1
|
Al Beloushi M, Saleh H, Ahmed B, Konje JC. Congenital and Perinatal Viral Infections: Consequences for the Mother and Fetus. Viruses 2024; 16:1698. [PMID: 39599813 PMCID: PMC11599085 DOI: 10.3390/v16111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Viruses are the most common congenital infections in humans and an important cause of foetal malformations, neonatal morbidity, and mortality. The effects of these infections, which are transmitted in utero (transplacentally), during childbirth or in the puerperium depend on the timing of the infections. These vary from miscarriages (usually with infections in very early pregnancy), congenital malformations (when the infections occur during organogenesis) and morbidity (with infections occurring late in pregnancy, during childbirth or after delivery). The most common of these viruses are cytomegalovirus, hepatitis, herpes simplex type-2, parvovirus B19, rubella, varicella zoster and zika viruses. There are currently very few efficacious antiviral agents licensed for use in pregnancy. For most of these infections, therefore, prevention is mainly by vaccination (where there is a vaccine). The administration of immunoglobulins to those exposed to the virus to offer passive immunity or appropriate measures to avoid being infected would be options to minimise the infections and their consequences. In this review, we discuss some of the congenital and perinatal infections and their consequences on both the mother and fetus and their management focusing mainly on prevention.
Collapse
Affiliation(s)
- Mariam Al Beloushi
- Women’s Wellness and Research Centre Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (M.A.B.); (H.S.)
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Huda Saleh
- Women’s Wellness and Research Centre Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (M.A.B.); (H.S.)
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Badreldeen Ahmed
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar;
- Feto Maternal Centre, Al Markhiya Doha, Doha P.O. Box 34181, Qatar
- Department of Obstetrics and Gynaecology Weill Cornell Medicine, Doha P.O. Box 24144, Qatar
| | - Justin C. Konje
- Feto Maternal Centre, Al Markhiya Doha, Doha P.O. Box 34181, Qatar
- Department of Obstetrics and Gynaecology Weill Cornell Medicine, Doha P.O. Box 24144, Qatar
- Department of Health Sciences, University of Leicester, P.O. Box 7717, Leicester LE2 7LX, UK
| |
Collapse
|
2
|
Pesch MH, Mowers J, Huynh A, Schleiss MR. Intrauterine Fetal Demise, Spontaneous Abortion and Congenital Cytomegalovirus: A Systematic Review of the Incidence and Histopathologic Features. Viruses 2024; 16:1552. [PMID: 39459885 PMCID: PMC11512218 DOI: 10.3390/v16101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The objective was to review the existing literature reporting on spontaneous abortion (SA) and intrauterine fetal demise (IUFD) associated with cytomegalovirus (CMV) infection. A review using standardized terminology such as 'intrauterine fetal death', 'congenital cytomegalovirus' and 'CMV' was performed using PubMed and Embase (Medline) using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. Twenty-one studies met inclusion criteria. CMV was identified as a potential or likely factor in a median of 7.1% of SA or IUFD in study cohorts. Of the studies, 11 used fetal remains, 18 used placenta, 6 used serum, and 1 used post-mortem dried blood spot as specimens for testing for CMV. Features commonly observed were fetal thrombotic vasculopathy, hydrops fetalis and chronic villitis. CMV is frequently noted in studies evaluating viral etiologies of SA or IUFD. Large population-based studies are needed to estimate the incidence of CMV-associated SA or IUFD. CMV and congenital CMV should be included on the differential diagnosis in all cases of SA or IUFD of unknown etiology.
Collapse
Affiliation(s)
- Megan H. Pesch
- Division of Developmental and Behavioral Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jonathan Mowers
- Division of Pathology, Ascension Hospital Providence, Southfield, MI 48075, USA;
| | - Anh Huynh
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Mark R. Schleiss
- Division of Pediatric Infectious Diseases, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
3
|
Fajar S, Dwi SP, Nur IS, Wahyu AP, Sukamto S M, Winda AR, Nastiti W, Andri F, Firzan N. Zebrafish as a model organism for virus disease research: Current status and future directions. Heliyon 2024; 10:e33865. [PMID: 39071624 PMCID: PMC11282986 DOI: 10.1016/j.heliyon.2024.e33865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Zebrafish (Danio rerio) have emerged as valuable models for investigating viral infections, providing insights into viral pathogenesis, host responses, and potential therapeutic interventions. This review offers a comprehensive synthesis of research on viral infections using zebrafish models, focusing on the molecular mechanisms of viral action and host-virus interactions. Zebrafish models have been instrumental in elucidating the replication dynamics, tissue tropism, and immune evasion strategies of various viruses, including Chikungunya virus, Dengue virus, Herpes Simplex Virus type 1, and Influenza A virus. Additionally, studies utilizing zebrafish have evaluated the efficacy of antiviral compounds and natural agents against emerging viruses such as SARS-CoV-2, Zika virus, and Dengue virus. The optical transparency and genetic tractability of zebrafish embryos enable real-time visualization of viral infections, facilitating the study of viral spread and immune responses. Despite challenges such as temperature compatibility and differences in host receptors, zebrafish models offer unique advantages, including cost-effectiveness, high-throughput screening capabilities, and conservation of key immune pathways. Importantly, zebrafish models complement existing animal models, providing a platform for rapid evaluation of potential therapeutics and a deeper understanding of viral pathogenesis. This review underscores the significance of zebrafish research in advancing our understanding of viral diseases and highlights future research directions to combat infectious diseases effectively.
Collapse
Affiliation(s)
- Sofyantoro Fajar
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Sendi Priyono Dwi
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | | | | | - Mamada Sukamto S
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | | | - Wijayanti Nastiti
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Frediansyah Andri
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Nainu Firzan
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| |
Collapse
|
4
|
Alfi O, Cohen M, Bar-On S, Hashimshony T, Levitt L, Raz Y, Blecher Y, Chaudhry MZ, Cicin-Sain L, Ben-El R, Oiknine-Djian E, Lahav T, Vorontsov O, Cohen A, Zakay-Rones Z, Daniel L, Berger M, Mandel-Gutfreund Y, Panet A, Wolf DG. Decidual-tissue-resident memory T cells protect against nonprimary human cytomegalovirus infection at the maternal-fetal interface. Cell Rep 2024; 43:113698. [PMID: 38265934 DOI: 10.1016/j.celrep.2024.113698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/14/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
Congenital cytomegalovirus (cCMV) is the most common intrauterine infection, leading to infant neurodevelopmental disabilities. An improved knowledge of correlates of protection against cCMV is needed to guide prevention strategies. Here, we employ an ex vivo model of human CMV (HCMV) infection in decidual tissues of women with and without preconception immunity against CMV, recapitulating nonprimary vs. primary infection at the authentic maternofetal transmission site. We show that decidual tissues of women with preconception immunity against CMV exhibit intrinsic resistance to HCMV, mounting a rapid activation of tissue-resident memory CD8+ and CD4+ T cells upon HCMV reinfection. We further reveal the role of HCMV-specific decidual-tissue-resident CD8+ T cells in local protection against nonprimary HCMV infection. The findings could inform the development of a vaccine against cCMV and provide insights for further studies of the integrity of immune defense against HCMV and other pathogens at the human maternal-fetal interface.
Collapse
Affiliation(s)
- Or Alfi
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Biochemistry, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Mevaseret Cohen
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Biochemistry, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Shikma Bar-On
- Lis Maternity Hospital, Tel Aviv Souraski Medical Center, Tel Aviv, Israel; Affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Hashimshony
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lorinne Levitt
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Raz
- Lis Maternity Hospital, Tel Aviv Souraski Medical Center, Tel Aviv, Israel; Affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yair Blecher
- Lis Maternity Hospital, Tel Aviv Souraski Medical Center, Tel Aviv, Israel; Affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Zeeshan Chaudhry
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany; Centre for Individualised Infection Medicine (a joint venture of HZI and MHH), Hannover, Germany
| | - Rina Ben-El
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Tamar Lahav
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Olesya Vorontsov
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Biochemistry, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Adiel Cohen
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zichria Zakay-Rones
- Department of Biochemistry, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Leonor Daniel
- Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Michael Berger
- Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | | - Amos Panet
- Department of Biochemistry, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
5
|
Otero CE, Barfield R, Scheef E, Nelson CS, Rodgers N, Wang HY, Moström MJ, Manuel TD, Sass J, Schmidt K, Taher H, Papen C, Sprehe L, Kendall S, Davalos A, Barry PA, Früh K, Pollara J, Malouli D, Chan C, Kaur A, Permar SR. Relationship of maternal cytomegalovirus-specific antibody responses and viral load to vertical transmission risk following primary maternal infection in a rhesus macaque model. PLoS Pathog 2023; 19:e1011378. [PMID: 37871009 PMCID: PMC10621917 DOI: 10.1371/journal.ppat.1011378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/02/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023] Open
Abstract
Cytomegalovirus (CMV) is the most common congenital infection and cause of birth defects worldwide. Primary CMV infection during pregnancy leads to a higher frequency of congenital CMV (cCMV) than maternal re-infection, suggesting that maternal immunity confers partial protection. However, poorly understood immune correlates of protection against placental transmission contributes to the current lack of an approved vaccine to prevent cCMV. In this study, we characterized the kinetics of maternal plasma rhesus CMV (RhCMV) viral load (VL) and RhCMV-specific antibody binding and functional responses in a group of 12 immunocompetent dams with acute, primary RhCMV infection. We defined cCMV transmission as RhCMV detection in amniotic fluid (AF) by qPCR. We then leveraged a large group of past and current primary RhCMV infection studies in late-first/early-second trimester RhCMV-seronegative rhesus macaque dams, including immunocompetent (n = 15), CD4+ T cell-depleted with (n = 6) and without (n = 6) RhCMV-specific polyclonal IgG infusion before infection to evaluate differences between RhCMV AF-positive and AF-negative dams. During the first 3 weeks after infection, the magnitude of RhCMV VL in maternal plasma was higher in AF-positive dams in the combined cohort, while RhCMV glycoprotein B (gB)- and pentamer-specific binding IgG responses were lower magnitude compared to AF-negative dams. However, these observed differences were driven by the CD4+ T cell-depleted dams, as there were no differences in plasma VL or antibody responses between immunocompetent AF-positive vs AF-negative dams. Overall, these results suggest that levels of neither maternal plasma viremia nor humoral responses are associated with cCMV following primary maternal infection in healthy individuals. We speculate that other factors related to innate immunity are more important in this context as antibody responses to acute infection likely develop too late to influence vertical transmission. Yet, pre-existing CMV glycoprotein-specific and neutralizing IgG may provide protection against cCMV following primary maternal CMV infection even in high-risk, immunocompromised settings.
Collapse
Affiliation(s)
- Claire E. Otero
- Department of Pathology, Duke University, Durham, North Carolina, United States of America
- Department of Pediatrics, Weill Cornell Medical College, New York, New York, United States of America
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Elizabeth Scheef
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Cody S. Nelson
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Nicole Rodgers
- Duke Human Vaccine Institute & Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medical College, New York, New York, United States of America
- Department of Immunology, Duke University, Durham, North Carolina, United States of America
| | - Matilda J. Moström
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Tabitha D. Manuel
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Julian Sass
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kimberli Schmidt
- Center for Immunology and Infectious Diseases, University of California, Davis, California, United States of America
| | - Husam Taher
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Courtney Papen
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Lesli Sprehe
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Savannah Kendall
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Angel Davalos
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Peter A. Barry
- Center for Immunology and Infectious Diseases, University of California, Davis, California, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Justin Pollara
- Duke Human Vaccine Institute & Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Amitinder Kaur
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
6
|
Andouard D, Tilloy V, Ribot E, Mayeras M, Diaz-Gonzalez D, El Hamel C, Piras-Douce F, Mantel N, Alain S. Genetic and Functional Characterization of Congenital HCMV Clinical Strains in Ex Vivo First Trimester Placental Model. Pathogens 2023; 12:985. [PMID: 37623946 PMCID: PMC10460061 DOI: 10.3390/pathogens12080985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection, leading to a variety of symptoms in the unborn child that range from asymptomatic to death in utero. Our objective was to better understand the mechanisms of placental infection by HCMV clinical strains, particularly during the first trimester of pregnancy. We thus characterized and compared the replication kinetics of various HCMV clinical strains and laboratory strains by measuring viral loads in an ex vivo model of first trimester villi and decidua, and used NGS and PCA analysis to analyze the genes involved in cell tropism and virulence factors. We observed that first trimester villi and decidua are similarly permissive to laboratory and symptomatic strains, and that asymptomatic strains poorly replicate in decidua tissue. PCA analysis allowed us to segregate our clinical strains based on their clinical characteristics, suggesting a link between gene mutations and symptoms. All these results bring forth elements that can help better understand the mechanisms that induce the appearance of symptoms or in the congenitally infected newborn.
Collapse
Affiliation(s)
- Deborah Andouard
- Bacteriology-Virology-Hygien Department, National Reference Center for Herpesviruses, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France; (V.T.); (E.R.); (M.M.)
- RESINFIT—Antimicrobials: Molecular Supports of Resistances and Therapeutic Innovations, UMR Inserm 1092, University of Limoges, 87000 Limoges, France;
- Sanofi Vaccines R&D, 69280 Marcy-l’étoile, France; (F.P.-D.); (N.M.)
| | - Valentin Tilloy
- Bacteriology-Virology-Hygien Department, National Reference Center for Herpesviruses, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France; (V.T.); (E.R.); (M.M.)
- UF9481 Bioinformatics Department, CHU Dupuytren, 87000 Limoges, France
| | - Elodie Ribot
- Bacteriology-Virology-Hygien Department, National Reference Center for Herpesviruses, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France; (V.T.); (E.R.); (M.M.)
| | - Melissa Mayeras
- Bacteriology-Virology-Hygien Department, National Reference Center for Herpesviruses, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France; (V.T.); (E.R.); (M.M.)
| | - Daniel Diaz-Gonzalez
- RESINFIT—Antimicrobials: Molecular Supports of Resistances and Therapeutic Innovations, UMR Inserm 1092, University of Limoges, 87000 Limoges, France;
- UF8843 Medical Genomics Department, CHU Dupuytren, 87000 Limoges, France
| | - Chahrazed El Hamel
- Pediatric Department, Mother and Child Biobank (CB-HME), Hôpital de la Mère et de l’enfant, CHU Limoges, 87000 Limoges, France;
| | | | - Nathalie Mantel
- Sanofi Vaccines R&D, 69280 Marcy-l’étoile, France; (F.P.-D.); (N.M.)
| | - Sophie Alain
- Bacteriology-Virology-Hygien Department, National Reference Center for Herpesviruses, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France; (V.T.); (E.R.); (M.M.)
- RESINFIT—Antimicrobials: Molecular Supports of Resistances and Therapeutic Innovations, UMR Inserm 1092, University of Limoges, 87000 Limoges, France;
- UF8843 Medical Genomics Department, CHU Dupuytren, 87000 Limoges, France
| |
Collapse
|
7
|
Shi X, Liu X, Sun Y. The Pathogenesis of Cytomegalovirus and Other Viruses Associated with Hearing Loss: Recent Updates. Viruses 2023; 15:1385. [PMID: 37376684 DOI: 10.3390/v15061385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Virus infection is one of the most common etiologies of hearing loss. Hearing loss associated with viral infection can be unilateral or bilateral, mild or severe, sudden or progressive, and permanent or recoverable. Many viruses cause hearing loss in adults and children; however, the pathogenesis of hearing loss caused by viral infection is not fully understood. This review describes cytomegalovirus, the most common virus causing hearing loss, and other reported hearing loss-related viruses. We hope to provide a detailed description of pathogenic characteristics and research progress on pathology, hearing phenotypes, possible associated mechanisms, treatment, and prevention measures. This review aims to provide diagnostic and treatment assistance to clinical workers.
Collapse
Affiliation(s)
- Xinyu Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
8
|
Ben Shoham A, Schlesinger Y, Miskin I, Kalderon Z, Michaelson-Cohen R, Wiener-Well Y. Cytomegalovirus (CMV) seroprevalence among women at childbearing age, maternal and congenital CMV infection: policy implications of a descriptive, retrospective, community-based study. Isr J Health Policy Res 2023; 12:16. [PMID: 37098565 PMCID: PMC10131385 DOI: 10.1186/s13584-023-00566-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/20/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Maternal CMV infection during pregnancy, either primary or non-primary, may be associated with fetal infection and long-term sequelae. While guidelines recommend against it, screening for CMV in pregnant women is a prevalent clinical practice in Israel. Our aim is to provide updated, local, clinically relevant, epidemiological information about CMV seroprevalence among women at childbearing age, the incidence of maternal CMV infection during pregnancy and the prevalence of congenital CMV (cCMV), as well as to provide information about the yield of CMV serology testing. METHODS We performed a descriptive, retrospective study of women at childbearing age who were members of Clalit Health Services in the district of Jerusalem and had at least one gestation during the study period (2013-2019). We utilized serial serology tests to determine CMV serostatus at baseline and at pre/periconception and identified temporal changes in CMV serostatus. We then conducted a sub-sample analysis integrating inpatient data on newborns of women who gave birth in a single large medical center. cCMV was defined as either positive urine CMV-PCR test in a sample collected during the first 3 weeks of life, neonatal diagnosis of cCMV in the medical records, or prescription of valganciclovir during the neonatal period. RESULTS The study population Included 45,634 women with 84,110 associated gestational events. Initial CMV serostatus was positive in 89% women, with variation across different ethno-socioeconomic subgroups. Based on consecutive serology tests, the detected incidence rate of CMV infection was 2/1000 women follow-up years, among initially seropositive women, and 80/1000 women follow-up years, among initially seronegative women. CMV infection in pregnancy was identified among 0.2% of women who were seropositive at pre/periconception and among 10% of women who were seronegative. In a subsample, which included 31,191 associated gestational events, we identified 54 newborns with cCMV (1.9/1000 live births). The prevalence of cCMV among newborns of women who were seropositive at pre/periconception was lower than among newborns of women who were seronegative (2.1 vs. 7.1/1000). Frequent serology tests among women who were seronegative at pre/periconception detected most primary CMV infections in pregnancy that resulted in cCMV (21/24). However, among women who were seropositive, serology tests prior to birth detected none of the non-primary infections that resulted in cCMV (0/30). CONCLUSIONS In this retrospective community-based study among women of childbearing age characterized by multiparity and high seroprevalence of CMV, we find that consecutive CMV serology testing enabled to detect most primary CMV infections in pregnancy that led to cCMV in newborns but failed to detect non-primary CMV infections in pregnancy. Conducting CMV serology tests among seropositive women, despite guidelines' recommendations, has no clinical value, while it is costly and introduces further uncertainties and distress. We thus recommend against routine CMV serology testing among women who were seropositive in a prior serology test. We recommend CMV serology testing prior to pregnancy only among women known to be seronegative or women whose serology status is unknown.
Collapse
Affiliation(s)
- Assaf Ben Shoham
- Clalit Health Services, Yehuda Burla 26/28, 9371426, Jerusalem, Israel.
| | - Yechiel Schlesinger
- Wilf Children's Hospital, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ian Miskin
- Clalit Health Services, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ziva Kalderon
- Clalit Health Services, Yehuda Burla 26/28, 9371426, Jerusalem, Israel
| | - Rachel Michaelson-Cohen
- Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonit Wiener-Well
- Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Otero CE, Barfield R, Scheef E, Nelson CS, Rodgers N, Wang HY, Moström MJ, Manuel TD, Sass J, Schmidt K, Taher H, Papen C, Sprehe L, Kendall S, Davalos A, Barry PA, Früh K, Pollara J, Malouli D, Chan C, Kaur A, Permar SR. Relationship of maternal cytomegalovirus-specific antibody responses and viral load to vertical transmission risk following primary maternal infection in a rhesus macaque model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537769. [PMID: 37131785 PMCID: PMC10153280 DOI: 10.1101/2023.04.21.537769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cytomegalovirus (CMV) is the most common congenital infection and cause of birth defects worldwide. Primary CMV infection during pregnancy leads to a higher frequency of congenital CMV (cCMV) than maternal re-infection, suggesting that maternal immunity confers partial protection. However, poorly understood immune correlates of protection against placental transmission contributes to the current lack of an approved vaccine to prevent cCMV. In this study, we characterized the kinetics of maternal plasma rhesus CMV (RhCMV) viral load (VL) and RhCMV-specific antibody binding and functional responses in a group of 12 immunocompetent dams with acute, primary RhCMV infection. We defined cCMV transmission as RhCMV detection in amniotic fluid (AF) by qPCR. We then leveraged a large group of past and current primary RhCMV infection studies in late-first/early-second trimester RhCMV-seronegative rhesus macaque dams, including immunocompetent (n=15), CD4+ T cell-depleted with (n=6) and without (n=6) RhCMV-specific polyclonal IgG infusion before infection to evaluate differences between RhCMV AF-positive and AF-negative dams. During the first 3 weeks after infection, the magnitude of RhCMV VL in maternal plasma was higher in AF-positive dams in the combined cohort, while RhCMV glycoprotein B (gB)- and pentamer-specific binding IgG responses were lower magnitude compared to AF-negative dams. However, these observed differences were driven by the CD4+ T cell-depleted dams, as there were no differences in plasma VL or antibody responses between immunocompetent AF-positive vs AF-negative dams. Overall, these results suggest that levels of neither maternal plasma viremia nor humoral responses are associated with cCMV following primary maternal infection in healthy individuals. We speculate that other factors related to innate immunity are more important in this context as antibody responses to acute infection likely develop too late to influence vertical transmission. Yet, pre-existing CMV glycoprotein-specific and neutralizing IgG may provide protection against cCMV following primary maternal CMV infection even in high-risk, immunocompromised settings.
Collapse
Affiliation(s)
- Claire E Otero
- Department of Pathology, Duke University, Durham, NC
- Department of Pediatrics, Weill Cornell Medical College, New York, NY
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC
| | | | - Cody S Nelson
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Nicole Rodgers
- Duke Human Vaccine Institute & Department of Surgery, Duke University, Durham, NC
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medical College, New York, NY
- Department of Immunology, Duke University, Durham, NC
| | | | | | - Julian Sass
- Department of Mathematics, North Carolina State University, Raleigh, NC
| | - Kimberli Schmidt
- Center for Immunology and Infectious Diseases, University of California, Davis, CA
| | - Husam Taher
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR
| | - Courtney Papen
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR
| | - Lesli Sprehe
- Tulane National Primate Research Center, Covington, LA
| | | | - Angel Davalos
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC
| | - Peter A Barry
- Center for Immunology and Infectious Diseases, University of California, Davis, CA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR
| | - Justin Pollara
- Duke Human Vaccine Institute & Department of Surgery, Duke University, Durham, NC
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC
| | | | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medical College, New York, NY
| |
Collapse
|
10
|
Trinh QD, Pham NTK, Takada K, Ushijima H, Komine-Aizawa S, Hayakawa S. Roles of TGF-β1 in Viral Infection during Pregnancy: Research Update and Perspectives. Int J Mol Sci 2023; 24:ijms24076489. [PMID: 37047462 PMCID: PMC10095195 DOI: 10.3390/ijms24076489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Transforming growth factor-beta 1 (TGF-β1) is a pleiotropic growth factor playing various roles in the human body including cell growth and development. More functions of TGF-β1 have been discovered, especially its roles in viral infection. TGF-β1 is abundant at the maternal-fetal interface during pregnancy and plays an important function in immune tolerance, an essential key factor for pregnancy success. It plays some critical roles in viral infection in pregnancy, such as its effects on the infection and replication of human cytomegalovirus in syncytiotrophoblasts. Interestingly, its role in the enhancement of Zika virus (ZIKV) infection and replication in first-trimester trophoblasts has recently been reported. The above up-to-date findings have opened one of the promising approaches to studying the mechanisms of viral infection during pregnancy with links to corresponding congenital syndromes. In this article, we review our current and recent advances in understanding the roles of TGF-β1 in viral infection. Our discussion focuses on viral infection during pregnancy, especially in the first trimester. We highlight the mutual roles of viral infection and TGF-β1 in specific contexts and possible functions of the Smad pathway in viral infection, with a special note on ZIKV infection. In addition, we discuss promising approaches to performing further studies on this topic.
Collapse
Affiliation(s)
- Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
11
|
Kirschen GW, Burd I. Modeling of vertical transmission and pathogenesis of cytomegalovirus in pregnancy: Opportunities and challenges. FRONTIERS IN VIROLOGY 2023; 3:1106634. [PMID: 36908829 PMCID: PMC9997718 DOI: 10.3389/fviro.2023.1106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In addition to facilitating nutrient, oxygen, and waste transfer between developing fetus and mother, the placenta provides important immune barrier function against infection. Elucidation of the complexity of placental barrier function at the maternal-fetal interface has been greatly aided through experimental model organism systems. In this review, we focus on models of vertical transmission of cytomegalovirus (CMV), a ubiquitous double-stranded DNA viruses whose vertical transmission during pregnancy can lead to devastating neurological and obstetric sequelae. We review the current evidence related to guinea pig and murine models of congenital CMV infection, discuss the possible translatability of a non-human primate model, and conclude with recently developed technology using human placental organoids.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, MD, United States
| | - Irina Burd
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
12
|
Placental angiogenesis, IUGR & CMV awareness in Iraqi women. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
The placenta is considered the first interface between mother and fetus, and a normal placenta is essential for pregnancy without complications. IUGR is considered the most common condition recognized in complicated pregnancy and accounts for 26% or more of stillbirth. The current study aims to explore the presence of IUGR and placental angiogenesis by investigating the expression of VEGF and eNOS in both placenta of IUGR of CMV-infected mother and placenta of normal mother in relation to awareness of CMV in Iraqi women.
The expressions of VEGF and e NOS was studied using the avidin-biotin-peroxidase technique, while awareness was studied using 10-minute surveys in Al-Karkh directorate (Baghdad) to investigate their knowledge of CMV infection in relation to the level of education and economic status.
The expression of angiogenic factors (VEGF, eNOS) was significant in syncitiotrophoblasts, smooth muscle cells and corionic villous stromal cells, and was significant in unaware, low-educated women with low income. Increased expression of angiogenic factors of IUGR babies may be a result of unawareness of CMV infection, which leads to dysregulation of angiogenic factors, and, subsequently, to inadequate placental vascularization.
Collapse
|
13
|
Kirschen GW, Panda S, Burd I. Congenital Infection Influence on Early Brain Development Through the Gut-Brain Axis. Front Neurosci 2022; 16:894955. [PMID: 35844234 PMCID: PMC9280077 DOI: 10.3389/fnins.2022.894955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
The mechanisms by which various pathogens cause congenital infections have been studied extensively, aiding in the understanding of the detrimental effects these infections can have on fetal/neonatal neurological development. Recent studies have focused on the gut-brain axis as pivotal in neurodevelopment, with congenital infections causing substantial disruptions. There remains controversy surrounding the purported sterility of the placenta as well as concerns regarding the effects of exposure to antibiotics used during pregnancy on neonatal microbiome development and how early exposure to microbes or antibiotics can shape the gut-brain axis. Long-term neurodevelopmental consequences, such as autism spectrum disorder, attention deficit hyperactivity disorder, and cerebral palsy, may be attributable, in part, to early life infection and changes in the immature gut microbiome. The goal of this review is thus to critically evaluate the current evidence related to early life infection affecting neurodevelopment through the gut-brain axis.
Collapse
Affiliation(s)
- Gregory W. Kirschen
- Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, MD, United States
- Integrated Center for Fetal Medicine, The Johns Hopkins Hospital, Baltimore, MD, United States
| | - Snigdha Panda
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Irina Burd
- Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, MD, United States
- Integrated Center for Fetal Medicine, The Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
14
|
Hyde K, Sultana N, Tran AC, Bileckaja N, Donald CL, Kohl A, Stanton RJ, Strang BL. Limited replication of human cytomegalovirus in a trophoblast cell line. J Gen Virol 2021; 102. [PMID: 34816792 PMCID: PMC8742992 DOI: 10.1099/jgv.0.001683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several viruses, including human cytomegalovirus (HCMV), are thought to replicate in the placenta. However, there is little understanding of the molecular mechanisms involved in HCMV replication in this tissue. We investigated replication of HCMV in the extravillous trophoblast cell line SGHPL-4, a commonly used model of HCMV replication in the placenta. We found limited HCMV protein expression and virus replication in SGHPL-4 cells. This was associated with a lack of trophoblast progenitor cell protein markers in SGHPL-4 cells, suggesting a relationship between trophoblast differentiation and limited HCMV replication. We proposed that limited HCMV replication in trophoblast cells is advantageous to vertical transmission of HCMV, as there is a greater opportunity for vertical transmission when the placenta is intact and functional. Furthermore, when we investigated the replication of other vertically transmitted viruses in SGHPL-4 cells we found some limitation to replication of Zika virus, but not herpes simplex virus. Thus, limited replication of some, but not all, vertically transmitted viruses may be a feature of trophoblast cells.
Collapse
Affiliation(s)
- Kadeem Hyde
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Nowshin Sultana
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Andy C Tran
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Narina Bileckaja
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Richard J Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Blair L Strang
- Institute for Infection and Immunity, St George's, University of London, London, UK
| |
Collapse
|
15
|
Biology and pathology of the uterine microenvironment and its natural killer cells. Cell Mol Immunol 2021; 18:2101-2113. [PMID: 34426671 PMCID: PMC8429689 DOI: 10.1038/s41423-021-00739-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Tissues are the new frontier of discoveries in immunology. Cells of the immune system are an integral part of tissue physiology and immunity. Determining how immune cells inhabit, housekeep, and defend gut, lung, brain, liver, uterus, and other organs helps revealing the intimate details of tissue physiology and may offer new therapeutic targets to treat pathologies. The uterine microenvironment modulates the development and function of innate lymphoid cells [ILC, largely represented by natural killer (NK) cells], macrophages, T cells, and dendritic cells. These immune cells, in turn, contribute to tissue homeostasis. Regulated by ovarian hormones, the human uterine mucosa (endometrium) undergoes ~400 monthly cycles of breakdown and regeneration from menarche to menopause, with its fibroblasts, glands, blood vessels, and immune cells remodeling the tissue into the transient decidua. Even more transformative changes occur upon blastocyst implantation. Before the placenta is formed, the endometrial glands feed the embryo by histiotrophic nutrition while the uterine spiral arteries are stripped of their endothelial layer and smooth muscle actin. This arterial remodeling is carried out by invading fetal trophoblast and maternal immune cells, chiefly uterine NK (uNK) cells, which also assist fetal growth. The transformed arteries no longer respond to maternal stimuli and meet the increasing demands of the growing fetus. This review focuses on how the everchanging uterine microenvironment affects uNK cells and how uNK cells regulate homeostasis of the decidua, placenta development, and fetal growth. Determining these pathways will help understand the causes of major pregnancy complications.
Collapse
|
16
|
Mate A, Reyes-Goya C, Santana-Garrido Á, Sobrevia L, Vázquez CM. Impact of maternal nutrition in viral infections during pregnancy. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166231. [PMID: 34343638 PMCID: PMC8325560 DOI: 10.1016/j.bbadis.2021.166231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Other than being a physiological process, pregnancy is a condition characterized by major adaptations of maternal endocrine and metabolic homeostasis that are necessary to accommodate the fetoplacental unit. Unfortunately, all these systemic, cellular, and molecular changes in maternal physiology also make the mother and the fetus more prone to adverse outcomes, including numerous alterations arising from viral infections. Common infections during pregnancy that have long been recognized as congenitally and perinatally transmissible to newborns include toxoplasmosis, rubella, cytomegalovirus, and herpes simplex viruses (originally coined as ToRCH infections). In addition, enterovirus, parvovirus B19, hepatitis virus, varicella-zoster virus, human immunodeficiency virus, Zika and Dengue virus, and, more recently, coronavirus infections including Middle Eastern respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) infections (especially the novel SARS-CoV-2 responsible for the ongoing COVID-19 pandemic), constitute relevant targets for current research on maternal-fetal interactions in viral infections during pregnancy. Appropriate maternal education from preconception to the early postnatal period is crucial to promote healthy pregnancies in general and to prevent and/or reduce the impact of viral infections in particular. Specifically, an adequate lifestyle based on proper nutrition plans and feeding interventions, whenever possible, might be crucial to reduce the risk of virus-related gestational diseases and accompanying complications in later life. Here we aim to provide an overview of the emerging literature addressing the impact of nutrition in the context of potentially harmful viral infections during pregnancy.
Collapse
Affiliation(s)
- Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain.
| | - Claudia Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Luis Sobrevia
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), 9713GZ Groningen, the Netherlands
| | - Carmen M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| |
Collapse
|
17
|
Alfi O, Yakirevitch A, Wald O, Wandel O, Izhar U, Oiknine-Djian E, Nevo Y, Elgavish S, Dagan E, Madgar O, Feinmesser G, Pikarsky E, Bronstein M, Vorontsov O, Jonas W, Ives J, Walter J, Zakay-Rones Z, Oberbaum M, Panet A, Wolf DG. Human Nasal and Lung Tissues Infected Ex Vivo with SARS-CoV-2 Provide Insights into Differential Tissue-Specific and Virus-Specific Innate Immune Responses in the Upper and Lower Respiratory Tract. J Virol 2021; 95:e0013021. [PMID: 33893170 PMCID: PMC8223920 DOI: 10.1128/jvi.00130-21] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/20/2021] [Indexed: 12/25/2022] Open
Abstract
The nasal mucosa constitutes the primary entry site for respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While the imbalanced innate immune response of end-stage coronavirus disease 2019 (COVID-19) has been extensively studied, the earliest stages of SARS-CoV-2 infection at the mucosal entry site have remained unexplored. Here, we employed SARS-CoV-2 and influenza virus infection in native multi-cell-type human nasal turbinate and lung tissues ex vivo, coupled with genome-wide transcriptional analysis, to investigate viral susceptibility and early patterns of local mucosal innate immune response in the authentic milieu of the human respiratory tract. SARS-CoV-2 productively infected the nasal turbinate tissues, predominantly targeting respiratory epithelial cells, with a rapid increase in tissue-associated viral subgenomic mRNA and secretion of infectious viral progeny. Importantly, SARS-CoV-2 infection triggered robust antiviral and inflammatory innate immune responses in the nasal mucosa. The upregulation of interferon-stimulated genes, cytokines, and chemokines, related to interferon signaling and immune-cell activation pathways, was broader than that triggered by influenza virus infection. Conversely, lung tissues exhibited a restricted innate immune response to SARS-CoV-2, with a conspicuous lack of type I and III interferon upregulation, contrasting with their vigorous innate immune response to influenza virus. Our findings reveal differential tissue-specific innate immune responses in the upper and lower respiratory tracts that are specific to SARS-CoV-2. The studies shed light on the role of the nasal mucosa in active viral transmission and immune defense, implying a window of opportunity for early interventions, whereas the restricted innate immune response in early-SARS-CoV-2-infected lung tissues could underlie the unique uncontrolled late-phase lung damage of advanced COVID-19. IMPORTANCE In order to reduce the late-phase morbidity and mortality of COVID-19, there is a need to better understand and target the earliest stages of SARS-CoV-2 infection in the human respiratory tract. Here, we have studied the initial steps of SARS-CoV-2 infection and the consequent innate immune responses within the natural multicellular complexity of human nasal mucosal and lung tissues. Comparing the global innate response patterns of nasal and lung tissues infected in parallel with SARS-CoV-2 and influenza virus, we found distinct virus-host interactions in the upper and lower respiratory tract, which could determine the outcome and unique pathogenesis of SARS-CoV-2 infection. Studies in the nasal mucosal infection model can be employed to assess the impact of viral evolutionary changes and evaluate new therapeutic and preventive measures against SARS-CoV-2 and other human respiratory pathogens.
Collapse
Affiliation(s)
- Or Alfi
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Department of Biochemistry, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
- Lautenberg Center for General and Tumor Immunology, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Arkadi Yakirevitch
- Department of Otolaryngology—Head and Neck Surgery, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ori Wald
- Department of Cardiothoracic Surgery, Hadassah University Hospital, Jerusalem, Israel
| | - Ori Wandel
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Uzi Izhar
- Department of Cardiothoracic Surgery, Hadassah University Hospital, Jerusalem, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Yuval Nevo
- Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Sharona Elgavish
- Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Elad Dagan
- Department of Otolaryngology—Head and Neck Surgery, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ory Madgar
- Department of Otolaryngology—Head and Neck Surgery, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Feinmesser
- Department of Otolaryngology—Head and Neck Surgery, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Pikarsky
- Lautenberg Center for General and Tumor Immunology, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Michal Bronstein
- Center for Genomic Technologies, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Olesya Vorontsov
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Department of Biochemistry, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
- Lautenberg Center for General and Tumor Immunology, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Wayne Jonas
- Samueli Institute, Alexandria, Virginia, USA
| | - John Ives
- Samueli Institute, Alexandria, Virginia, USA
| | - Joan Walter
- Samueli Institute, Alexandria, Virginia, USA
| | - Zichria Zakay-Rones
- Department of Biochemistry, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Menachem Oberbaum
- The Center for Integrative Complementary Medicine, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Amos Panet
- Department of Biochemistry, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Dana G. Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Lautenberg Center for General and Tumor Immunology, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
18
|
Adibi JJ, Layden AJ, Birru RL, Miragaia A, Xun X, Smith MC, Yin Q, Millenson ME, O’Connor TG, Barrett ES, Snyder NW, Peddada S, Mitchell RT. First trimester mechanisms of gestational sac placental and foetal teratogenicity: a framework for birth cohort studies. Hum Reprod Update 2021; 27:747-770. [PMID: 33675653 PMCID: PMC8222765 DOI: 10.1093/humupd/dmaa063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/18/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The function of the gestational sac (GS) and the placenta in the closely related processes of embryogenesis and teratogenicity in the first trimester has been minimally described. The prevailing assumption is that direct teratogenic effects are mediated by the critical extraembryonic organ, the placenta, which either blocks or transfers exposures to the foetus. Placental transfer is a dominant mechanism, but there are other paradigms by which the placenta can mediate teratogenic effects. Knowledge of these paradigms and first trimester human developmental biology can be useful to the epidemiologist in the conduct of biomarker-based studies of both maternal and child health. OBJECTIVE AND RATIONALE Our aim is to provide a causal framework for modelling the teratogenic effects of first trimester exposures on child health outcomes mediated by the GS and placenta using biomarker data collected in the first trimester. We initially present first trimester human developmental biology for the sake of informing and strengthening epidemiologic approaches. We then propose analytic approaches of modelling placental mechanisms by way of causal diagrams using classical non-embryolethal teratogens (diethylstilboestrol [DES], folic acid deficiency and cytomegalovirus [CMV]) as illustrative examples. We extend this framework to two chronic exposures of particular current interest, phthalates and maternal adiposity. SEARCH METHODS Information on teratogens was identified by a non-systematic, narrative review. For each teratogen, we included papers that answered the five following questions: (i) why were these exposures declared teratogens? (ii) is there a consensus on biologic mechanism? (iii) is there reported evidence of a placental mechanism? (iv) can we construct a theoretical model of a placental mechanism? and (v) can this knowledge inform future work on measurement and modelling of placental-foetal teratogenesis? We prioritized literature specific to human development, the organogenesis window in the first trimester and non-embryolethal mechanisms. OUTCOMES As a result of our review of the literature on five exposures considered harmful in the first trimester, we developed four analytic strategies to address first trimester placental mechanisms in birth cohort studies: placental transfer and direct effects on the foetus (DES and maternal adiposity), indirect effects through targeted placental molecular pathways (DES and phthalates), pre-placental effects through disruptions in embryonic and extraembryonic tissue layer differentiation (folic acid deficiency), and multi-step mechanisms that involve maternal, placental and foetal immune function and inflammation (DES and CMV). WIDER IMPLICATIONS The significance of this review is to offer a causal approach to classify the large number of potentially harmful exposures in pregnancy when the exposure occurs in the first trimester. Our review will facilitate future research by advancing knowledge of the first trimester mechanisms necessary for researchers to effectively associate environmental exposures with child health outcomes.
Collapse
Affiliation(s)
- Jennifer J Adibi
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander J Layden
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rahel L Birru
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandra Miragaia
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoshuang Xun
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megan C Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Yin
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Thomas G O’Connor
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Nathaniel W Snyder
- Department of Microbiology and Immunology, Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shyamal Peddada
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, Queens Medical Research Institute, Edinburgh, UK
| |
Collapse
|
19
|
Auriti C, De Rose DU, Santisi A, Martini L, Piersigilli F, Bersani I, Ronchetti MP, Caforio L. Pregnancy and viral infections: Mechanisms of fetal damage, diagnosis and prevention of neonatal adverse outcomes from cytomegalovirus to SARS-CoV-2 and Zika virus. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166198. [PMID: 34118406 PMCID: PMC8883330 DOI: 10.1016/j.bbadis.2021.166198] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Some maternal infections, contracted before or during pregnancy, can be transmitted to the fetus, during gestation (congenital infection), during labor and childbirth (perinatal infection) and through breastfeeding (postnatal infection). The agents responsible for these infections can be viruses, bacteria, protozoa, fungi. Among the viruses most frequently responsible for congenital infections are Cytomegalovirus (CMV), Herpes simplex 1–2, Herpes virus 6, Varicella zoster. Moreover Hepatitis B and C virus, HIV, Parvovirus B19 and non-polio Enteroviruses when contracted during pregnancy may involve the fetus or newborn at birth. Recently, new viruses have emerged, SARS-Cov-2 and Zika virus, of which we do not yet fully know the characteristics and pathogenic power when contracted during pregnancy. Viral infections in pregnancy can damage the fetus (spontaneous abortion, fetal death, intrauterine growth retardation) or the newborn (congenital anomalies, organ diseases with sequelae of different severity). Some risk factors specifically influence the incidence of transmission to the fetus: the timing of the infection in pregnancy, the order of the infection, primary or reinfection or chronic, the duration of membrane rupture, type of delivery, socio-economic conditions and breastfeeding. Frequently infected neonates, symptomatic at birth, have worse outcomes than asymptomatic. Many asymptomatic babies develop long term neurosensory outcomes. The way in which the virus interacts with the maternal immune system, the maternal-fetal interface and the placenta explain these results and also the differences that are observed from time to time in the fetal‑neonatal outcomes of maternal infections. The maternal immune system undergoes functional adaptation during pregnancy, once thought as physiological immunosuppression. This adaptation, crucial for generating a balance between maternal immunity and fetus, is necessary to promote and support the pregnancy itself and the growth of the fetus. When this adaptation is upset by the viral infection, the balance is broken, and the infection can spread and lead to the adverse outcomes previously described. In this review we will describe the main viral harmful infections in pregnancy and the potential mechanisms of the damages on the fetus and newborn.
Collapse
Affiliation(s)
- Cinzia Auriti
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Domenico Umberto De Rose
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Alessandra Santisi
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Ludovica Martini
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Fiammetta Piersigilli
- Department of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium.
| | - Iliana Bersani
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Maria Paola Ronchetti
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Leonardo Caforio
- Fetal and Perinatal Medicine and Surgery Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| |
Collapse
|
20
|
Bonavita CM, Cardin RD. Don't Go Breaking My Heart: MCMV as a Model for HCMV-Associated Cardiovascular Diseases. Pathogens 2021; 10:619. [PMID: 34069957 PMCID: PMC8157551 DOI: 10.3390/pathogens10050619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022] Open
Abstract
Human Cytomegalovirus (HCMV) is a widespread pathogen that causes lifelong latent infection and is associated with the exacerbation of chronic inflammatory diseases in seropositive individuals. Of particular impact, HCMV infection is known to worsen many cardiovascular diseases including myocarditis, atherosclerosis, hypertension, and transplant vasculopathy. Due to its similarity to HCMV, murine CMV (MCMV) is an appropriate model to understand HCMV-induced pathogenesis in the heart and vasculature. MCMV shares similar sequence homology and recapitulates much of the HCMV pathogenesis, including HCMV-induced cardiovascular diseases. This review provides insight into HCMV-associated cardiovascular diseases and the murine model of MCMV infection, which has been used to study the viral pathogenesis and mechanisms contributing to cardiovascular diseases. Our new functional studies using echocardiography demonstrate tachycardia and hypertrophy in the mouse, similar to HCMV-induced myocarditis in humans. For the first time, we show long term heart dysfunction and that MCMV reactivates from latency in the heart, which raises the intriguing idea that HCMV latency and frequent virus reactivation perturbs long term cardiovascular function.
Collapse
Affiliation(s)
| | - Rhonda D. Cardin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| |
Collapse
|
21
|
Narang K, Cheek EH, Enninga EAL, Theiler RN. Placental Immune Responses to Viruses: Molecular and Histo-Pathologic Perspectives. Int J Mol Sci 2021; 22:2921. [PMID: 33805739 PMCID: PMC7998619 DOI: 10.3390/ijms22062921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
As most recently demonstrated by the SARS-CoV-2 pandemic, congenital and perinatal infections are of significant concern to the pregnant population as compared to the general population. These outcomes can range from no apparent impact all the way to spontaneous abortion or fetal infection with long term developmental consequences. While some pathogens have developed mechanisms to cross the placenta and directly infect the fetus, other pathogens lead to an upregulation in maternal or placental inflammation that can indirectly cause harm. The placenta is a temporary, yet critical organ that serves multiple important functions during gestation including facilitation of fetal nutrition, oxygenation, and prevention of fetal infection in utero. Here, we review trophoblast cell immunology and the molecular mechanisms utilized to protect the fetus from infection. Lastly, we discuss consequences in the placenta when these protections fail and the histopathologic result following infection.
Collapse
Affiliation(s)
- Kavita Narang
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA;
| | - Elizabeth H. Cheek
- Department of Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA;
| | - Elizabeth Ann L. Enninga
- Departments of Immunology, Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA;
| | - Regan N. Theiler
- Division of Obstetrics, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Singh K, Hamilton ST, Shand AW, Hannan NJ, Rawlinson WD. Receptors in host pathogen interactions between human cytomegalovirus and the placenta during congenital infection. Rev Med Virol 2021; 31:e2233. [PMID: 33709529 DOI: 10.1002/rmv.2233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 11/09/2022]
Abstract
Cellular receptors in human cytomegalovirus (HCMV) mother to child transmission play an important role in congenital infection. Placental trophoblast cells are a significant cell type in placental development, placental functional processes, and in HCMV transmission. Different cells within the placental floating and chorionic villi present alternate receptors for HCMV cell entry. Syncytiotrophoblasts present neonatal Fc receptors that bind and transport circulating maternal immunoglobulin G across the placental interface which can also be bound to HCMV virions, facilitating viral entry into the placenta and foetal circulation. Cytotrophoblast express HCMV receptors including integrin-α1β1, integrin-αVβ3, epidermal growth factor receptor and platelet-derived growth factor receptor alpha. The latter interacts with HCMV glycoprotein-H, glycoprotein-L and glycoprotein-O (gH/gL/gO) trimers (predominantly in placental fibroblasts) and the gH/gL/pUL128, UL130-UL131A pentameric complex in other placental cell types. The pentameric complex allows viral tropism of placental trophoblasts, endothelial cells, epithelial cells, leukocytes and monocytes. This review outlines HCMV ligands and target receptor proteins in congenital HCMV infection.
Collapse
Affiliation(s)
- Krishneel Singh
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Stuart T Hamilton
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Antonia W Shand
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women Heidelberg, Victoria, Australia
| | - William D Rawlinson
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Block LN, Bowman BD, Schmidt JK, Keding LT, Stanic AK, Golos TG. The promise of placental extracellular vesicles: models and challenges for diagnosing placental dysfunction in utero†. Biol Reprod 2021; 104:27-57. [PMID: 32856695 PMCID: PMC7786267 DOI: 10.1093/biolre/ioaa152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Monitoring the health of a pregnancy is of utmost importance to both the fetus and the mother. The diagnosis of pregnancy complications typically occurs after the manifestation of symptoms, and limited preventative measures or effective treatments are available. Traditionally, pregnancy health is evaluated by analyzing maternal serum hormone levels, genetic testing, ultrasonographic imaging, and monitoring maternal symptoms. However, researchers have reported a difference in extracellular vesicle (EV) quantity and cargo between healthy and at-risk pregnancies. Thus, placental EVs (PEVs) may help to understand normal and aberrant placental development, monitor pregnancy health in terms of developing placental pathologies, and assess the impact of environmental influences, such as infection, on pregnancy. The diagnostic potential of PEVs could allow for earlier detection of pregnancy complications via noninvasive sampling and frequent monitoring. Understanding how PEVs serve as a means of communication with maternal cells and recognizing their potential utility as a readout of placental health have sparked a growing interest in basic and translational research. However, to date, PEV research with animal models lags behind human studies. The strength of animal pregnancy models is that they can be used to assess placental pathologies in conjunction with isolation of PEVs from fluid samples at different time points throughout gestation. Assessing PEV cargo in animals within normal and complicated pregnancies will accelerate the translation of PEV analysis into the clinic for potential use in prognostics. We propose that appropriate animal models of human pregnancy complications must be established in the PEV field.
Collapse
Affiliation(s)
- Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany D Bowman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Logan T Keding
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Aleksandar K Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
24
|
Njue A, Coyne C, Margulis AV, Wang D, Marks MA, Russell K, Das R, Sinha A. The Role of Congenital Cytomegalovirus Infection in Adverse Birth Outcomes: A Review of the Potential Mechanisms. Viruses 2020; 13:v13010020. [PMID: 33374185 PMCID: PMC7823935 DOI: 10.3390/v13010020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (CMV) is a major cause of nonhereditary adverse birth outcomes, including hearing and visual loss, neurologic deficits, and intrauterine growth retardation (IUGR), and may contribute to outcomes such as stillbirth and preterm delivery. However, the mechanisms by which CMV could cause adverse birth outcomes are not fully understood. This study reviewed proposed mechanisms underlying the role of CMV in stillbirth, preterm birth, and IUGR. Targeted literature searches were performed in PubMed and Embase to identify relevant articles. Several potential mechanisms were identified from in vitro studies in which laboratory-adapted and low-passage strains of CMV and various human placental models were used. Potential mechanisms identified included impairment of trophoblast progenitor stem cell differentiation and function, impairment of extravillous trophoblast invasiveness, dysregulation of Wnt signaling pathways in cytotrophoblasts, tumor necrosis factor-α mediated apoptosis of trophoblasts, CMV-induced cytokine changes in the placenta, inhibition of indoleamine 2,3-dioxygenase activity, and downregulation of trophoblast class I major histocompatibility complex molecules. Inherent challenges for the field remain in the identification of suitable in vivo animal models. Nonetheless, we believe that our review provides useful insights into the mechanisms by which CMV impairs placental development and function and how these changes could result in adverse birth outcomes.
Collapse
Affiliation(s)
- Annete Njue
- RTI Health Solutions, Manchester M20 2LS, UK
- Correspondence:
| | - Carolyn Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | | | - Dai Wang
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| | - Morgan A. Marks
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| | - Kevin Russell
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| | - Rituparna Das
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| | - Anushua Sinha
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| |
Collapse
|
25
|
Parker EL, Silverstein RB, Verma S, Mysorekar IU. Viral-Immune Cell Interactions at the Maternal-Fetal Interface in Human Pregnancy. Front Immunol 2020; 11:522047. [PMID: 33117336 PMCID: PMC7576479 DOI: 10.3389/fimmu.2020.522047] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
The human decidua and placenta form a distinct environment distinguished for its promotion of immunotolerance to infiltrating semiallogeneic trophoblast cells to enable successful pregnancy. The maternal-fetal interface also successfully precludes transmission of most pathogens. This barrier function occurs in conjunction with a diverse influx of decidual immune cells including natural killer cells, macrophages and T cells. However, several viruses, among other microorganisms, manage to escape destruction by the host adaptive and innate immune system, leading to congenital infection and adverse pregnancy outcomes. In this review, we describe mechanisms of pathogenicity of two such viral pathogens, Human cytomegalovirus (HCMV) and Zika virus (ZIKV) at the maternal-fetal interface. Host decidual immune cell responses to these specific pathogens will be considered, along with their interactions with other cell types and the ways in which these immune cells may both facilitate and limit infection at different stages of pregnancy. Neither HCMV nor ZIKV naturally infect commonly used animal models [e.g., mice] which makes it challenging to understand disease pathogenesis. Here, we will highlight new approaches using placenta-on-a-chip and organoids models that are providing functional and physiologically relevant ways to study viral-host interaction at the maternal-fetal interface.
Collapse
Affiliation(s)
- Elaine L. Parker
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Rachel B. Silverstein
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Sonam Verma
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Indira U. Mysorekar
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
26
|
Mahyuddin AP, Kanneganti A, Wong JJL, Dimri PS, Su LL, Biswas A, Illanes SE, Mattar CNZ, Huang RYJ, Choolani M. Mechanisms and evidence of vertical transmission of infections in pregnancy including SARS-CoV-2s. Prenat Diagn 2020; 40:1655-1670. [PMID: 32529643 PMCID: PMC7307070 DOI: 10.1002/pd.5765] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
There remain unanswered questions concerning mother‐to‐child‐transmission of SARS‐CoV‐2. Despite reports of neonatal COVID‐19, SARS‐CoV‐2 has not been consistently isolated in perinatal samples, thus definitive proof of transplacental infection is still lacking. To address these questions, we assessed investigative tools used to confirm maternal‐fetal infection and known protective mechanisms of the placental barrier that prevent transplacental pathogen migration. Forty studies of COVID‐19 pregnancies reviewed suggest a lack of consensus on diagnostic strategy for congenital infection. Although real‐time polymerase chain reaction of neonatal swabs was universally performed, a wide range of clinical samples was screened including vaginal secretions (22.5%), amniotic fluid (35%), breast milk (22.5%) and umbilical cord blood. Neonatal COVID‐19 was reported in eight studies, two of which were based on the detection of SARS‐CoV‐2 IgM in neonatal blood. Histological examination demonstrated sparse viral particles, vascular malperfusion and inflammation in the placenta from pregnant women with COVID‐19. The paucity of placental co‐expression of ACE‐2 and TMPRSS2, two receptors involved in cytoplasmic entry of SARS‐CoV‐2, may explain its relative insensitivity to transplacental infection. Viral interactions may utilise membrane receptors other than ACE‐2 thus, tissue susceptibility may be broader than currently known. Further spatial‐temporal studies are needed to determine the true potential for transplacental migration.
Collapse
Affiliation(s)
- Aniza P Mahyuddin
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abhiram Kanneganti
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore
| | - Jeslyn J L Wong
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore
| | - Pooja S Dimri
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore
| | - Lin L Su
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Citra N Z Mattar
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruby Y-J Huang
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
27
|
Nelson CS, Baraniak I, Lilleri D, Reeves MB, Griffiths PD, Permar SR. Immune Correlates of Protection Against Human Cytomegalovirus Acquisition, Replication, and Disease. J Infect Dis 2020; 221:S45-S59. [PMID: 32134477 PMCID: PMC7057792 DOI: 10.1093/infdis/jiz428] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common infectious cause of infant birth defects and an etiology of significant morbidity and mortality in solid organ and hematopoietic stem cell transplant recipients. There is tremendous interest in developing a vaccine or immunotherapeutic to reduce the burden of HCMV-associated disease, yet after nearly a half-century of research and development in this field we remain without such an intervention. Defining immune correlates of protection is a process that enables targeted vaccine/immunotherapeutic discovery and informed evaluation of clinical performance. Outcomes in the HCMV field have previously been measured against a variety of clinical end points, including virus acquisition, systemic replication, and progression to disease. Herein we review immune correlates of protection against each of these end points in turn, showing that control of HCMV likely depends on a combination of innate immune factors, antibodies, and T-cell responses. Furthermore, protective immune responses are heterogeneous, with no single immune parameter predicting protection against all clinical outcomes and stages of HCMV infection. A detailed understanding of protective immune responses for a given clinical end point will inform immunogen selection and guide preclinical and clinical evaluation of vaccines or immunotherapeutics to prevent HCMV-mediated congenital and transplant disease.
Collapse
Affiliation(s)
- Cody S Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,Correspondence: Cody S. Nelson, Human Vaccine Institute, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710 ()
| | - Ilona Baraniak
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Daniele Lilleri
- Laboratory of Genetics, Transplantation, and Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
28
|
Roark HK, Jenks JA, Permar SR, Schleiss MR. Animal Models of Congenital Cytomegalovirus Transmission: Implications for Vaccine Development. J Infect Dis 2020; 221:S60-S73. [PMID: 32134481 PMCID: PMC7057791 DOI: 10.1093/infdis/jiz484] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although cytomegaloviruses (CMVs) are species-specific, the study of nonhuman CMVs in animal models can help to inform and direct research aimed at developing a human CMV (HCMV) vaccine. Because the driving force behind the development of HCMV vaccines is to prevent congenital infection, the animal model in question must be one in which vertical transmission of virus occurs to the fetus. Fortunately, two such animal models-the rhesus macaque CMV and guinea pig CMV-are characterized by congenital infection. Hence, each model can be evaluated in "proof-of-concept" studies of preconception vaccination aimed at blocking transplacental transmission. This review focuses on similarities and differences in the respective model systems, and it discusses key insights from each model germane to the study of HCMV vaccines.
Collapse
Affiliation(s)
- Hunter K Roark
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Minneapolis, Minnesota, USA
| |
Collapse
|
29
|
Vera Cruz D, Nelson CS, Tran D, Barry PA, Kaur A, Koelle K, Permar SR. Intrahost cytomegalovirus population genetics following antibody pretreatment in a monkey model of congenital transmission. PLoS Pathog 2020; 16:e1007968. [PMID: 32059027 PMCID: PMC7046290 DOI: 10.1371/journal.ppat.1007968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/27/2020] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection is the leading non-genetic cause of congenital birth defects worldwide. While several studies have addressed the genetic composition of viral populations in newborns diagnosed with HCMV, little is known regarding mother-to-child viral transmission dynamics and how therapeutic interventions may impact within-host viral populations. Here, we investigate how preexisting CMV-specific antibodies shape the maternal viral population and intrauterine virus transmission. Specifically, we characterize the genetic composition of CMV populations in a monkey model of congenital CMV infection to examine the effects of passively-infused hyperimmune globulin (HIG) on viral population genetics in both maternal and fetal compartments. In this study, 11 seronegative, pregnant monkeys were challenged with rhesus CMV (RhCMV), including a group pretreated with a standard potency HIG preparation (n = 3), a group pretreated with a high-neutralizing potency HIG preparation (n = 3), and an untreated control group (n = 5). Targeted amplicon deep sequencing of RhCMV glycoprotein B and L genes revealed that one of the three strains present in the viral inoculum (UCD52) dominated maternal and fetal viral populations. We identified minor haplotypes of this strain and characterized their dynamics. Many of the identified haplotypes were consistently detected at multiple timepoints within sampled maternal tissues, as well as across tissue compartments, indicating haplotype persistence over time and transmission between maternal compartments. However, haplotype numbers and diversity levels were not appreciably different between control, standard-potency, and high-potency pretreatment groups. We found that while the presence of maternal antibodies reduced viral load and congenital infection, it had no apparent impact on intrahost viral genetic diversity at the investigated loci. Interestingly, some minor haplotypes present in fetal and maternal-fetal interface tissues were also identified as minor haplotypes in corresponding maternal tissues, providing evidence for a loose RhCMV mother-to-fetus transmission bottleneck even in the presence of preexisting antibodies.
Collapse
Affiliation(s)
- Diana Vera Cruz
- Computational Biology and Bioinformatics program / Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Cody S. Nelson
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Dollnovan Tran
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Peter A. Barry
- Center for Comparative Medicine, Department of Pathology and Laboratory Medicine, University of California, Davis, California, United States of America
| | - Amitinder Kaur
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
30
|
Performance of Zika Assays in the Context of Toxoplasma gondii, Parvovirus B19, Rubella Virus, and Cytomegalovirus (TORCH) Diagnostic Assays. Clin Microbiol Rev 2019; 33:33/1/e00130-18. [PMID: 31826871 DOI: 10.1128/cmr.00130-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infections during pregnancy that may cause congenital abnormalities have been recognized for decades, but their diagnosis is challenging. This was again illustrated with the emergence of Zika virus (ZIKV), highlighting the inherent difficulties in estimating the extent of pre- and postnatal ZIKV complications because of the difficulties in establishing definitive diagnoses. We reviewed the epidemiology, infection kinetics, and diagnostic methods used for Toxoplasma gondii, parvovirus B19, rubella virus, and cytomegalovirus (TORCH) infections and compared the results with current knowledge of ZIKV diagnostic assays to provide a basis for the inclusion of ZIKV in the TORCH complex evaluations. Similarities between TORCH pathogens and ZIKV support inclusion of ZIKV as an emerging TORCH infection. Our review evaluates the diagnostic performance of various TORCH diagnostic assays for maternal screening, fetal screening, and neonatal screening. We show that the sensitivity, specificity, and positive and negative predictive value of TORCH complex pathogens are widely variable, stressing the importance of confirmatory testing and the need for novel techniques for earlier and accurate diagnosis of maternal and congenital infections. In this context it is also important to acknowledge different needs and access to care for different geographic and resource settings.
Collapse
|
31
|
Cazorla-Vázquez S, Steingruber M, Marschall M, Engel FB. Human cytomegaloviral multifunctional protein kinase pUL97 impairs zebrafish embryonic development and increases mortality. Sci Rep 2019; 9:7219. [PMID: 31076608 PMCID: PMC6510723 DOI: 10.1038/s41598-019-43649-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 04/26/2019] [Indexed: 12/27/2022] Open
Abstract
Cytomegalovirus is a worldwide-distributed human pathogen, which is the leading cause of congenital virus infection, affecting 0.5 to 2% of live births. To date, it is largely unclear which molecular mechanisms underlie the symptomatic outcomes. This is mainly due to species specificity and limited homology among cytomegalovirus genomes. As it is not possible to infect model organisms with human cytomegalovirus, the aim of this study was to develop a heterologous system allowing in the future the elucidation of the pathological role of individual viral proteins. As a model organism the zebrafish has been chosen due to its ease of manipulation and characterization as well as its large offspring. As cytomegalovirus model protein, pUL97 was characterized because it is multiply involved in virus-host interaction. Here, we show in zebrafish embryos, that (i) pUL97 can be expressed in zebrafish, (ii) increasing pUL97 expression levels quantitatively correlate with both minor and major pathological defects, (iii) pUL97 expression impairs cell cycle progression and induces cell death, (iv) active pUL97, but not an inactive mutant, induces excess mortality, and (v) co-administration of a pUL97 inhibitor reduces embryonic pathology. Collectively, these data indicate the suitability of zebrafish to elucidate the pathological role of human cytomegaloviral proteins.
Collapse
Affiliation(s)
- Salvador Cazorla-Vázquez
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91052, Erlangen, Germany
| | - Mirjam Steingruber
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054, Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054, Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91052, Erlangen, Germany.
| |
Collapse
|
32
|
Zulu MZ, Martinez FO, Gordon S, Gray CM. The Elusive Role of Placental Macrophages: The Hofbauer Cell. J Innate Immun 2019; 11:447-456. [PMID: 30970346 DOI: 10.1159/000497416] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/19/2019] [Indexed: 01/07/2023] Open
Abstract
In this review, we discuss the often overlooked tissue-resident fetal macrophages, Hofbauer cells, which are found within the chorionic villi of the human placenta. Hofbauer cells have been shown to have a phenotype associated with regulatory and anti-inflammatory functions. They are thought to play a crucial role in the regulation of pregnancy and in the maintenance of a homeostatic environment that is crucial for fetal development. Even though the numbers of these macrophages are some of the most abundant immune cells in the human placenta, which are sustained throughout pregnancy, there are very few studies that have identified their origin, their phenotype, and functions and why they are maintained throughout gestation. It is not yet understood how Hofbauer cells may change in function throughout normal pregnancy, and especially in those complicated by maternal gestational diabetes, preeclampsia, and viral infections, such as Zika, cytomegalovirus, and human immunodeficiency virus. We review what is known about the origin of these macrophages and explore how common complications of pregnancy dysregulate these cells leading to adverse birth outcomes in humans. Our synthesis sheds light on areas for human studies that can further define these innate regulatory cells.
Collapse
Affiliation(s)
- Michael Z Zulu
- Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Fernando O Martinez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Siamon Gordon
- Chang Gung University, Graduate Institute of Biomedical Sciences, College of Medicine, Taoyuan City, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Clive M Gray
- Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa, .,National Health Laboratory Services/Groote Schuur Hospital, Cape Town, South Africa,
| |
Collapse
|
33
|
Heerema-McKenney A. Defense and infection of the human placenta. APMIS 2018; 126:570-588. [PMID: 30129129 DOI: 10.1111/apm.12847] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/22/2018] [Indexed: 12/14/2022]
Abstract
The placenta functions as a shield against infection of the fetus. The innate and adaptive immune defenses of the developing fetus are poorly equipped to fight infections. Infection by bacteria, viruses, and protozoa may cause infertility, spontaneous abortion, stillbirth, growth retardation, anomalies of development, premature delivery, neonatal morbidity, and mortality. However, appreciation of the human microbiome and host cell-microbe interactions must be taken into consideration as we try to determine what interactions are pathologic. Infection is typically recognized histologically by the presence of inflammation. Yet, several factors make comparison of the placenta to other human organs difficult. The placenta comprises tissues from two persons, complicating the role of the immune system. The placenta is a temporary organ. It must be eventually expelled; the processes leading to partuition involve maternal inflammation. What is normal or pathologic may be a function of timing or extent of the process. We now must consider whether bacteria, and even some viruses, are useful commensals or pathogens. Still, recognizing infection of the placenta is one of the most important contributions placental pathologic examination can give to care of the mother and neonate. This review provides a brief overview of placental defense against infection, consideration of the placental microbiome, routes of infection, and the histopathology of amniotic fluid infection and TORCH infections.
Collapse
Affiliation(s)
- Amy Heerema-McKenney
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
34
|
Abstract
Why certain viruses cross the physical barrier of the human placenta but others do not is incompletely understood. Over the past 20 years, we have gained deeper knowledge of intrauterine infection and routes of viral transmission. This review focuses on human viruses that replicate in the placenta, infect the fetus, and cause birth defects, including rubella virus, varicella-zoster virus, parvovirus B19, human cytomegalovirus (CMV), Zika virus (ZIKV), and hepatitis E virus type 1. Detailed discussions include ( a) the architecture of the uterine-placental interface, ( b) studies of placental explants ex vivo that provide insights into the infection and spread of CMV and ZIKV to the fetal compartment and how these viruses undermine early development, and ( c) novel treatments and vaccines that limit viral replication and have the potential to reduce dissemination, vertical transmission and the occurrence of congenital disease.
Collapse
Affiliation(s)
- Lenore Pereira
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, California 94143, USA;
| |
Collapse
|
35
|
Chiaie LD, Neuberger P, Vochem M, Lihs A, Karck U, Enders M. No evidence of obstetrical adverse events after hyperimmune globulin application for primary cytomegalovirus infection in pregnancy: experience from a single centre. Arch Gynecol Obstet 2018; 297:1389-1395. [PMID: 29404743 DOI: 10.1007/s00404-018-4703-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE To determine the frequency of obstetrical adverse events and clinical outcome in infants following antenatal hyperimmune globulin (HIG) treatment for primary cytomegalovirus (CMV) infection in pregnancy. METHODS Data from 50 women including three twin pregnancies were retrospectively evaluated. Primary infection was defined by seroconversion or the presence of CMV-specific IgM and low IgG avidity. All women received two or more infusions of HIG (200 U/kg). Congenital CMV (cCMV) infection was diagnosed by detection of CMV in amniotic fluid and/or neonatal urine. We compared gestational age (GA) at birth, head circumference (HC) and birth weight (BW) of infants in our study cohort with those of live-born infants delivered in our clinic between 2015 and 2016. RESULTS Median gestational age at time of maternal CMV diagnosis was 13 weeks. One-hundred-forty-one maternal HIG doses were given. No HIG-related severe adverse reactions occurred. Preterm birth rate was 4.2% (2/47) in singleton pregnancies. None of the neonates had birth weight or head circumference < 3rd percentile (< 3P) for gestational age. There was no statistically significant difference regarding GA, BW and HC between our study cohort and the total population of live-born infants. The frequency of CMV-related sequelae in infants with cCMV infection was 10.5% (2/19) (one with bilateral hearing loss and one with mild motoric delay), both cases following first trimester maternal infection. CONCLUSION Antenatal HIG treatment was well tolerated and not associated with prematurity or decreased birth weight. HIG application might have a favorable effect on the clinical course of congenital CMV infection.
Collapse
Affiliation(s)
- Loredana Delle Chiaie
- Clinic of Obstetrics and Gynecology, Klinikum Stuttgart-Olgahospital/Frauenklinik, Kriegsbergstraße 62, 70174, Stuttgart, Germany.
| | - Patrick Neuberger
- Clinic of Neonatology and Intensive Care, Klinikum Stuttgart-Olgahospital/Frauenklinik, Stuttgart, Germany
| | - Matthias Vochem
- Clinic of Neonatology and Intensive Care, Klinikum Stuttgart-Olgahospital/Frauenklinik, Stuttgart, Germany
| | - Angela Lihs
- Clinic of Obstetrics and Gynecology, Klinikum Stuttgart-Olgahospital/Frauenklinik, Kriegsbergstraße 62, 70174, Stuttgart, Germany
| | - Ulrich Karck
- Clinic of Obstetrics and Gynecology, Klinikum Stuttgart-Olgahospital/Frauenklinik, Kriegsbergstraße 62, 70174, Stuttgart, Germany
| | - Martin Enders
- Laboratory Prof. Gisela Enders and Colleagues, MVZ, Stuttgart, Germany
| |
Collapse
|
36
|
APOBEC3A Is Upregulated by Human Cytomegalovirus (HCMV) in the Maternal-Fetal Interface, Acting as an Innate Anti-HCMV Effector. J Virol 2017; 91:JVI.01296-17. [PMID: 28956761 DOI: 10.1128/jvi.01296-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the leading cause of congenital infection and is associated with a wide range of neurodevelopmental disabilities and intrauterine growth restriction. Yet our current understanding of the mechanisms modulating transplacental HCMV transmission is poor. The placenta, given its critical function in protecting the fetus, has evolved effective yet largely uncharacterized innate immune barriers against invading pathogens. Here we show that the intrinsic cellular restriction factor apolipoprotein B editing catalytic subunit-like 3A (APOBEC3A [A3A]) is profoundly upregulated following ex vivo HCMV infection in human decidual tissues-constituting the maternal aspect of the placenta. We directly demonstrated that A3A severely restricted HCMV replication upon controlled overexpression in epithelial cells, acting by a cytidine deamination mechanism to introduce hypermutations into the viral genome. Importantly, we further found that A3 editing of HCMV DNA occurs both ex vivo in HCMV-infected decidual organ cultures and in vivo in amniotic fluid samples obtained during natural congenital infection. Our results reveal a previously unexplored role for A3A as an innate anti-HCMV effector, activated by HCMV infection in the maternal-fetal interface. These findings pave the way to new insights into the potential impact of APOBEC proteins on HCMV pathogenesis.IMPORTANCE In view of the grave outcomes associated with congenital HCMV infection, there is an urgent need to better understand the innate mechanisms acting to limit transplacental viral transmission. Toward this goal, our findings reveal the role of the intrinsic cellular restriction factor A3A (which has never before been studied in the context of HCMV infection and vertical viral transmission) as a potent anti-HCMV innate barrier, activated by HCMV infection in the authentic tissues of the maternal-fetal interface. The detection of naturally occurring hypermutations in clinical amniotic fluid samples of congenitally infected fetuses further supports the idea of the occurrence of A3 editing of the viral genome in the setting of congenital HCMV infection. Given the widely differential tissue distribution characteristics and biological functions of the members of the A3 protein family, our findings should pave the way to future studies examining the potential impact of A3A as well as of other A3s on HCMV pathogenesis.
Collapse
|
37
|
León-Juárez M, Martínez–Castillo M, González-García LD, Helguera-Repetto AC, Zaga-Clavellina V, García-Cordero J, Flores-Pliego A, Herrera-Salazar A, Vázquez-Martínez ER, Reyes-Muñoz E. Cellular and molecular mechanisms of viral infection in the human placenta. Pathog Dis 2017; 75:4056146. [PMID: 28903546 PMCID: PMC7108519 DOI: 10.1093/femspd/ftx093] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022] Open
Abstract
The placenta is a highly specialized organ that is formed during human gestation for conferring protection and generating an optimal microenvironment to maintain the equilibrium between immunological and biochemical factors for fetal development. Diverse pathogens, including viruses, can infect several cellular components of the placenta, such as trophoblasts, syncytiotrophoblasts and other hematopoietic cells. Viral infections during pregnancy have been associated with fetal malformation and pregnancy complications such as preterm labor. In this minireview, we describe the most recent findings regarding virus-host interactions at the placental interface and investigate the mechanisms through which viruses may access trophoblasts and the pathogenic processes involved in viral dissemination at the maternal-fetal interface.
Collapse
Affiliation(s)
- Moises León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Macario Martínez–Castillo
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Luis Didier González-García
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Verónica Zaga-Clavellina
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. Av. I.P.N 2508 Col. San Pedro Zacatenco, CP 07360 Ciudad de México, México
| | - Arturo Flores-Pliego
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Alma Herrera-Salazar
- Departamento de Infectología e Inmunología Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales #800, Col. Lomas Virreyes, CP 11000. Ciudad de México, México
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química UNAM, Ciudad de México, México
| | - Enrique Reyes-Muñoz
- Coordinación de Endocrinología, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales #800, Col. Lomas Virreyes, CP 11000. Ciudad de México. México
| |
Collapse
|
38
|
Abstract
Congenital infections with pathogens such as Zika virus, Toxoplasma gondii, Listeria monocytogenes, Treponema pallidium, parvovirus, HIV, varicella zoster virus, Rubella, Cytomegalovirus, and Herpesviruses are a major cause of morbidity and mortality worldwide. Despite the devastating impact of microbial infections on the developing fetus, relatively little is known about how pathogens associated with congenital disease breach the placental barrier to transit vertically during human pregnancy. In this Review, we focus on transplacental transmission of pathogens during human gestation. We introduce the structure of the human placenta and describe the innate mechanisms by which the placenta restricts microbial access to the intrauterine compartment. Based on current knowledge, we also discuss the potential pathways employed by microorganisms to overcome the placental barrier and prospects for the future.
Collapse
Affiliation(s)
- Nitin Arora
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Center for Microbial Pathogenesis, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Obstetrics, Gynecology, and Reproductive Science, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Center for Microbial Pathogenesis, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Center for Microbial Pathogenesis, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
39
|
Martínez-Girón R, Pantanowitz L. Lower respiratory tract viral infections: Diagnostic role of exfoliative cytology. Diagn Cytopathol 2017; 45:614-620. [PMID: 28247571 PMCID: PMC7163526 DOI: 10.1002/dc.23697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/17/2022]
Abstract
Viral lower respiratory tract infections (VLRTI) remain one of the most common causes of morbidity and mortality worldwide. For many years, the diagnosis of VLRTI was based on laboratory techniques such as viral isolation in cell culture, antigen detection by direct fluorescent antibody staining, and rapid enzyme immunoassay. Radiological imaging and morphology also play an important role in diagnosing these infections. Exfoliative cytology provides a simple, rapid, inexpensive, and valuable means to diagnose and manage VLRTI. Here we review viral‐associated cytomorphological changes seen in exfoliated cells of the lower respiratory tract. Diagn. Cytopathol. 2017;45:614–620. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rafael Martínez-Girón
- INCLÍNICA Foundation for Clinical, Pneumological and Carcinogenic Research, Oviedo, 16. 33007, Spain
| | - Liron Pantanowitz
- Department of Pathology, UPMC Shadyside, UPMC Cancer Pavilion Suite 201, Pittsburgh, Pennsylvania
| |
Collapse
|
40
|
Straface G, Zanardo V, De Santis M. Efficacy of oral valacyclovir in cytomegalovirus-infected fetuses. Am J Obstet Gynecol 2017; 216:196. [PMID: 27667766 DOI: 10.1016/j.ajog.2016.09.093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/15/2016] [Indexed: 10/21/2022]
|
41
|
Zika Virus Infects Early- and Midgestation Human Maternal Decidual Tissues, Inducing Distinct Innate Tissue Responses in the Maternal-Fetal Interface. J Virol 2017; 91:JVI.01905-16. [PMID: 27974560 DOI: 10.1128/jvi.01905-16] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/01/2016] [Indexed: 01/31/2023] Open
Abstract
Zika virus (ZIKV) has emerged as a cause of congenital brain anomalies and a range of placenta-related abnormalities, highlighting the need to unveil the modes of maternal-fetal transmission. The most likely route of vertical ZIKV transmission is via the placenta. The earliest events of ZIKV transmission in the maternal decidua, representing the maternal uterine aspect of the chimeric placenta, have remained unexplored. Here, we show that ZIKV replicates in first-trimester human maternal-decidual tissues grown ex vivo as three-dimensional (3D) organ cultures. An efficient viral spread in the decidual tissues was demonstrated by the rapid upsurge and continued increase of tissue-associated ZIKV load and titers of infectious cell-free virus progeny, released from the infected tissues. Notably, maternal decidual tissues obtained at midgestation remained similarly susceptible to ZIKV, whereas fetus-derived chorionic villi demonstrated reduced ZIKV replication with increasing gestational age. A genome-wide transcriptome analysis revealed that ZIKV substantially upregulated the decidual tissue innate immune responses. Further comparison of the innate tissue response patterns following parallel infections with ZIKV and human cytomegalovirus (HCMV) revealed that unlike HCMV, ZIKV did not induce immune cell activation or trafficking responses in the maternal-fetal interface but rather upregulated placental apoptosis and cell death molecular functions. The data identify the maternal uterine aspect of the human placenta as a likely site of ZIKV transmission to the fetus and further reveal distinct patterns of innate tissue responses to ZIKV. Our unique experimental model and findings could further serve to study the initial stages of congenital ZIKV transmission and pathogenesis and evaluate the effect of new therapeutic interventions. IMPORTANCE In view of the rapid spread of the current ZIKV epidemic and the severe manifestations of congenital ZIKV infection, it is crucial to learn the fundamental mechanisms of viral transmission from the mother to the fetus. Our studies of ZIKV infection in the authentic tissues of the human maternal-fetal interface unveil a route of transmission whereby virus originating from the mother could reach the fetal compartment via efficient replication within the maternal decidual aspect of the placenta, coinhabited by maternal and fetal cells. The identified distinct placental tissue innate immune responses and damage pathways could provide a mechanistic basis for some of the placental developmental abnormalities associated with ZIKV infection. The findings in the unique model of the human decidua should pave the way to future studies examining the interaction of ZIKV with decidual immune cells and to evaluation of therapeutic interventions aimed at the earliest stages of transmission.
Collapse
|
42
|
Chavanas S. Peroxisome proliferator-activated receptor γ (PPARγ) activation: A key determinant of neuropathogeny during congenital infection by cytomegalovirus. NEUROGENESIS 2016; 3:e1231654. [PMID: 27844024 DOI: 10.1080/23262133.2016.1231654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/25/2022]
Abstract
Congenital infection by human cytomegalovirus (HCMV) might result in permanent neurological sequelae, including sensorineural deafness, cerebral palsies or devastating neurodevelopmental abnormalities. We recently disclosed that Peroxisome Proliferator-Activated Receptor gamma (PPARγ), a transcription factor of the nuclear receptor superfamily, is a key determinant of HCMV pathogenesis in developing brain. Using neural stem cells from human embryonic stem cells, we showed that HCMV infection strongly increases levels and activity of PPARγ in NSCs. Further in vitro experiments showed that PPARγ activity inhibits the neuronogenic differentiation of NSCs into neurons. Consistently, increased PPARγ expression was found in brain section of fetuses infected by HCMV, but not in uninfected controls. In this commentary, we summarize and discuss our findings and the new insights they provide on the neuropathogenesis of HCMV congenital infection.
Collapse
Affiliation(s)
- Stéphane Chavanas
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France; CNRS UMR 5282 Toulouse, France; Université Paul Sabatier, Toulouse, France
| |
Collapse
|
43
|
Prospects of a vaccine for the prevention of congenital cytomegalovirus disease. Med Microbiol Immunol 2016; 205:537-547. [PMID: 27519596 DOI: 10.1007/s00430-016-0472-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 02/07/2023]
Abstract
Congenital human cytomegalovirus (HCMV) infection is one leading cause of childhood disabilities. Prevention of congenital HCMV disease by vaccination has consequently been identified as a priority public healthcare goal. Several vaccine candidates have been introduced in the past that aimed at the prevention of primary HCMV infection in pregnancy. None of these has provided complete protection, and no licensed vaccine is thus far available. An additional level of complexity has been reached by recent studies indicating that the burden of HCMV transmission and disease following non-primary infections in pregnancy may be higher than previously anticipated. Substantial progress in our understanding of the immunobiology of HCMV infection in pregnancy has fostered studies to test revised or novel vaccine strategies. Preventing HCMV transmission has been identified a surrogate endpoint, rendering the conduction of vaccine studies feasible with reasonable effort. Identification of the glycoprotein complex gH/gL/UL128-131 as a mediator of HCMV host cell tropism and evaluation of that complex as a major target of the neutralizing antibody response made manufacturers consider vaccine candidates that include these proteins. Detailed structural analyses of the neutralizing determinants on HCMV glycoprotein B (gB) have revived interest in using this protein in its pre-fusion conformation for vaccine purposes. Studies in pregnant women and in animal models have provided evidence that addressing the T lymphocyte response by vaccination may be crucial to prevent HCMV transmission to the offspring. CD4 T lymphocytes may be of particular importance in this respect. A simultaneous targeting of both the humoral and cellular immune response against HCMV by vaccination thus appears warranted in order to prevent congenital HCMV infection. There is, however, still need for further research to be able to define an immunological correlate of protection against HCMV transmission during pregnancy. This brief review will highlight recent developments in our understanding of the natural history and immunobiology of HCMV infection in pregnancy and their possible impact on the strategies for the development of an HCMV vaccine.
Collapse
|
44
|
Krömmelbein N, Wiebusch L, Schiedner G, Büscher N, Sauer C, Florin L, Sehn E, Wolfrum U, Plachter B. Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication. Viruses 2016; 8:v8020037. [PMID: 26848680 PMCID: PMC4776192 DOI: 10.3390/v8020037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 11/30/2022] Open
Abstract
The human cytomegalovirus (HCMV) replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP) is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production.
Collapse
Affiliation(s)
- Natascha Krömmelbein
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | - Lüder Wiebusch
- Department of Pediatric Molecular Biology, Charité University Medical Centre Berlin, D-10117 Berlin, Germany.
| | | | - Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | - Caroline Sauer
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | - Luise Florin
- Institute for Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | - Elisabeth Sehn
- Institute for Zoology, Johannes Gutenberg-University Mainz, D-55099 Mainz, Germany.
| | - Uwe Wolfrum
- Institute for Zoology, Johannes Gutenberg-University Mainz, D-55099 Mainz, Germany.
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| |
Collapse
|
45
|
An Ex vivo culture model for placental cytomegalovirus infection using slices of Guinea pig placental tissue. Placenta 2015; 37:85-8. [PMID: 26625961 DOI: 10.1016/j.placenta.2015.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 01/01/2023]
Abstract
Congenital infection with human cytomegalovirus (CMV) through the placenta is one of the major causes of birth and developmental abnormalities. Guinea pig CMV (GPCMV) causes in utero infection, which makes its animal models useful for studies on congenital diseases. Here, we established an ex vivo culture method for tissue slices prepared from guinea pig placentas and demonstrated that viral spread in the model resembles those in the placenta of GPCMV-infected animals and that the infection is independent of the pentameric glycoprotein complex for endothelial/epithelial cell tropism. Thus, this model affords a useful tool for pathobiological studies on CMV placental infection.
Collapse
|
46
|
Weisblum Y, Panet A, Zakay-Rones Z, Vitenshtein A, Haimov-Kochman R, Goldman-Wohl D, Oiknine-Djian E, Yamin R, Meir K, Amsalem H, Imbar T, Mandelboim O, Yagel S, Wolf DG. Human cytomegalovirus induces a distinct innate immune response in the maternal-fetal interface. Virology 2015; 485:289-96. [PMID: 26318261 DOI: 10.1016/j.virol.2015.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 11/16/2022]
Abstract
The initial interplay between human cytomegalovirus (HCMV) and innate tissue response in the human maternal-fetal interface, though crucial for determining the outcome of congenital HCMV infection, has remained unknown. We studied the innate response to HCMV within the milieu of the human decidua, the maternal aspect of the maternal-fetal interface, maintained ex vivo as an integral tissue. HCMV infection triggered a rapid and robust decidual-tissue innate immune response predominated by interferon (IFN)γ and IP-10 induction, dysregulating the decidual cytokine/chemokine environment in a distinctive fashion. The decidual-tissue response was already elicited during viral-tissue contact, and was not affected by neutralizing HCMV antibodies. Of note, IFNγ induction, reflecting immune-cell activation, was distinctive to the maternal decidua, and was not observed in concomitantly-infected placental (fetal) villi. Our studies in a clinically-relevant surrogate human model, provide a novel insight into the first-line decidual tissue response which could affect the outcome of congenital infection.
Collapse
Affiliation(s)
- Yiska Weisblum
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Amos Panet
- Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Zichria Zakay-Rones
- Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Alon Vitenshtein
- The Lautenberg Center for General and Tumor Immunology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Ronit Haimov-Kochman
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Debra Goldman-Wohl
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Rachel Yamin
- The Lautenberg Center for General and Tumor Immunology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Karen Meir
- Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Hagai Amsalem
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Tal Imbar
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Simcha Yagel
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
47
|
Abstract
In this article we present a novel model for how the human placenta might get infected via the hematogenous route. We present a list of diverse placental pathogens, like Listeria monocytogenes or Cytomegalovirus, which are familiar to most obstetricians, but others, like Salmonella typhi, have only been reported in case studies or small case series. Remarkably, all of these organisms on this list are either obligate or facultative intracellular organisms. These pathogens are able to enter and survive inside host immune cells for at least a portion of their life cycle. We suggest that many blood-borne pathogens might arrive at the placenta via transportation inside of maternal leukocytes that enter the decidua in early pregnancy. We discuss mechanisms by which extravillous trophoblasts could get infected in the decidua and spread infection to other layers in the placenta. We hope to raise awareness among OB/GYN clinicians that organisms not typically associated with the TORCH list might cause placental infections and pregnancy complications.
Collapse
|
48
|
Trevisan M, Sinigaglia A, Desole G, Berto A, Pacenti M, Palù G, Barzon L. Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced Pluripotent Stem Cell-Derived Systems. Viruses 2015; 7:3835-56. [PMID: 26184286 PMCID: PMC4517129 DOI: 10.3390/v7072800] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/25/2022] Open
Abstract
The recent biotechnology breakthrough of cell reprogramming and generation of induced pluripotent stem cells (iPSCs), which has revolutionized the approaches to study the mechanisms of human diseases and to test new drugs, can be exploited to generate patient-specific models for the investigation of host–pathogen interactions and to develop new antimicrobial and antiviral therapies. Applications of iPSC technology to the study of viral infections in humans have included in vitro modeling of viral infections of neural, liver, and cardiac cells; modeling of human genetic susceptibility to severe viral infectious diseases, such as encephalitis and severe influenza; genetic engineering and genome editing of patient-specific iPSC-derived cells to confer antiviral resistance.
Collapse
Affiliation(s)
- Marta Trevisan
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova 35121, Italy.
| | | | - Giovanna Desole
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova 35121, Italy.
| | - Alessandro Berto
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova 35121, Italy.
| | - Monia Pacenti
- Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, Padova 35128, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova 35121, Italy.
- Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, Padova 35128, Italy.
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova 35121, Italy.
- Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, Padova 35128, Italy.
| |
Collapse
|
49
|
Bruno L, Cortese M, Rappuoli R, Merola M. Lessons from Reverse Vaccinology for viral vaccine design. Curr Opin Virol 2015; 11:89-97. [PMID: 25829256 DOI: 10.1016/j.coviro.2015.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/02/2015] [Accepted: 03/03/2015] [Indexed: 12/17/2022]
Abstract
Although almost 15 years have passed since the birthdate of Reverse Vaccinology (RV), there are very limited applications of this approach to viral vaccines discovery. Undeniably, RV presents a series of advantages as it can virtually identify all potential antigens coded by a genome, irrespective of their abundance, phase of expression and immunogenicity. Additionally, it can be applied to all pathogens, including those that cannot be grown in vitro. In this review we summarize the few examples of RV application to viruses, in particular the Herpesviridae, and report the advantage and limitations of this approach. Next we focus on the novel approaches and additional technologies to vaccine development including structure based approach (Structural Vaccinology [SV]), synthetic biology and some examples of their application in the development of viral vaccines.
Collapse
Affiliation(s)
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Germany
| | | | - Marcello Merola
- Novartis Vaccines, Siena, Italy; Department of Biology, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|