-1 in rheumatoid arthritis.
Collapse
|
30
|
Guma M, Sanchez-Lopez E, Lodi A, Garcia-Carbonell R, Tiziani S, Karin M, Lacal JC, Firestein GS. Choline kinase inhibition in rheumatoid arthritis. Ann Rheum Dis 2014; 74:1399-407. [PMID: 25274633 DOI: 10.1136/annrheumdis-2014-205696] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/13/2014] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Little is known about targeting the metabolome in non-cancer conditions. Choline kinase (ChoKα), an essential enzyme for phosphatidylcholine biosynthesis, is required for cell proliferation and has been implicated in cancer invasiveness. Aggressive behaviour of fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA) led us to evaluate whether this metabolic pathway could play a role in RA FLS function and joint damage. METHODS Choline metabolic profile of FLS cells was determined by (1)H magnetic resonance spectroscopy ((1)HMRS) under conditions of ChoKα inhibition. FLS function was evaluated using the ChoKα inhibitor MN58b (IC₅₀=4.2 μM). For arthritis experiments, mice were injected with K/BxN sera. MN58b (3 mg/kg) was injected daily intraperitoneal beginning on day 0 or day 4 after serum administration. RESULTS The enzyme is expressed in synovial tissue and in cultured RA FLS. Tumour necrosis factor (TNF) and platelet-derived growth factor (PDGF) stimulation increased ChoKα expression and levels of phosphocholine in FLS measured by Western Blot (WB) and metabolomic studies of choline-containing compounds in cultured RA FLS extracts respectively, suggesting activation of this pathway in RA synovial environment. A ChoKα inhibitor also suppressed the behaviour of cultured FLS, including cell migration and resistance to apoptosis, which might contribute to cartilage destruction in RA. In a passive K/BxN arthritis model, pharmacologic ChoKα inhibition significantly decreased arthritis in pretreatment protocols as well as in established disease. CONCLUSIONS These data suggest that ChoKα inhibition could be an effective strategy in inflammatory arthritis. It also suggests that targeting the metabolome can be a new treatment strategy in non-cancer conditions.
Collapse
Affiliation(s)
- M Guma
- Division of Rheumatology, Allergy and Immunology, UC San Diego School of Medicine, La Jolla, California, USA
| | - E Sanchez-Lopez
- Laboratory of Gene Regulation and Signal Transduction, UC San Diego School of Medicine, La Jolla, California, USA Departments of Pharmacology, UC San Diego School of Medicine, La Jolla, California, USA Pathology, UC San Diego School of Medicine, La Jolla, California, USA
| | - A Lodi
- Department of Nutritional Sciences & Dell Pediatric Research Institute, University of Texas at Austin, Austin, Texas, USA
| | - R Garcia-Carbonell
- Laboratory of Gene Regulation and Signal Transduction, UC San Diego School of Medicine, La Jolla, California, USA Departments of Pharmacology, UC San Diego School of Medicine, La Jolla, California, USA Pathology, UC San Diego School of Medicine, La Jolla, California, USA
| | - S Tiziani
- Department of Nutritional Sciences & Dell Pediatric Research Institute, University of Texas at Austin, Austin, Texas, USA
| | - M Karin
- Laboratory of Gene Regulation and Signal Transduction, UC San Diego School of Medicine, La Jolla, California, USA Departments of Pharmacology, UC San Diego School of Medicine, La Jolla, California, USA Pathology, UC San Diego School of Medicine, La Jolla, California, USA
| | - J C Lacal
- Division of Translational Oncology, Health Research Institute and University Hospital "Fundación Jiménez Díaz", Madrid, Spain
| | - G S Firestein
- Division of Rheumatology, Allergy and Immunology, UC San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
31
|
Dave RK, Naylor AJ, Young SP, Bayley R, Hardie DL, Haworth O, Rider DA, Cook AD, Buckley CD, Kellie S. Differential expression of CD148 on leukocyte subsets in inflammatory arthritis. Arthritis Res Ther 2014; 15:R108. [PMID: 24016860 PMCID: PMC3978474 DOI: 10.1186/ar4288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/22/2013] [Accepted: 09/09/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction Monocytic cells play a central role in the aetiology of rheumatoid arthritis, and manipulation of the activation of these cells is an approach currently under investigation to discover new therapies for this and associated diseases. CD148 is a transmembrane tyrosine phosphatase that is highly expressed in monocytes and macrophages and, since this family of molecules plays an important role in the regulation of cell activity, CD148 is a potential target for the manipulation of macrophage activation. For any molecule to be considered a therapeutic target, it is important for it to be increased in activity or expression during disease. Methods We have investigated the expression of CD148 in two murine models of arthritis and in joints from rheumatoid arthritis (RA) patients using real-time PCR, immunohistochemistry, and studied the effects of proinflammatory stimuli on CD148 activity using biochemical assays. Results We report that CD148 mRNA is upregulated in diseased joints of mice with collagen-induced arthritis. Furthermore, we report that in mice CD148 protein is highly expressed in infiltrating monocytes of diseased joints, with a small fraction of T cells also expressing CD148. In human arthritic joints both T cells and monocytes expressed high levels of CD148, however, we show differential expression of CD148 in T cells and monocytes from normal human peripheral blood compared to peripheral blood from RA and both normal and RA synovial fluid. Finally, we show that synovial fluid from rheumatoid arthritis patients suppresses CD148 phosphatase activity. Conclusions CD148 is upregulated in macrophages and T cells in human RA samples, and its activity is enhanced by treatment with tumour necrosis factor alpha (TNFα), and reduced by synovial fluid or oxidising conditions. A greater understanding of the role of CD148 in chronic inflammation may lead to alternative therapeutic approaches to these diseases.
Collapse
|
32
|
Rose S, Waters EA, Haney CR, Meade CTJ, Perlman H. High-resolution magnetic resonance imaging of ankle joints in murine arthritis discriminates inflammation and bone destruction in a quantifiable manner. ACTA ACUST UNITED AC 2013; 65:2279-89. [PMID: 23740612 DOI: 10.1002/art.38030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 05/16/2013] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The ability to noninvasively monitor the development of inflammatory arthritis longitudinally has become increasingly important in experimental rheumatology. Magnetic resonance imaging (MRI) allows for detailed examination of anatomic structures, as well as the assessment of joint and soft tissue inflammation. The aim of this study was to extend the use of MRI to include quantitative measurements of bone destruction in murine ankle joints. METHODS Joint disease was measured serially using clinical, histologic, in vivo imaging system (IVIS), micro-computed tomography (micro-CT), and MRI techniques in mouse ankle joints, using the K/BxN serum transfer-induced acute arthritis and K/BxA(g7) chronic arthritis models. Ankle joint MRI was performed using a gradient-echo pulse sequence to evaluate bone destruction and a spin-echo sequence to evaluate inflammation (long T2 signal). RESULTS Arthritic mice, as compared to control mice, demonstrated increased disease severity according to clinical, histologic, IVIS, and MRI measures. Following induction of arthritis, the majority of volume expansion of the long T2 signal occurred in a juxtaarticular, rather than intrarticular, manner within the ankle joints. Bone destruction in K/BxA(g7) mouse ankle joints was readily detectible by MRI. Linear regression analyses demonstrated significant correlations between the clinical score and joint radiance intensity assessed by IVIS, between the ankle joint width and increased long T2 signal on MRI, and between the bone volume obtained by micro-CT and bone volume obtained by MRI. CONCLUSION MRI is an optimal technology for anatomic localization of articular and soft tissue changes during the development and progression of inflammatory arthritis. Future studies may combine MRI with in vivo labeling agents to investigate joint disease in a cell type-specific manner.
Collapse
Affiliation(s)
- Shawn Rose
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | |
Collapse
|
33
|
Liu Z, Bethunaickan R, Sahu R, Brenner M, Laragione T, Gulko PS, Davidson A. The Multiple Chemokine-Binding Bovine Herpesvirus 1 Glycoprotein G (BHV1gG) Inhibits Polymorphonuclear Cell but Not Monocyte Migration into Inflammatory Sites. Mol Med 2013. [DOI: 10.2119/molmed.2012.00339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
34
|
Whitaker JW, Shoemaker R, Boyle DL, Hillman J, Anderson D, Wang W, Firestein GS. An imprinted rheumatoid arthritis methylome signature reflects pathogenic phenotype. Genome Med 2013; 5:40. [PMID: 23631487 PMCID: PMC3706831 DOI: 10.1186/gm444] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 12/15/2022] Open
Abstract
Background A DNA methylation signature has been characterized that distinguishes rheumatoid arthritis (RA) fibroblast like synoviocytes (FLS) from osteoarthritis (OA) FLS. The presence of epigenetic changes in long-term cultured cells suggest that rheumatoid FLS imprinting might contribute to pathogenic behavior. To understand how differentially methylated genes (DMGs) might participate in the pathogenesis of RA, we evaluated the stability of the RA signature and whether DMGs are enriched in specific pathways and ontology categories. Methods To assess the RA methylation signatures the Illumina HumanMethylation450 chip was used to compare methylation levels in RA, OA, and normal (NL) FLS at passage 3, 5, and 7. Then methylation frequencies at CpGs within the signature were compared between passages. To assess the enrichment of DMGs in specific pathways, DMGs were identified as genes that possess significantly differential methylated loci within their promoter regions. These sets of DMGs were then compared to pathway and ontology databases to establish enrichment in specific categories. Results Initial studies compared passage 3, 5, and 7 FLS from RA, OA, and NL. The patterns of differential methylation of each individual FLS line were very similar regardless of passage number. Using the most robust analysis, 20 out of 272 KEGG pathways and 43 out of 34,400 GO pathways were significantly altered for RA compared with OA and NL FLS. Most interestingly, we found that the KEGG 'Rheumatoid Arthritis' pathway was consistently the most significantly enriched with differentially methylated loci. Additional pathways involved with innate immunity (Complement and Coagulation, Toll-like Receptors, NOD-like Receptors, and Cytosolic DNA-sensing), cell adhesion (Focal Adhesion, Cell Adhesion Molecule), and cytokines (Cytokine-cytokine Receptor). Taken together, KEGG and GO pathway analysis demonstrates non-random epigenetic imprinting of RA FLS. Conclusions The DNA methylation patterns include anomalies in key genes implicated in the pathogenesis of RA and are stable for multiple cell passages. Persistent epigenetic alterations could contribute to the aggressive phenotype of RA synoviocytes and identify potential therapeutic targets that could modulate the pathogenic behavior.
Collapse
Affiliation(s)
- John W Whitaker
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | | | - David L Boyle
- Division of Rheumatology, Allergy and Immunology, UCSD School of Medicine, La Jolla, CA, USA
| | - Josh Hillman
- Division of Rheumatology, Allergy and Immunology, UCSD School of Medicine, La Jolla, CA, USA
| | | | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, UCSD School of Medicine, La Jolla, CA, USA
| |
Collapse
|
35
|
Graepel R, Leung G, Wang A, Villemaire M, Jirik FR, Sharkey KA, McDougall JJ, McKay DM. Murine autoimmune arthritis is exaggerated by infection with the rat tapeworm, Hymenolepis diminuta. Int J Parasitol 2013; 43:593-601. [PMID: 23583716 DOI: 10.1016/j.ijpara.2013.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 01/21/2023]
Abstract
Infection with helminth parasites triggers strong and stereotypic immune responses in humans and mice, which can protect against specific experimentally-induced autoimmune diseases. We have shown that infection with the rat tapeworm, Hymenolepis diminuta, confers a protective effect on FCA-induced joint inflammation. Here, we investigated the effect of a prophylactic infection with H. diminuta on the K/BxN-serum model of polyarthritis in BALB/c mice. Mice were infected with 10 cysticercoids of H. diminuta by oral gavage and 8 days later arthritis was induced by i.p. injection of K/BxN arthritogenic serum. Joint swelling and pain measurements were recorded throughout a 13 day time course. At necropsy, joints and blood serum were collected. K/BxN-treated mice developed joint inflammation in the front paws, hind paws and knees as shown by increased swelling, mechanical allodynia and myeloperoxidase activity. Mice infected with H. diminuta had more severe disease, with increased eosinophil peroxidase activity in their paws and greater inflammatory infiltrate and synovitis in the knee joints. Hymenolepis diminuta-infected mice displayed significant increases in serum levels of C5a and mast cell protease-1 compared with K/BxN-serum only treatment, the latter being indicative of mast cell activation. In contrast to the protective effect of infection with H. diminuta in FCA-induced monoarthritis, infection with this helminth exacerbated K/BxN serum-induced polyarthritis in BALB/c mice. This correlated with increases in C5a and mast cell activation: factors critical in the development of K/BxN-induced arthritis. Thus, while data accumulate from animal models showing that infection with helminth parasites may be beneficial for a variety of auto-inflammatory diseases, our findings demonstrate the potential for helminths to exacerbate disease. Hence care is needed when helminth therapy is translated into a clinical setting.
Collapse
Affiliation(s)
- Rabea Graepel
- Gastrointestinal Research Group, Department of Physiology & Pharmacology, The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ordoñez-Rueda D, Jönsson F, Mancardi DA, Zhao W, Malzac A, Liang Y, Bertosio E, Grenot P, Blanquet V, Sabrautzki S, de Angelis MH, Méresse S, Duprez E, Bruhns P, Malissen B, Malissen M. A hypomorphic mutation in the Gfi1 transcriptional repressor results in a novel form of neutropenia. Eur J Immunol 2013; 42:2395-408. [PMID: 22684987 DOI: 10.1002/eji.201242589] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using N-ethyl-N-nitrosourea-induced mutagenesis, we established a mouse model with a novel form of neutropenia resulting from a point mutation in the transcriptional repressor Growth Factor Independence 1 (Gfi1). These mice, called Genista, had normal viability and no weight loss, in contrast to mice expressing null alleles of the Gfi1 gene. Furthermore, the Genista mutation had a very limited impact on lymphopoiesis or on T- and B-cell function. Within the bone marrow (BM), the Genista mutation resulted in a slight increase of monopoiesis and in a block of terminal granulopoiesis. This block occurred just after the metamyelocytic stage and resulted in the generation of small numbers of atypical CD11b(+) Ly-6G(int) neutrophils, the nuclear morphology of which resembled that of mature WT neutrophils. Unexpectedly, once released from the BM, these atypical neutrophils contributed to induce mild forms of autoantibody-induced arthritis and of immune complex-mediated lung alveolitis. They additionally failed to provide resistance to acute bacterial infection. Our study demonstrates that a hypomorphic mutation in the Gfi1 transcriptional repressor results in a novel form of neutropenia characterized by a split pattern of functional responses, reflecting the distinct thresholds required for eliciting neutrophil-mediated inflammatory and anti-infectious responses.
Collapse
Affiliation(s)
- Diana Ordoñez-Rueda
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, UM2, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hardy RS, Hülso C, Liu Y, Gasparini SJ, Fong-Yee C, Tu J, Stoner S, Stewart PM, Raza K, Cooper MS, Seibel MJ, Zhou H. Characterisation of fibroblast-like synoviocytes from a murine model of joint inflammation. Arthritis Res Ther 2013; 15:R24. [PMID: 23363614 PMCID: PMC3672796 DOI: 10.1186/ar4158] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 01/24/2013] [Indexed: 02/06/2023] Open
Abstract
Introduction Fibroblast-like synoviocytes (FLS) play a central role in defining the stromal environment in inflammatory joint diseases. Despite a growing use of FLS isolated from murine inflammatory models, a detailed characterisation of these cells has not been performed. Methods In this study, FLS were isolated from inflamed joints of mice expressing both the T cell receptor transgene KRN and the MHC class II molecule Ag7 (K/BxN mice) and their purity in culture determined by immunofluorescence and real-time reverse transcription polymerase chain reaction (real-time RT-PCR). Basal expression of proinflammatory genes was determined by real-time RT-PCR. Secreted interleukin 6 (IL-6) was measured by enzyme-linked immunosorbent assay (ELISA), and its regulation by tumor necrosis factor-alpha (TNF-α and corticosterone (the major glucocorticoid in rodents) measured relative to other mesenchymal cell populations. Results Purity of FLS culture was identified by positive expression of fibronectin, prolyl 4-hydroxylase, cluster of differentiation 90.2 (CD90.2) and 248 (CD248) in greater than 98% of the population. Cultured FLS were able to migrate and invade through matrigel, a process enhanced in the presence of TNF-α. FLS isolated from K/BxN mice possessed significantly greater basal expression of the inflammatory markers IL-6, chemokine ligand 2 (CCL-2) and vascular cell adhesion molecule 1 (VCAM-1) when compared to FLS isolated from non-inflamed tissue (IL-6, 3.6 fold; CCL-2, 11.2 fold; VCAM-1, 9 fold; P < 0.05). This elevated expression was abrogated in the presence of corticosterone at 100 nmol/l. TNF-α significantly increased expression of all inflammatory markers to a much greater degree in K/BxN FLS relative to other mesenchymal cell lines (K/BxN; IL-6, 40.8 fold; CCL-2, 1343.2 fold; VCAM-1, 17.8 fold; ICAM-1, 13.8 fold; P < 0.05), with secreted IL-6 mirroring these results (K/BxN; con, 169 ± 29.7 versus TNF-α, 923 ± 378.8 pg/ml/1 × 105 cells; P < 0.05). Dose response experiments confirmed effective concentrations between 10 and 100 nmol/l for corticosterone and 1 and 10 ng/ml for TNF-α, whilst inflammatory gene expression in FLS was shown to be stable between passages four and seven. Conclusions This study has established a well characterised set of key inflammatory genes for in vitro FLS culture, isolated from K/BxN mice and non-inflamed wild-type controls. Their response to both pro- and anti-inflammatory signalling has been assessed and shown to strongly resemble that which is seen in human FLS culture. Additionally, this study provides guidelines for the effective characterisation, duration and treatment of murine FLS culture.
Collapse
|
38
|
Cheng T, Choi Y, Finkel TH, Tsao PY, Ji MQ, Eisenberg RA. Tumor necrosis factor receptor-associated factor 1 influences KRN/I-Ag7 mouse arthritis autoantibody production. J Clin Immunol 2013; 33:759-66. [PMID: 23354839 DOI: 10.1007/s10875-013-9866-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/09/2013] [Indexed: 01/13/2023]
Abstract
PURPOSE Recently, genomewide association analysis has revealed that the Tumor Necrosis Factor Receptor-associated factor 1-Complement 5 (TRAF1-C5) containing locus on chromosome 9 was associated with an increased risk for RA. Studies in model systems suggested that either gain- or loss-of-function TRAF1 mutations have immune effects that could plausibly lead to or exacerbate the arthritis phenotype. KRN/I-A(g7) (KxB/N) is a genetic mouse model of inflammatory arthritis. We aimed to assess the impact of TRAF1 deficiency on KRN/I-A(g7) mice. METHODS We have bred KRN/I-A(g7) mice onto a TRAF1-deficient background and followed cohorts for the spontaneous appearance of arthritis. We have also transferred KxB/N serum to B6.I-A(g7) TRAF1KO recipients. In addition, systemic autoimmunity was induced through cGVH by injecting bm12 splenocytes into TRAF1KO recipient mice. RESULTS TRAF1-deficient KRN/I-A(g7) mice spontaneously developed severe, progressive arthritis, comparable to that seen in TRAF1-intact KRN/I-A(g7) mice. However, the anti-GPI antibody titer was significantly lower in the former group. Interestingly, the TRAF1KO mice that had background levels of anti-GPI antibodies still showed severe arthritis, although with a brief delay compared to TRAF1 sufficient mice. In addition, TRAF1KO mice were fully susceptible to passive, serum transfer experiments. In another model of autoimmunity, TRAF1KO had no effect on cGVH autoantibodies production; nor was the response to an exogenous antigen impaired. CONCLUSION The pathogenesis of spontaneous KRN/I-A(g7) arthritis can largely proceed by TRAF1-independent pathways. The production of anti-GPI autoantibody, but not other autoantibody or antibody responses, was markedly impaired by TRAF1 deficiency. The spontaneous arthritis model in KRN mice appears to be much less antibody dependent than previously believed.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Rheumatology, First Affiliated Hospital of Soochow University, Soochow, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
B cells have been implicated both with pathogenic as well as protective capabilities in induction and regulation of autoimmune diseases. Rheumatoid arthritis (RA) is an autoimmune disease that occurs more often in women than men. A significant role of B cells as antibody producing and antigen-presenting cells has been demonstrated in RA. Predisposition to RA is associated with the presence of certain HLA class II alleles that share sequences with DRB1*0401. To determine the role of HLA genes and B cells in vivo, we have generated transgenic mice carrying HLA genes, DRB1*0401 and DQ8, known to be associated with susceptibility to RA. Humanized mice can be induced to develop arthritis that mimics human disease in clinical, histopathological and sex bias. Effect of hormones on immune cells and their function has been described in humans and mice and has been suggested to be the major reason for female bias of autoimmune diseases. An immune response to an antigen requires presentation by HLA molecules thus suggesting a critical role of MHC in combination with sex hormones in susceptibility to develop rheumatoid arthritis. Based on our observations, we hypothesize that modulation of B cells by estrogen, presentation of modified antigens by DR4 and production of antigen-specific B cell modulating cytokines leads to autoreactivity in females. These data suggest that considering patient's sex may be crucial in selecting the optimal treatment strategy. Humanized mice expressing RA susceptible and resistant haplotype provide a means to investigate mechanism sex-bias of arthritis and future strategies for therapy.
Collapse
Affiliation(s)
- David Luckey
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
40
|
Corr M, Lerman I, Keubel JM, Ronacher L, Misra R, Lund F, Sarelius IH, Glading AJ. Decreased Krev interaction-trapped 1 expression leads to increased vascular permeability and modifies inflammatory responses in vivo. Arterioscler Thromb Vasc Biol 2012; 32:2702-10. [PMID: 22922958 PMCID: PMC3475761 DOI: 10.1161/atvbaha.112.300115] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The regulation of vascular permeability, leukocyte trafficking, and the integrity of endothelial cell-cell contacts are closely linked by a complex mechanism of interregulation. Here, we investigate the role of Krev interaction-trapped 1 (KRIT1), an adherens junction accessory protein required for cell-cell junction stability, in regulating these vascular functions. METHODS AND RESULTS Krit1(+/-) mice exhibited an enhanced edematous response to the complex inflammatory stimuli found in the passive K/BxN model of inflammatory arthritis and the murine air pouch model, yet leukocyte infiltration was unchanged. Correspondingly, reduced KRIT1 expression increased baseline arteriole and venule permeability 2-fold over that of wild-type littermates, as measured by intravital microscopy of the intact cremaster muscle vascular network, but this increase was not accompanied by increased leukocyte extravasation or activation. Direct stimulation with tumor necrosis factor-α induced increased permeability in wild-type mice, but surprisingly no increase over baseline levels was observed in Krit1(+/-) mice, despite extensive leukocyte activation. Finally, adoptive transfer of Krit1(+/-) bone marrow failed to increase permeability in wild-type mice. However, reduced expression of KRIT1 in the hematopoietic lineage dampened the differences observed in baseline permeability. CONCLUSIONS Taken together, our data indicate an integral role for KRIT1 in microvessel homeostasis and the vascular response to inflammation.
Collapse
Affiliation(s)
- Maripat Corr
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Irina Lerman
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY
| | - Julia M. Keubel
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY
| | - Lisa Ronacher
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Ravi Misra
- Department of Medicine, Division of Allergy/Immunology and Rheumatology, University of Rochester, Rochester, NY
| | - Frances Lund
- Department of Medicine, Division of Allergy/Immunology and Rheumatology, University of Rochester, Rochester, NY
| | - Ingrid H. Sarelius
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY
| | - Angela J. Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY
| |
Collapse
|
41
|
Zhou HF, Yan H, Senpan A, Wickline SA, Pan D, Lanza GM, Pham CTN. Suppression of inflammation in a mouse model of rheumatoid arthritis using targeted lipase-labile fumagillin prodrug nanoparticles. Biomaterials 2012; 33:8632-40. [PMID: 22922023 DOI: 10.1016/j.biomaterials.2012.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/01/2012] [Indexed: 12/22/2022]
Abstract
Nanoparticle-based therapeutics are emerging technologies that have the potential to greatly impact the treatment of many human diseases. However, drug instability and premature release from the nanoparticles during circulation currently preclude clinical translation. Herein, we use a lipase-labile (Sn 2) fumagillin prodrug platform coupled with a unique lipid surface-to-surface targeted delivery mechanism, termed contact-facilitated drug delivery, to counter the premature drug release and overcome the inherent photo-instability of fumagillin, an established anti-angiogenic agent. We show that α(v)β(3)-integrin targeted fumagillin prodrug nanoparticles, administered at 0.3 mg of fumagillin prodrug/kg of body weight suppress the clinical disease indices of KRN serum-mediated arthritis in a dose-dependent manner when compared to treatment with the control nanoparticles with no drug. This study demonstrates the effectiveness of this lipase-labile prodrug nanocarrier in a relevant preclinical model that approximates human rheumatoid arthritis. The lipase-labile prodrug paradigm offers a translatable approach that is broadly applicable to many targeted nanosystems and increases the translational potential of this platform for many diseases.
Collapse
Affiliation(s)
- Hui-Fang Zhou
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8045, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
AbstractPlatelets survey blood vessels, searching for endothelial damage and preventing loss of vascular integrity. However, there are circumstances where vascular permeability increases, suggesting that platelets sometimes fail to fulfill their expected function. Human inflammatory arthritis is associated with tissue edema attributed to enhanced permeability of the synovial microvasculature. Murine studies have suggested that such vascular leak facilitates entry of autoantibodies and may thereby promote joint inflammation. Whereas platelets typically help to promote microvascular integrity, we examined the role of platelets in synovial vascular permeability in murine experimental arthritis. Using an in vivo model of autoimmune arthritis, we confirmed the presence of endothelial gaps in inflamed synovium. Surprisingly, permeability in the inflamed joints was abrogated if the platelets were absent. This effect was mediated by platelet serotonin accumulated via the serotonin transporter and could be antagonized using serotonin-specific reuptake inhibitor antidepressants. As opposed to the conventional role of platelets to microvascular leakage, this demonstration that platelets are capable of amplifying and maintaining permeability adds to the rapidly growing list of unexpected functions for platelets.
Collapse
|
43
|
|
44
|
Myeloid skewing in murine autoimmune arthritis occurs in hematopoietic stem and primitive progenitor cells. Blood 2012; 120:2203-13. [PMID: 22855602 DOI: 10.1182/blood-2011-11-391342] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Skewing toward myeloid cell production is often observed in chronic inflammation and autoimmune diseases. Herein, we determined whether persistent myeloid activation and proinflammatory output occurring in pathologic conditions is at the level of hematopoietic stem and primitive progenitor cells (HSPPCs). By using a mouse arthritis model, we found that even though HSPPCs in arthritis still retained the capacity to differentiate into different lineages, they acquired enhanced in vitro and in vivo propensity in a disease-dependent manner to generate myeloid cells, the key perpetrators of tissue damage in arthritis. This myeloid skewing was cell intrinsic, as arthritic HSPPCs up-regulate myeloid-specific transcripts including S100a8. Exogenous S100a8 promoted myeloid cell output from wild-type HSPPCs, suggesting mechanistic involvement of this gene in the myeloid priming that occurs in arthritic HSPPCs. Therefore, our results indicate that in arthritic mice, HSPPCs adopt a pathologic state that favors disease persistence.
Collapse
|
45
|
Rose S, Eren M, Murphy S, Zhang H, Thaxton CS, Chowaniec J, Waters EA, Meade TJ, Vaughan DE, Perlman H. A novel mouse model that develops spontaneous arthritis and is predisposed towards atherosclerosis. Ann Rheum Dis 2012; 72:89-95. [PMID: 22736097 PMCID: PMC3551222 DOI: 10.1136/annrheumdis-2012-201431] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objectives Patients with rheumatoid arthritis (RA) have a reduced life expectancy due to increased cardiovascular disease. The lack of a suitable animal model resembling both RA and atherosclerosis has hindered studies demonstrating a direct link between systemic inflammation in RA and the development of atherosclerosis. Our objective was to overcome this barrier by generating an animal model (K/BxAg7) that spontaneously develops both RA-like disease and atherosclerosis. Methods Arthritis severity was evaluated using clinical indices and immunohistochemical staining of ankle joint specimens. Aortic atherosclerosis was delineated via Sudan IV staining and immunohistochemical analysis. Serum cholesterol and lipoprotein levels were measured using enzymatic assays. Serum levels of cytokines, chemokines and adipokines were determined by Luminex assays. Results K/BxAg7 mice developed a destructive arthropathy followed by prominent aortic atherosclerosis. These animals also displayed dyslipidaemia, characterised by reduced serum levels of total cholesterol and high-density lipoprotein, and increased low-density lipoprotein (LDL)/vLDL compared with control mice. Further, there were higher levels of circulating inflammatory mediators, such as interleukin-6, sRANKL and CCL5 in atherosclerotic K/BxAg7 mice compared with controls. Treatment with etanercept reduced arthritis and atherosclerosis development in K/BxAg7 mice. Conclusions K/BxAg7 mice recapitulate the same sequence of events occurring in patients with RA, namely an erosive, inflammatory arthritis followed by atherosclerosis. These data suggest that the K/BxAg7 mouse is a novel system for investigating the interplay between systemic inflammation occurring in RA and the development of atherosclerosis.
Collapse
Affiliation(s)
- Shawn Rose
- Department of Medicine, Northwestern UniversityFeinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Qi X, Flick MJ, Frederick M, Chu Z, Mason R, DeLay M, Thornton S. Saposin C coupled lipid nanovesicles specifically target arthritic mouse joints for optical imaging of disease severity. PLoS One 2012; 7:e33966. [PMID: 22470501 PMCID: PMC3314692 DOI: 10.1371/journal.pone.0033966] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/22/2012] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis is a chronic inflammatory disease affecting approximately 1% of the population and is characterized by cartilage and bone destruction ultimately leading to loss of joint function. Early detection and intervention of disease provides the best hope for successful treatment and preservation of joint mobility and function. Reliable and non-invasive techniques that accurately measure arthritic disease onset and progression are lacking. We recently developed a novel agent, SapC-DOPS, which is composed of the membrane-associated lysosomal protein saposin C (SapC) incorporated into 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) lipid nanovesicles. SapC-DOPS has a high fusogenic affinity for phosphatidylserine-enriched microdomains on surfaces of target cell membranes. Incorporation of a far-red fluorophore, CellVue Maroon (CVM), into the nanovesicles allows for in vivo non-invasive visualization of the agent in targeted tissue. Given that phosphatidylserine is present only on the inner leaflet of healthy plasma membranes but is “flipped” to the outer leaflet upon cell damage, we hypothesized that SapC-DOPS would target tissue damage associated with inflammatory arthritis due to local surface-exposure of phosphatidylserine. Optical imaging with SapC-DOPS-CVM in two distinct models of arthritis, serum-transfer arthritis (e.g., K/BxN) and collagen-induced arthritis (CIA) revealed robust SapC-DOPS-CVM specific localization to arthritic paws and joints in live animals. Importantly, intensity of localized fluorescent signal correlated with macroscopic arthritic disease severity and increased with disease progression. Flow cytometry of cells extracted from arthritic joints demonstrated that SapC-DOPS-CVM localized to an average of 7–8% of total joint cells and primarily to CD11b+Gr-1+ cells. Results from the current studies strongly support the application of SapC-DOPS-CVM for advanced clinical and research applications including: detecting early arthritis onset, assessing disease progression real-time in live subjects, and providing novel information regarding cell types that may mediate arthritis progression within joints.
Collapse
Affiliation(s)
- Xiaoyang Qi
- Division of Hematology-Oncology, Departments of Internal Medicine and Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Human Genetics, Departments of Internal Medicine and Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Matthew J. Flick
- Division of Experimental Hematology, Departments of Internal Medicine and Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Malinda Frederick
- Division of Rheumatology, Departments of Internal Medicine and Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Zhengtao Chu
- Division of Hematology-Oncology, Departments of Internal Medicine and Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Human Genetics, Departments of Internal Medicine and Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rachel Mason
- Division of Rheumatology, Departments of Internal Medicine and Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Monica DeLay
- Division of Rheumatology, Departments of Internal Medicine and Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sherry Thornton
- Division of Rheumatology, Departments of Internal Medicine and Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
47
|
Abstract
metaXCMS is a software program for the analysis of liquid chromatography/mass spectrometry-based untargeted metabolomic data. It is designed to identify the differences between metabolic profiles across multiple sample groups (e.g., 'healthy' versus 'active disease' versus 'inactive disease'). Although performing pairwise comparisons alone can provide physiologically relevant data, these experiments often result in hundreds of differences, and comparison with additional biologically meaningful sample groups can allow for substantial data reduction. By performing second-order (meta-) analysis, metaXCMS facilitates the prioritization of interesting metabolite features from large untargeted metabolomic data sets before the rate-limiting step of structural identification. Here we provide a detailed step-by-step protocol for going from raw mass spectrometry data to metaXCMS results, visualized as Venn diagrams and exported Microsoft Excel spreadsheets. There is no upper limit to the number of sample groups or individual samples that can be compared with the software, and data from most commercial mass spectrometers are supported. The speed of the analysis depends on computational resources and data volume, but will generally be less than 1 d for most users. metaXCMS is freely available at http://metlin.scripps.edu/metaxcms/.
Collapse
|
48
|
Kim HO, Lee SI. Experimental Animal Models for Rheumatoid Arthritis: Methods and Applications. JOURNAL OF RHEUMATIC DISEASES 2012. [DOI: 10.4078/jrd.2012.19.4.189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hyun-Ok Kim
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Sang-Il Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| |
Collapse
|
49
|
Sweeney SE, Corr M, Kimbler TB. Role of interferon regulatory factor 7 in serum-transfer arthritis: regulation of interferon-β production. ACTA ACUST UNITED AC 2011; 64:1046-56. [PMID: 22076939 DOI: 10.1002/art.33454] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Innate immune responses activate synoviocytes and recruit inflammatory cells into the rheumatoid joint. Type I interferons (IFNs) play a role in autoimmunity, and IFN gene transcription is activated by IFN-regulatory factors (IRFs) in response to innate sensor recognition. The purpose of this study was to examine the effect of genetic deficiency of IRF-7 in a passive K/BxN serum-transfer model of arthritis. METHODS Passive-transfer arthritis was induced in IRF-7(-/-) mice, and additional groups were treated with IFNβ or poly(I-C). Clinical arthritis scoring, histologic assessment, micro-computed tomography, and synovial tissue quantitative polymerase chain reaction analysis were performed. Mouse serum was analyzed by enzyme-linked immunosorbent assay (ELISA). RESULTS In the passive K/BxN serum-transfer model, arthritis severity was significantly increased in IRF-7(-/-) mice compared with wild-type (WT) mice. In addition, expression of IFNβ in synovium and serum was decreased, potentially contributing to increased arthritis. IRF-7(-/-) mice injected with replacement IFNβ had a decrease in arthritis. Poly(I-C) treatment diminished arthritis in IRF-7(-/-) mice, restored synovial IFNβ gene expression, and increased serum levels of IFNβ. In vitro studies demonstrated that poly(I-C) stimulation of fibroblast-like synoviocytes (FLS) from IRF-7(-/-) mice resulted in increased induction of proinflammatory gene expression as compared with FLS from WT mice; however, IFNβ expression was not significantly different. In contrast, peritoneal macrophages from IRF-7(-/-) mice showed significantly less induction of IFNβ in response to poly(I-C) stimulation. CONCLUSION IRF-7 deficiency exacerbates arthritis and replacement treatment with IFNβ or poly(I-C) decreases arthritis severity. Both macrophage- and synoviocyte-specific roles of IRF-7 likely contribute to the increased arthritis. IRF-7 might play an antiinflammatory role in passive-transfer arthritis through regulation of macrophage IFNβ production.
Collapse
Affiliation(s)
- Susan E Sweeney
- University of California San Diego, La Jolla, CA 92093-0663, USA.
| | | | | |
Collapse
|
50
|
Otvos L, Shao WH, Vanniasinghe AS, Amon MA, Holub MC, Kovalszky I, Wade JD, Doll M, Cohen PL, Manolios N, Surmacz E. Toward understanding the role of leptin and leptin receptor antagonism in preclinical models of rheumatoid arthritis. Peptides 2011; 32:1567-74. [PMID: 21723351 DOI: 10.1016/j.peptides.2011.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 01/20/2023]
Abstract
A potential link between obesity, circulating leptin levels and autoimmune disease symptoms suggests that targeting the leptin receptor (ObR) might be a viable novel strategy to combat rheumatoid arthritis (RA). However, studies in animal models and evaluation of clinical cases did not provide clear view on leptin's involvement in RA. To validate ObR as RA target, we used our peptide-based ObR agonists and antagonist in different in vitro and in vivo models of the disease. In human peripheral blood mononuclear cells, leptin and its agonist fragment, desI(2)-E1/Aca, moderately induced constitutive activation of a major proinflammatory transcription factor, NF-κB, while the ObR antagonist peptide Allo-aca inhibited the process. Leptin administration itself did not induce arthritis in rats, but worsened the clinical condition of mice given K/BxN serum transfer arthritis. Simultaneous administration of Allo-aca reduced leptin-dependent increase in disease severity by more than 50%, but the antagonist was ineffective when injected with a 3-day delay. In rats inflicted with mild adjuvant-induced arthritis, both leptin and Allo-aca reduced the extent of joint swelling and the number of arthritic joints. In a more aggressive disease stage, Allo-aca decreased the number of arthritic joints in a dose-dependent manner but did not affect other arthritis markers. In summary, leptin exerts diverse effects on RA depending on the experimental model. This might reflect the heterogeneous character of RA, which is differently impacted by leptin and is unmasked by ObR antagonism. Nevertheless, the results suggest that ObR antagonists might become useful therapeutics in leptin-sensitive early stages of RA.
Collapse
Affiliation(s)
- Laszlo Otvos
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|