1
|
Madbouly NA, Kamal SM, El-Amir AM. Chronic artificial light exposure in daytime and reversed light: Dark cycle inhibit anti-apoptotic cytokines and defect Bcl-2 in peripheral lymphoid tissues during acute systemic inflammatory response to lipopolysaccharide. Int Immunopharmacol 2025; 145:113768. [PMID: 39672023 DOI: 10.1016/j.intimp.2024.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 12/15/2024]
Abstract
AIMS The disturbed light: dark (LD) cycle has been associated with critical complications, including obesity, diabetes and cancer. In the present study, we investigated the chronic effects of artificial light at daytime (AL) and light at night (RAL) after intraperitoneal (i.p.) injection of saline and 0.5 mg/kg lipopolysaccharide (LPS) in male Wistar rats. METHODS Liver and kidney parameters, fasting blood glucose (FBG), melatonin level, immunohistochemical examinations of B-cell lymphoma-2 (Bcl-2) in spleen and mesenteric lymph and serum antiapoptotic cytokines [interleukin (IL-) 2, 7 and 1]. KEY FINDINGS After 16 weeks of a daily disturbed LD cycle, RAL increased body weight, upgraded FBG and altered liver and kidney functions with surprisingly increased daytime plasma melatonin. AL + LPS and RAL + LPS rats suffered significantly higher oxidative-nitrosative stress compared to NL + LPS. Oxidative-nitrosative stress was associated with multi-organ inflammation in hepatic, renal, pancreatic, splenic and mesenteric lymph node tissues due to LPS-induced endotoxemia. Anti-apoptotic Bcl-2 activity in peripheral lymphoid organs (spleen and mesenteric lymph node) was lowered due to AL and RAL regimens. At the same pattern, lowering of antiapoptotic serum levels of IL-2, IL-7 and IL-15 indicate alteration of cell cycle and the shifted ability of cells to undergo apoptosis due to abnormal light pollution. SIGNIFICANCE Here, the increased lymphocyte apoptosis in lymphoid tissues due to disturbed LD cycle defects the host defense, dysregulates the inflammatory immune response and dysregulates the immune tolerance during acute systemic inflammation due to LPS.
Collapse
|
2
|
Stefanopoulou M, Ruhé N, Portengen L, van Wel L, Vrijkotte TGM, Vermeulen R, Huss A. Associations of light exposure patterns with sleep among Dutch children: The ABCD cohort study. J Sleep Res 2024; 33:e14184. [PMID: 38410057 PMCID: PMC11596991 DOI: 10.1111/jsr.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
Light exposure affects the circadian system and consequently can affect sleep quality. Only few studies examined this relationship in children. We evaluated associations between light exposure patterns and sleep metrics in children. We measured the sleep parameters of 247 Dutch children, aged between 11 and 13 years and recruited from the ABCD cohort, using actigraphy and sleep records for 7 consecutive nights. Personal light exposures were measured with a light meter during the whole day and night. We applied generalized mixed-effects regression models, adjusted for possible confounders, to evaluate the associations of light exposure patterns on sleep duration, sleep efficiency and sleep-onset delay. In the models mutually adjusted for potential confounders, we found the amount of hours between the first time of bright light in the morning and going to sleep and the duration of bright light to be significantly associated with decreased sleep duration (in min; β: -2.02 [95% confidence interval: -3.84, -0.25], β: -8.39 [95% confidence interval: -16.70, -0.07], respectively) and with shorter sleep-onset delay (odds ratio: 0.88 [95% confidence interval: 0.80, 0.97], odds ratio: 0.40 [95% confidence interval: 0.19, 0.87], respectively). Increased light intensities at night were associated with decreased sleep duration (T2 β: -8.54 [95% confidence interval: -16.88, -0.20], T3 β: -14.83 [95% confidence interval: -28.04, -1.62]), while increased light intensities before going to bed were associated with prolonged sleep onset (odds ratio: 4.02 [95% confidence interval: 2.09, 7.73]). These findings further suggest that children may be able to influence their sleep quality by influencing the light exposure patterns during day and night.
Collapse
Affiliation(s)
| | - Naomi Ruhé
- Institute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Lützen Portengen
- Institute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Luuk van Wel
- Institute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Tanja G. M. Vrijkotte
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
- Julius Centre for Health Sciences and Primary CareUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Anke Huss
- Institute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
3
|
Burns ME, Contini FM, Michaud JM, Waring CT, Price JC, McFarland AT, Burke SG, Murphy CA, Guindon GE, Krevosky MK, Seggio JA. Obesity alters circadian and behavioral responses to constant light in male mice. Physiol Behav 2024; 287:114711. [PMID: 39395627 DOI: 10.1016/j.physbeh.2024.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Exposure to artificial light during the night is known to promote disruption to the biological clock, which can lead to impaired mood and metabolism. Metabolic hormone secretion is modulated by the circadian pacemaker and recent research has shown that hormones such as insulin and leptin can also directly affect behavioral outcomes and the circadian clock. In turn, obesity itself is known to modulate the circadian rhythm and alter emotionality. This study investigated the behavioral and metabolic effects of constant light exposure in two models of obesity - a leptin null mutant (OB) and diet-induced obesity via high-fat diet. For both experiments, mice were placed into either a standard Light:Dark cycle (LD) or constant light (LL) and their circadian locomotor rhythms were continuously monitored. After 10 weeks of exposure to their respective lighting conditions, all mice were subjected to an open field assay to assess their explorative behaviors. Their metabolic hormone levels and inflammation levels were also measured. Behaviorally, exposure to constant light led to increased period lengthening and open field activity in the lean mice compared to both obesity models. Metabolically, LL led to increased cytokine levels and poorer metabolic outcomes in both lean and obese mice, sometimes exacerbating the metabolic issues in the obese mice, independent of weight gain. This study illustrates that LL can produce altered behavioral and physiological outcomes, even in lean mice. These results also indicate that obesity induced by different reasons can lead to shortened circadian rhythmicity and exploratory activity when exposed to chronic light.
Collapse
Affiliation(s)
- Meredith E Burns
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Fernanda Medeiros Contini
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA; Now at Harvard University Medical School, Neurobiology Department
| | - Julie M Michaud
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Caitlin T Waring
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA; Now at Colorado State University, College of Veterinary Medicine & Biomedical Sciences
| | - John C Price
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Alexander T McFarland
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA; Now at Georgia Southern University, Department of Biology
| | - Samantha G Burke
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA; Now at Cummings School of Veterinary Medicine at Tufts University
| | - Cloey A Murphy
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Grace E Guindon
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Merideth K Krevosky
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Joseph A Seggio
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA.
| |
Collapse
|
4
|
Duan J, Li Q, Yin Z, Zhen S, Cao W, Yan S, Zhang Y, Wu Q, Zhang W, Liang F. Outdoor Artificial Light at Night and Insomnia-Related Social Media Posts. JAMA Netw Open 2024; 7:e2446156. [PMID: 39565624 PMCID: PMC11579793 DOI: 10.1001/jamanetworkopen.2024.46156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024] Open
Abstract
Importance Understanding the outcomes of artificial light at night (ALAN) on insomnia is crucial for public health, particularly in rapidly urbanizing regions. However, evidence of the association between ALAN exposure and insomnia is limited, despite the large number of people exposed to ALAN. Objective To explore the association between outdoor ALAN exposure and insomnia among the Chinese population. Design, Setting, and Participants This cross-sectional study used social media data from Weibo (Sina), a social media platform, and satellite-derived nighttime light images. The study period spans from May 2022 to April 2023. The study encompasses 336 cities across China's mainland, providing a comprehensive national perspective. Data include insomnia-related posts from the platform users, representing a large and diverse population sample exposed to varying levels of ALAN. Exposure Outdoor ALAN exposure (in nanowatts per centimeters squared per steradian [nW/cm2/sr]) was measured using satellite-derived nighttime light images at a spatial resolution of 500 m. Main Outcomes and Measures The incidence of insomnia among residents at the city level was measured by the number of insomnia-related posts on social media. Multiple linear regression models were used to estimate the association between ALAN exposure and population insomnia, adjusting for population characteristics and meteorological factors at the city level. Results The study included data from 1 147 583 insomnia-related posts. Daily mean ALAN exposure across the 336 cities ranged from 3.1 to 221.0 nW/cm2/sr. For each 5 nW/cm2/sr increase in ALAN exposure, the incidence of insomnia increased by 0.377% (95% CI, 0.372%-0.382%). The association was greater in less populated cities and under extreme temperature and poor air quality conditions. The observed exposure-response functions between ALAN exposure and insomnia demonstrated an upward trend, with steeper slopes observed at low exposures and leveling off at higher exposures. Conclusions and Relevance This study provides evidence of the association between increased ALAN exposure and higher incidence of insomnia. These findings expand the current knowledge on adverse health outcomes of ALAN exposure and emphasize the potential health benefits of well-planned artificial nighttime lighting in China and other developing countries in the early stages of city planning.
Collapse
Affiliation(s)
- Jiahao Duan
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qian Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhouxin Yin
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shihan Zhen
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wenzhe Cao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shiwei Yan
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yanhui Zhang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qingyao Wu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wei Zhang
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
5
|
Zhang Y, Hu K, Tang Y, Feng Q, Jiang T, Chen L, Chen X, Shan C, Han C, Chu W, Ma N, Hu H, Gao H, Zhang Q. Interactive correlations between artificial light at night, health risk behaviors, and cardiovascular health among patients with diabetes: A cross-sectional study. J Diabetes 2024; 16:e70008. [PMID: 39397260 PMCID: PMC11471435 DOI: 10.1111/1753-0407.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Artificial light at night (ALAN) is a common phenomenon and contributes to the severe light pollution suffered by more than 80% of the world's population. This study aimed to evaluate the relationship between outdoor ALAN exposure and cardiovascular health (CVH) in patients with diabetes and the influence of various modifiable factors. METHODS A survey method based on the China Diabetes and Risk Factor Monitoring System was adopted. Study data were extracted for 1765 individuals with diabetes in Anhui Province. Outdoor ALAN exposure (nW/cm2/sr) within 1000 m of each participant's residential address was obtained from satellite imagery data, with a resolution of ~1000 m. Health risk behaviors (HRBs) were measured via a standardized questionnaire. A linear regression model was employed to estimate the relationship between outdoor ALAN, HRBs, and CVH. RESULTS Participants' mean age was 59.10 ± 10.0 years. An association was observed between ALAN and CVH in patients with diabetes (β = 0.205) and exercise (β = -1.557), moderated by HRBs, or metabolic metrics. There was an association between ALAN, ALAN, vegetable intake, and CVH. CONCLUSIONS Exploring the relationship between ALAN exposure and cardiovascular and metabolic health provides policy data for improving light pollution strategies and reducing the risk of cardiovascular and metabolic disease in patients with diabetes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Department of Maternal, Child and Adolescent Health, School of Public HealthAnhui Medical UniversityHefeiChina
| | - Keyan Hu
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyangChina
| | - Ying Tang
- School of NursingAnhui Medical UniversityHefeiChina
| | - Qing Feng
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Tian Jiang
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Liwen Chen
- Department of PediatricsThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xin Chen
- Department of PediatricsThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Chunhan Shan
- Department of PediatricsThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Chen Han
- Department of PediatricsThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Wenhui Chu
- School of NursingAnhui Medical UniversityHefeiChina
| | - Nanzhen Ma
- Hospital of Anhui Medical UniversityHefeiChina
| | - Honglin Hu
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Hui Gao
- Department of PediatricsThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Qiu Zhang
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
6
|
Zeng Y, Xiao X, Yang F, Li T, Huang Y, Shi X, Lai C. Progress towards understanding the effects of artificial light on the transmission of vector-borne diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116780. [PMID: 39126816 DOI: 10.1016/j.ecoenv.2024.116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Artificial light at night (ALAN) is a common form of light pollution worldwide, and the intensity, timing, duration, and wavelength of light exposure can affect biological rhythms, which can lead to metabolic, reproductive, and immune dysfunctions and consequently, host-pathogen interactions. Insect vector-borne diseases are a global problem that needs to be addressed, and ALAN plays an important role in disease transmission by affecting the habits and physiological functions of vector organisms. In this work, we describe the mechanisms by which ALAN affects host physiology and biochemistry, host-parasite interactions, and vector-borne viruses and propose preventive measures for related infectious diseases to minimize the effects of artificial light on vector-borne diseases.
Collapse
Affiliation(s)
- Ying Zeng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, and School of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaoping Xiao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Tong Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yalan Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chongde Lai
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, and School of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Key Laboratory for Excavation and Utilization of Agricultural Microorganisms, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
7
|
Menculini G, Cirimbilli F, Raspa V, Scopetta F, Cinesi G, Chieppa AG, Cuzzucoli L, Moretti P, Balducci PM, Attademo L, Bernardini F, Erfurth A, Sachs G, Tortorella A. Insights into the Effect of Light Pollution on Mental Health: Focus on Affective Disorders-A Narrative Review. Brain Sci 2024; 14:802. [PMID: 39199494 PMCID: PMC11352354 DOI: 10.3390/brainsci14080802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The presence of artificial light at night has emerged as an anthropogenic stressor in recent years. Various sources of light pollution have been shown to affect circadian physiology with serious consequences for metabolic pathways, possibly disrupting pineal melatonin production with multiple adverse health effects. The suppression of melatonin at night may also affect human mental health and contribute to the development or exacerbation of psychiatric disorders in vulnerable individuals. Due to the high burden of circadian disruption in affective disorders, it has been hypothesized that light pollution impacts mental health, mainly affecting mood regulation. Hence, the aim of this review was to critically summarize the evidence on the effects of light pollution on mood symptoms, with a particular focus on the role of circadian rhythms in mediating this relationship. We conducted a narrative review of the literature in the PubMed, Scopus, and Web of Science datasets. After the screening process, eighteen papers were eligible for inclusion. The results clearly indicate a link between light pollution and the development of affective symptoms, with a central role of sleep disturbances in the emergence of mood alterations. Risk perception also represents a crucial topic, possibly modulating the development of affective symptoms in response to light pollution. The results of this review should encourage a multidisciplinary approach to the design of healthier environments, including lighting conditions among the key determinants of human mental health.
Collapse
Affiliation(s)
- Giulia Menculini
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (F.C.); (V.R.); (F.S.); (G.C.); (A.G.C.); (L.C.); (P.M.); (P.M.B.); (A.T.)
| | - Federica Cirimbilli
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (F.C.); (V.R.); (F.S.); (G.C.); (A.G.C.); (L.C.); (P.M.); (P.M.B.); (A.T.)
| | - Veronica Raspa
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (F.C.); (V.R.); (F.S.); (G.C.); (A.G.C.); (L.C.); (P.M.); (P.M.B.); (A.T.)
| | - Francesca Scopetta
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (F.C.); (V.R.); (F.S.); (G.C.); (A.G.C.); (L.C.); (P.M.); (P.M.B.); (A.T.)
| | - Gianmarco Cinesi
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (F.C.); (V.R.); (F.S.); (G.C.); (A.G.C.); (L.C.); (P.M.); (P.M.B.); (A.T.)
| | - Anastasia Grazia Chieppa
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (F.C.); (V.R.); (F.S.); (G.C.); (A.G.C.); (L.C.); (P.M.); (P.M.B.); (A.T.)
| | - Lorenzo Cuzzucoli
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (F.C.); (V.R.); (F.S.); (G.C.); (A.G.C.); (L.C.); (P.M.); (P.M.B.); (A.T.)
| | - Patrizia Moretti
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (F.C.); (V.R.); (F.S.); (G.C.); (A.G.C.); (L.C.); (P.M.); (P.M.B.); (A.T.)
| | - Pierfrancesco Maria Balducci
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (F.C.); (V.R.); (F.S.); (G.C.); (A.G.C.); (L.C.); (P.M.); (P.M.B.); (A.T.)
- CSM Terni, Department of Mental Health, Local Health Unit USL Umbria 2, 05100 Terni, Italy
| | - Luigi Attademo
- Department of Mental Health, North West Tuscany Local Health Authority, 57023 Cecina, Italy;
| | - Francesco Bernardini
- SPDC Pordenone, Department of Mental Health, AsFO Friuli Occidentale, 33170 Pordenone, Italy;
| | - Andreas Erfurth
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria; (A.E.); (G.S.)
- Klinik Hietzing, 1st Department of Psychiatry and Psychotherapeutic Medicine, 1130 Vienna, Austria
| | - Gabriele Sachs
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria; (A.E.); (G.S.)
| | - Alfonso Tortorella
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (F.C.); (V.R.); (F.S.); (G.C.); (A.G.C.); (L.C.); (P.M.); (P.M.B.); (A.T.)
| |
Collapse
|
8
|
Xu YX, Shen YT, Li J, Ding WQ, Wan YH, Su PY, Tao FB, Sun Y. Real-ambient bedroom light at night increases systemic inflammation and disrupts circadian rhythm of inflammatory markers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116590. [PMID: 38905938 DOI: 10.1016/j.ecoenv.2024.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Exposure to light at night (LAN) has been associated with multiple adverse health outcomes. However, evidence is limited regarding the impacts of LAN exposure on human inflammation. OBJECTIVES To examine the association between real-ambient bedroom LAN exposure with systemic inflammation and circadian rhythm of inflammatory markers. METHODS Using data from a prospective cohort study of Chinese young adults. At baseline, bedroom LAN exposure was measured with a portable illuminance meter; fasting blood sample for high-sensitivity C-reactive protein (hs-CRP) assay was collected. At 3-year follow-up, 20 healthy young adults (10 LANavg < 5 lx, 10 LANavg ≥ 5 lx) were recruited from the same cohort; time-series venous blood samples were sampled every 4 h over a 24 h-cycle for the detection of 8 inflammatory markers. Circadian rhythm of inflammatory markers was assessed using cosinor analysis. RESULTS At baseline, the average age of the 276 participants was 18.7 years, and 33.3 % were male. Higher levels of bedroom LAN exposure were significantly associated with increased hs-CRP levels. The association between bedroom LAN exposure and systemic inflammation was only significant in the inactive group (MVPA < 2 h/d) but not in the physically active group (MVPA ≥ 2 h/d). In addition, exposure to higher levels of nighttime light (LANavg ≥ 5 lx) disrupted circadian rhythms (including rhythmic expression, circadian amplitude and circadian phase) of some inflammatory cytokines and inflammatory balance indicators. CONCLUSION Exposure to bedroom nighttime light increases systemic inflammation and disrupts circadian rhythm of inflammatory markers. Keep bedroom darkness at night may represent important strategies for the prevention of chronic inflammation. Additionally, for people living a community with higher nighttime light pollution, regular physical activity may be a viable option to counteract the negative impacts of LAN exposure on chronic inflammation.
Collapse
Affiliation(s)
- Yu-Xiang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Yu-Ting Shen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Jing Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Wen-Qin Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Yu-Hui Wan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Pu-Yu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Anhui, China
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Anhui, China.
| |
Collapse
|
9
|
Qiu CZ, Zhou R, Zhang HY, Zhang L, Yin ZJ, Ren DL. Histone lactylation-ROS loop contributes to light exposure-exacerbated neutrophil recruitment in zebrafish. Commun Biol 2024; 7:887. [PMID: 39033200 PMCID: PMC11271584 DOI: 10.1038/s42003-024-06543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Light serves as a crucial external zeitgeber for maintaining and restoring physiological homeostasis in most organisms. Disrupting of light rhythms often leads to abnormal immune function, characterized by excessive inflammatory responses. However, the underlying regulatory mechanisms behind this phenomenon remain unclear. To address this concern, we use in vivo imaging to establish inflammation models in zebrafish, allowing us to investigate the effects and underlying mechanisms of light disruption on neutrophil recruitment. Our findings reveal that under sustained light conditions (LL), neutrophil recruitment in response to caudal fin injury and otic vesicle inflammation is significantly increased. This is accompanied by elevated levels of histone (H3K18) lactylation and reactive oxygen species (ROS) content. Through ChIP-sequencing and ChIP‒qPCR analysis, we discover that H3K18 lactylation regulates the transcriptional activation of the duox gene, leading to ROS production. In turn, ROS further promote H3K18 lactylation, forming a positive feedback loop. This loop, driven by H3K18 lactylation-ROS, ultimately results in the over recruitment of neutrophils to inflammatory sites in LL conditions. Collectively, our study provides evidence of a mutual loop between histone lactylation and ROS, exacerbating neutrophil recruitment in light disorder conditions, emphasizing the significance of maintaining a proper light-dark cycle to optimize immune function.
Collapse
Affiliation(s)
- Cheng-Zeng Qiu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Hao-Yi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ling Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zong-Jun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Da-Long Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
10
|
Waalkes MR, Leathery M, Peck M, Barr A, Cunill A, Hageter J, Horstick EJ. Light wavelength modulates search behavior performance in zebrafish. Sci Rep 2024; 14:16533. [PMID: 39019915 PMCID: PMC11255219 DOI: 10.1038/s41598-024-67262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Visual systems have evolved to discriminate between different wavelengths of light. The ability to perceive color, or specific light wavelengths, is important as color conveys crucial information about both biotic and abiotic features in the environment. Indeed, different wavelengths of light can drive distinct patterns of activity in the vertebrate brain, yet what remains incompletely understood is whether distinct wavelengths can invoke etiologically relevant behavioral changes. To address how specific wavelengths in the visible spectrum modulate behavioral performance, we use larval zebrafish and a stereotypic light-search behavior. Prior work has shown that the cessation of light triggers a transitional light-search behavior, which we use to interrogate wavelength-dependent behavioral modulation. Using 8 narrow spectrum light sources in the visible range, we demonstrate that all wavelengths induce motor parameters consistent with search behavior, yet the magnitude of search behavior is spectrum sensitive and the underlying motor parameters are modulated in distinct patterns across short, medium, and long wavelengths. However, our data also establishes that not all motor features of search are impacted by wavelength. To define how wavelength modulates search performance, we performed additional assays with alternative wavelengths, dual wavelengths, and variable intensity. Last, we also tested blind larvae to resolve which components of wavelength dependent behavioral changes potentially include signaling from non-retinal photoreception. These findings have important implications as organisms can be exposed to varying wavelengths in laboratory and natural settings and therefore impose unique behavioral outputs.
Collapse
Affiliation(s)
- Matthew R Waalkes
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Maegan Leathery
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Madeline Peck
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Allison Barr
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Alexander Cunill
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - John Hageter
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Eric J Horstick
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA.
- Department of Neuroscience Morgantown, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
11
|
Liu JA, Walker WH, Meléndez-Fernández OH, Bumgarner JR, Zhang N, Walton JC, Meares GP, DeVries AC, Nelson RJ. Dim light at night shifts microglia to a pro-inflammatory state after cerebral ischemia, altering stroke outcome in mice. Exp Neurol 2024; 377:114796. [PMID: 38677449 PMCID: PMC11404552 DOI: 10.1016/j.expneurol.2024.114796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Circadian rhythms are endogenous biological cycles that regulate physiology and behavior and are set to precisely 24-h by light exposure. Light at night (LAN) dysregulates physiology and function including immune response; a critical component that contributes to stroke pathophysiological progression of neuronal injury and may impair recovery from injury. The goal of this study is to explore the effects of dim LAN (dLAN) in a murine model of ischemic stroke to assess how nighttime lighting from hospital settings can affect stroke outcome. Further, this study sought to identify mechanisms underlying pathophysiological changes to immune response after circadian disruption. Male and female adult Swiss Webster (CFW) mice were subjected to transient or permanent focal cerebral ischemia, then were subsequently placed into either dark night conditions (LD) or one night of dLAN (5 lx). 24 h post-stroke, sensorimotor impairments and infarct sizes were quantified. A single night of dLAN following MCAO increased infarct size and sensorimotor deficits across both sexes and reduced survival in males after 24 h. Flow cytometry was performed to assess microglial phenotypes after MCAO, and revealed that dLAN altered the percentage of microglia that express pro-inflammatory markers (MHC II+ and IL-6) and microglia that express CD206 and IL-10 that likely contributed to poor ischemic outcomes. Following these results, microglia were reduced in the brain using Plexxikon 5622 (PLX 5622) a CSFR1 inhibitor, then the mice received an MCAO and were exposed to LD or dLAN conditions for 24 h. Microglial depletion by PLX5622 resulted in infarct sizes that were comparable between lighting conditions. This study provides supporting evidence that environmental lighting exacerbates ischemic injury and post-stroke mortality by a biological mechanism that exposure to dLAN causes a fundamental shift of activated microglial phenotypes from beneficial to detrimental at an early time point after stroke, resulting in irreversible neuronal death.
Collapse
Affiliation(s)
- Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States.
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - O Hecmarie Meléndez-Fernández
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Ning Zhang
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Gordon P Meares
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States; Department of Microbiology, Immunology, & Cell Biology, West Virginia University, Morgantown, WV, United States
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States; Department of Medicine, West Virginia University, Morgantown, WV, United States; West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
12
|
Chawla S, O’Neill J, Knight MI, He Y, Wang L, Maronde E, Rodríguez SG, van Ooijen G, Garbarino-Pico E, Wolf E, Dkhissi-Benyahya O, Nikhat A, Chakrabarti S, Youngstedt SD, Zi-Ching Mak N, Provencio I, Oster H, Goel N, Caba M, Oosthuizen M, Duffield GE, Chabot C, Davis SJ. Timely Questions Emerging in Chronobiology: The Circadian Clock Keeps on Ticking. J Circadian Rhythms 2024; 22:2. [PMID: 38617710 PMCID: PMC11011957 DOI: 10.5334/jcr.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 04/16/2024] Open
Abstract
Chronobiology investigations have revealed much about cellular and physiological clockworks but we are far from having a complete mechanistic understanding of the physiological and ecological implications. Here we present some unresolved questions in circadian biology research as posed by the editorial staff and guest contributors to the Journal of Circadian Rhythms. This collection of ideas is not meant to be comprehensive but does reveal the breadth of our observations on emerging trends in chronobiology and circadian biology. It is amazing what could be achieved with various expected innovations in technologies, techniques, and mathematical tools that are being developed. We fully expect strengthening mechanistic work will be linked to health care and environmental understandings of circadian function. Now that most clock genes are known, linking these to physiological, metabolic, and developmental traits requires investigations from the single molecule to the terrestrial ecological scales. Real answers are expected for these questions over the next decade. Where are the circadian clocks at a cellular level? How are clocks coupled cellularly to generate organism level outcomes? How do communities of circadian organisms rhythmically interact with each other? In what way does the natural genetic variation in populations sculpt community behaviors? How will methods development for circadian research be used in disparate academic and commercial endeavors? These and other questions make it a very exciting time to be working as a chronobiologist.
Collapse
Affiliation(s)
| | - John O’Neill
- MRC Laboratory of Molecular Biology Cambridge, UK
| | | | - Yuqing He
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, China National Botanical Garden, Beijing 100093, CN
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, China National Botanical Garden, Beijing 100093, CN
| | - Erik Maronde
- Institut für Anatomie II, Dr. Senckenbergische Anatomie, Goethe-Universität Frankfurt, Theodor-Stern-Kai-7, 60590 Frankfurt, DE
| | - Sergio Gil Rodríguez
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Eduardo Garbarino-Pico
- Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, AR
- CONICET-UNC, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, AR
| | - Eva Wolf
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch- Weg 17, 55128 Mainz, DE
| | - Ouria Dkhissi-Benyahya
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, UniversitéClaude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, FR
| | - Anjoom Nikhat
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore, Karnataka 560065, IN
| | - Shaon Chakrabarti
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore, Karnataka 560065, IN
| | - Shawn D. Youngstedt
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, US
- Department of Medicine, University of Arizona, Tucson, AZ, US
| | | | - Ignacio Provencio
- Department of Biology and Department of Ophthalmology, University of Virginia, Charlottesville, VA, US
| | - Henrik Oster
- Institute of Neurobiology, Center for Brain, Behavior & Metabolism (CBBM), University of Luebeck, 23562 Luebeck, DE
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, US
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Ver., MX
| | - Maria Oosthuizen
- Department of Zoology and Entomology, University of Pretoria, Pretoria, ZA
- Mammal Research Institute, University of Pretoria, Hatfield, ZA
| | - Giles E. Duffield
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, US
| | - Christopher Chabot
- Department of Biological Sciences, Plymouth State University, Plymouth, NH 03264, US
| | - Seth J. Davis
- Department of Biology, University of York, York YO105DD, UK
- State Key Laboratory of Crop Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, CN
| |
Collapse
|
13
|
Lucas RJ, Allen AE, Brainard GC, Brown TM, Dauchy RT, Didikoglu A, Do MTH, Gaskill BN, Hattar S, Hawkins P, Hut RA, McDowell RJ, Nelson RJ, Prins JB, Schmidt TM, Takahashi JS, Verma V, Voikar V, Wells S, Peirson SN. Recommendations for measuring and standardizing light for laboratory mammals to improve welfare and reproducibility in animal research. PLoS Biol 2024; 22:e3002535. [PMID: 38470868 PMCID: PMC10931507 DOI: 10.1371/journal.pbio.3002535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Light enables vision and exerts widespread effects on physiology and behavior, including regulating circadian rhythms, sleep, hormone synthesis, affective state, and cognitive processes. Appropriate lighting in animal facilities may support welfare and ensure that animals enter experiments in an appropriate physiological and behavioral state. Furthermore, proper consideration of light during experimentation is important both when it is explicitly employed as an independent variable and as a general feature of the environment. This Consensus View discusses metrics to use for the quantification of light appropriate for nonhuman mammals and their application to improve animal welfare and the quality of animal research. It provides methods for measuring these metrics, practical guidance for their implementation in husbandry and experimentation, and quantitative guidance on appropriate light exposure for laboratory mammals. The guidance provided has the potential to improve data quality and contribute to reduction and refinement, helping to ensure more ethical animal use.
Collapse
Affiliation(s)
- Robert J. Lucas
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - George C. Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Timothy M. Brown
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert T. Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, United States of America
| | - Altug Didikoglu
- Department of Neuroscience, Izmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey
| | - Michael Tri H. Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Center for Life Science, Boston, Massachusetts, United States of America
| | - Brianna N. Gaskill
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, John Edward Porter Neuroscience Research Center, Bethesda, Maryland, United States of America
| | | | - Roelof A. Hut
- Chronobiology Unit, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Richard J. McDowell
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jan-Bas Prins
- The Francis Crick Institute, London, United Kingdom
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Joseph S. Takahashi
- Department of Neuroscience, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Vandana Verma
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, California, United States of America
| | - Vootele Voikar
- Laboratory Animal Center and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, United Kingdom
| | - Stuart N. Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Xu YX, Zhang JH, Ding WQ. Association of light at night with cardiometabolic disease: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123130. [PMID: 38081378 DOI: 10.1016/j.envpol.2023.123130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024]
Abstract
Light at night (LAN) is a significant but underappreciated risk factor contributing to cardiometabolic disease (CMD). We therefore conducted the review examining the relationship of LAN exposure with CMD in order to investigate the effects of LAN exposure on CMD. We searched PubMed, Web of Science, Embase, and Scopus for eligible studies published from database inception to August 17, 2023. The pooled effect size was calculated using random-effects models. Heterogeneity among the studies was quantified by Cochran's Q test and I2 statistic. A total of 1,019,739 participants from 14 studies (5 cohort studies and 9 cross-sectional) were included. Among the 14 eligible studies, 9 on obesity, 4 on diabetes, 2 on hypertension, 1 on dyslipidemia, and 1 on coronary heart disease. Exposure to higher levels of LAN were associated with 21% higher risk of CMD (Summary risk ratio, SRR: 1.21, 95% CI = 1.16-1.27), accompanied by substantial heterogeneity (I2 = 61%; tau2 = 0.004; Cochran's Q = 41.02). Specifically, individuals in the highest category of LAN exposure exhibited 23% higher risk of obesity (SRR: 1.23, 95% CI = 1.14-1.32), 46% higher risk of diabetes (SRR: 1.46, 95% CI = 1.05-2.03) and 21% higher risk of other CMDs (SRR: 1.21, 95% CI = 1.10-1.34). Subgroup analyses revealed that the pooled-effect size of LAN and CMD was higher for indoor LAN than outdoor LAN (indoor LAN: SRR = 1.36; outdoor LAN: SRR = 1.17, P = 0.03). The overall quality was rated as moderate using GRADE guideline. Our study strengthens the evidence on the increase in CMD risk due to LAN exposure. Findings from this study have important implications for identifying modifiable risk factor of CMD, future prevention strategy development, and resource allocation for high-risk group.
Collapse
Affiliation(s)
- Yu-Xiang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China.
| | - Jiang-Hui Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen-Qin Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| |
Collapse
|
15
|
Lei T, Hua H, Du H, Xia J, Xu D, Liu W, Wang Y, Yang T. Molecular mechanisms of artificial light at night affecting circadian rhythm disturbance. Arch Toxicol 2024; 98:395-408. [PMID: 38103071 DOI: 10.1007/s00204-023-03647-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Artificial light at night (ALAN) pollution has been regarded as a global environmental concern. More than 80% of the global population is exposed to light pollution. Exacerbating this issue, artificially lit outdoor areas are growing by 2.2% per year, while continuously lit areas have brightened by 2.2% each year due to rapid population growth and expanding urbanization. Furthermore, the increasing prevalence of night shift work and smart device usage contributes to the inescapable influence of ALAN. Studies have shown that ALAN can disrupt endogenous biological clocks, resulting in a disturbance of the circadian rhythm, which ultimately affects various physiological functions. Up until now, scholars have studied various disease mechanisms caused by ALAN that may be related to the response of the circadian system to light. This review outlines the molecular mechanisms by which ALAN causes circadian rhythm abnormalities in sleep disorders, endocrine diseases, cardiovascular disease, cancer, immune impairment, depression, anxiety and cognitive impairments.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Hui Hua
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Huiying Du
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Jie Xia
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Dandan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Wei Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yutong Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| | - Tianyao Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China.
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
16
|
Kim SH, Kim YK, Shin YI, Kang G, Kim SP, Lee H, Hong IH, Chang IB, Hong SB, Yoon HJ, Ha A. Nighttime Outdoor Artificial Light and Risk of Age-Related Macular Degeneration. JAMA Netw Open 2024; 7:e2351650. [PMID: 38227312 PMCID: PMC10792474 DOI: 10.1001/jamanetworkopen.2023.51650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024] Open
Abstract
Importance Light pollution's impact on human health is increasingly recognized, but its link to exudative age-related macular degeneration (EAMD) remains unclear. Objective To investigate the association between exposure to outdoor artificial light at night (OALAN) and the risk of incident EAMD. Design, Setting, and Participants In this nationwide population-based case-control study, all individuals 50 years or older with newly diagnosed EAMD between January 1, 2010, and December 31, 2011, were identified with reference to the Korean National Health Insurance Service registration program database for rare and intractable diseases. Birth year- and sex-matched controls (with no EAMD diagnosis until 2020) were selected at a 1:30 ratio. Data were acquired from May 1 to December 31, 2021, and analyzed from June 1 to November 30, 2022. Exposures Mean levels of OALAN at participants' residential addresses during 2008 and 2009 were estimated using time-varying satellite data for a composite view of persistent nighttime illumination at an approximate scale of 1 km2. Main Outcomes and Measures The hazard ratios (HRs) and 95% CIs of the association between residential OALAN and risk of incident EAMD were determined based on maximum likelihood estimation after adjusting for sociodemographic characteristics, comorbidities, and area-level risk factors (ie, nighttime traffic noise and particulate matter of aerodynamic diameter ≤10 μm in each participant's administrative district of residence). Results A total of 126 418 participants were included in the analysis (mean [SD] age, 66.0 [7.9] years; 78 244 men [61.9%]). Of these, 4078 were patients with newly diagnosed EAMD and 122 340 were EAMD-free matched controls. In fully adjusted models, an IQR (55.8 nW/cm2/sr) increase in OALAN level was associated with an HR of 1.67 (95% CI, 1.56-1.78) for incident EAMD. The exposure-response curve demonstrated a nonlinear, concave upward slope becoming more pronounced at higher levels of light exposure (ie, at approximately 110 nW/cm2/sr). In a subgroup analysis, an IQR increase in OALAN was associated with increased risk of incident EAMD in urban areas (HR, 1.46 [95% CI, 1.33-1.61]) but not in rural areas (HR, 1.01 [95% CI, 0.84-1.22]). Conclusions and Relevance In this nationwide population-based case-control study, higher levels of residential OALAN were associated with an increased risk of incident EAMD. Future studies with more detailed information on exposure, individual adaptive behaviors, and potential mediators are warranted.
Collapse
Affiliation(s)
- Su Hwan Kim
- Biomedical Research Institute, Seoul National University Hospital (SNUH), Seoul, Korea
| | - Young Kook Kim
- Department of Ophthalmology, SNUH, Seoul, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
- EyeLight Data Science Laboratory, Seoul National University College of Medicine, Seoul, Korea
| | - Young In Shin
- Department of Ophthalmology, SNUH, Seoul, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Goneui Kang
- EyeLight Data Science Laboratory, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Pyo Kim
- Interdisciplinary Program of Medical Informatics, Seoul National University College of Medicine, Seoul, Korea
| | - Hajoung Lee
- EyeLight Data Science Laboratory, Seoul National University College of Medicine, Seoul, Korea
| | - In Hwan Hong
- Department of Ophthalmology, Dongtan Sacred Heart Hospital, Hwaseong, Korea
- Department of Ophthalmology, Hallym University Medical Center, Hwaseong, Korea
| | | | - Soon-Beom Hong
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Psychiatry, SNUH, Seoul, Korea
- Institute of Human Behavioral Medicine, SNU Medical Research Center, Seoul, Korea
| | - Hyung-Jin Yoon
- Medical Bigdata Research Center, SNU College of Medicine, Seoul, Korea
| | - Ahnul Ha
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
- Department of Ophthalmology, Jeju National University Hospital, Jeju, Korea
- Department of Ophthalmology, Jeju National University College of Medicine, Jeju, Korea
| |
Collapse
|
17
|
Xu YX, Huang Y, Zhou Y, Wan YH, Su PY, Tao FB, Sun Y. Association Between Bedroom Light Pollution With Subjectively and Objectively Measured Sleep Parameters Among Chinese Young Adults. J Adolesc Health 2024; 74:169-176. [PMID: 37791923 DOI: 10.1016/j.jadohealth.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE To investigate the cross-sectional associations between real-world multiperiod bedroom light at night and sleep parameters among 365 Chinese young adults. METHODS Bedroom light exposure was estimated at the individual level for two consecutive days using a portable illuminance meter. Subjective sleep parameters were measured with the Pittsburgh Sleep Quality Index, and objective sleep parameters were assessed by wrist-worn ActiGraph accelerometers for seven consecutive days. RESULTS Compared with the low-exposure group (average light intensity < 3lx), the high-exposure group (average light intensity ≥ 3lx) was associated with decreased 1.15% in sleep efficiency (sleep efficiency, 95% CI: -1.78, -0.52; p < .001), increased 3.94 minutes in wake after sleep onset (wake after sleep onset, 95% CI: 1.55, 6.33; p = .001), increased 1.05 unit in movement index (95% CI: 0.20, 1.89; p = .015), and increased 2.16 unit in sleep fragmentation index ( 95% CI: 0.63, 3.68; p = .006). In comparison, each interquartile increase in 2h-average and 1h-average intensity of preawake light (PAL) (PAL-2h and PAL-1h) was associated with 7.04 minutes of increases in total sleep time (95% CI: 0.87, 13.22; p = .025) and 6.69 minutes of increases in total sleep time (95% CI: 0.51, 12.87; p = .034), respectively. DISCUSSION Altogether, our results support the role of bedroom light exposure in sleep and imply the importance of bedroom light exposure management as a potential strategy to reduce the public health burden of sleep problems. Keeping the bedroom environment dark at night and allowing moderate morning light exposure may be important measures for improving the sleep quality of young adults.
Collapse
Affiliation(s)
- Yu-Xiang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yan Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yi Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yu-Hui Wan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Pu-Yu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
18
|
Hughes BR, Shanaz S, Ismail-Sutton S, Wreglesworth NI, Subbe CP, Innominato PF. Circadian lifestyle determinants of immune checkpoint inhibitor efficacy. Front Oncol 2023; 13:1284089. [PMID: 38111535 PMCID: PMC10727689 DOI: 10.3389/fonc.2023.1284089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023] Open
Abstract
Immune Checkpoint Inhibitors (ICI) have revolutionised cancer care in recent years. Despite a global improvement in the efficacy and tolerability of systemic anticancer treatments, a sizeable proportion of patients still do not benefit maximally from ICI. Extensive research has been undertaken to reveal the immune- and cancer-related mechanisms underlying resistance and response to ICI, yet more limited investigations have explored potentially modifiable lifestyle host factors and their impact on ICI efficacy and tolerability. Moreover, multiple trials have reported a marked and coherent effect of time-of-day ICI administration and patients' outcomes. The biological circadian clock indeed temporally controls multiple aspects of the immune system, both directly and through mediation of timing of lifestyle actions, including food intake, physical exercise, exposure to bright light and sleep. These factors potentially modulate the immune response also through the microbiome, emerging as an important mediator of a patient's immune system. Thus, this review will look at critically amalgamating the existing clinical and experimental evidence to postulate how modifiable lifestyle factors could be used to improve the outcomes of cancer patients on immunotherapy through appropriate and individualised entrainment of the circadian timing system and temporal orchestration of the immune system functions.
Collapse
Affiliation(s)
- Bethan R. Hughes
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
| | - Sadiq Shanaz
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Seline Ismail-Sutton
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Nicholas I. Wreglesworth
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
| | - Christian P. Subbe
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
- Department of Acute Medicine, Ysbyty Gwynedd, Bangor, United Kingdom
| | - Pasquale F. Innominato
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- Cancer Chronotherapy Team, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Research Unit ‘Chronotherapy, Cancers and Transplantation’, Faculty of Medicine, Paris-Saclay University, Villejuif, France
| |
Collapse
|
19
|
Liang X, Wang Z, Cai H, Zeng YQ, Chen J, Wei X, Dong G, Huang Y, Lao XQ. Outdoor light at night and mortality in the UK Biobank: a prospective cohort study. Occup Environ Med 2023:oemed-2023-109036. [PMID: 38053269 DOI: 10.1136/oemed-2023-109036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/12/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND More than 83% of the world's population lives under light-polluted skies while information about health effects of outdoor light at night (LAN) is limited. We examined the association of LAN with natural cause (NC) and cardiovascular disease (CVD) mortality using the UK Biobank. METHODS We included 273 335 participants recruited between 2006 and 2010. Level of LAN was estimated at each participant's address using time-varying satellite data for a composite of persistent night-time illumination at ~1 km2 scale. Information on causes of death until 12 November 2021 was obtained through record linkage. Cox proportional hazards regression was used. RESULTS In the follow-up with an average of 12.4 years, 14 864 NC and 3100 CVD deaths were identified. Compared with the participants exposed to the first quartile of LAN, participants exposed to the highest quartile showed an 8% higher risk of NC mortality (HR: 1.08, 95% CI 1.03 to 1.13) after adjusting for age, sex, social-economic status, shift work, lifestyle factors and body mass index. However, the association disappeared after further adjustment for PM2.5 and evening noise, with HRs (95% CIs) of 1.02 (0.97 to 1.07), 1.01 (0.97 to 1.06) and 1.03 (0.97 to 1.08), respectively, for the participants exposed to the second, third and fourth quartiles of LAN. No significant associations were observed between LAN and CVD mortality, either. CONCLUSIONS We did not observe significant associations of LAN with NC and CVD mortality in this large nationwide cohort. The health effects of LAN remain unclear. Further studies are warranted to address this public health concern.
Collapse
Affiliation(s)
- Xue Liang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zixin Wang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Honglin Cai
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Rehabilitation Science, the Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yi Qian Zeng
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jinjian Chen
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xianglin Wei
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Guanghui Dong
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Xiang Qian Lao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Hao Q, Wang L, Liu G, Ren Z, Wu Y, Yu Z, Yu J. Exploring the construction of urban artificial light ecology: a systematic review and the future prospects of light pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101963-101988. [PMID: 37667125 DOI: 10.1007/s11356-023-29462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
Artificial light at night (ALAN) is rapidly growing and expanding globally, posing threats to ecological safety. Urban light pollution prevention and control are moving toward urban artificial light ecology construction. To clarify the need for light ecology construction, this work analyzes 1690 articles on ALAN and light pollution and 604 on ecological light pollution from 1998 to 2022. The development process and thematic evolution of light pollution research are combed through, the historical inevitability of artificial light ecology construction is excavated, and the ecological risks of light pollution to typical animals are summarized. The results show that international research has advanced to the ecological risk factors of light pollution and the related stress mechanisms, the quantification, prediction, and pre-warning by multiple technical means, and the translation of light pollution research outcomes to prevention and control practices. While Chinese scholars have begun to pay attention to the ecological risks of light pollution, the evaluation indicators and prevention and control measures remain primarily based on human-centered needs. Therefore, a more integrated demand-side framework of light ecology construction that comprehensively considers multiple risk receptors is further constructed. Given the development trend in China, we clarified the consistency of the ecological effect of landscape lighting with landsense ecology and the consistency of light ecological risk prevention and control with the concept of One Health. Ultimately, landsense light ecology is proposed based on the "One Health" concept. This work is expected to provide a reference and inspiration for future construction of urban artificial light ecology.
Collapse
Affiliation(s)
- Qingli Hao
- School of Architecture, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Building Physical Environment and Ecological Technology, Tianjin, 300072, China
| | - Lixiong Wang
- School of Architecture, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Building Physical Environment and Ecological Technology, Tianjin, 300072, China
| | - Gang Liu
- School of Architecture, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Building Physical Environment and Ecological Technology, Tianjin, 300072, China
| | - Zhuofei Ren
- School of Architecture, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Building Physical Environment and Ecological Technology, Tianjin, 300072, China
| | - Yuting Wu
- School of Architecture, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Building Physical Environment and Ecological Technology, Tianjin, 300072, China
| | - Zejun Yu
- School of Architecture, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Building Physical Environment and Ecological Technology, Tianjin, 300072, China
| | - Juan Yu
- School of Architecture, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory of Building Physical Environment and Ecological Technology, Tianjin, 300072, China.
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
21
|
Bumgarner JR, Walker WH, Quintana DD, White RC, Richmond AA, Meléndez-Fernández OH, Liu JA, Becker-Krail DD, Walton JC, Simpkins JW, DeVries AC, Nelson RJ. Acute exposure to artificial light at night alters hippocampal vascular structure in mice. iScience 2023; 26:106996. [PMID: 37534143 PMCID: PMC10391664 DOI: 10.1016/j.isci.2023.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/15/2023] [Accepted: 05/25/2023] [Indexed: 08/04/2023] Open
Abstract
The structure and function of the cardiovascular system are modulated across the day by circadian rhythms, making this system susceptible to circadian rhythm disruption. Recent evidence demonstrated that short-term exposure to a pervasive circadian rhythm disruptor, artificial light at night (ALAN), increased inflammation and altered angiogenic transcripts in the hippocampi of mice. Here, we examined the effects of four nights of ALAN exposure on mouse hippocampal vascular networks. To do this, we analyzed 2D and 3D images of hippocampal vasculature and hippocampal transcriptomic profiles of mice exposed to ALAN. ALAN reduced vascular density in the CA1 and CA2/3 of female mice and the dentate gyrus of male mice. Network structure and connectivity were also impaired in the CA2/3 of female mice. These results demonstrate the rapid and potent effects of ALAN on cerebrovascular networks, highlighting the importance of ALAN mitigation in the context of health and cerebrovascular disease.
Collapse
Affiliation(s)
- Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | - Dominic D Quintana
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | - Rhett C White
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | - Alexandra A Richmond
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | | | - Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | - Darius D Becker-Krail
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | - James W Simpkins
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
- Department of Medicine, Division of Oncology/Hematology West Virginia University Morgantown, WV 26505, USA
- WVU Cancer Institute West Virginia University Morgantown, WV 26505 USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| |
Collapse
|
22
|
Xu YX, Zhang JH, Tao FB, Sun Y. Association between exposure to light at night (LAN) and sleep problems: A systematic review and meta-analysis of observational studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159303. [PMID: 36228789 DOI: 10.1016/j.scitotenv.2022.159303] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Accumulating evidence have investigated the effects of nighttime light exposure on sleep problems. Nevertheless, the evidence of the relationship between light at night (LAN) and sleep problems remains scarce and inconsistent. OBJECTIVE Conducted a systematic review and meta-analysis based on observational studies to examine the association between LAN exposure and sleep problems among human subjects. METHODS We systematically searched three databases (PubMed, Web of Science, and Embase) to identify potentially eligible studies through May 25, 2022. The risk of bias and the quality of the generated evidence were assessed by two authors using the National Toxicology Program's Office of Health Assessment and Translation (OHAT) risk of bias rating tool and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guideline. Random-effects model was applied to synthesize the risk estimates across eligible studies. The heterogeneity of included studies was quantified by the statistics of I2. RESULTS A total of 7 cross-sectional studies comprising 577,932 participants were included. Individuals with higher levels of LAN exposure were associated with a 22 % (Summary Odds Ratio, SOR: 1.22, 95 %CI: 1.13-1.33) increased prevalence of sleep problems. The pooled effect size of indoor LAN exposure (SOR: 1.74, 95%CI: 1.27-2.37) associated with sleep problems was significantly higher than outdoor LAN exposure (SOR: 1.19, 95%CI: 1.11-1.29; P = 0.022). Additionally, dose-response analysis demonstrated that LAN intensity threshold exceeding 5.8 nW/cm2/sr (SOR: 1.04, 95%CI: 1.01-1.07) had a significant effect on sleep problems and the prevalence of sleep problems was increasing with increase in LAN intensity. CONCLUSIONS Overall, our findings support the detrimental effects of LAN exposure on sleep. Maintaining bedroom darkness at night may be a feasible measure to reduce the prevalence of sleep problems. Future longitudinal studies with more advanced LAN assessment methods are required to move the field forward.
Collapse
Affiliation(s)
- Yu-Xiang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jiang-Hui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
23
|
Gribanov IA, Zarubina EG. Disruption of regulatory mechanisms as a stress factor for patients with metabolic syndrome. BULLETIN OF THE MEDICAL INSTITUTE "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH) 2022. [DOI: 10.20340/vmi-rvz.2022.6.clin.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction. Throughout history, humanity has lived and developed in accordance with its biological rhythms, which provided the adaptation of the body to the factors of external and internal environment, ensuring the normal synchronous functioning of all its components.The purpose of this work was to study the stressful influence of circadian rhythms disturbance on patients with metabolic syndrome (MS) under conditions of dark deprivation.Material and methods of investigation. We selected patients with MS and disturbed circadian rhythms – a total of 102 people (all men) from among those who constantly work at night, in whom a decrease in melatonin levels was recorded at the preliminary stage. According to the set objectives, 102 patients (young age according to WHO criteria) were divided into three groups of 33, 37 and 32 persons according to the criterion "duration of influence of dark deprivation and MS history duration": 0–5, 5–10 and over 10 years. In the first group the mean age was 30.1 ± 1.4 years, in the second group – 36.5 ± 1.5 years, in the third group the mean age did not exceed 40.3 ± 0.9 years. Melatonin levels (as confirmation of circadian rhythm disturbances) in blood serum were studied in all study participants using Melatonin ELISA immunoassay kit (IBL, Germany). Results and discussion. Normally, when blood cortisol is measured before 10 a.m., its average value varies in a wide range from138 to 635 nmol/l. The increase up to 700 nmol/l is admitted, which is regarded as a negative influence of external factors during the examination. However, one should keep in mind that during evening measurements, cortisol levels in men may normally decrease to 80 nmol/l.Conclusions. Thus, dark deprivation in patients with metabolic syndrome leads to the formation of a stress response. Maximum changes occur after 10 years of disturbance of regulatory mechanisms and lead to a pronounced imbalance between the sympathetic and parasympathetic nervous system, increased vascular tone and changes in the profile of blood pressure during the day towards the predominance of Non-dippers and Night-peers, which increases the risk of progression of metabolic syndrome symptoms.
Collapse
|
24
|
Xu YX, Zhou Y, Huang Y, Yu Y, Li JY, Huang WJ, Wan YH, Tao FB, Sun Y. Physical activity alleviates negative effects of bedroom light pollution on blood pressure and hypertension in Chinese young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120117. [PMID: 36087897 DOI: 10.1016/j.envpol.2022.120117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Excessive exposure to light at night (LAN) has become a serious public health concern. However, little is known about the impact of indoor LAN exposure on blood pressure, particularly among young adults. We aimed to investigate the effects of bedroom individual-level LAN exposure in real-world environment on blood pressure and hypertension among vulnerable young adults, and to evaluate the possible buffering effect of physical activity. In this cross-sectional study, a total of 400 healthy young adults aged 16-22 years were included. Bedroom LAN exposure was recorded at 1-min intervals for two consecutive nights using a TES-1339 R illuminance meter. Blood pressure was measured three times (8-11 a.m. in the physical examination day) in the seated position using an Omron HEM-7121 digital sphygmomanometer. A wrist-worn triaxial accelerometer (ActiGraph GT3X-BT) was used to assess physical activity for seven consecutive days. Each 1 lx increase of bedroom LAN intensity was associated with 0.55 mmHg-increase in SBP (95% CI: 0.15, 0.95), 0.30 mmHg-increase in DBP (95% CI: 0.06, 0.54), and 0.38 mmHg-increase in MAP (95% CI: 0.12, 0.65). Higher levels of LAN exposure were associated with increased risk of hypertension (LAN ≥ 3lx vs. LAN < 3lx: OR = 3.30, 95%CI = 1.19-9.19; LAN ≥ 5lx vs. LAN < 5lx: OR = 3.87, 95%CI = 1.37-10.98). However, these detrimental effects of bedroom LAN exposure on blood pressure and hypertension were not observed among young adults with high MVPA (≥2 h/day) level. MVPA can alleviate negative effects of bedroom LAN exposure on blood pressure and hypertension. Maintaining bedroom settings darkness at night may be an important strategy for reducing the risk of hypertension. Furthermore, for individuals living with high levels of indoor LAN exposure, regular physical activity may be a good option for preventing cardiovascular disease and hypertension.
Collapse
Affiliation(s)
- Yu-Xiang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yi Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yan Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yang Yu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jing-Ya Li
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wen-Juan Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yu-Hui Wan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
25
|
Guan Q, Wang Z, Cao J, Dong Y, Chen Y. The role of light pollution in mammalian metabolic homeostasis and its potential interventions: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120045. [PMID: 36030956 DOI: 10.1016/j.envpol.2022.120045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Irregular or unnatural artificial light causes severe environmental stress on the survival and health of organisms, which is rapidly becoming a widespread new type of environmental pollution. A series of disruptive behaviors to body homeostasis brought about by light pollution, including metabolic abnormalities, are likely to be the result of circadian rhythm disturbances. Recently, the proposed role of light pollution in metabolic dysregulation has accelerated it into an emerging field. Hence, the regulatory role of light pollution in mammalian metabolic homeostasis is reviewed in this contribution. Light at night is the most widely affected type of light pollution, which disrupts metabolic homeostasis largely due to its disruption of daily food intake patterns, alterations of hormone levels such as melatonin and glucocorticoids, and changes in the rhythm of inflammatory factor production. Besides, light pollution impairs mammalian metabolic processes in an intensity-, photoperiod-, and wavelength-dependent manner, and is also affected by species, gender, and diets. Nevertheless, metabolic disorders triggered by light pollution are not irreversible to some extent. Potential interventions such as melatonin supplementation, recovery to the LD cycle, time-restricted feeding, voluntary exercise, wearing blue light-shied goggles, and bright morning light therapy open a bright avenue to prevent light pollution. This work will help strengthen the relationship between light information and metabolic homeostasis and provide new insights for the better prevention of metabolic disorders and light pollution.
Collapse
Affiliation(s)
- Qingyun Guan
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
26
|
Deprato A, Rao H, Durrington H, Maidstone R, Adan A, Navarro JF, Palomar-Cros A, Harding BN, Haldar P, Moitra S, Moitra T, Melenka L, Kogevinas M, Lacy P, Moitra S. The Influence of Artificial Light at Night on Asthma and Allergy, Mental Health, and Cancer Outcomes: A Systematic Scoping Review Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8522. [PMID: 35886376 PMCID: PMC9319466 DOI: 10.3390/ijerph19148522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/25/2022] [Accepted: 07/09/2022] [Indexed: 12/04/2022]
Abstract
Artificial light at night (ALAN) exposure is associated with the disruption of human circadian processes. Through numerous pathophysiological mechanisms such as melatonin dysregulation, it is hypothesised that ALAN exposure is involved in asthma and allergy, mental illness, and cancer outcomes. There are numerous existing studies considering these relationships; however, a critical appraisal of available evidence on health outcomes has not been completed. Due to the prevalence of ALAN exposure and these outcomes in society, it is critical that current evidence of their association is understood. Therefore, this systematic scoping review will aim to assess the association between ALAN exposure and asthma and allergy, mental health, and cancer outcomes. This systematic scoping review will be conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement. We will search bibliographic databases, registries, and references. We will include studies that have described potential sources of ALAN exposure (such as shift work or indoor and outdoor exposure to artificial light); have demonstrated associations with either allergic conditions (including asthma), mental health, or cancer-related outcomes; and are published in English in peer-reviewed journals. We will conduct a comprehensive literature search, title and abstract screening, full-text review, and data collection and analysis for each outcome separately.
Collapse
Affiliation(s)
- Andy Deprato
- Alberta Respiratory Centre and Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (A.D.); (H.R.); (P.L.)
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2H9, Canada
| | - Himasha Rao
- Alberta Respiratory Centre and Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (A.D.); (H.R.); (P.L.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Hannah Durrington
- Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK;
| | - Robert Maidstone
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxfordshire OX1 2JD, UK;
| | - Ana Adan
- Department of Clinical Psychology and Psychobiology, University of Barcelona, 08007 Barcelona, Spain;
- Institute of Neurosciences, University of Barcelona, 08007 Barcelona, Spain
| | - Jose Francisco Navarro
- Department of Psychobiology and Methodology of Behavioral Sciences, University of Malaga, 29071 Malaga, Spain;
| | - Anna Palomar-Cros
- Non-Communicable Diseases and Environment Group, ISGlobal, 08003 Barcelona, Spain; (A.P.-C.); (B.N.H.); (M.K.)
- Department of Experimental and Health Sciences, University of Pompeu Fabra, 08003 Barcelona, Spain
| | - Barbara N. Harding
- Non-Communicable Diseases and Environment Group, ISGlobal, 08003 Barcelona, Spain; (A.P.-C.); (B.N.H.); (M.K.)
| | - Prasun Haldar
- Department of Physiology, West Bengal State University, Barasat 700126, India;
- Department of Medical Laboratory Technology, Supreme Institute of Management and Technology, Mankundu 712139, India
| | - Saibal Moitra
- Department of Respiratory Medicine, Apollo Gleneagles Hospital, Kolkata 700054, India;
| | - Tanusree Moitra
- Department of Psychology, Barrackpore Rastraguru Surendranath College, Barrackpore 700120, India;
| | - Lyle Melenka
- Synergy Respiratory and Cardiac Care, Sherwood Park, AB T8H 0N2, Canada;
| | - Manolis Kogevinas
- Non-Communicable Diseases and Environment Group, ISGlobal, 08003 Barcelona, Spain; (A.P.-C.); (B.N.H.); (M.K.)
- Department of Experimental and Health Sciences, University of Pompeu Fabra, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), 08003 Barcelona, Spain
| | - Paige Lacy
- Alberta Respiratory Centre and Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (A.D.); (H.R.); (P.L.)
| | - Subhabrata Moitra
- Alberta Respiratory Centre and Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (A.D.); (H.R.); (P.L.)
| |
Collapse
|
27
|
Becker-Krail DD, Walker WH, Nelson RJ. The Ventral Tegmental Area and Nucleus Accumbens as Circadian Oscillators: Implications for Drug Abuse and Substance Use Disorders. Front Physiol 2022; 13:886704. [PMID: 35574492 PMCID: PMC9094703 DOI: 10.3389/fphys.2022.886704] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Circadian rhythms convergently evolved to allow for optimal synchronization of individuals’ physiological and behavioral processes with the Earth’s 24-h periodic cycling of environmental light and temperature. Whereas the suprachiasmatic nucleus (SCN) is considered the primary pacemaker of the mammalian circadian system, many extra-SCN oscillatory brain regions have been identified to not only exhibit sustainable rhythms in circadian molecular clock function, but also rhythms in overall region activity/function and mediated behaviors. In this review, we present the most recent evidence for the ventral tegmental area (VTA) and nucleus accumbens (NAc) to serve as extra-SCN oscillators and highlight studies that illustrate the functional significance of the VTA’s and NAc’s inherent circadian properties as they relate to reward-processing, drug abuse, and vulnerability to develop substance use disorders (SUDs).
Collapse
Affiliation(s)
- Darius D Becker-Krail
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
28
|
Oster H, Ray DW. Chronoimmunology: from preclinical assessments to clinical applications. Semin Immunopathol 2022; 44:149-151. [PMID: 35257251 DOI: 10.1007/s00281-022-00923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, DE, Germany.
- Centre of Brain, Behaviour & Metabolism (CBBM), University of Lübeck, Lübeck, DE, Germany.
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|