1
|
Moreto VM, Guazzelli CAF, Ono E, Pendeloski KPT, Araujo E, Daher S. Dietary patterns and inflammatory cytokine levels in healthy adult and adolescent women, whether pregnant or not: a prospective cohort study. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20240538. [PMID: 39536240 PMCID: PMC11554319 DOI: 10.1590/1806-9282.20240538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/07/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE The aim of this study was to assess the dietary pattern of healthy adult and adolescent women, pregnant and non-pregnant, and relate this profile to clinical and laboratory characteristics. METHODS A prospective cohort study was carried out with 40 women who met the selection criteria: 10 non-pregnant adults, 10 pregnant adults, 10 non-pregnant adolescents, and 10 pregnant adolescents. Dietary data were collected using a registration form, a 24-h recall, and a food frequency questionnaire. Serum levels of interleukin 6 and tumor necrosis factor α were determined by capture ELISA. RESULTS The majority of women were married (22.5%), had completed high school (57.5%), and were white (47.5%). Overall, only one (10%) pregnant adult reported smoking. Dietary supplement use was reported by eight (80%) pregnant adults, four (40%) pregnant adolescents, two (20%) non-pregnant adolescents, and no non-pregnant adults. Pregnant adolescents had a higher intake of omega-3 when compared to pregnant adults and non-pregnant adults (p=0.01 and 0.02, respectively). Pregnant adolescents consumed less minimally processed foods than pregnant adults, non-pregnant adults, and non-pregnant adolescents (p=0.008, 0.019, and 0.024, respectively). Serum levels of tumor necrosis factor α and interleukin 6 did not show statistical differences among the four groups (p=0.229 and 0.440, respectively). CONCLUSIONS The dietary patterns of healthy adult and adolescent women, whether pregnant or not, were similar, with pregnant adolescents having a higher intake of omega-3. Pregnant adolescents ate less in natura (minimally processed) food than all the other women.
Collapse
Affiliation(s)
- Vanessa Migray Moreto
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Obstetrics – São Paulo (SP), Brazil
| | | | - Erika Ono
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Obstetrics – São Paulo (SP), Brazil
| | | | - Edward Araujo
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Obstetrics – São Paulo (SP), Brazil
| | - Silvia Daher
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Obstetrics – São Paulo (SP), Brazil
| |
Collapse
|
2
|
Drexhage HA, Bergink V, Poletti S, Benedetti F, Osborne LM. Conventional and new immunotherapies for immune system dysregulation in postpartum mood disorders: comparisons to immune system dysregulations in bipolar disorder, major depression, and postpartum autoimmune thyroid disease. Expert Rev Clin Immunol 2024:1-23. [PMID: 39441185 DOI: 10.1080/1744666x.2024.2420053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Postpartum mood disorders are heterogenous disorders and comprise postpartum psychosis and postpartum depression. Evidence is accumulating that systemic monocyte/macrophage activation, low-grade inflammation and (premature senescence related) T cell defects increase the risk for mood disorders outside pregnancy by affecting the function of microglia and T cells in the emotional brain (the cortico-limbic system) leading to inadequate mood regulation upon stress. AREAS COVERED The evidence in the literature that similar immune dysregulations are present in postpartum mood disorders. RESULTS The physiological postpartum period is characterized by a rapid T cell surge and a mild activation of the monocyte/macrophage system. Postpartum mood disorder patients show a diminished T cell surge (including that of T regulatory cells) and an increase in low grade inflammation, that is, an increased inflammatory state of monocytes/macrophages and higher levels of serum pro-inflammatory cytokines. EXPERT OPINION Anti-inflammatory agents (e.g. COX-2 inhibitors) and T cell boosting agents (e.g. low-dose IL-2 therapy) should be further investigated as treatment. The hypothesis should be investigated that postpartum mood disorders are active episodes (triggered by changes in the postpartum immuno-endocrine milieu) in ongoing, dynamically fluctuating aberrant neuro-immune-endocrine trajectories leading to mood disorders in women (inheritably) vulnerable to these disorders.
Collapse
Affiliation(s)
- Hemmo A Drexhage
- Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Lauren M Osborne
- Departments of Obstetrics and Gynecology and of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
3
|
Mandò C, Castiglioni S, Novielli C, Anelli GM, Serati A, Parisi F, Lubrano C, Zocchi M, Ottria R, Giovarelli M. Placental Bioenergetics and Antioxidant Homeostasis in Maternal Obesity and Gestational Diabetes. Antioxidants (Basel) 2024; 13:858. [PMID: 39061926 PMCID: PMC11273840 DOI: 10.3390/antiox13070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Maternal obesity has been associated with short- and long-term risks of pregnancy-perinatal adverse events, possibly due to alterations of placental mitochondrial bioenergetics. However, several detrimental mechanisms occurring in the placentas of women with obesity still need to be clarified. Here, we analyzed placental mitochondrial features and oxidative environment of 46 pregnancies in relation to pre-pregnancy BMI. Seventeen Caucasian normal-weight (NW) and twenty-nine women who were obese (OB) were enrolled. The protein expression of mitochondrial CypD and electron transfer chain complexes (C) I-V were measured, as well as ATP production and oxygen consumption rates (OCRs). The protein levels of the pro/anti-oxidant enzymes TXNIP, SOD2, and PON2 were also analyzed. Despite no differences in CypD expression, OCRs were significantly lower in OB vs. NW women. Accordingly, ATP synthase (CV) levels and ATP content were decreased in OB women, positively correlating with placental efficiency, suggesting a link between ATP deficiency and placental dysfunction. SOD2 expression negatively correlated with maternal BMI, indicating a possible impairment of antioxidant defenses with increasing BMI. These changes were worsened in 10 OB women presenting with gestational diabetes mellitus. Overall, these results suggest alterations of placental bioenergetics in pregnancies of women with obesity, possibly leading to placental dysfunction and altered fetal development and programming.
Collapse
Affiliation(s)
- Chiara Mandò
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Chiara Novielli
- Department of Woman, Mother and Neonate, Buzzi Children’s Hospital, ASST Fatebenefratelli Sacco, 20154 Milan, Italy
| | - Gaia Maria Anelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Anaïs Serati
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Francesca Parisi
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
- Department of Woman, Mother and Neonate, Buzzi Children’s Hospital, ASST Fatebenefratelli Sacco, 20154 Milan, Italy
| | - Chiara Lubrano
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Monica Zocchi
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Roberta Ottria
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| |
Collapse
|
4
|
Valiati N, Puel EM, Stefani CM, Lataro RM. Does probiotic ingestion reduce the risk of preeclampsia? A systematic review. Appl Physiol Nutr Metab 2024; 49:135-147. [PMID: 37844331 DOI: 10.1139/apnm-2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
We aimed to systematically review the literature on the effects of probiotic consumption on the risk of preeclampsia (PE) development. Eight databases, clinical trial registries, and grey literature were searched until February 2022. Studies were included if they (1) were randomized clinical trials (RCTs), (2) included pregnant women aged ≥ 18 years old, (3) used probiotics products, and (4) were written in the Latin alphabet. A random-effects meta-analysis was performed using the risk ratio as the effect measure with 95% confidence intervals (CI) for PE. The search strategy identified 359 records, from which six RCTs were included. The six RCTs evaluated pregnant women with comorbidities and enrolled 593 women that received probiotics and 625 receiving placebo. None of the included RCTs analyzed healthy women. Probiotics increased by 12% the PE risk (RR 1.12, 95% CI, CI = 0.83-1.53, p = 0.46, χ2 = 3.31, df = 5 (p = 0.65), I2 = 0%). The certainty of the evidence, evaluated through the Grading of Recommendations Assessment, Development and Evaluation approach, was rated as very low. In conclusion, probiotics supplementation may slightly increase PE rates in pregnant women with comorbidities. The risk may be higher in obese women and for periods of ingestion longer than eight weeks. However, the evidence certainty is very low. PROSPERO registration No.CRD42021278611.
Collapse
Affiliation(s)
- Nayara Valiati
- Department of Physiological SciencesCenter of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Esthela M Puel
- Department of Physiological SciencesCenter of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cristine M Stefani
- Department of DentistryFaculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Renata M Lataro
- Department of Physiological SciencesCenter of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
5
|
Wanjari UR, Gopalakrishnan AV. A review on immunological aspects in male reproduction: An immune cells and cytokines. J Reprod Immunol 2023; 158:103984. [PMID: 37390629 DOI: 10.1016/j.jri.2023.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 07/02/2023]
Abstract
The male reproductive system, particularly the male gamete, offers a unique barrier to the immune system. The growing germ cells in the testis need to be shielded from autoimmune damage. Hence the testis has to establish and sustain an immune-privileged milieu. Sertoli cells create this safe space, protected by the blood-testis barrier. Cytokines are a type of immune reaction that can positively and negatively affect male reproductive health. Inflammation, disease, and obesity are just a few physiological conditions for which cytokines mediate signals. They interact with steroidogenesis, shaping the adrenals and testes to produce the hormones needed for survival. In particular pathological condition, including autoimmune disorders, contains high levels of the same cytokines in semen that play an essential role in the immunomodulation of the male gonad. This review focuses on understanding the immunological role of cytokines in the control and development of male reproduction. Also, in maintaining male reproductive health and diseases linked with their aberrant function in the testis.
Collapse
Affiliation(s)
- Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
6
|
Zavatta A, Parisi F, Mandò C, Scaccabarozzi C, Savasi VM, Cetin I. Role of Inflammaging on the Reproductive Function and Pregnancy. Clin Rev Allergy Immunol 2023; 64:145-160. [PMID: 35031955 PMCID: PMC8760119 DOI: 10.1007/s12016-021-08907-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
During female lifetime and pregnancy, inflammation and cellular senescence are implicated in physiological processes, from ovulation and menstruation, to placental homeostasis and delivery. Several lifestyles, nutritional, and environmental insults, as well as long-lasting pregestational inflammatory diseases may lead to detrimental effects in promoting and sustaining a chronic excessive inflammatory response and inflammaging, which finally contribute to the decay of fertility and pregnancy outcome, with a negative effect on placental function, fetal development, and future health risk profile in the offspring. Maladaptation to pregnancy and obstetric disease may in turn increase maternal inflammaging in a feedback loop, speeding up aging processes and outbreak of chronic diseases. Maternal inflammaging may also impact, through transgenerational effects, on future adult health. Hence, efficacious interventions should be implemented by physicians and healthcare professionals involved in prevention activities to reduce the modifiable factors contributing to the inflammaging process in order to improve public health.
Collapse
Affiliation(s)
- Alice Zavatta
- Department of Woman Mother and Neonate 'V. Buzzi' Children Hospital, ASST Fatebenefratelli Sacco, 20154, Milan, Italy
- Department of Woman Mother and Neonate 'L. Sacco' Hospital, ASST Fatebenefratelli Sacco, 20157, Milan, Italy
| | - Francesca Parisi
- Department of Woman Mother and Neonate 'V. Buzzi' Children Hospital, ASST Fatebenefratelli Sacco, 20154, Milan, Italy
| | - Chiara Mandò
- Department of Biomedical and Clinical Sciences, "Luigi Sacco", University of Milan, 20157, Milan, Italy
| | - Chiara Scaccabarozzi
- Department of Woman Mother and Neonate 'L. Sacco' Hospital, ASST Fatebenefratelli Sacco, 20157, Milan, Italy
| | - Valeria M Savasi
- Department of Biomedical and Clinical Sciences, "Luigi Sacco", University of Milan, 20157, Milan, Italy
- Department of Woman Mother and Neonate 'L. Sacco' Hospital, ASST Fatebenefratelli Sacco, 20157, Milan, Italy
| | - Irene Cetin
- Department of Woman Mother and Neonate 'V. Buzzi' Children Hospital, ASST Fatebenefratelli Sacco, 20154, Milan, Italy.
- Department of Biomedical and Clinical Sciences, "Luigi Sacco", University of Milan, 20157, Milan, Italy.
| |
Collapse
|
7
|
Metabolic Regulation of T cell Activity: Implications for Metabolic-Based T-cell Therapies for Cancer. IRANIAN BIOMEDICAL JOURNAL 2023; 27:1-14. [PMID: 36624636 PMCID: PMC9971708 DOI: 10.52547/ibj.3811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Immunometabolism is an emerging field in tumor immunotherapy. Understanding the metabolic competition for access to the limited nutrients between tumor cells and immune cells can reveal the complexity of the tumor microenvironment and help develop new therapeutic approaches for cancer. Recent studies have focused on modifying the function of immune cells by manipulating their metabolic pathways. Besides, identifying metabolic events, which affect the function of immune cells leads to new therapeutic opportunities for treatment of inflammatory diseases and immune-related conditions. According to the literature, metabolic pathway such as glycolysis, tricarboxylic acid cycle, and fatty acid metabolism, significantly influence the survival, proliferation, activation, and function of immune cells and thus regulate immune responses. In this paper, we reviewed the role of metabolic processes and major signaling pathways involving in T-cell regulation and T-cell responses against tumor cells. Moreover, we summarized the new therapeutics suggested to enhance anti-tumor activity of T cells through manipulating metabolic pathways.
Collapse
|
8
|
Anwar MM, Albanese C, Hamdy NM, Sultan AS. Rise of the natural red pigment 'prodigiosin' as an immunomodulator in cancer. Cancer Cell Int 2022; 22:419. [PMID: 36577970 PMCID: PMC9798661 DOI: 10.1186/s12935-022-02815-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer is a heterogeneous disease with multifaceted drug resistance mechanisms (e.g., tumour microenvironment [TME], tumour heterogeneity, and immune evasion). Natural products are interesting repository of bioactive molecules, especially those with anticancer activities. Prodigiosin, a red pigment produced by Serratia marcescens, possesses inherent anticancer characteristics, showing interesting antitumour activities in different cancers (e.g., breast, gastric) with low or without harmful effects on normal cells. The present review discusses the potential role of prodigiosin in modulating and reprogramming the metabolism of the various immune cells in the TME, such as T and B lymphocytes, tumour-associated macrophages (TAMs), natural killer (NK) cells, and tumour-associated dendritic cells (TADCs), and myeloid-derived suppressor cells (MDSCs) which in turn might introduce as an immunomodulator in cancer therapy.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- grid.7155.60000 0001 2260 6941Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Chris Albanese
- grid.516085.f0000 0004 0606 3221Oncology and Radiology Departments, Lombardi Comprehensive Cancer Center, Washington, D.C. USA
| | - Nadia M. Hamdy
- Department of Biochemistry, Ain Shams Faculty of Pharmacy, Cairo, Egypt
| | - Ahmed S. Sultan
- grid.7155.60000 0001 2260 6941Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Wang Q, Zhang X, Li C, Xiong M, Bai W, Sun S, Chen C, Zhang X, Li M, Zhao A. Intracellular Lipid Accumulation Drives the Differentiation of Decidual Polymorphonuclear Myeloid-Derived Suppressor Cells via Arachidonic Acid Metabolism. Front Immunol 2022; 13:868669. [PMID: 35664000 PMCID: PMC9159278 DOI: 10.3389/fimmu.2022.868669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Decidual polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are essential to immune tolerance during pregnancy. A reduction in the number of these cells is associated with unexplained recurrent pregnancy loss (URPL). In our previous study, we reported that PMN-MDSCs are a group of mature neutrophils that are activated by the decidua microenvironment. In the present study, we show that the decidua microenvironment induces substantial lipid accumulation in neutrophils during their differentiation to PMN-MDSCs. Lower levels of lipid accumulation are detected in PMN-MDSCs from URPL patients, and the amount of lipid in the PMN-MDSCs is positively correlated with the proportion of PMN-MDSCs. Next, we demonstrate that decidua-derived IL6 with the presence of arachidonic acid upregulates fatty acid-binding protein 5 (FABP5) via the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Fy -60ABP5 then continuously stimulates intracellular lipid accumulation. Increased intracellular lipid accumulation mediates arachidonic acid metabolism, a pathway that is significantly activated by the induction of the decidua microenvironment, to stimulate the synthesis of prostaglandin E2 (PGE2) and finally induce the differentiation of PMN-MDSCs. To summarize, decidua-derived IL6 facilitates the differentiation of PMN-MDSCs from neutrophils via the pSTAT3/FABP5/PGE2 pathway. Defects in the process may result in impaired differentiation and dysfunction of PMN-MDSCs in URPL. These findings enhance our understanding of the physiological mechanisms of immune tolerance in pregnancy and provide therapeutic options for URPL.
Collapse
Affiliation(s)
- Qiaohong Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Xinyang Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Congcong Li
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Miao Xiong
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenxin Bai
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Si Sun
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Chao Chen
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Xiaoxin Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Mingyang Li
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Aimin Zhao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| |
Collapse
|
10
|
Rees A, Richards O, Chambers M, Jenkins BJ, Cronin JG, Thornton CA. Immunometabolic adaptation and immune plasticity in pregnancy and the bi-directional effects of obesity. Clin Exp Immunol 2022; 208:132-146. [PMID: 35348641 PMCID: PMC9188350 DOI: 10.1093/cei/uxac003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/24/2022] [Indexed: 01/25/2023] Open
Abstract
Mandatory maternal metabolic and immunological changes are essential to pregnancy success. Parallel changes in metabolism and immune function make immunometabolism an attractive mechanism to enable dynamic immune adaptation during pregnancy. Immunometabolism is a burgeoning field with the underlying principle being that cellular metabolism underpins immune cell function. With whole body changes to the metabolism of carbohydrates, protein and lipids well recognised to occur in pregnancy and our growing understanding of immunometabolism as a determinant of immunoinflammatory effector responses, it would seem reasonable to expect immune plasticity during pregnancy to be linked to changes in the availability and handling of multiple nutrient energy sources by immune cells. While studies of immunometabolism in pregnancy are only just beginning, the recognised bi-directional interaction between metabolism and immune function in the metabolic disorder obesity might provide some of the earliest insights into the role of immunometabolism in immune plasticity in pregnancy. Characterised by chronic low-grade inflammation including in pregnant women, obesity is associated with numerous adverse outcomes during pregnancy and beyond for both mother and child. Concurrent changes in metabolism and immunoinflammation are consistently described but any causative link is not well established. Here we provide an overview of the metabolic and immunological changes that occur in pregnancy and how these might contribute to healthy versus adverse pregnancy outcomes with special consideration of possible interactions with obesity.
Collapse
Affiliation(s)
- April Rees
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Oliver Richards
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Megan Chambers
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Benjamin J Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - James G Cronin
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Catherine A Thornton
- Corresponding author: Cathy Thornton, ILS1, Swansea University Medical School, Singleton Campus, Swansea University, Swansea, Wales SA2 8PP, UK.
| |
Collapse
|
11
|
Sun J, Sun J. How neuroactive factors mediates immune responses during pregnancy: An interdisciplinary view. Neuropeptides 2022; 91:102213. [PMID: 34839164 DOI: 10.1016/j.npep.2021.102213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/25/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022]
Abstract
Pregnancy, from insemination to parturition, is a highly complex but well-orchestrated process that requires various organs and systems to participate. Immune system and neuroendocrine system are important regulators in healthy pregnancy. Dozens of neuroactive factors have been detected in human placenta, whether they are locally secreted or circulated. Among them, some are vividly studied such as corticotropin-releasing hormone (CRH), human chorionic gonadotropin (hCG), transforming growth factor-β (TGF-β), progesterone and estrogens, while others are relatively lack of research. Though the neuroendocrine-immune interactions are demonstrated in some diseases for decades, the roles of neuroactive factors in immune system and lymphocytes during pregnancy are not fully elucidated. This review aims to provide an interdisciplinary view on how the neuroendocrine system mediate immune system during pregnancy process.
Collapse
Affiliation(s)
- Jiani Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
12
|
Yao Y, Uddin MN, Manley K, Lawrence DA. Constitutive activation of Notch signalling and T cell activation characterize a mouse model of autism. Cell Biochem Funct 2022; 40:150-162. [PMID: 34978084 DOI: 10.1002/cbf.3684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Gene and protein expression of BTBR T+ Itpr3tf /J (BTBR) mice with autistic-like behaviours were compared with the C57BL/6J strain, which is considered to have normal immunity and behaviour. Notch signalling pathway was constitutively activated in the immune system and liver of BTBR T+ Itpr3tf /J (BTBR) mice. Notch ligand 4 (Dll4), Notch receptors (Notch1 Notch2 and Notch3) and recombination signal binding protein for immunoglobulin κ j region (RBPJ) were increased both at gene and protein levels in BTBR spleens and thymi. Notch downstream transcriptional factors, Tbx21, Gata3, Rorc and FoxP3 were increased in BTBR spleens, Gata3 and FoxP3 were increased in BTBR thymi and BTBR mice have a high blood CD4/CD8 T cell ratio. Reduced nucleotide excision repair ability in BTBR spleens was associated with increased 8-oxoguanine, Ogg1 inhibition, an enhanced level of apoptotic thymocytes and higher expression of GATA-3. Ogg1 inhibition and enhanced GATA-3 expression also were detected in BTBR brain. Notch signal promoted mitochondrial dynamics switching to enhanced fission with an increased number and mass of mitochondria in immune cells of BTBR mice, but not in livers and brains. Constitutive influences on mitochondria exist in this mouse model of autism spectrum disorder; similar outcomes from environmental exposures might occur perinatally in susceptible individuals to affect the development of autism.
Collapse
Affiliation(s)
- Yunyi Yao
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | | | - Kevin Manley
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | - David A Lawrence
- New York State Department of Health, Wadsworth Center, Albany, New York, USA.,Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, New York, USA
| |
Collapse
|
13
|
Does Altered Cellular Metabolism Underpin the Normal Changes to the Maternal Immune System during Pregnancy? IMMUNOMETABOLISM 2021; 3:e210031. [PMID: 34729242 PMCID: PMC7611926 DOI: 10.20900/immunometab20210031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pregnancy is characterised by metabolic changes that occur to support the growth and development of the fetus over the course of gestation. These metabolic changes can be classified into two distinct phases: an initial anabolic phase to prepare an adequate store of substrates and energy which are then broken down and used during a catabolic phase to meet the energetic demands of the mother, placenta and fetus. Dynamic readjustment of immune homeostasis is also a feature of pregnancy and is likely linked to the changes in energy substrate utilisation at this time. As cellular metabolism is increasingly recognised as a key determinant of immune cell phenotype and function, we consider how changes in maternal metabolism might contribute to T cell plasticity during pregnancy.
Collapse
|
14
|
Wei Y, Ding J, Li J, Cai S, Liu S, Hong L, Yin T, Zhang Y, Diao L. Metabolic Reprogramming of Immune Cells at the Maternal-Fetal Interface and the Development of Techniques for Immunometabolism. Front Immunol 2021; 12:717014. [PMID: 34566973 PMCID: PMC8458575 DOI: 10.3389/fimmu.2021.717014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
Immunity and metabolism are interdependent and coordinated, which are the core mechanisms for the body to maintain homeostasis. In tumor immunology research, immunometabolism has been a research hotspot and has achieved groundbreaking changes in recent years. However, in the field of maternal-fetal medicine, research on immunometabolism is still lagging. Reports directly investigating the roles of immunometabolism in the endometrial microenvironment and regulation of maternal-fetal immune tolerance are relatively few. This review highlights the leading techniques used to study immunometabolism and their development, the immune cells at the maternal-fetal interface and their metabolic features required for the implementation of their functions, explores the interaction between immunometabolism and pregnancy regulation based on little evidence and clues, and attempts to propose some new research directions and perspectives.
Collapse
Affiliation(s)
- Yiqiu Wei
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinli Ding
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianan Li
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Su Liu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.,Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, China
| | - Ling Hong
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.,Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.,Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, China
| |
Collapse
|
15
|
Ye L, Huang W, Liu S, Cai S, Hong L, Xiao W, Thiele K, Zeng Y, Song M, Diao L. Impacts of Immunometabolism on Male Reproduction. Front Immunol 2021; 12:658432. [PMID: 34367130 PMCID: PMC8334851 DOI: 10.3389/fimmu.2021.658432] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
The physiological process of male reproduction relies on the orchestration of neuroendocrine, immune, and energy metabolism. Spermatogenesis is controlled by the hypothalamic-pituitary-testicular (HPT) axis, which modulates the production of gonadal steroid hormones in the testes. The immune cells and cytokines in testes provide a protective microenvironment for the development and maturation of germ cells. The metabolic cellular responses and processes in testes provide energy production and biosynthetic precursors to regulate germ cell development and control testicular immunity and inflammation. The metabolism of immune cells is crucial for both inflammatory and anti-inflammatory responses, which supposes to affect the spermatogenesis in testes. In this review, the role of immunometabolism in male reproduction will be highlighted. Obesity, metabolic dysfunction, such as type 2 diabetes mellitus, are well documented to impact male fertility; thus, their impacts on the immune cells distributed in testes will also be discussed. Finally, the potential significance of the medicine targeting the specific metabolic intermediates or immune metabolism checkpoints to improve male reproduction will also be reassessed.
Collapse
Affiliation(s)
- Lijun Ye
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Wensi Huang
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Su Liu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Ling Hong
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Weiqiang Xiao
- Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Kristin Thiele
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yong Zeng
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Mingzhe Song
- Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
16
|
Magnus MC, Ferreira DDS, Borges MC, Tilling K, Lawlor DA, Fraser A. Cardiometabolic health during early adulthood and risk of miscarriage: a prospective study. Wellcome Open Res 2021; 5:205. [PMID: 33644403 PMCID: PMC7888356 DOI: 10.12688/wellcomeopenres.16245.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Several studies have found that women who are overweight or obese have an increased risk of miscarriage. There is also some evidence of associations of other aspects of cardiometabolic health, including blood pressure and lipids, with miscarriage risk, although these have not been examined to the same extent as body-mass index (BMI). Methods: Our objective was to investigate the risk of miscarriage according to pre-pregnancy cardiometabolic health. We examined pre-pregnancy levels of BMI, blood pressure, fasting insulin and metabolites profile at age 18 and risk of miscarriage by age 24. The study included adult female offspring in the Avon Longitudinal Study of Parents and Children with a pregnancy between 18 and 24 years of age (n=434 for BMI and blood pressure; n=265 for metabolites). We used log-binomial regression to calculate adjusted associations between cardiometabolic health measures and miscarriage. Results: The overall risk of miscarriage was 22%. The adjusted relative risks for miscarriage were 0.96 (95% CI: 0.92-1.00) for BMI (per unit increase), 0.98 (0.96-1.00) for systolic blood pressure, and 1.00 (0.97-1.04) for diastolic blood pressure (per 1 mmHg increase). Total cholesterol, total lipids and phospholipids in HDL-cholesterol were associated with increased likelihood of miscarriage, but none of the p-values for the metabolites were below the corrected threshold for multiple testing (p-value ≤0.003). Conclusions: Our findings indicate no strong evidence to support a relationship between pre-pregnancy cardiometabolic health and risk of miscarriage in young, healthy women who became pregnant before age 24. Future studies are necessary that are able to evaluate this question in samples with a wider age range.
Collapse
Affiliation(s)
- Maria C. Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, 0213, Norway
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Diana D. S. Ferreira
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kate Tilling
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| | - Abigail Fraser
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| |
Collapse
|
17
|
Stocker LJ, Cagampang FR, Lu S, Ladyman T, Cheong YC. Is sleep deficit associated with infertility and recurrent pregnancy losses? Results from a prospective cohort study. Acta Obstet Gynecol Scand 2020; 100:302-313. [PMID: 32981061 DOI: 10.1111/aogs.14008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Biological rhythms, the innate cycle of changes in the body's physiological functions, are circadian if they have a 24-hour period. It is known that sleep is a key feature of human circadian rhythm but the relation between sleep and female fertility is largely unknown. This paucity of research is surprising given that circadian rhythms are paramount to human physiology and sleep is related to major female reproductive events. This study was designed to investigate whether there is a difference between the sleep and activity parameters of women with poor reproductive outcome compared with healthy, fertile parous women (comparator group) using subjective (questionnaires) and objective (actigraphy and light exposure) measures. MATERIAL AND METHODS A prospective cohort study in a tertiary in vitro fertilization referral center in the UK; composed of three study groups: women diagnosed with recurrent implantation failure, women with recurrent miscarriage (RM) and a comparison group (fertile women without endometrial pathology). Comparison women were selected gynecology patients without endometrial disease (ie perineal complaints or altruistic egg donors). Primary outcome was differences in objective length of sleep in each of the participant groups using actigraphy. Secondary outcomes were subjective sleep quality and quantity, using participant questionnaires, light exposure, and the feasibility of machine learning in activity-pattern interpretation. RESULTS Women with recurrent implantation failure slept daily on average for 7 hours 35 minutes (± 57 min), 53 minutes less than the comparison group (P = .03), although quality of their objective sleep, and quantity of their subjective sleep, were not significantly different. Women with recurrent miscarriage slept less that the comparison women (36 minutes less/night) but more than women with recurrent implantation failure (17 minutes more/night). No difference in light exposure was found between recurrent miscarriage and the recurrent implantation failure and comparison groups. CONCLUSIONS This study demonstrates an objective observation of sleep time reduction in women with subfertility, although it is not yet clear if this association is casual. Given our increased understanding of the internal body clock and circadian rhythm on fertility, our observation warrants further investigation.
Collapse
Affiliation(s)
- Linden Jane Stocker
- Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Felino Ramon Cagampang
- Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Shilong Lu
- Department of Electronics and Computer and Sciences, University of Southampton, Southampton, UK
| | - Tom Ladyman
- Department of Electronics and Computer and Sciences, University of Southampton, Southampton, UK
| | - Ying Chin Cheong
- Complete Fertility Centre, Princess Anne Hospital, Southampton, UK
| |
Collapse
|
18
|
Nepomnaschy PA, Rowlands A, Prescivalli Costa AP, Salvante KG. Socio-Ecological Challenges as Modulators of Women's Reproductive Trajectories. ANNUAL REVIEW OF ANTHROPOLOGY 2020. [DOI: 10.1146/annurev-anthro-102317-045930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Amenorrhea, anovulatory cycles, miscarriages, and other reproductive outcomes are often seen as pathological. Life history theory, in contrast, treats those outcomes as adaptations that helped women optimize the timing of reproductive ventures across our evolutionary history. Women's bodies adjust their reproductive strategies in response to socio-ecological conditions, a process mediated by the hypothalamic-pituitary-adrenal axis (HPAA). Here, we review the links between socio-ecological conditions, HPAA activity, and the pace of women's reproductive transitions such as puberty, age at first birth, interbirth interval, and perimenopause. We also discuss the HPAA's role as a modulator of reproductive function: It not only suppresses it but may also prime women's bodies for future reproductive ventures. We conclude by reviewing challenges and opportunities within our subfield, including the need for transdisciplinary teams to develop longitudinal studies to improve our understanding of women's reproductive trajectories and outcomes from the moment they are conceived.
Collapse
Affiliation(s)
- Pablo A. Nepomnaschy
- Maternal and Child Health Laboratory, Faculty of Health Sciences; and Crawford Laboratory of Evolutionary Studies, Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada;, , ,
| | - Amanda Rowlands
- Maternal and Child Health Laboratory, Faculty of Health Sciences; and Crawford Laboratory of Evolutionary Studies, Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada;, , ,
| | - Ana Paula Prescivalli Costa
- Maternal and Child Health Laboratory, Faculty of Health Sciences; and Crawford Laboratory of Evolutionary Studies, Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada;, , ,
| | - Katrina G. Salvante
- Maternal and Child Health Laboratory, Faculty of Health Sciences; and Crawford Laboratory of Evolutionary Studies, Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada;, , ,
| |
Collapse
|
19
|
Magnus MC, Ferreira DDS, Borges MC, Tilling K, Lawlor DA, Fraser A. Cardiometabolic health during early adulthood and risk of miscarriage: a prospective study. Wellcome Open Res 2020; 5:205. [PMID: 33644403 PMCID: PMC7888356 DOI: 10.12688/wellcomeopenres.16245.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2020] [Indexed: 11/08/2023] Open
Abstract
Background: Several studies have found that women who are overweight or obese have an increased risk of miscarriage. There is also some evidence of associations of other aspects of cardiometabolic health, including blood pressure and lipids, with miscarriage risk, although these have not been examined to the same extent as body-mass index (BMI). Methods: Our objective was to investigate the risk of miscarriage according to pre-pregnancy cardiometabolic health. We examined pre-pregnancy levels of BMI, blood pressure, fasting insulin and metabolites profile at age 18 and risk of miscarriage by age 24. The study included adult female offspring in the Avon Longitudinal Study of Parents and Children with a pregnancy between 18 and 24 years of age (n=434 for BMI and blood pressure; n=265 for metabolites). We used log-binomial regression to calculate adjusted associations between cardiometabolic health measures and miscarriage. Results: The overall risk of miscarriage was 22%. The adjusted relative risks for miscarriage were 0.96 (95% CI: 0.92-1.00) for BMI (per unit increase), 0.98 (0.96-1.00) for systolic blood pressure, and 1.00 (0.97-1.04) for diastolic blood pressure (per 1 mmHg increase). Total cholesterol, total lipids and phospholipids in HDL-cholesterol were associated with increased likelihood of miscarriage, but none of the p-values for the metabolites were below the corrected threshold for multiple testing (p-value ≤0.003). Conclusions: Pre-pregnancy cardiometabolic health in late adolescence was not associated with miscarriage risk in young, healthy women who became pregnant before age 24.
Collapse
Affiliation(s)
- Maria C. Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, 0213, Norway
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Diana D. S. Ferreira
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kate Tilling
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| | - Abigail Fraser
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| |
Collapse
|
20
|
Liu N, Chen J, He Y, Jia H, Jiang D, Li S, Yang Y, Dai Z, Wu Z, Wu G. Effects of maternal L-proline supplementation on inflammatory cytokines at the placenta and fetus interface of mice. Amino Acids 2020; 52:587-596. [PMID: 32170468 DOI: 10.1007/s00726-020-02837-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
Dietary L-proline (proline) supplementation during gestation enhances fetal survival and placental development in mice. The objective of the present study was to test the hypothesis that this beneficial effect of proline was associated with alterations in inflammatory response at the placenta and fetus interface. Populations of immune cells present in peripheral blood mononuclear cells (PBMC) were determined by flow cytometry analysis. The concentrations of immunoglobulins in plasma, and the concentrations of cytokines in plasma, uterus, placenta, and amniotic fluid were measured using a bead-based immunoassay. The data showed that proline supplementation led to higher (P < 0.05) populations of B lymphocytes (CD3-CD19+), natural killer (NK) cells (CD3-NK1.1+), and dendritic cells (DCs, CD11c+MHCII+) in peripheral blood, as compared with the controls. Conversely, mice fed a proline-supplemented diet had a lower population of neutrophils (CD11b+F4/80-). Further study showed that proline supplementation decreased (P < 0.05) the concentrations of (1) interleukin (IL)-23, IL-1α, and IL-6 in plasma; (2) IL-6 in the uterus; and (3) tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein (MCP)-1, and IL-17 in the placenta; and (4) interferon (IFN)-γ in amniotic fluid, compared with controls. Conversely, proline supplementation resulted in higher (P < 0.05) concentrations of (1) IL-10, IL-17 and granulocyte-macrophage colony-stimulating factor (GM-CSF) in plasma; (2) IL-10 and IL-1α in the uterus; and (3) IL-1α, IL-1β, IL-10, IL-27, and IFN-β in amniotic fluid, compared with controls. Moreover, concentrations of immunoglobulin (Ig) G2b and IgM were enhanced (P < 0.05) by proline administration. Taken together, our results reveal a regulatory effect of proline in the immunological response at the maternal-fetal interface, which is critical for embryonic development and fetal survival.
Collapse
Affiliation(s)
- Ning Liu
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jingqing Chen
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yu He
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Hai Jia
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Da Jiang
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Shuai Li
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Zhaolai Dai
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.
| | - Guoyao Wu
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
21
|
Diao L, Cai S, Ding J, Zeng Y. Metabolic and Nutritional Impact on Endometrial Gene Expression and Reproductive Disorder. ENDOMETRIAL GENE EXPRESSION 2020:199-214. [DOI: 10.1007/978-3-030-28584-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Thiele K, Ahrendt LS, Hecher K, Arck PC. The mnemonic code of pregnancy: Comparative analyses of pregnancy success and complication risk in first and second human pregnancies. J Reprod Immunol 2019; 134-135:11-20. [PMID: 31374263 DOI: 10.1016/j.jri.2019.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 11/16/2022]
Abstract
Obstetrical complications such as spontaneous abortion/miscarriage, fetal growth restriction, preeclampsia or preterm birth occur in approx. 15% of human pregnancies. Clinical experts often state that a previous uncomplicated pregnancy reduces the risk for complications in subsequent pregnancies. Vice versa, a prior pregnancy affected by obstetrical complications increases the risk for reoccurrence. However, published evidence directly underpinning these clinical statements is sparse. Considering that the maternal immune adaptation may be causally involved in determining the outcome of subsequent pregnancies, a comprehensive analysis of clinical data was long overdue. We here present a systematic analysis of clinical data using a PubMed-based approach to identify human studies with relevant information on birth weight and incidences of pregnancy complications in first and second pregnancies. From initially 18,592 publications, 37 studies were included in the quantitative data analysis. Women with a previous pregnancy affected by complications where a derailed immune response can be inferred have a 2.2-3.2-fold increased risk to be affected again in a subsequent pregnancy. Conversely, a normally progressing primary pregnancy reduced the risk for complications in a subsequent pregnancy by 35-65%. Moreover, an uncomplicated primary pregnancy was associated with a 4.2% increased birth weight in a following pregnancy without a difference in gestational age at delivery. In conclusion, the increased birth weight after previously uncomplicated pregnancies suggests that an immune memory is mounted during primary pregnancies. This immune memory may promote the successful outcome of subsequent pregnancies or - if missing or compromised - account for a risk perpetuation of pregnancy complications.
Collapse
Affiliation(s)
- Kristin Thiele
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Lisa Sophie Ahrendt
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kurt Hecher
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Clara Arck
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
23
|
Lin Y, Liu Y, Ding G, Touqui L, Wang W, Xu N, Liu K, Zhang L, Chen D, Wu Y, Bai G. Efficacy of tenofovir in preventing perinatal transmission of HBV infection in pregnant women with high viral loads. Sci Rep 2018; 8:15514. [PMID: 30341345 PMCID: PMC6195597 DOI: 10.1038/s41598-018-33833-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
Mother-to-child transmission is the major cause of chronic hepatitis B virus (HBV) infection. This double-blind trial tested the effect of tenofovir disoproxil fumarate (TDF) in preventing vertical transmission. Pregnant women who were HBsAg/HBeAg-positive with a HBV DNA titer ≥ 2×106 IU/mL were randomly assigned to the control (n = 60) and TDF-treated (n = 60) groups. TDF treatment (oral dose 300 mg/day) was initiated at 24 weeks of gestation and continued to 4 weeks after delivery. The subjects were followed up to 28 weeks postpartum. The effects of TDF on vertical transmission, outcomes of the mothers and infants and virological changes were monitored. TDF dynamically reduced the serum HBV DNA level of the mothers, particularly during the first 4 weeks of treatment. The lower viral loads were maintained in the pregnancies until delivery. Approximately 90% and 33.9% of the TDF-treated mothers had viral loads ≤2000 IU/mL after delivery and at 28 weeks postpartum, respectively. No cervical transmission or adverse effects were observed in the TDF-treated individuals, whereas 13.5% of the infants were infected with HBV in the control group. We conclude that TDF treatment initiated at 24 weeks of gestation in high-viremia, HBsAg/HBeAg-positive mothers efficiently prevents mother-to-child HBV transmission without adverse events in mothers and infants.
Collapse
Affiliation(s)
- Yayun Lin
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Liu
- Research Center for Clinical and Translational Medicine/Institute of Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Guifeng Ding
- Department of Obstetrics, Maternal and Child Health Care Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Lhousseine Touqui
- Equipe Mixte Institut Pasteur/Paris V, Department of Infection & Epidemiology, Institut Pasteur, Paris, France
| | - Weimin Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Xu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Keying Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lingyan Zhang
- Department of Gynecology and Obstetrics, ShaanXi Provincial People Hospital, Xi'an, China
| | - Dunjin Chen
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yongzheng Wu
- Unit of Cellular Biology of Microbial Infection/CNRS UMR3691, Institut Pasteur, Paris, France.
| | - Guiqin Bai
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
24
|
Zazara DE, Arck PC. Developmental origin and sex-specific risk for infections and immune diseases later in life. Semin Immunopathol 2018; 41:137-151. [DOI: 10.1007/s00281-018-0713-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
|
25
|
Scheja L, Heeren J. Introduction to the special issue on dietary control of immunometabolism. Semin Immunopathol 2017; 40:141-144. [PMID: 29222582 DOI: 10.1007/s00281-017-0667-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|