1
|
Rao HH, McClelland EE. A New Overview of Sex Bias in Fungal Infections. J Fungi (Basel) 2024; 10:607. [PMID: 39330367 PMCID: PMC11433577 DOI: 10.3390/jof10090607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Fungal infections often disproportionately affect males over females. Since the NIH mandated in 2016 that researchers test their hypotheses in both biological sexes, numerous other fungal infections/colonizations have been found to exhibit sex-specific patterns. These patterns have been observed in various species, including mice, drosophila, cats, and bats, suggesting significant implications for understanding these diseases and developing treatments. Despite the recognition of this sex bias, primary research explaining its underlying causes or mechanisms remains limited. Current evidence suggests that potential causes might be linked to sex hormones, genetic expression, and evolutionary behaviors. This review consolidates recent data on sex bias in fungal infections or colonizations among different species and proposes future research directions to address existing gaps. Thus, this review advances the comprehension of the intricate relationships between biological sex, fungal infections, and broader health implications.
Collapse
Affiliation(s)
- Hari H Rao
- Biomedical Sciences Division, Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, USA
| | - Erin E McClelland
- Biomedical Sciences Division, Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, USA
| |
Collapse
|
2
|
Wei G. Insights into gut fungi in pigs: A comprehensive review. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39154229 DOI: 10.1111/jpn.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/17/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Fungi in the gut microbiota of mammals play a crucial role in host physiological regulation, including intestinal homeostasis and host immune regulation. However, our understanding of gut fungi in mammals remains limited, especially in economically valuable animals, such as pigs. Therefore, this review first describes the classification and characterisation of fungi, provides insights into the methods used to study gut fungi, and summarises the recent progress on pig gut fungi. Additionally, it discusses the challenges in the study of pig gut fungi and highlights potential perspectives. The aim of this review is to serve as a valuable reference for advancing our knowledge of gut fungi in animals.
Collapse
Affiliation(s)
- Guanyue Wei
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Estrada R, Romero Y, Quilcate C, Dipaz D, Alejos-Asencio CS, Leon S, Alvarez-García WY, Rojas D, Alvarado W, Maicelo JL, Arbizu CI. Age-Dependent Changes in Protist and Fungal Microbiota in a Peruvian Cattle Genetic Nucleus. Life (Basel) 2024; 14:1010. [PMID: 39202752 PMCID: PMC11355802 DOI: 10.3390/life14081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
In this research, the connection between age and microbial diversity in cattle was explored, revealing significant changes in both protist diversity and fungal microbiota composition with age. Using fecal samples from 21 Simmental cattle, microbial communities were analyzed through 18S rRNA gene sequencing. Results indicated significant differences in alpha protist diversity among the three age groups, while fungal composition varied notably with age and was linked to hematological parameters. Despite the stability of fungal alpha diversity, compositional changes suggest the gut as a stable niche for microbial colonization influenced by diet, clinical parameters, and microbial interactions. All cattle were maintained on a consistent diet, tailored to meet the specific nutritional needs of each age group. These findings emphasize the importance of understanding age-related microbial dynamics to enhance livestock management and animal health, contributing to broader ecological and biomedical research. This study was limited by the lack of comprehensive metabolic analyses correlating microbiota changes with specific age-related variations, indicating a need for further research in this area.
Collapse
Affiliation(s)
- Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Yolanda Romero
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Carlos Quilcate
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Deisy Dipaz
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Carol S. Alejos-Asencio
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Silvia Leon
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Wuesley Yusmein Alvarez-García
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Diorman Rojas
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Wigoberto Alvarado
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (W.A.)
| | - Jorge L. Maicelo
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (W.A.)
| | - Carlos I. Arbizu
- Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru
| |
Collapse
|
4
|
Rivas MÁ, Ruiz-Moyano S, Vázquez-Hernández M, Benito MJ, Casquete R, Córdoba MDG, Martín A. Impact of Simulated Human Gastrointestinal Digestion on the Functional Properties of Dietary Fibres Obtained from Broccoli Leaves, Grape Stems, Pomegranate and Tomato Peels. Foods 2024; 13:2011. [PMID: 38998517 PMCID: PMC11241623 DOI: 10.3390/foods13132011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to analyse the impact of a simulated human digestion process on the composition and functional properties of dietary fibres derived from pomegranate-peel, tomato-peel, broccoli-stem and grape-stem by-products. For this purpose, a computer-controlled simulated digestion system consisting of three bioreactors (simulating the stomach, small intestine and colon) was utilised. Non-extractable phenols associated with dietary fibre and their influence on antioxidant capacity and antiproliferative activity were investigated throughout the simulated digestive phases. Additionally, the modifications in oligosaccharide composition, the microbiological population and short-chain fatty acids produced within the digestion media were examined. The type and composition of each dietary fibre significantly influenced its functional properties and behaviour during intestinal transit. Notably, the dietary fibre from the pomegranate peel retained its high phenol content throughout colon digestion, potentially enhancing intestinal health due to its strong antioxidant activity. Similarly, the dietary fibre from broccoli stems and pomegranate peel demonstrated anti-proliferative effects in both the small and the large intestines, prompting significant modifications in colonic microbiology. Moreover, these fibre types promoted the growth of bifidobacteria over lactic acid bacteria. Thus, these results suggest that the dietary fibre from pomegranate peel seems to be a promising functional food ingredient for improving human health.
Collapse
Affiliation(s)
- María Ángeles Rivas
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - Santiago Ruiz-Moyano
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - María Vázquez-Hernández
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - María José Benito
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - Rocío Casquete
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - María de Guía Córdoba
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - Alberto Martín
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| |
Collapse
|
5
|
Van Syoc E, Nixon MP, Silverman JD, Luo Y, Gonzalez FJ, Elbere I, Klovins J, Patterson AD, Rogers CJ, Ganda E. Changes in the type 2 diabetes gut mycobiome associate with metformin treatment across populations. mBio 2024; 15:e0016924. [PMID: 38767350 PMCID: PMC11237675 DOI: 10.1128/mbio.00169-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The human gut teems with a diverse ecosystem of microbes, yet non-bacterial portions of that community are overlooked in studies of metabolic diseases firmly linked to gut bacteria. Type 2 diabetes mellitus (T2D) is associated with compositional shifts in the gut bacterial microbiome and the mycobiome, the fungal portion of the microbiome. However, whether T2D and/or metformin treatment underpins fungal community changes is unresolved. To differentiate these effects, we curated a gut mycobiome cohort spanning 1,000 human samples across five countries and validated our findings in a murine experimental model. We use Bayesian multinomial logistic normal models to show that T2D and metformin both associate with shifts in the relative abundance of distinct gut fungi. T2D is associated with shifts in the Saccharomycetes and Sordariomycetes fungal classes, while the genera Fusarium and Tetrapisipora most consistently associate with metformin treatment. We confirmed the impact of metformin on individual gut fungi by administering metformin to healthy mice. Thus, metformin and T2D account for subtle, but significant and distinct variation in the gut mycobiome across human populations. This work highlights for the first time that metformin can confound associations of gut fungi with T2D and warrants the need to consider pharmaceutical interventions in investigations of linkages between metabolic diseases and gut microbial inhabitants. IMPORTANCE This is the largest to-date multi-country cohort characterizing the human gut mycobiome, and the first to investigate potential perturbations in gut fungi from oral pharmaceutical treatment. We demonstrate the reproducible effects of metformin treatment on the human and murine gut mycobiome and highlight a need to consider metformin as a confounding factor in investigations between type 2 diabetes mellitus and the gut microbial ecosystem.
Collapse
Affiliation(s)
- Emily Van Syoc
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- One Health Microbiome Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Michelle Pistner Nixon
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Justin D. Silverman
- One Health Microbiome Center, The Pennsylvania State University, University Park, Pennsylvania, USA
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Yuhong Luo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frank J. Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ilze Elbere
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - Andrew D. Patterson
- One Health Microbiome Center, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Connie J. Rogers
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA
| | - Erika Ganda
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- One Health Microbiome Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
6
|
Zhou X, Zhang X, Yu J. Gut mycobiome in metabolic diseases: Mechanisms and clinical implication. Biomed J 2024; 47:100625. [PMID: 37364760 PMCID: PMC11332988 DOI: 10.1016/j.bj.2023.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
Obesity, type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) are three common metabolic diseases with high prevalence worldwide. Emerging evidence suggests that gut dysbiosis may influence the development of metabolic diseases, in which gut fungal microbiome (mycobiome) is actively involved. In this review, we summarize the studies exploring the composition changes of gut mycobiome in metabolic diseases and mechanisms by which fungi affect the development of metabolic diseases. The current mycobiome-based therapies, including probiotic fungi, fungal products, anti-fungal agents and fecal microbiota transplantation (FMT), and their implication in treating metabolic diseases are discussed. We highlight the unique role of gut mycobiome in metabolic diseases, providing perspectives for future research on gut mycobiome in metabolic diseases.
Collapse
Affiliation(s)
- Xingyu Zhou
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Zhang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. Ascomycetes yeasts: The hidden part of human microbiome. WIREs Mech Dis 2024; 16:e1641. [PMID: 38228159 DOI: 10.1002/wsbm.1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
The fungal component of the microbiota, the mycobiota, has been neglected for a long time due to its poor richness compared to bacteria. Limitations in fungal detection and taxonomic identification arise from using metagenomic approaches, often borrowed from bacteriome analyses. However, the relatively recent discoveries of the ability of fungi to modulate the host immune response and their involvement in human diseases have made mycobiota a fundamental component of the microbial communities inhabiting the human host, deserving some consideration in host-microbe interaction studies and in metagenomics. Here, we reviewed recent data on the identification of yeasts of the Ascomycota phylum across human body districts, focusing on the most representative genera, that is, Saccharomyces and Candida. Then, we explored the key factors involved in shaping the human mycobiota across the lifespan, ranging from host genetics to environment, diet, and lifestyle habits. Finally, we discussed the strengths and weaknesses of culture-dependent and independent methods for mycobiota characterization. Overall, there is still room for some improvements, especially regarding fungal-specific methodological approaches and bioinformatics challenges, which are still critical steps in mycobiota analysis, and to advance our knowledge on the role of the gut mycobiota in human health and disease. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Environmental Factors Infectious Diseases > Environmental Factors.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
8
|
Rodriguez KA, Gurung M, Talatala R, Rearick JR, Ruebel ML, Stephens KE, Yeruva L. The Role of Early Life Gut Mycobiome on Child Health. Adv Nutr 2024; 15:100185. [PMID: 38311313 PMCID: PMC10907404 DOI: 10.1016/j.advnut.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
The human gut microbiota is composed of bacteria (microbiota or microbiome), fungi (mycobiome), viruses, and archaea, but most of the research is primarily focused on the bacterial component of this ecosystem. Besides bacteria, fungi have been shown to play a role in host health and physiologic functions. However, studies on mycobiota composition during infancy, the factors that might shape infant gut mycobiota, and implications to child health and development are limited. In this review, we discuss the factors likely shaping gut mycobiota, interkingdom interactions, and associations with child health outcomes and highlight the gaps in our current knowledge of this ecosystem.
Collapse
Affiliation(s)
- Kayleigh Amber Rodriguez
- Arkansas Children's Research Institute, Little Rock, AR, United States; University of Arkansas for Medical Sciences, Department of Pediatrics, Division of Infectious Diseases, Little Rock, AR, United States
| | - Manoj Gurung
- Microbiome and Metabolism Research Unit, United States Department of Agriculture, Agriculture Research Service, Little Rock, AR, United States; Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Rachelanne Talatala
- Microbiome and Metabolism Research Unit, United States Department of Agriculture, Agriculture Research Service, Little Rock, AR, United States
| | - Jolene R Rearick
- Microbiome and Metabolism Research Unit, United States Department of Agriculture, Agriculture Research Service, Little Rock, AR, United States; Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Meghan L Ruebel
- Microbiome and Metabolism Research Unit, United States Department of Agriculture, Agriculture Research Service, Little Rock, AR, United States; Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Kimberly E Stephens
- Arkansas Children's Research Institute, Little Rock, AR, United States; University of Arkansas for Medical Sciences, Department of Pediatrics, Division of Infectious Diseases, Little Rock, AR, United States.
| | - Laxmi Yeruva
- Microbiome and Metabolism Research Unit, United States Department of Agriculture, Agriculture Research Service, Little Rock, AR, United States; Arkansas Children's Nutrition Center, Little Rock, AR, United States.
| |
Collapse
|
9
|
Zhan H, Wan Y, Sun Y, Xu Z, Zhang F, Yang K, Zhu W, Cheung CP, Tang W, Ng EK, Wong SK, Yeoh YK, Kl Chan F, Miao Y, Zuo T, Zeng Z, Ng SC. Gut mycobiome alterations in obesity in geographically different regions. Gut Microbes 2024; 16:2367297. [PMID: 38899956 PMCID: PMC11195487 DOI: 10.1080/19490976.2024.2367297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
The gut fungi play important roles in human health and are involved in energy metabolism. This study aimed to examine gut mycobiome composition in obese subjects in two geographically different regions in China and to identify specific gut fungi associated with obesity. A total of 217 subjects from two regions with different urbanization levels [Hong Kong (HK): obese, n = 59; lean, n = 59; Kunming (KM): obese, n = 50; lean, n = 49. Mean body mass index (BMI) for obesity = 33.7] were recruited. We performed deep shotgun metagenomic sequencing on fecal samples to compare gut mycobiome composition and trophic functions in lean and obese subjects across these two regions. The gut mycobiome of obese subjects in both HK and KM were altered compared to those of lean subjects, characterized by a decrease in the relative abundance of Nakaseomyces, Schizosaccharomyces pombe, Candida dubliniensis and an increase in the abundance of Lanchanceathermotolerans, Saccharomyces paradox, Parastagonospora nodorum and Myceliophthorathermophila. Reduced fungal - bacterial and fungal - fungal correlations as well as increased negative fungal-bacterial correlations were observed in the gut of obese subjects. Furthermore, the anti-obesity effect of fungus S. pombe was further validated using a mouse model. Supplementing high-fat diet-induced obese mice with the fungus for 12 weeks led to a significant reduction in body weight gain (p < 0.001), and an improvement in lipid and glucose metabolism compared to mice without intervention. In conclusion, the gut mycobiome composition and functionalities of obese subjects were altered. These data shed light on the potential of utilizing fungus-based therapeutics for the treatment of obesity. S. pombe may serve as a potential fungal probiotic in the prevention of diet-induced obesity and future human trials are needed.
Collapse
Affiliation(s)
- Hui Zhan
- Microbiota I-Center (MagIC) Limited, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yating Wan
- Microbiota I-Center (MagIC) Limited, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Yunnan, China
- Yunnan Geriatric Medical Center, Kunming, Yunnan, China
| | - Zhilu Xu
- Microbiota I-Center (MagIC) Limited, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fen Zhang
- Microbiota I-Center (MagIC) Limited, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Keli Yang
- Microbiota I-Center (MagIC) Limited, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenyi Zhu
- Microbiota I-Center (MagIC) Limited, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Pan Cheung
- Microbiota I-Center (MagIC) Limited, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Whitney Tang
- Microbiota I-Center (MagIC) Limited, Hong Kong SAR, China
| | - Enders Kw Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Kh Wong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Kit Yeoh
- Microbiota I-Center (MagIC) Limited, Hong Kong SAR, China
| | - Francis Kl Chan
- Microbiota I-Center (MagIC) Limited, Hong Kong SAR, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Yunnan, China
| | - Tao Zuo
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhong Zeng
- Department of Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Siew C Ng
- Microbiota I-Center (MagIC) Limited, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
de Wit DF, Hanssen NMJ, Wortelboer K, Herrema H, Rampanelli E, Nieuwdorp M. Evidence for the contribution of the gut microbiome to obesity and its reversal. Sci Transl Med 2023; 15:eadg2773. [PMID: 37992156 DOI: 10.1126/scitranslmed.adg2773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/27/2023] [Indexed: 11/24/2023]
Abstract
Obesity has become a worldwide pandemic affecting more than 650 million people and is associated with a high burden of morbidity. Alongside traditional risk factors for obesity, the gut microbiome has been identified as a potential factor in weight regulation. Although rodent studies suggest a link between the gut microbiome and body weight, human evidence for causality remains scarce. In this Review, we postulate that existing evidence remains to establish a contribution of the gut microbiome to the development of obesity in humans but that modified probiotic strains and supraphysiological dosages of microbial metabolites may be beneficial in combatting obesity.
Collapse
Affiliation(s)
- Douwe F de Wit
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, 1105AZ Amsterdam, Netherlands
| | - Nordin M J Hanssen
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
| | - Koen Wortelboer
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, 1105AZ Amsterdam, Netherlands
| | - Hilde Herrema
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, 1105AZ Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105AZ Amsterdam, Netherlands
| | - Elena Rampanelli
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, 1105AZ Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, 1105AZ Amsterdam, Netherlands
| | - Max Nieuwdorp
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, 1105AZ Amsterdam, Netherlands
- Amsterdam UMC location Vrije Universiteit Medical Center, Department of Internal Medicine, Diabetes Center, 1105AZ Amsterdam, Netherlands
| |
Collapse
|
11
|
Van Syoc E, Nixon MP, Silverman JD, Luo Y, Gonzalez FJ, Elbere I, Klovins J, Patterson AD, Rogers CJ, Ganda E. Changes in the Type 2 diabetes gut mycobiome associate with metformin treatment across populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542255. [PMID: 37398234 PMCID: PMC10312434 DOI: 10.1101/2023.05.25.542255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The human gut teems with a diverse ecosystem of microbes, yet non-bacterial portions of that community are overlooked in studies of metabolic diseases firmly linked to gut bacteria. Type 2 diabetes mellitus (T2D) associates with compositional shifts in the gut bacterial microbiome and fungal mycobiome, but whether T2D and/or pharmaceutical treatments underpin the community change is unresolved. To differentiate these effects, we curated a gut mycobiome cohort to-date spanning 1,000 human samples across 5 countries and a murine experimental model. We use Bayesian multinomial logistic normal models to show that metformin and T2D both associate with shifts in the relative abundance of distinct gut fungi. T2D associates with shifts in the Saccharomycetes and Sordariomycetes fungal classes, while the genera Fusarium and Tetrapisipora most consistently associate with metformin treatment. We confirmed the impact of metformin on individual gut fungi by administering metformin to healthy mice. Thus, metformin and T2D account for subtle, but significant and distinct variation in the gut mycobiome across human populations. This work highlights for the first time that oral pharmaceuticals can confound associations of gut fungi with T2D and warrants the need to consider pharmaceutical interventions in investigations of linkages between metabolic diseases and gut microbial inhabitants.
Collapse
Affiliation(s)
- Emily Van Syoc
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle Pistner Nixon
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Justin D. Silverman
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA 16802, USA
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA
- Departments of Statistics and Medicine, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuhong Luo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank J. Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ilze Elbere
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - Andrew D. Patterson
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Connie J. Rogers
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - Erika Ganda
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
12
|
Renzi S, Nenciarini S, Bacci G, Cavalieri D. Yeast metagenomics: analytical challenges in the analysis of the eukaryotic microbiome. MICROBIOME RESEARCH REPORTS 2023; 3:2. [PMID: 38455081 PMCID: PMC10917621 DOI: 10.20517/mrr.2023.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 03/09/2024]
Abstract
Even if their impact is often underestimated, yeasts and yeast-like fungi represent the most prevalent eukaryotic members of microbial communities on Earth. They play numerous roles in natural ecosystems and in association with their hosts. They are involved in the food industry and pharmaceutical production, but they can also cause diseases in other organisms, making the understanding of their biology mandatory. The ongoing loss of biodiversity due to overexploitation of environmental resources is a growing concern in many countries. Therefore, it becomes crucial to understand the ecology and evolutionary history of these organisms to systematically classify them. To achieve this, it is essential that our knowledge of the mycobiota reaches a level similar to that of the bacterial communities. To overcome the existing challenges in the study of fungal communities, the first step should be the establishment of standardized techniques for the correct identification of species, even from complex matrices, both in wet lab practices and in bioinformatic tools.
Collapse
Affiliation(s)
| | | | | | - Duccio Cavalieri
- Correspondence to: Prof. Duccio Cavalieri, Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino 50019, Italy. E-mail:
| |
Collapse
|
13
|
Zhao X, Hu X, Han J, Yin R, Zhang S, Liu H. Gut mycobiome: A "black box" of gut microbiome-host interactions. WIREs Mech Dis 2023; 15:e1611. [PMID: 37157158 DOI: 10.1002/wsbm.1611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
Fungi, being a necessary component of the gut microbiome, potentially have direct or indirect effects on the health and illness status of the host. The gut mycobiome is an inducer of the host's immunity, maintaining intestinal homeostasis, and protecting against infections, as well as a reservoir of opportunistic microorganisms and a potential cofactor when the host is immunocompromised. In addition, gut fungi interact with a diverse range of microbes in the intestinal niches. In this article, we reviewed the composition of gut mycobiome, their association with host health and illness, and summarized the specific Candida albicans-host interactions, in order to provide insights and directions for the ongoing study of fungi. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Xinyue Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiaomin Hu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ruopeng Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyang Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Chancharoenthana W, Kamolratanakul S, Visitchanakun P, Sontidejkul S, Cheibchalard T, Somboonna N, Settachaimongkon S, Leelahavanichkul A. Lacticaseibacilli attenuated fecal dysbiosis and metabolome changes in Candida-administered bilateral nephrectomy mice. Front Immunol 2023; 14:1131447. [PMID: 36969207 PMCID: PMC10034098 DOI: 10.3389/fimmu.2023.1131447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
The impacts of metabolomic changes (reduced short-chain-fatty acids; SCFAs) in uremic condition is not fully understood. Once daily Candida gavage with or without probiotics (different times of administration) for 1 week prior to bilateral nephrectomy (Bil Nep) in 8-week-old C57BL6 mice as the possible models more resemble human conditions were performed. Candida-administered Bil Nep mice demonstrated more severe conditions than Bil Nep alone as indicated by mortality (n = 10/group) and other 48 h parameters (n = 6-8/group), including serum cytokines, leaky gut (FITC-dextran assay, endotoxemia, serum beta-glucan, and loss of Zona-occludens-1), and dysbiosis (increased Enterobacteriaceae with decreased diversity in microbiome analysis) (n = 3/group for fecal microbiome) without the difference in uremia (serum creatinine). With nuclear magnetic resonance metabolome analysis (n = 3-5/group), Bil Nep reduced fecal butyric (and propionic) acid and blood 3-hydroxy butyrate compared with sham and Candida-Bil Nep altered metabolomic patterns compared with Bil Nep alone. Then, Lacticaseibacillus rhamnosus dfa1 (SCFA-producing Lacticaseibacilli) (n = 8/group) attenuated the model severity (mortality, leaky gut, serum cytokines, and increased fecal butyrate) of Bil Nep mice (n = 6/group) (regardless of Candida). In enterocytes (Caco-2 cells), butyrate attenuated injury induced by indoxyl sulfate (a gut-derived uremic toxin) as indicated by transepithelial electrical resistance, supernatant IL-8, NFκB expression, and cell energy status (mitochondria and glycolysis activities by extracellular flux analysis). In conclusion, the reduced butyrate by uremia was not enhanced by Candida administration; however, the presence of Candida in the gut induced a leaky gut that was attenuated by SCFA-producing probiotics. Our data support the use of probiotics in uremia.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- *Correspondence: Wiwat Chancharoenthana, ; Asada Leelahavanichkul,
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Supistha Sontidejkul
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Thanya Cheibchalard
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Wiwat Chancharoenthana, ; Asada Leelahavanichkul,
| |
Collapse
|
15
|
Gutierrez MW, Mercer EM, Moossavi S, Laforest-Lapointe I, Reyna ME, Becker AB, Simons E, Mandhane PJ, Turvey SE, Moraes TJ, Sears MR, Subbarao P, Azad MB, Arrieta MC. Maturational patterns of the infant gut mycobiome are associated with early-life body mass index. Cell Rep Med 2023; 4:100928. [PMID: 36736319 PMCID: PMC9975311 DOI: 10.1016/j.xcrm.2023.100928] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023]
Abstract
Unlike the bacterial microbiome, the role of early-life gut fungi in host metabolism and childhood obesity development remains poorly characterized. To address this, we investigate the relationship between the gut mycobiome of 100 infants from the Canadian Healthy Infant Longitudinal Development (CHILD) Cohort Study and body mass index Z scores (BMIz) in the first 5 years of life. An increase in fungal richness during the first year of life is linked to parental and infant BMI. The relationship between richness pattern and early-life BMIz is modified by maternal BMI, maternal diet, infant antibiotic exposure, and bacterial beta diversity. Further, the abundances of Saccharomyces, Rhodotorula, and Malassezia are differentially associated with early-life BMIz. Using structural equation modeling, we determine that the mycobiome's contribution to BMIz is likely mediated by the bacterial microbiome. This demonstrates that mycobiome maturation and infant growth trajectories are distinctly linked, advocating for inclusion of fungi in larger pediatric microbiome studies.
Collapse
Affiliation(s)
- Mackenzie W Gutierrez
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada; International Microbiome Center, University of Calgary, Calgary, AB T2N 1N4, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Emily M Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada; International Microbiome Center, University of Calgary, Calgary, AB T2N 1N4, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Shirin Moossavi
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada; International Microbiome Center, University of Calgary, Calgary, AB T2N 1N4, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Myrtha E Reyna
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Allan B Becker
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Elinor Simons
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Piush J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Theo J Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Malcolm R Sears
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Meghan B Azad
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada; International Microbiome Center, University of Calgary, Calgary, AB T2N 1N4, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
16
|
Gupta Y, Ernst AL, Vorobyev A, Beltsiou F, Zillikens D, Bieber K, Sanna-Cherchi S, Christiano AM, Sadik CD, Ludwig RJ, Sezin T. Impact of diet and host genetics on the murine intestinal mycobiome. Nat Commun 2023; 14:834. [PMID: 36788222 PMCID: PMC9929102 DOI: 10.1038/s41467-023-36479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
The mammalian gut is home to a diverse microbial ecosystem, whose composition affects various physiological traits of the host. Next-generation sequencing-based metagenomic approaches demonstrated how the interplay of host genetics, bacteria, and environmental factors shape complex traits and clinical outcomes. However, the role of fungi in these complex interactions remains understudied. Here, using 228 males and 363 females from an advanced-intercross mouse line, we provide evidence that fungi are regulated by host genetics. In addition, we map quantitative trait loci associated with various fungal species to single genes in mice using whole genome sequencing and genotyping. Moreover, we show that diet and its' interaction with host genetics alter the composition of fungi in outbred mice, and identify fungal indicator species associated with different dietary regimes. Collectively, in this work, we uncover an association of the intestinal fungal community with host genetics and a regulatory role of diet in this ecological niche.
Collapse
Affiliation(s)
- Yask Gupta
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Lara Ernst
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Artem Vorobyev
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Foteini Beltsiou
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela M Christiano
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| | - Tanya Sezin
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
17
|
Abstract
Recent studies revealed a significant role of the gut fungal community in human health. Here, we investigated the content and variation of gut mycobiota among subjects from the European population. We explored the interplay between gut fungi and various host-related sociodemographic, lifestyle, health, and dietary factors. The study included 923 participants. Fecal DNA samples were analyzed by whole-metagenome high-throughput sequencing. Subsequently, fungi taxonomic profiles were determined and accompanied by computational and statistical analyses of the association with 53 host-related factors. Fungal communities were characterized by a high prevalence of Saccharomyces, Candida, and Sporisorium. Ten factors were found to correlate significantly with the overall mycobiota variation. Most were diet related, including the consumption of chips, meat, sodas, sweetening, processed food, and alcohol, followed by age and marital status. Differences in α- and/or β-diversity were also reported for other factors such as body mass index (BMI), job type, autoimmunological diseases, and probiotics. Differential abundance analysis revealed fungal species that exhibited different patterns of changes under specific conditions. The human gut mycobiota is dominated by yeast, including Saccharomyces, Malassezia, and Candida. Although intervolunteer variability was high, several fungal species persisted across most samples, which may be evidence that a core gut mycobiota exists. Moreover, we showed that host-related factors such as diet, age, and marital status influence the variability of gut mycobiota. To our knowledge, this is the first large and comprehensive study of the European cohort in terms of gut mycobiota associations with such an extensive and differentiated host-related set of factors. IMPORTANCE The human gut is inhabited by many organisms, including bacteria and fungi, that may affect human health. However, research on human gut mycobiome is still rare. Moreover, the large European-based cohort study is missing. Here, we analyzed the first large European cohort in terms of gut mycobiota associations with a differentiated host-related set of factors. Our results showed that chips, meat, sodas, sweetening, processed food, beer, alcohol consumption, age, and marital status were associated with the variability of gut mycobiota. Moreover, our analysis revealed changes in abundances at the fungal species level for many investigated factors. Our results can suggest potentially valuable paths for further, narrowly focused research on gut mycobiome and its impact on human health. In the coming era of gut microbiome-based precision medicine, further research into the relationship between different mycobial structures and host-related factors may result in new preventive approaches or therapeutic procedures.
Collapse
|
18
|
Abstract
In recent years, it has become clear that gut microbiota plays a major role in the human body, both in health and disease. Because of that, the gut microbiome and its impact on human well-being are getting wider and wider attention. Studies focused on the liver are not an exception. However, the majority of the analyses are concentrated on the bacterial part of the gut microbiota, while the fungi living in the human intestines are often omitted or underappreciated. This review is focused on the gut mycobiome as an important factor that should be taken into consideration regarding liver homeostasis and its perturbations. We have collected the findings in this field and we discuss their importance. We aim to emphasize the fungal compositional changes related to liver diseases and, by that, provide novel insights into the directions of liver research and gut microbiota as a therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Natalia Szóstak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
19
|
Jaswal K, Todd OA, Behnsen J. Neglected gut microbiome: interactions of the non-bacterial gut microbiota with enteric pathogens. Gut Microbes 2023; 15:2226916. [PMID: 37365731 PMCID: PMC10305517 DOI: 10.1080/19490976.2023.2226916] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
A diverse array of commensal microorganisms inhabits the human intestinal tract. The most abundant and most studied members of this microbial community are undoubtedly bacteria. Their important role in gut physiology, defense against pathogens, and immune system education has been well documented over the last decades. However, the gut microbiome is not restricted to bacteria. It encompasses the entire breadth of microbial life: viruses, archaea, fungi, protists, and parasitic worms can also be found in the gut. While less studied than bacteria, their divergent but important roles during health and disease have become increasingly more appreciated. This review focuses on these understudied members of the gut microbiome. We will detail the composition and development of these microbial communities and will specifically highlight their functional interactions with enteric pathogens, such as species of the family Enterobacteriaceae. The interactions can be direct through physical interactions, or indirect through secreted metabolites or modulation of the immune response. We will present general concepts and specific examples of how non-bacterial gut communities modulate bacterial pathogenesis and present an outlook for future gut microbiome research that includes these communities.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Olivia A Todd
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Shoukat M, Ullah F, Tariq MN, Din G, Khadija B, Faryal R. Profiling of potential pathogenic candida species in obesity. Microb Pathog 2023; 174:105894. [PMID: 36496057 DOI: 10.1016/j.micpath.2022.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/17/2022] [Accepted: 11/19/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE OF RESEARCH The aim of the current study was gut profiling of culturable Candida species and their possible pathogenic potential to asses role in obesity. METHODS This case control study includes stool samples from 75 obese individuals and 50 controls. Isolation and identification of various Candida species was carried out by standard microbiological techniques. For pathogenic profiling, extracellular enzymatic assays, biofilm forming ability and resistance to azole were analyzed. RESULTS Culturable gut profiling identified comparative higher abundance and diversity of Candida species among obese compared to controls. The most abundant specie among both groups was C.kefyr. A comparatively higher pathogenic potential as more hydrolases expression was detected in C.kefyr, C.albicans and Teunomyces krusei from obese group. Majority isolates from obese group were strong biofilm formers (47.1%) compared to control group (35.4%) suggesting it as strong risk factor for obesity. Fluconazole resistance was highest among C.kefyr (51%) followed by Teunomyces krusei and C.albicans. All the isolates from different species were voriconazole sensitive except C.kefyr displaying a 4.2% resistance in obese group only. A significant association of dominant colonizing species with meat, fruit/vegetable consumption and residence area was present (p < 0.05). CONCLUSION The presence of hydrolytic enzymes in gut Candida species showed strong association with protein's degradation and enhanced pathogenicity. C.kefyr and Teunomyces krusei has emerged as potential pathogen showing increased colonization as result of protein rich and low carb diet. Thus presenting it as a bad choice for weight loss in obese individuals.
Collapse
Affiliation(s)
- Mehreen Shoukat
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Faheem Ullah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan; Department of Medical Lab Technology, University of Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Marbaila Nane Tariq
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Ghufranud Din
- Department of Medical Lab Technology, University of Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Bibi Khadija
- Department of Medical Lab Technology, National Skills University, Islamabad, Pakistan.
| | - Rani Faryal
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| |
Collapse
|
21
|
Zhang H, Wei Y, Jia H, Chen D, Tang X, Wang J, Chen M, Guo Y. Immune activation of characteristic gut mycobiota Kazachstania pintolopesii on IL-23/IL-17R signaling in ankylosing spondylitis. Front Cell Infect Microbiol 2022; 12:1035366. [PMID: 36605130 PMCID: PMC9808786 DOI: 10.3389/fcimb.2022.1035366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
It is very important to understand the communication and interaction mechanisms between the host and its resident microorganisms on host physiology and for precise diagnosis and treatment. Although intestinal fungi and bacteria dysbiosis is increasingly linked to ankylosing spondylitis (AS), their mechanisms of action have been rarely illustrated. In this paper, fecal samples from 10 AS monkeys and 10 healthy controls were collected to systematically characterize the gut mycobiota and microbiota in AS monkeys by 16S rRNA and ITS2 DNA sequencing. Our results showed the gut fungi of Kazachstania pintolopesii, Saccharomycetaceae, Kazachstania, and Saccharomyceteles. Saccharomycetes were specially enriched in AS, and the microbiota of AS monkeys was characterized by an increased abundance of Clostridia, Clostridiales, Ruminococcaceae, and Prevotella 2, using Line Discriminant Analysis Effect Size. Compared to healthy controls, decreased ITS2/16S biodiversity ratios and altered bacterial-fungal interkingdom networks were observed in AS monkeys. Oral administration of K. pintolopesii activates IL-17RA pathway and induce inflammatory reaction in the colonic tissue of C57BL/6 mice, as well as multiple AS phenotypes, including fungal and bacterial dysbiosis, immune responses of NK cells, platelets, T cells, leukocytes, B-cell activation, rheumatoid arthritis, and inflammatory bowel disease. We also found the secreted products of K. pintolopesii could activate the IL-17RA pathway, which induces PANoptosis in macrophage RAW264.7 cells. Much worse, the PANoptosis products could promote the proliferation and morphological changes of K. pintolopesii, which resulted in much more K. pintolopesii and a severe inflammatory reaction. Interestingly, the inflammatory factor TNF-α can promote the morphological transformation of Candida albicans and K. pintolopesii, which is worthy of further study. The characteristic fungi in all these findings implied that fungal and bacterial dysbiosis have a close link to AS and that their communication and interaction indeed play an important role in autoimmune responses, and K. pintolopesii could be a potential marker microorganism in AS, although its specific mechanism is not fully elucidated.
Collapse
Affiliation(s)
- Haiting Zhang
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China,*Correspondence: Haiting Zhang, ; Meili Chen, ; Yinrui Guo,
| | - Yu Wei
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huanhuan Jia
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong, China
| | - Diling Chen
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Xiaocui Tang
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Jian Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Meili Chen
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong, China,*Correspondence: Haiting Zhang, ; Meili Chen, ; Yinrui Guo,
| | - Yinrui Guo
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, Guangdong, China,*Correspondence: Haiting Zhang, ; Meili Chen, ; Yinrui Guo,
| |
Collapse
|
22
|
Candida Administration in 5/6 Nephrectomized Mice Enhanced Fibrosis in Internal Organs: An Impact of Lipopolysaccharide and (1→3)-β-D-Glucan from Leaky Gut. Int J Mol Sci 2022; 23:ijms232415987. [PMID: 36555628 PMCID: PMC9784901 DOI: 10.3390/ijms232415987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Uremic toxins and gut dysbiosis in advanced chronic kidney disease (CKD) can induce gut leakage, causing the translocation of gut microbial molecules into the systemic circulation. Lipopolysaccharide (LPS) and (1→3)-β-D-glucan (BG) are the major gut microbial molecules of Gram-negative bacteria and fungi, respectively, and can induce inflammation in several organs. Here, the fibrosis in the kidney, liver, and heart was investigated in oral C. albicans-administered 5/6 nephrectomized (Candida-5/6 Nx) mice. At 20 weeks post 5/6 Nx, Candida-5/6 Nx mice demonstrated increased 24 h proteinuria, liver enzymes, and serum cytokines (TNF-α, IL-6, and IL-10), but not weight loss, systolic blood pressure, hematocrit, serum creatinine, or gut-derived uremic toxins (TMAO and indoxyl sulfate), compared to in 5/6 Nx alone. The gut leakage in Candida-5/6 Nx was more severe, as indicated by FITC-dextran assay, endotoxemia, and serum BG. The areas of fibrosis from histopathology, along with the upregulated gene expression of Toll-like receptor 4 (TLR-4) and Dectin-1, the receptors for LPS and BG, respectively, were higher in the kidney, liver, and heart. In vitro, LPS combined with BG increased the supernatant IL-6 and TNF-α, upregulated the genes of pro-inflammation and pro-fibrotic processes, Dectin-1, and TLR-4 in renal tubular (HK-2) cells and hepatocytes (HepG2), when compared with LPS or BG alone. This supported the pro-inflammation-induced fibrosis and the possible LPS-BG additive effects on kidney and liver fibrosis. In conclusion, uremia-induced leaky gut causes the translocation of gut LPS and BG into circulation, which activates the pro-inflammatory and pro-fibrotic pathways, causing internal organ fibrosis. Our results support the crosstalk among several organs in CKD through a leaky gut.
Collapse
|
23
|
Vitte J, Michel M, Malinovschi A, Caminati M, Odebode A, Annesi-Maesano I, Caimmi DP, Cassagne C, Demoly P, Heffler E, Menu E, Nwaru BI, Sereme Y, Ranque S, Raulf M, Feleszko W, Janson C, Galán C. Fungal exposome, human health, and unmet needs: A 2022 update with special focus on allergy. Allergy 2022; 77:3199-3216. [PMID: 35976185 DOI: 10.1111/all.15483] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/01/2022] [Accepted: 08/13/2022] [Indexed: 01/28/2023]
Abstract
Humans inhale, ingest, and touch thousands of fungi each day. The ubiquity and diversity of the fungal kingdom, reflected by its complex taxonomy, are in sharp contrast with our scarce knowledge about its distribution, pathogenic effects, and effective interventions at the environmental and individual levels. Here, we present an overview of salient features of fungi as permanent players of the human exposome and key determinants of human health, through the lens of fungal allergy and other fungal hypersensitivity reactions. Improved understanding of the fungal exposome sheds new light on the epidemiology of fungal-related hypersensitivity diseases, their immunological substratum, the currently available methods, and biomarkers for environmental and medical fungi. Unmet needs are described and potential approaches are highlighted as perspectives.
Collapse
Affiliation(s)
- Joana Vitte
- IDESP, University of Montpellier and INSERM, Montpellier, France.,MEPHI, IHU Méditerranée Infection, IRD, APHM, Aix-Marseille Univ, Marseille, France
| | - Moïse Michel
- IDESP, University of Montpellier and INSERM, Montpellier, France.,MEPHI, IHU Méditerranée Infection, IRD, APHM, Aix-Marseille Univ, Marseille, France.,Immunology Laboratory, University Hospital Nîmes, Nîmes, France
| | - Andrei Malinovschi
- Department of Medical Sciences Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Marco Caminati
- Asthma, Allergy and Clinical Immunology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Adeyinka Odebode
- Department of Basic Science, Kampala International University, Kampala, Uganda
| | | | - Davide Paolo Caimmi
- IDESP, University of Montpellier and INSERM, Montpellier, France.,Departement of Pneumology, University Hospital of Montpellier, Montpellier, France
| | - Carole Cassagne
- VITROME, IHU Méditerranée Infection, IRD, APHM, Aix-Marseille Univ, Marseille, France
| | - Pascal Demoly
- IDESP, University of Montpellier and INSERM, Montpellier, France.,Departement of Pneumology, University Hospital of Montpellier, Montpellier, France
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy Humanitas Clinical and Research Center IRCCS Rozzano, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Estelle Menu
- VITROME, IHU Méditerranée Infection, IRD, APHM, Aix-Marseille Univ, Marseille, France
| | - Bright I Nwaru
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Youssouf Sereme
- MEPHI, IHU Méditerranée Infection, IRD, APHM, Aix-Marseille Univ, Marseille, France.,Department of Immunology, Infectiology and Hematology, Institut Necker-Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, Université Paris Descartes, Paris, France
| | - Stéphane Ranque
- VITROME, IHU Méditerranée Infection, IRD, APHM, Aix-Marseille Univ, Marseille, France
| | - Monika Raulf
- Department of Allergology and Immunology, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bochum, Germany
| | - Wojciech Feleszko
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Christer Janson
- Department of Medical Sciences Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Carmen Galán
- International Campus of Excellence on Agrifood (ceiA3), University of Cordoba, Córdoba, Spain.,Andalusian Inter-University Institute for Earth System Research (IISTA), University of Cordoba, Córdoba, Spain
| | | |
Collapse
|
24
|
Peroumal D, Sahu SR, Kumari P, Utkalaja BG, Acharya N. Commensal Fungus Candida albicans Maintains a Long-Term Mutualistic Relationship with the Host To Modulate Gut Microbiota and Metabolism. Microbiol Spectr 2022; 10:e0246222. [PMID: 36135388 PMCID: PMC9603587 DOI: 10.1128/spectrum.02462-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 01/04/2023] Open
Abstract
Candida albicans survives as a commensal fungus in the gastrointestinal tract, and that its excessive growth causes infections in immunosuppressed individuals is widely accepted. However, any mutualistic relationship that may exist between C. albicans and the host remains undetermined. Here, we showed that a long-term feeding of C. albicans does not cause any noticeable infections in the mouse model. Our 16S and 18S ribosomal DNA (rDNA) sequence analyses suggested that C. albicans colonizes in the gut and modulates microbiome dynamics, which in turn mitigates high-fat-diet-induced uncontrolled body weight gain and metabolic hormonal imbalances. Interestingly, adding C. albicans to a nonobesogenic diet stimulated the appetite-regulated hormones and helped the mice maintain a healthy body weight. In concert, our results suggest a mutualism between C. albicans and the host, contrary to the notion that C. albicans is always an adversary and indicating it can instead be a bona fide admirable companion of the host. Finally, we discuss its potential translational implication as a probiotic, especially in obese people or people dependent on high-fat calorie intakes to manage obesity associated complications. IMPORTANCE Candida albicans is mostly considered an opportunistic pathogen that causes fetal systemic infections. However, this study demonstrates that in its commensal state, it maintains a long-term mutualistic relationship with the host and regulates microbial dynamics in the gut and host physiology. Thus, we concluded that C. albicans is not always an adversary but rather can be a bona fide admirable companion of the host. More importantly, as several genomic knockout strains of C. albicans were shown to be avirulent, such candidate strains may be explored further as preferable probiotic isolates to control obesity.
Collapse
Affiliation(s)
- Doureradjou Peroumal
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
25
|
Wiesmann C, Lehr K, Kupcinskas J, Vilchez-Vargas R, Link A. Primers matter: Influence of the primer selection on human fungal detection using high throughput sequencing. Gut Microbes 2022; 14:2110638. [PMID: 35993401 PMCID: PMC9415448 DOI: 10.1080/19490976.2022.2110638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Microbiota research has received an increasing attention for its role in disease development and fungi are considered as one of the key players in the microbial niche. Various sequencing approaches have been applied to uncover the role of fungal community in health and disease; however, little is known on the performance of various primers and comparability between the studies. Motivated by the recent publications, we performed a systematic comparison of the 18S and ITS regions to identify the impact of various primers on the sequencing results. Using four pairs of primers extensively used in literature, fungal community was retrieve from 25 fecal samples, and applying high throughput sequencing; and the results were compared in order to select the most suitable primers for fungal detection in human fecal samples. Considering the high variability between samples, primers described in the Earth microbiome project detected the broadest fungal spectrum suggesting its superior performance in mycobiome research.
Collapse
Affiliation(s)
- Crispin Wiesmann
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Konrad Lehr
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Juozas Kupcinskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania,Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany,CONTACT Alexander Link Department of Gastroenterology, Hepatology and Infectious Diseases Otto-von-Guericke University Magdeburg, Leipziger Straße 44 39120Magdeburg, Germany
| |
Collapse
|
26
|
Candida Worsens Klebsiella pneumoniae Induced-Sepsis in a Mouse Model with Low Dose Dextran Sulfate Solution through Gut Dysbiosis and Enhanced Inflammation. Int J Mol Sci 2022; 23:ijms23137050. [PMID: 35806054 PMCID: PMC9266745 DOI: 10.3390/ijms23137050] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen and a commensal organism that is possibly enhanced in several conditions with gut dysbiosis, and frequently detectable together with Candida overgrowth. Here, K. pneumoniae with or without Candida albicans was daily orally administered for 3 months in 0.8% dextran sulfate solution-induced mucositis mice and also tested in vitro. As such, Candida worsened Klebsiella-DSS-colitis as demonstrated by mortality, leaky gut (FITC-dextran assay, bacteremia, endotoxemia, and serum beta-glucan), gut dysbiosis (increased Deferribacteres from fecal microbiome analysis), liver pathology (histopathology), liver apoptosis (activated caspase 3), and cytokines (in serum and in the internal organs) when compared with Klebsiella-administered DSS mice. The combination of heat-killed Candida plus Klebsiella mildly facilitated inflammation in enterocytes (Caco-2), hepatocytes (HepG2), and THP-1-derived macrophages as indicated by supernatant cytokines or the gene expression. The addition of heat-killed Candida into Klebsiella preparations upregulated TLR-2, reduced Occludin (an intestinal tight junction molecule), and worsened enterocyte integrity (transepithelial electrical resistance) in Caco-2 and enhanced casp8 and casp9 (apoptosis genes) in HepG2 when compared with heat-killed Klebsiella alone. In conclusion, Candida enhanced enterocyte inflammation (partly through TLR-2 upregulation and gut dysbiosis) that induced gut translocation of endotoxin and beta-glucan causing hyper-inflammatory responses, especially in hepatocytes and macrophages.
Collapse
|
27
|
Wu N, Mo H, Mu Q, Liu P, Liu G, Yu W. The Gut Mycobiome Characterization of Gestational Diabetes Mellitus and Its Association With Dietary Intervention. Front Microbiol 2022; 13:892859. [PMID: 35783435 PMCID: PMC9240440 DOI: 10.3389/fmicb.2022.892859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 12/25/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a high-risk pregnancy complication that is associated with metabolic disorder phenotypes, such as abnormal blood glucose and obesity. The active interface between gut microbiota and diet contributes to metabolic homeostasis in GDM. However, the contributions of gut mycobiome have been neglected. Here, we profiled the gut fungi between GDM and healthy subjects at two time points and investigate whether variations in gut mycobiome correlate with key features of host metabolism and diet management in this observational study. We identified that Hanseniaspora, Torulaspora, Auricularia, Alternaria, and Candida contributed to GDM patient clustering, indicating that these fungal taxa are associated with abnormal blood glucose levels, and the causality needs to be further explored. While Penicillium, Ganoderma, Fusarium, Chaetomium, and Heterobasidion had significant explanatory effects on healthy subject clustering. In addition, spearman analysis further indicated that blood glucose levels were negatively correlated with polysaccharide-producing genera, Ganoderma, which could be reshaped by the short-term diet. The Penicillium which was negatively correlates with metabolic parameters, also exhibited the antimicrobial attribute by the fungal-bacterial interaction analysis. These data suggest that host metabolic homeostasis in GDM may be influenced by variability in the mycobiome and could be reshaped by the diet intervention. This work reveals the potential significance of the gut mycobiome in health and has implications for the beneficial effects of diet intervention on host metabolic homeostasis through regulating gut fungal abundance and metabolites.
Collapse
Affiliation(s)
- Na Wu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| | - Heng Mo
- Department of Stomatology, Peking University People’s Hospital, Beijing, China
| | - Qing Mu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| | - Peng Liu
- Department of Clinical Nutrition, Peking University People’s Hospital, Beijing, China
- *Correspondence: Peng Liu,
| | - Guoli Liu
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
- Guoli Liu,
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
- Weidong Yu,
| |
Collapse
|
28
|
Mycobiota composition and changes across pregnancy in patients with gestational diabetes mellitus (GDM). Sci Rep 2022; 12:9192. [PMID: 35654937 PMCID: PMC9163055 DOI: 10.1038/s41598-022-13438-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023] Open
Abstract
The gut mycobiota has never been studied either during pregnancy or in patients with gestational diabetes (GDM). This study aimed to analyze the fecal mycobiota of GDM patients during the second (T2) and third (T3) trimester of pregnancy and to compare it with the mycobiota of pregnant normoglycemic women (controls). Forty-one GDM patients and 121 normoglycemic women were studied. GDM mycobiota was composed almost exclusively by the Ascomycota phylum; Basidiomicota accounted for 43% of the relative frequency of the controls. Kluyveromyces (p < 0.001), Metschnikowia (p < 0.001), and Pichia (p < 0.001) showed a significantly higher frequency in GDM patients, while Saccharomyces (p = 0.019), were more prevalent in controls. From T2 to T3, a reduction in fungal alpha diversity was found in GDM patients, with an increase of the relative frequency of Candida, and the reduction of some pro-inflammatory taxa. Many associations between fungi and foods and nutrients were detected. Finally, several fungi and bacteria showed competition or co-occurrence. Patients with GDM showed a predominance of fungal taxa with potential inflammatory effects when compared to normoglycemic pregnant women, with a marked shift in their mycobiota during pregnancy, and complex bacteria-fungi interactions.
Collapse
|
29
|
Uremia-Induced Gut Barrier Defect in 5/6 Nephrectomized Mice Is Worsened by Candida Administration through a Synergy of Uremic Toxin, Lipopolysaccharide, and (1➔3)-β-D-Glucan, but Is Attenuated by Lacticaseibacillus rhamnosus L34. Int J Mol Sci 2022; 23:ijms23052511. [PMID: 35269654 PMCID: PMC8910559 DOI: 10.3390/ijms23052511] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
A chronic kidney disease (CKD) causes uremic toxin accumulation and gut dysbiosis, which further induces gut leakage and worsening CKD. Lipopolysaccharide (LPS) of Gram-negative bacteria and (1➔3)-β-D-glucan (BG) of fungi are the two most abundant gut microbial molecules. Due to limited data on the impact of intestinal fungi in CKD mouse models, the influences of gut fungi and Lacticaseibacillus rhamnosus L34 (L34) on CKD were investigated using oral C. albicans-administered 5/6 nephrectomy (5/6Nx) mice. At 16 weeks post-5/6Nx, Candida-5/6Nx mice demonstrated an increase in proteinuria, serum BG, serum cytokines (tumor necrotic factor-α; TNF-α and interleukin-6), alanine transaminase (ALT), and level of fecal dysbiosis (Proteobacteria on fecal microbiome) when compared to non-Candida-5/6Nx. However, serum creatinine, renal fibrosis, or gut barrier defect (FITC-dextran assay and endotoxemia) remained comparable between Candida- versus non-Candida-5/6Nx. The probiotics L34 attenuated several parameters in Candida-5/6Nx mice, including fecal dysbiosis (Proteobacteria and Bacteroides), gut leakage (fluorescein isothiocyanate (FITC)-dextran), gut-derived uremic toxin (trimethylamine-N-oxide; TMAO) and indoxyl sulfate; IS), cytokines, and ALT. In vitro, IS combined with LPS with or without BG enhanced the injury on Caco-2 enterocytes (transepithelial electrical resistance and FITC-dextran permeability) and bone marrow-derived macrophages (supernatant cytokines (TNF-α and interleukin-1 β; IL-1β) and inflammatory genes (TNF-α, IL-1β, aryl hydrocarbon receptor, and nuclear factor-κB)), compared with non-IS activation. These injuries were attenuated by the probiotics condition media. In conclusion, Candida administration worsens kidney damage in 5/6Nx mice through systemic inflammation, partly from gut dysbiosis-induced uremic toxins, which were attenuated by the probiotics. The additive effects on cell injury from uremic toxin (IS) and microbial molecules (LPS and BG) on enterocytes and macrophages might be an important underlying mechanism.
Collapse
|
30
|
Begum N, Harzandi A, Lee S, Uhlen M, Moyes DL, Shoaie S. Host-mycobiome metabolic interactions in health and disease. Gut Microbes 2022; 14:2121576. [PMID: 36151873 PMCID: PMC9519009 DOI: 10.1080/19490976.2022.2121576] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023] Open
Abstract
Fungal communities (mycobiome) have an important role in sustaining the resilience of complex microbial communities and maintenance of homeostasis. The mycobiome remains relatively unexplored compared to the bacteriome despite increasing evidence highlighting their contribution to host-microbiome interactions in health and disease. Despite being a small proportion of the total species, fungi constitute a large proportion of the biomass within the human microbiome and thus serve as a potential target for metabolic reprogramming in pathogenesis and disease mechanism. Metabolites produced by fungi shape host niches, induce immune tolerance and changes in their levels prelude changes associated with metabolic diseases and cancer. Given the complexity of microbial interactions, studying the metabolic interplay of the mycobiome with both host and microbiome is a demanding but crucial task. However, genome-scale modelling and synthetic biology can provide an integrative platform that allows elucidation of the multifaceted interactions between mycobiome, microbiome and host. The inferences gained from understanding mycobiome interplay with other organisms can delineate the key role of the mycobiome in pathophysiology and reveal its role in human disease.
Collapse
Affiliation(s)
- Neelu Begum
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Azadeh Harzandi
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Sunjae Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Mathias Uhlen
- Science for Life Laboratory, KTH–Royal Institute of Technology, Stockholm, Sweden
| | - David L. Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
- Science for Life Laboratory, KTH–Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
31
|
Pinart M, Dötsch A, Schlicht K, Laudes M, Bouwman J, Forslund SK, Pischon T, Nimptsch K. Gut Microbiome Composition in Obese and Non-Obese Persons: A Systematic Review and Meta-Analysis. Nutrients 2021; 14:nu14010012. [PMID: 35010887 PMCID: PMC8746372 DOI: 10.3390/nu14010012] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Whether the gut microbiome in obesity is characterized by lower diversity and altered composition at the phylum or genus level may be more accurately investigated using high-throughput sequencing technologies. We conducted a systematic review in PubMed and Embase including 32 cross-sectional studies assessing the gut microbiome composition by high-throughput sequencing in obese and non-obese adults. A significantly lower alpha diversity (Shannon index) in obese versus non-obese adults was observed in nine out of 22 studies, and meta-analysis of seven studies revealed a non-significant mean difference (−0.06, 95% CI −0.24, 0.12, I2 = 81%). At the phylum level, significantly more Firmicutes and fewer Bacteroidetes in obese versus non-obese adults were observed in six out of seventeen, and in four out of eighteen studies, respectively. Meta-analyses of six studies revealed significantly higher Firmicutes (5.50, 95% 0.27, 10.73, I2 = 81%) and non-significantly lower Bacteroidetes (−4.79, 95% CI −10.77, 1.20, I2 = 86%). At the genus level, lower relative proportions of Bifidobacterium and Eggerthella and higher Acidaminococcus, Anaerococcus, Catenibacterium, Dialister, Dorea, Escherichia-Shigella, Eubacterium, Fusobacterium, Megasphera, Prevotella, Roseburia, Streptococcus, and Sutterella were found in obese versus non-obese adults. Although a proportion of studies found lower diversity and differences in gut microbiome composition in obese versus non-obese adults, the observed heterogeneity across studies precludes clear answers.
Collapse
Affiliation(s)
- Mariona Pinart
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
| | - Andreas Dötsch
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)—Federal Research Institute of Nutrition and Food, 76131 Karlsruhe, Germany;
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, University of Kiel, 24105 Kiel, Germany; (K.S.); (M.L.)
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University of Kiel, 24105 Kiel, Germany; (K.S.); (M.L.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, Kiel University, 24118 Kiel, Germany
| | - Jildau Bouwman
- Microbiology and Systems Biology Group, Toegepast Natuurwetenschappelijk Onderzoek (TNO), Utrechtseweg 48, 3704 HE Zeist, The Netherlands;
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany;
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117 Berlin, Germany
- Host-Microbiome Factors in Cardiovascular Disease Lab, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Biobank Core Facility, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
- Biobank Core Facility, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
- Biobank Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
- Correspondence: ; Tel.: +49-30-9046-4573
| |
Collapse
|
32
|
Sun S, Sun L, Wang K, Qiao S, Zhao X, Hu X, Chen W, Zhang S, Li H, Dai H, Liu H. The gut commensal fungus, Candida parapsilosis, promotes high fat-diet induced obesity in mice. Commun Biol 2021; 4:1220. [PMID: 34697386 PMCID: PMC8546080 DOI: 10.1038/s42003-021-02753-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/05/2021] [Indexed: 01/07/2023] Open
Abstract
Gut fungi is known to play many important roles in human health regulations. Herein, we investigate the anti-obesity efficacy of the antifungal antibiotics (amphotericin B, fluconazole and 5-fluorocytosine) in the high fat diet-fed (HFD) mice. Supplementation of amphotericin B or fluconazole in water can effectively inhibit obesity and its related disorders, whereas 5-fluorocytosine exhibit little effects. The gut fungus Candida parapsilosis is identified as a key commensal fungus related to the diet-induced obesity by the culture-dependent method and the inoculation assay with C. parapsilosis in the fungi-free mice. In addition, the increase of free fatty acids in the gut due to the production of fungal lipases from C. parapsilosis is confirmed as one mechanism by which C. parapsilosis promotes obesity. The current study demonstrates the gut C. parapsilosis as a causal fungus for the development of diet-induced obesity in mice and highlights the therapeutic strategy targeting the gut fungi. Shanshan Sun, Li Sun, Kai Wang, et al. report that the gut commensal Candida parapsilosis is a causative fungus for the development of high fat-diet induced obesity in mice. Their results suggest that fungi could represent possible targets for combating obesity.
Collapse
Affiliation(s)
- Shanshan Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China.,The Second Hospital of Anhui Medical University, Hefei, China
| | - Li Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanshan Qiao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyue Zhao
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xiaomin Hu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Wei Chen
- Department of Clinical Nutrition, Dept. of Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Hantian Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Zhang L, Zhan H, Xu W, Yan S, Ng SC. The role of gut mycobiome in health and diseases. Therap Adv Gastroenterol 2021; 14:17562848211047130. [PMID: 34589139 PMCID: PMC8474302 DOI: 10.1177/17562848211047130] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome comprised of microbes from multiple kingdoms, including bacteria, fungi, and viruses. Emerging evidence suggests that the intestinal fungi (the gut "mycobiome") play an important role in host immunity and inflammation. Advances in next generation sequencing methods to study the fungi in fecal samples and mucosa tissues have expanded our understanding of gut fungi in intestinal homeostasis and systemic immunity in health and their contribution to different human diseases. In this review, the current status of gut mycobiome in health, early life, and different diseases including inflammatory bowel disease, colorectal cancer, and metabolic diseases were summarized.
Collapse
Affiliation(s)
| | | | - Wenye Xu
- Center for Gut Microbiota Research, Faculty of
Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong,
China,Li Ka Shing Institute of Health Science, The
Chinese University of Hong Kong, Shatin, Hong Kong, China,State Key Laboratory for Digestive disease,
Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin,
Hong Kong, China,Department of Medicine and Therapeutics,
Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong,
China
| | - Shuai Yan
- Center for Gut Microbiota Research, Faculty of
Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong,
China,Li Ka Shing Institute of Health Science, The
Chinese University of Hong Kong, Shatin, Hong Kong, China,State Key Laboratory for Digestive disease,
Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin,
Hong Kong, China,Department of Anaesthesia and Intensive Care
and Peter Hung Pain Research Institute, The Chinese University of Hong Kong,
Shatin, Hong Kong, China
| | | |
Collapse
|
34
|
Oliveira LSDS, Pinto LM, de Medeiros MAP, Toffaletti DL, Tenor JL, Barros TF, Neves RP, Neto RGDL, Milan EP, Padovan ACB, Rocha WPDS, Perfect JR, Chaves GM. Comparison of Cryptococcus gattii/ neoformans Species Complex to Related Genera ( Papiliotrema and Naganishia) Reveal Variances in Virulence Associated Factors and Antifungal Susceptibility. Front Cell Infect Microbiol 2021; 11:642658. [PMID: 34277464 PMCID: PMC8281300 DOI: 10.3389/fcimb.2021.642658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/10/2021] [Indexed: 11/23/2022] Open
Abstract
Cryptococcosis is an infectious disease of worldwide distribution, caused by encapsulated yeasts belonging to the phylum Basidiomycota. The genus Cryptococcus includes several species distributed around the world. The C. gattii/neoformans species complex is largely responsible for most cases of cryptococcosis. However, clinical series have been published of infections caused by Papiliotrema (Cryptococcus) laurentii and Naganishia albida (Cryptococcus albidus), among other related genera. Here, we examined the pathogenic potential and antifungal susceptibility of C. gattii/neoformans species complex (clades I and II) and related genera (Papiliotrema and Naganishia) isolated from environmental and clinical samples. P. laurentii (clade III), N. liquefasciens/N. albidosimilis (clade IV); and N. adeliensis/N. albida (clade V) strains produced higher levels of phospholipase and hemolysins, whereas the C. gattii/neoformans species complex strains (clades I and II) had markedly thicker capsules, produced more biofilm biomass and melanin, which are known virulence attributes. Interestingly, 40% of C. neoformans strains (clade II) had MICs above the ECV established for this species to amphotericin B. Several non-C. gattii/neoformans species complex (clades III to V) had MICs equal to or above the ECVs established for C. deuterogattii and C. neoformans for all the three antifungal drugs tested. Finally, all the non-C. gattii/neoformans clinical isolates (clades III to V) produced more melanin than the environmental isolates might reflect their particularly enhanced need for melanin during in vivo protection. It is very clear that C. gattii/neoformans species complex (clades I and II) strains, in general, show more similar virulence phenotypes between each other when compared to non-C. gattii/neoformans species complex (clades III to V) isolates. These observations together with the fact that P. laurentii and Naganishia spp. (clades III to V) strains were collected from the outside of a University Hospital, identify features of these yeasts important for environmental and patient colonization and furthermore, define mechanisms for infections with these uncommon pathogens.
Collapse
Affiliation(s)
- Lana Sarita de Souza Oliveira
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Luciana Magalhães Pinto
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Mariana Araújo Paulo de Medeiros
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Dena L Toffaletti
- Division of Infectious Disease, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Jennifer L Tenor
- Division of Infectious Disease, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Tânia Fraga Barros
- Department of Clinical and Toxicological Analyses, Federal University of Bahia, Salvador, Brazil
| | | | | | - Eveline Pipolo Milan
- Department of Infectology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - John R Perfect
- Division of Infectious Disease, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Guilherme Maranhão Chaves
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
35
|
Huët MAL, Wong LW, Goh CBS, Hussain MH, Muzahid NH, Dwiyanto J, Lee SWH, Ayub Q, Reidpath D, Lee SM, Rahman S, Tan JBL. Investigation of culturable human gut mycobiota from the segamat community in Johor, Malaysia. World J Microbiol Biotechnol 2021; 37:113. [PMID: 34101035 DOI: 10.1007/s11274-021-03083-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022]
Abstract
Although several studies have already been carried out in investigating the general profile of the gut mycobiome across several countries, there has yet to be an officially established baseline of a healthy human gut mycobiome, to the best of our knowledge. Microbial composition within the gastrointestinal tract differ across individuals worldwide, and most human gut fungi studies concentrate specifically on individuals from developed countries or diseased cohorts. The present study is the first culture-dependent community study assessing the prevalence and diversity of gut fungi among different ethnic groups from South East Asia. Samples were obtained from a multi-ethnic semi-rural community from Segamat in southern Malaysia. Faecal samples were screened for culturable fungi and questionnaire data analysis was performed. Culturable fungi were present in 45% of the participants' stool samples. Ethnicity had an impact on fungal prevalence and density in stool samples. The prevalence of resistance to fluconazole, itraconazole, voriconazole and 5-fluorocytosine, from the Segamat community, were 14%, 14%, 11% and 7% respectively. It was found that Jakun individuals had lower levels of antifungal resistance irrespective of the drug tested, and male participants had more fluconazole resistant yeast in their stool samples. Two novel point mutations were identified in the ERG11 gene from one azole resistant Candida glabrata, suggesting a possible cause of the occurrence of antifungal resistant isolates in the participant's faecal sample.
Collapse
Affiliation(s)
| | - Li Wen Wong
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Md Hamed Hussain
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Jacky Dwiyanto
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Qasim Ayub
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia.,Genomics Facility, Monash University Malaysia, Subang Jaya, Malaysia
| | - Daniel Reidpath
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia.,The South East Asia Community Observatory (SEACO), Segamat, Johor, Malaysia
| | - Sui Mae Lee
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia.,Tropical Medicine & Biology Multidisciplinary Platform, Monash University Malaysia, Subang Jaya, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia. .,Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
36
|
Saithong S, Saisorn W, Visitchanakun P, Sae-Khow K, Chiewchengchol D, Leelahavanichkul A. A Synergy Between Endotoxin and (1→3)-Beta-D-Glucan Enhanced Neutrophil Extracellular Traps in Candida Administered Dextran Sulfate Solution Induced Colitis in FcGRIIB-/- Lupus Mice, an Impact of Intestinal Fungi in Lupus. J Inflamm Res 2021; 14:2333-2352. [PMID: 34103965 PMCID: PMC8179808 DOI: 10.2147/jir.s305225] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction The translocation of organismal molecules from gut into blood circulation might worsen the disease severity of lupus through the induction of neutrophil extracellular traps (NETs). Methods An impact of lipopolysaccharide (LPS) and (1→3)-β-D-glucan (BG), components of gut bacteria and fungi, respectively, on NETs formation, was explored in lupus models, Fc gamma receptor IIB deficiency (FcGRIIB-/-) and Pristane injection, using Candida-administered dextran sulfate solution induced colitis (Candida-DSS) model. Results Severity of Candida-DSS in FcGRIIB-/- mice was more prominent than wild-type (WT) and Pristane mice as indicated by (i) colonic NETs using immunofluorescence of Ly6G, myeloperoxidase (MPO) and neutrophil elastase (NE) together with expression of PAD4 and IL-1β, (ii) colonic immunoglobulin (Ig) deposition (immunofluorescence), (iii) gut-leakage by FITC-dextran assay, endotoxemia and serum BG, (iv) systemic inflammation (neutrophilia, serum cytokines, serum dsDNA and anti-dsDNA) and (v) renal injury (proteinuria, glomerular NETs and Ig deposition). Discussion The formation of NETs in Candida-DSS mice was more severe than non-Candida-DSS mice and NETs in Candida-DSS were more profound in FcGRIIB-/- mice than Pristane mice. Prominent NETs in Candida-DSS FcGRIIB-/- mice might be due to the profound responses against LPS+BG in FcGRIIB-/- neutrophils compared with WT cells. These data implied an impact of the inhibitory FcGRIIB in NETs formation and an influence of gut fungi in lupus exacerbation. Hence, gut fungi in a DSS-induced gut-leakage lupus model enhanced colonic NETs that facilitated gut translocation of organismal molecules and synergistically exacerbated lupus activity.
Collapse
Affiliation(s)
- Supichcha Saithong
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand.,Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Wilasinee Saisorn
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Kritsanawan Sae-Khow
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Direkrit Chiewchengchol
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
37
|
Candida Administration in Bilateral Nephrectomy Mice Elevates Serum (1→3)-β-D-glucan That Enhances Systemic Inflammation Through Energy Augmentation in Macrophages. Int J Mol Sci 2021; 22:ijms22095031. [PMID: 34068595 PMCID: PMC8126065 DOI: 10.3390/ijms22095031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic inflammation, from gut translocation of organismal molecules, might worsen uremic complications in acute kidney injury (AKI). The monitoring of gut permeability integrity and/or organismal molecules in AKI might be clinically beneficial. Due to the less prominence of Candida albicans in human intestine compared with mouse gut, C. albicans were orally administered in bilateral nephrectomy (BiN) mice. Gut dysbiosis, using microbiome analysis, and gut permeability defect (gut leakage), which was determined by fluorescein isothiocyanate-dextran and intestinal tight-junction immunofluorescent staining, in mice with BiN-Candida was more severe than BiN without Candida. Additionally, profound gut leakage in BiN-Candida also resulted in gut translocation of lipopolysaccharide (LPS) and (1→3)-β-D-glucan (BG), the organismal components from gut contents, that induced more severe systemic inflammation than BiN without Candida. The co-presentation of LPS and BG in mouse serum enhanced inflammatory responses. As such, LPS with Whole Glucan Particle (WGP, a representative BG) induced more severe macrophage responses than LPS alone as determined by supernatant cytokines and gene expression of downstream signals (NFκB, Malt-1 and Syk). Meanwhile, WGP alone did not induced the responses. In parallel, WGP (with or without LPS), but not LPS alone, accelerated macrophage ATP production (extracellular flux analysis) through the upregulation of genes in mitochondria and glycolysis pathway (using RNA sequencing analysis), without the induction of cell activities. These data indicated a WGP pre-conditioning effect on cell energy augmentation. In conclusion, Candida in BiN mice accelerated gut translocation of BG that augmented cell energy status and enhanced pro-inflammatory macrophage responses. Hence, gut fungi and BG were associated with the enhanced systemic inflammation in acute uremia.
Collapse
|
38
|
Wu X, Xia Y, He F, Zhu C, Ren W. Intestinal mycobiota in health and diseases: from a disrupted equilibrium to clinical opportunities. MICROBIOME 2021; 9:60. [PMID: 33715629 PMCID: PMC7958491 DOI: 10.1186/s40168-021-01024-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
Bacteria, viruses, protozoa, and fungi establish a complex ecosystem in the gut. Like other microbiota, gut mycobiota plays an indispensable role in modulating intestinal physiology. Notably, the most striking characteristics of intestinal fungi are their extraintestinal functions. Here, we provide a comprehensive review of the importance of gut fungi in the regulation of intestinal, pulmonary, hepatic, renal, pancreatic, and brain functions, and we present possible opportunities for the application of gut mycobiota to alleviate/treat human diseases. Video Abstract.
Collapse
Affiliation(s)
- Xiaoyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Yaoyao Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Fang He
- College of Animal Science and Technology, Southwest University, Chongqing, 400716 China
| | - Congrui Zhu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
39
|
García-Gamboa R, Kirchmayr MR, Gradilla-Hernández MS, Pérez-Brocal V, Moya A, González-Avila M. The intestinal mycobiota and its relationship with overweight, obesity and nutritional aspects. J Hum Nutr Diet 2021; 34:645-655. [PMID: 33586805 DOI: 10.1111/jhn.12864] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The fungal community of the gastrointestinal tract has recently become of interest, and knowledge of its relationship with the development of obesity is scarce. The present study aimed to evaluate the cultivable fungal fraction from the microbiota and to analyze its relationship with obesity. METHODS Samples were taken from 99 participants with normal weight, overweight and obesity (n = 31, 34 and 34, respectively) and were cultivated in selective medium, and the cultivable yeasts were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anthropometric and biochemical measures were also evaluated. RESULTS Eutrophic, overweight and obese groups presented concentrations of 1.6, 2.16 and 2.19 log10 colony-forming units g-1 yeast, respectively. Ascomycota and Basidiomycota were the two identified phyla. At the genus level, Candida spp. showed a relatively high prevalence, and 10 different species were detected: Candida glabrata, Candida orthopsilosis, Candida lambica, Candida kefyr, Candida albicans, Candida krusei, Candida valida, Candida parapsilosis, Candida utilis and Candida humilis (with relative abundances of 71.72%, 5.05%, 21.21%, 6.06%, 29.29%, 27.27%, 8.08%, 16.16%, 1.01% and 2.02%, respectively). CONCLUSIONS The obese group presented a higher prevalence of Candida albicans. Furthermore, Candida albicans, Candida kefyr and Rhodotorula mucilaginosa showed a high positive correlation with obesity, weight gain and fat mass and showed a negative correlation with high-density lipoprotein and lean mass, parameters related to weight loss.
Collapse
Affiliation(s)
- Ricardo García-Gamboa
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Manuel R Kirchmayr
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | | | - Vicente Pérez-Brocal
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Andrés Moya
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Integrative Systems Biology Institute (I2SysBio) Universitat de València and Consejo Superior de Investigaciones Científicas (CSIC), València, Spain
| | - Marisela González-Avila
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| |
Collapse
|
40
|
Candida Administration Worsens Uremia-Induced Gut Leakage in Bilateral Nephrectomy Mice, an Impact of Gut Fungi and Organismal Molecules in Uremia. mSystems 2021; 6:6/1/e01187-20. [PMID: 33436518 PMCID: PMC7901485 DOI: 10.1128/msystems.01187-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The impact of gut fungi and (1→3)-β-d-glucan (BG), a major fungal cell wall component, on uremia was explored by Candida albicans oral administration in bilateral nephrectomy (BiNx) mice because of the prominence of C. albicans in the human intestine but not in mice. As such, BiNx with Candida administration (BiNx-Candida) enhanced intestinal injury (colon cytokines and apoptosis), gut leakage (fluorescein isothiocyanate [FITC]-dextran assay, endotoxemia, serum BG, and bacteremia), systemic inflammation, and liver injury at 48 h postsurgery compared with non-Candida BiNx mice. Interestingly, uremia-induced enterocyte apoptosis was severe enough for gut translocation of viable bacteria, as indicated by culture positivity for bacteria in blood, mesenteric lymph nodes (MLNs), and other organs, which was more severe in BiNx-Candida than in non-Candida BiNx mice. Candida induced alterations in the gut microbiota of BiNx mice as indicated by (i) the higher fungal burdens in the feces of BiNx-Candida mice than in sham-Candida mice by culture methods and (ii) increased Bacteroides with decreased Firmicutes and reduced bacterial diversity in the feces of BiNx-Candida mice compared with non-Candida BiNx mice by fecal microbiome analysis. In addition, lipopolysaccharide plus BG (LPS+BG), compared with each molecule alone, induced high supernatant cytokine levels, which were enhanced by uremic mouse serum in both hepatocytes (HepG2 cells) and macrophages (RAW264.7 cells). Moreover, LPS+BG, but not each molecule alone, reduced the glycolysis capacity and mitochondrial function in HepG2 cells as determined by extracellular flux analysis. Additionally, a probiotic, Lactobacillus rhamnosus L34 (L34), attenuated disease severity only in BiNx-Candida mice but not in non-Candida BiNx mice, as indicated by liver injury and serum cytokines through the attenuation of gut leakage, the fecal abundance of fungi, and fecal bacterial diversity but not fecal Gram-negative bacteria. In conclusion, Candida enhanced BiNx severity through the worsening of gut leakage and microbiota alterations that resulted in bacteremia, endotoxemia, and glucanemia.IMPORTANCE The impact of fungi in the intestine on acute uremia was demonstrated by the oral administration of Candida albicans in mice with the removal of both kidneys. Because fungi in the mouse intestine are less abundant than in humans, a Candida-administered mouse model has more resemblance to patient conditions. Accordingly, acute uremia, without Candida, induced intestinal mucosal injury, which resulted in the translocation of endotoxin, a major molecule of gut bacteria, from the intestine into blood circulation. In acute uremia with Candida, intestinal injury was more severe due to fungi and the alteration in intestinal bacteria (increased Bacteroides with decreased Firmicutes), leading to the gut translocation of both endotoxin from gut bacteria and (1→3)-β-d-glucan from Candida, which synergistically enhanced systemic inflammation in acute uremia. Both pathogen-associated molecules were delivered to the liver and induced hepatocyte inflammatory responses with a reduced energy production capacity, resulting in acute uremia-induced liver injury. In addition, Lactobacillus rhamnosus attenuated intestinal injury through reduced gut Candida and improved intestinal bacterial conditions.
Collapse
|
41
|
Panpetch W, Sawaswong V, Chanchaem P, Ondee T, Dang CP, Payungporn S, Leelahavanichkul A. Candida Administration Worsens Cecal Ligation and Puncture-Induced Sepsis in Obese Mice Through Gut Dysbiosis Enhanced Systemic Inflammation, Impact of Pathogen-Associated Molecules From Gut Translocation and Saturated Fatty Acid. Front Immunol 2020; 11:561652. [PMID: 33101279 PMCID: PMC7545113 DOI: 10.3389/fimmu.2020.561652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity induces gut leakage and elevates serum lipopolysaccharide (LPS), a major cell wall component of Gram-negative bacteria, through gut translocation. Because Candida albicans is prominent in human gut but not in mouse, C. albicans, a source of (1→3)-β-D-glucan (BG) in gut contents, was administered in high-fat diet (HFD)–induced obese mice at 1 week before sepsis induction by cecal ligation and puncture (CLP). As such, sepsis in Candida-administered obese mice was more severe than obese mice without Candida as determined by mortality, organ injury (liver and kidney), serum cytokines, gut leakage, endotoxemia, serum BG, and fecal Gram-negative bacteria (microbiome analysis). Mice subjected to CLP and fed a HFD, but not treated with Candida demonstrated a similar mortality to non-obese mice with more severe gut leakage and higher serum cytokines. In vitro experiments demonstrated that LPS plus BG (LPS + BG) induced higher supernatant cytokines from hepatocytes (HepG2) and macrophages (RAW264.7), compared with the activation by each molecule alone, and were amplified by palmitic acid, a representative saturated fatty acid. The energy production capacity of HepG2 cells was also decreased by LPS + BG compared with LPS alone as evaluated by extracellular flux analysis. However, Lactobacillus rhamnosus L34 (L34) improved sepsis, regardless of Candida administration, through the attenuation of gut leakage and gut dysbiosis. In conclusion, an impact of gut Candida was demonstrated by Candida pretreatment in obese mice that worsened sepsis through (1) gut dysbiosis–induced gut leakage and (2) amplified systemic inflammation due to LPS, BG, and saturated fatty acid.
Collapse
Affiliation(s)
- Wimonrat Panpetch
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand.,Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prangwalai Chanchaem
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Systems Biology, Chulalongkorn University, Bangkok, Thailand
| | - Thunnicha Ondee
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Cong Phi Dang
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Systems Biology, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
42
|
Dogra SK, Doré J, Damak S. Gut Microbiota Resilience: Definition, Link to Health and Strategies for Intervention. Front Microbiol 2020; 11:572921. [PMID: 33042082 PMCID: PMC7522446 DOI: 10.3389/fmicb.2020.572921] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota is a new frontier in health and disease. Not only many diseases are associated with perturbed microbiota, but an increasing number of studies point to a cause-effect relationship. Defining a healthy microbiota is not possible at the current state of our knowledge mostly because of high interindividual variability. A resilient microbiota could be used as surrogate for healthy microbiota. In addition, the gut microbiota is an “organ” with frontline exposure to environmental changes and insults. During the lifetime of an individual, it is exposed to challenges such as unhealthy diet, medications and infections. Impaired ability to bounce back to the pre-challenge baseline may lead to dysbiosis. It is therefore legitimate to postulate that maintaining a resilient microbiota may be important for health. Here we review the concept of resilience, what is known about the characteristics of a resilient microbiota, and how to assess microbiota resilience experimentally using a model of high fat diet challenge in humans. Interventions to maintain microbiota resilience can be guided by the knowledge of what microbial species or functions are perturbed by challenges, and designed to replace diminished species with probiotics, when available, or boost them with prebiotics. Fibers with multiple structures and composition can also be used to increase microbiota diversity, a characteristic of the microbiota that may be associated with resilience. We finally discuss some open questions and knowledge gaps.
Collapse
Affiliation(s)
| | - Joel Doré
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, MetaGenoPolis, AgroParisTech, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France
| | - Sami Damak
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| |
Collapse
|
43
|
Jingkai J, Jianming Z, Zhenmin L, Huaxi Y. Dynamic changes of microbiota and texture properties during the ripening of traditionally prepared cheese of China. Arch Microbiol 2020; 202:2059-2069. [PMID: 32488559 DOI: 10.1007/s00203-020-01921-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
The dynamic changes of microbiota assessed by high-throughput sequencing and texture properties of handmade cheese were investigated during ripening time. Streptococcus and Lactococcus were found to be the most predominant genera. The proportion of Streptococcus was decreased from 48 to 32% and the proportion of Lactococcus was increased from 41 to 55% with ripening time from 1 to 120 days. Mould and yeast such as Paecilomyces, Candida, Issatchenkia, Rhodotorula, Cryptococcus and Trichosporon were observed. The regression analysis between composition and textural properties indicated that the hardness was increased along with the rising of soluble nitrogen, while the increased soluble nitrogen could result in lower cohesiveness, and the increased fat in dry matter resulted in lower resilience. The physic-chemical parameters were correlated with secondary microbiota such as Cryptococcus and Candida according to the multivariate association analysis (p < 0.05). These findings could provide a baseline to improve the product quality and preserve the traditional characteristics of handmade cheese.
Collapse
Affiliation(s)
- Jiao Jingkai
- State Key Laboratory of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co., Ltd., Shanghai, 200436, China
| | - Zhang Jianming
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310016, Zhejiang, China
| | - Liu Zhenmin
- State Key Laboratory of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co., Ltd., Shanghai, 200436, China
| | - Yi Huaxi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266100, Shandong, China.
| |
Collapse
|
44
|
Spatz M, Richard ML. Overview of the Potential Role of Malassezia in Gut Health and Disease. Front Cell Infect Microbiol 2020; 10:201. [PMID: 32528901 PMCID: PMC7265801 DOI: 10.3389/fcimb.2020.00201] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
Malassezia is the most prevalent fungus identified in the human skin microbiota; originally described at the end of the nineteenth century, this genus is composed of at least 14 species. The role of Malassezia on the skin remains controversial because this genus has been associated with both healthy skin and pathologies (dermatitis, eczema, etc.). However, with the recent development of next-generation sequencing methods, allowing the description of the fungal diversity of various microbiota, Malassezia has also been identified as a resident fungus of diverse niches such as the gut or breast milk. A potential role for Malassezia in gut inflammation and cancer has also been suggested by recent studies. The aim of this review is to describe the findings on Malassezia in these unusual niches, to investigate what is known of the adaptation of Malassezia to the gut environment and to speculate on the role of this yeast in the host physiology specifically related to the gastrointestinal tract.
Collapse
Affiliation(s)
- Madeleine Spatz
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Mathias L Richard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
45
|
Beyond Just Bacteria: Functional Biomes in the Gut Ecosystem Including Virome, Mycobiome, Archaeome and Helminths. Microorganisms 2020; 8:microorganisms8040483. [PMID: 32231141 PMCID: PMC7232386 DOI: 10.3390/microorganisms8040483] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Gut microbiota refers to a complex network of microbes, which exerts a marked influence on the host’s health. It is composed of bacteria, fungi, viruses, and helminths. Bacteria, or collectively, the bacteriome, comprises a significant proportion of the well-characterized microbiome. However, the other communities referred to as ‘dark matter’ of microbiomes such as viruses (virome), fungi (mycobiome), archaea (archaeome), and helminths have not been completely elucidated. Development of new and improved metagenomics methods has allowed the identification of complete genomes from the genetic material in the human gut, opening new perspectives on the understanding of the gut microbiome composition, their importance, and potential clinical applications. Here, we review the recent evidence on the viruses, fungi, archaea, and helminths found in the mammalian gut, detailing their interactions with the resident bacterial microbiota and the host, to explore the potential impact of the microbiome on host’s health. The role of fecal virome transplantations, pre-, pro-, and syn-biotic interventions in modulating the microbiome and their related concerns are also discussed.
Collapse
|
46
|
Fiers WD, Gao IH, Iliev ID. Gut mycobiota under scrutiny: fungal symbionts or environmental transients? Curr Opin Microbiol 2019; 50:79-86. [PMID: 31726316 DOI: 10.1016/j.mib.2019.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
The human gastrointestinal tract is home to a thriving community of microbes including the fungal 'mycobiota'. Although sequencing methodology has enumerated diverse fungal genera within this niche, discerning persistent symbiotic residents from contaminants and purely environmental transients remains a challenge. Recent advances in culturomics and sequencing employing metagenomics, metatranscriptomics and longitudinal studies have begun to reveal a human symbiont 'core mycobiome' that may contribute to human health and disease. Trans-kingdom interactions between the bacterial microbiota and evolution within the niche have defined C. albicans as a true symbiont, setting a bar for defining other fungi. Additionally, elegant investigations of mammalian antifungal immunity have examined mononuclear phagocytes, neutrophils, antigen-specific recognition by T cells and other mechanisms important for local and systemic effects on the host, providing further evidence supporting gut persistence. In this review we discuss current research aimed at investigating the symbiotic mycobiota and propose four criteria aiding in the differentiation of fungal symbionts from environmental transients.
Collapse
Affiliation(s)
- William D Fiers
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Iris H Gao
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
47
|
Li J, Chen D, Yu B, He J, Huang Z, Mao X, Zheng P, Yu J, Luo J, Tian G, Luo Y. The fungal community and its interaction with the concentration of short-chain fatty acids in the faeces of Chenghua, Yorkshire and Tibetan pigs. Microb Biotechnol 2019; 13:509-521. [PMID: 31691493 PMCID: PMC7017814 DOI: 10.1111/1751-7915.13507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Despite their important roles in host nutrition and metabolism, and potential to cause disease, our knowledge of the fungal community in the mammalian gut is quite limited. To date, diversity and composition of fungi in swine gut still remains unknown. Therefore, the first internal transcribed spacer of fungi in faecal samples from three breeds of pigs (10 pigs for each breed) was sequenced based on an Illumina HiSeq 2500 platform, and the relationship between the fungal community and the concentrations of main short‐chain fatty acids (SCFAs) was also analysed. Results indicated that Chenghua (local, higher body fat rate), Yorkshire (foreign, higher lean meat and growth rate) and Tibetan (plateau, stronger disease resistance) pigs harboured distinct fungal community. The Basidiomycota and Ascomycota presented as the two predominant phyla, with Loreleia, Russula and Candida as the top three genera in all samples. Network analysis revealed a total of 35 correlations among different fungal genera, with 27 (77.14%) positive and 8 (22.86%) negative pairwise interactions. Canonical correspondence analysis suggested that fungi in the faeces of pigs were more correlated to the concentration of acetate and butyrate rather than propionate. Spearman’s correlation further showed that Tomentella was positively correlated to both acetate and butyrate, and Loreleia was positively correlated to propionate (P < 0.05), while Nephroma and Taiwanofungus were negatively correlated to acetate and propionate (P < 0.05). These findings expanded our knowledge on the intestinal fungi in pigs with different genotypes and phenotypes, indicating that fungi may play an indispensable role during the metabolism of host and the maintenance of intestinal health. The cross‐feeding between fungi and other microorganisms may be crucial during the digestion of dietary carbohydrates and the associated physiological processes, which is worthy to be further studied.
Collapse
Affiliation(s)
- Jiayan Li
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture of China, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
48
|
Abstract
Rhodotorula spp. belong to the basidiomyceteous fungi. They are widespread in the environment. Transmission to humans occur mainly through air and food. Intestinal colonization is rather common, but an overgrowth is normally suppressed, since their optimal growth temperature is exceeded in the body. A massive presence in the gut indicates a disturbance of the balance of the microbial flora due to different causes. One particular reason will be the treatment with azoles because this will create an advantage for these azole resistant fungi. First of all, the finding of increased numbers of Rhodotorula in stool specimen is not alarming. In contrast, the colonized human will profit from such a situation since these fungi produce a lot of useful nutrients such as proteins, lipids, folate, and carotinoids. Furthermore, a probiotic effect due to regulation of multiplication of pathogenic bacteria and by neutralizing or destroying their toxins can be anticipated. On the other hand, their massive presence may increase the risk of fungemia and ensuing organ infections especially when the host defense system is hampered. Indeed, Rhodotorula spp. range among the emerging fungal pathogens in the compromised host. However, it can be doubted whether all these opportunistic infections reported originate primarily from the gut.
Collapse
|
49
|
Raimondi S, Amaretti A, Gozzoli C, Simone M, Righini L, Candeliere F, Brun P, Ardizzoni A, Colombari B, Paulone S, Castagliuolo I, Cavalieri D, Blasi E, Rossi M, Peppoloni S. Longitudinal Survey of Fungi in the Human Gut: ITS Profiling, Phenotyping, and Colonization. Front Microbiol 2019; 10:1575. [PMID: 31354669 PMCID: PMC6636193 DOI: 10.3389/fmicb.2019.01575] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
The fungal component of the intestinal microbiota of eight healthy subjects was studied over 12 months using metagenome survey and culture-based approaches. Aspergillus, Candida, Debaryomyces, Malassezia, Penicillium, Pichia, and Saccharomyces were the most recurrent and/or dominant fungal genera, according to metagenomic analysis. The biodiversity of fungal communities was lower and characterized by greater unevenness, when compared to bacterial microbiome. The dissimilarities both among subjects and over the time within the same subject suggested that most of the fungi passed through the gastro-intestinal tract (GIT) without becoming stable colonizers. Certain genera, such as Aspergillus and Penicillium, were isolated in a minority of cases, although they recurred abundantly and frequently in the metagenomics survey, likely being environmental or food-borne fungi that do not inhabit the GIT. Candida genus was recurrently detected. Candida albicans isolates dominated among the cultivable mycobiota and longitudinally persisted, likely as commensals inhabiting the intestine or regularly reaching it from Candida-colonized districts, such as the oral cavity. Other putative colonizers belonged to Candida zeylanoides, Geotrichum candidum, and Rhodotorula mucilaginosa, with persisting biotypes being identified. Phenotyping of fungal isolates indicated that C. albicans adhered to human epithelial cells more efficiently and produced greater amounts of biofilm in vitro than non-albicans Candida (NAC) and non-Candida fungi (NCF). The C. albicans isolates also induced the highest release of HBD-2 by human epithelial cells, further differing from NAC and NCF. Nine representative isolates were administered to mice to evaluate the ability to colonize the intestine. Only two out of three C. albicans strains persisted in stools of animals 2 weeks after the end of the oral administration, whereas NAC and NCF did not. These results confirm the allochthonous nature of most the intestinal fungi, while C. albicans appears to be commonly involved in stable colonization. A combination of specific genetic features in the microbe and in the host likely allow colonization from fungi normally present solely as passengers. It remains to be established if other species identified as potential colonizers, in addition to Candida, are true inhabitants of the GIT or rather reach the intestine spreading from other body districts.
Collapse
Affiliation(s)
- Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Caterina Gozzoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Simone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucia Righini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Andrea Ardizzoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Bruna Colombari
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Simona Paulone
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Elisabetta Blasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Samuele Peppoloni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
50
|
The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2019; 16:331-345. [PMID: 30824884 DOI: 10.1038/s41575-019-0121-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The gut microbiota is a dense and diverse ecosystem that is involved in many physiological functions as well as in disease pathogenesis. It is dominated by bacteria, which have been extensively studied in the past 15 years; however, other microorganisms, such as fungi, phages, archaea and protists, are also present in the gut microbiota. Exploration of the fungal component, namely, the mycobiota, is at an early stage, and several specific technical challenges are associated with mycobiota analysis. The number of fungi in the lower gastrointestinal tract is far lower than that of bacteria, but fungal cells are much larger and much more complex than bacterial cells. In addition, a role of the mycobiota in disease, notably in IBD, is indicated by both descriptive data in humans and mechanistic data in mice. Interactions between bacteria and fungi within the gut, their functional roles and their interplay with the host and its immune system are fascinating areas that researchers are just beginning to investigate. In this Review, we discuss the newest data on the gut mycobiota and explore both the technical aspects of its study and its role in health and gastrointestinal diseases.
Collapse
|