1
|
Liang J, Zheng X, Ning T, Wang J, Wei X, Tan L, Shen F. Revealing the Viable Microbial Community of Biofilm in a Sewage Treatment System Using Propidium Monoazide Combined with Real-Time PCR and Metagenomics. Microorganisms 2024; 12:1508. [PMID: 39203351 PMCID: PMC11356008 DOI: 10.3390/microorganisms12081508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial community composition, function, and viability are important for biofilm-based sewage treatment technologies. Most studies of microbial communities mainly rely on the total deoxyribonucleic acid (DNA) extracted from the biofilm. However, nucleotide materials released from dead microorganisms may interfere with the analysis of viable microorganisms and their metabolic potential. In this study, we developed a protocol to assess viability as well as viable community composition and function in biofilm in a sewage treatment system using propidium monoazide (PMA) coupled with real-time quantitative polymerase chain reaction (qPCR) and metagenomic technology. The optimal removal of PMA from non-viable cells was achieved by a PMA concentration of 4 μM, incubation in darkness for 5 min, and exposure for 5 min. Simultaneously, the detection limit can reach a viable bacteria proportion of 1%, within the detection concentration range of 102-108 CFU/mL (colony forming unit/mL), showing its effectiveness in removing interference from dead cells. Under the optimal conditions, the result of PMA-metagenomic sequencing revealed that 6.72% to 8.18% of non-viable microorganisms were influenced and the composition and relative abundance of the dominant genera were changed. Overall, this study established a fast, sensitive, and highly specific biofilm viability detection method, which could provide technical support for accurately deciphering the structural composition and function of viable microbial communities in sewage treatment biofilms.
Collapse
Affiliation(s)
- Jiayin Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Institute of Environment and Sustainable Development in Agriculture, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Tianyang Ning
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Jiarui Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Feng Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| |
Collapse
|
2
|
Sterzenbach T, Neumann V, Trips E, Basche S, Hannig C, Kühne MT. Establishment of a Protocol for Viability qPCR in Dental Hard Tissues. Microorganisms 2024; 12:1400. [PMID: 39065168 PMCID: PMC11278712 DOI: 10.3390/microorganisms12071400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of the study was to establish a live/dead qPCR with propidium monoazide (PMA) that can quantitatively differentiate between viable/non-viable microorganisms in dental hard tissues. Human premolars (n = 88) were prepared with nickel-titanium instruments and incubated with E. faecalis (21 d). Subsequently, the bacteria in half of the teeth were devitalized by heat inactivation (100 °C, 2 h). The following parameters were tested: PMA concentrations at 0 µmol (control), 50 µmol, 100 µmol, and 200 µmol; PMA incubation times of 30 min and 60 min, and blue light treatment for 30 min and 60 min. The teeth were ground using a cryomill and the bacterial DNA was quantified using qPCR, ANOVA, and p = 0.05. The qPCR of the control group detected a similar number of avital 9.94 × 106 and vital 1.61 × 107 bacterial cells. The use of PMA inhibited the amplification of DNA from non-viable cells during qPCR. As a result, the best detection of avital bacteria was achieved with the following PMA parameters: (concentration, incubation time, blue light treatment) 200-30-30; 5.53 × 104 (avital) and 1.21 × 100.7 (vital). The live/dead qPCR method using PMA treatment is suitable for the differentiation and quantification of viable/non-viable microorganisms in dentin, as well as to evaluate the effectiveness of different preparation procedures and antimicrobial irrigants in other biological hard substances.
Collapse
Affiliation(s)
- Torsten Sterzenbach
- Policlinic of Operative Dentistry, Periodontology and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (T.S.); (V.N.); (S.B.); (C.H.)
| | - Vanessa Neumann
- Policlinic of Operative Dentistry, Periodontology and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (T.S.); (V.N.); (S.B.); (C.H.)
| | - Evelyn Trips
- Coordination Centre for Clinical Trials, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01309 Dresden, Germany
| | - Sabine Basche
- Policlinic of Operative Dentistry, Periodontology and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (T.S.); (V.N.); (S.B.); (C.H.)
| | - Christian Hannig
- Policlinic of Operative Dentistry, Periodontology and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (T.S.); (V.N.); (S.B.); (C.H.)
| | - Marie-Theres Kühne
- Policlinic of Operative Dentistry, Periodontology and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (T.S.); (V.N.); (S.B.); (C.H.)
| |
Collapse
|
3
|
Mabasa VV, van Zyl WB, Taylor MB, Mans J. Quantification and Potential Viability of Human Noroviruses in Final Effluent from Wastewater Treatment Works in Pretoria, South Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:200-215. [PMID: 38555559 PMCID: PMC11390798 DOI: 10.1007/s12560-024-09589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/12/2024] [Indexed: 04/02/2024]
Abstract
Growing global concerns over water scarcity, worsened by climate change, drive wastewater reclamation efforts. Inadequately treated wastewater presents significant public health risks. Previous studies in South Africa (SA) have reported high norovirus levels in final effluent and sewage-polluted surface water, indicating pathogen removal inefficiency. However, the viability of these virions was not explored. This study assessed human norovirus viability in final effluent from wastewater treatment works (WWTWs) in Pretoria, SA. Between June 2018 and August 2020, 200 samples were collected from two WWTWs, including raw sewage and final effluent. Norovirus concentrations were determined using in-house RNA standards. Viability of noroviruses in final effluent was assessed using viability RT-qPCR (vPCR) with PMAxx™-Triton X-100. There was no significant difference in GI concentrations between raw sewage (p = 0.5663) and final effluent (p = 0.4035) samples at WWTW1 and WWTW2. WWTW1 had significantly higher GII concentrations in raw sewage (p < 0.001) compared to WWTW2. No clear seasonal pattern was observed in norovirus concentrations. At WWTW1, 50% (7/14) of GI- and 64.9% (24/37) of GII-positive final effluent samples had no quantifiable RNA after vPCR. At WWTW2, the majority (92.6%, 25/27) of GII-positive final effluent samples showed a 100% RNA reduction post vPCR. PMAxx™-Triton X-100 vPCR provides a more accurate reflection of discharge of potentially viable noroviruses in the environment than standard RT-qPCR. Despite significant reductions in potentially viable noroviruses after wastewater treatment, the levels of potentially viable viruses in final effluent are still of concern due to the high initial load and low infectious dose of noroviruses.
Collapse
Affiliation(s)
- V V Mabasa
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria, 0031, South Africa
| | - W B van Zyl
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria, 0031, South Africa
- National Health Laboratory Service-Tshwane Academic Division, Pretoria, South Africa
| | - M B Taylor
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria, 0031, South Africa
| | - J Mans
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria, 0031, South Africa.
| |
Collapse
|
4
|
Wahid SUH, Campbell BE, Moore RJ, Istivan T. Characterization of viable but nonculturable state of Campylobacter concisus. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240088. [PMID: 39076798 PMCID: PMC11285765 DOI: 10.1098/rsos.240088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 07/31/2024]
Abstract
Campylobacter concisus is an opportunistic bacterial pathogen linked with a range of human diseases. The objective of this study was to investigate the viable but nonculturable (VBNC) state of the bacterium. To induce the VBNC state, C. concisus cells were maintained in sterilized phosphate-buffered saline at 4°C for three weeks. The VBNC cells were monitored using quantitative analysis by propidium monoazide (PMAxx) coupled with quantitative real-time PCR (PMAxx-qPCR), targeting the DNA gyrase subunit B gene. The results demonstrated that C. concisus ATCC 51562 entered the VBNC state in 15 days, while ATCC 51561 entered the VBNC state in 9 days. The viable cell counts, assessed by PMAxx-qPCR, consistently remained close to the initial level of 107 CFU ml-1, indicating a substantial portion of the cell population had entered the VBNC state. Notably, morphological analysis revealed that the VBNC cells became coccoid and significantly smaller. The cells could be resuscitated through a temperature increase in the presence of a highly nutritious growth medium. In conclusion, under environmental stress, most C. concisus cells converted to the VBNC state. The VBNC state of C. concisus may be important for its environmental survival and spread, and the presence of VBNC forms should be considered in environmental and clinical monitoring.
Collapse
Affiliation(s)
| | | | - Robert J. Moore
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Taghrid Istivan
- School of Science, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
5
|
Chiang J, Robertson J, McGoverin CM, Swift S, Vanholsbeeck F. Rapid detection of viable microbes with 5-cyano-2,3-di-(p-tolyl)tetrazolium chloride and 5(6)-carboxyfluorescein diacetate using a fibre fluorescence spectroscopy system. J Appl Microbiol 2024; 135:lxae047. [PMID: 38383865 DOI: 10.1093/jambio/lxae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
AIMS To assess the efficacy of two commercially available viability dyes, 5-cyano-2,3-di-(p-tolyl)tetrazolium chloride (CTC) and 5(6)-carboxyfluorescein diacetate (CFDA), in reporting on viable cell concentration and species using an all-fibre fluorometer. METHODS AND RESULTS Four bacterial species (two Gram-positive and two Gram-negative) commonly associated with food poisoning or food spoilage (Escherichia coli, Salmonella enterica, Staphylococcus aureus, and Bacillus cereus) were stained with CTC or CFDA and the fibre fluorometer was used to collect full fluorescence emission spectra. A good correlation between concentration and fluorescence intensity was found for Gram-negative bacteria between 107 and 108 colony-forming units (CFU) ml-1. There was no correlation with concentration for Gram-positive bacteria; however, the information in the CTC and CFDA spectra shows the potential to distinguish Gram-negative cells from Gram-positive cells, although it may simply reflect the overall bacterial metabolic activity under staining conditions from this study. CONCLUSIONS The limit of detection (LoD) is too high in the dip-probe approach for analysis; however, the development of an approach measuring the fluorescence of single cells may improve this limitation. The development of new bacteria-specific fluorogenic dyes may also address this limitation. The ability to differentiate bacteria using these dyes may add value to measurements made to enumerate bacteria using CTC and CFDA.
Collapse
Affiliation(s)
- Jessica Chiang
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand
| | - Julia Robertson
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand
| | - Cushla M McGoverin
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand
| | - Frédérique Vanholsbeeck
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
6
|
Dhar BC, Delgado Santander R, Aćimović SG. Improved Canker Processing and Viability Droplet Digital PCR Allow Detection of Erwinia amylovora Viable Nonculturable Cells in Apple Bark. Microorganisms 2024; 12:376. [PMID: 38399780 PMCID: PMC10893025 DOI: 10.3390/microorganisms12020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The bacterium Erwinia amylovora causes fire blight and continues to threaten global commercial apple and pear production. Conventional microbiology techniques cannot accurately determine the presence of live pathogen cells in fire blight cankers. Several factors may prevent E. amylovora from growing on solid culture media, including competing microbiota and the release of bacterial-growth-inhibitory compounds by plant material during sample processing. We previously developed a canker processing methodology and a chip-based viability digital PCR (v-dPCR) assay using propidium monoazide (PMA) to bypass these obstacles. However, sample analysis was still time-consuming and physically demanding. In this work, we improved the previous protocol using an automatic tissue homogenizer and transferred the chip-based v-dPCR to the BioRad QX200 droplet dPCR (ddPCR) platform. The improved sample processing method allowed the simultaneous, fast, and effortless processing of up to six samples. Moreover, the transferred v-ddPCR protocol was compatible with the same PMA treatment and showed a similar dynamic range, from 7.2 × 102 to 7.6 × 107 cells mL-1, as the previous v-dPCR. Finally, the improved protocol allowed, for the first time, the detection of E. amylovora viable but nonculturable (VBNC) cells in cankers and bark tissues surrounding cankers. Our v-ddPCR assay will enable new ways to evaluate resistant pome fruit tree germplasm, further dissect the E. amylovora life cycle, and elucidate E. amylovora physiology, epidemiology, and new options for canker management.
Collapse
Affiliation(s)
- Bidhan Chandra Dhar
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, 595 Laurel Grove Rd, Winchester, VA 22602, USA;
| | - Ricardo Delgado Santander
- Irrigated Agriculture Research and Extension Center, College of Agricultural, Human and Natural Resource Sciences, Washington State University, Prosser, WA 99350, USA;
| | - Srđan G. Aćimović
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, 595 Laurel Grove Rd, Winchester, VA 22602, USA;
| |
Collapse
|
7
|
Daranas N, Badosa E, Montesinos E, Bonaterra A. Colonization and population dynamics of total, viable, and culturable cells of two biological control strains applied to apricot, peach, and grapevine crops. Front Microbiol 2024; 14:1324965. [PMID: 38249452 PMCID: PMC10797078 DOI: 10.3389/fmicb.2023.1324965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
The ecological fitness of the biological control strains Bacillus velezensis A17 and Lactiplantibacillus plantarum PM411 was evaluated in different crops, geographical zones, and growing seasons. Both strains (2 g L-1 of dried formulation) were spray-inoculated on apricot trees, peach trees, and grapevines. Depending on the crop, flowers, fruits, and leaves were picked at several sampling time points. The population dynamics of viable, viable but non-culturable, and dead cells were studied by comparing viability qPCR (v-qPCR), qPCR, and plate counting estimations. A17 showed high survival rates in apricot, peach, and grapevine organs. The A17 viability was confirmed since qPCR and v-qPCR estimations did not significantly differ and were rather constant after field applications. However, higher population levels were estimated by plate counting due to the non-selective characteristics of the medium used. The viability of PM411 was constrained by plant organ, crop, and climate conditions, being higher in apricot than in grapevine. PM411 survival declined after field application, indicating difficulties in its establishment. The PM411 population level was made up of dead, culturable, and viable but non-culturable cells since significant differences between the three methods were observed. In conclusion, A17 and PM411 differ strongly in their survival in grapevine, peach, and apricot.
Collapse
Affiliation(s)
| | | | | | - Anna Bonaterra
- Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Girona, Spain
| |
Collapse
|
8
|
da Silva PG, Hemnani M, Gonçalves J, Rodriguéz E, García-Encina PA, Nascimento MSJ, Sousa SIV, Myrmel M, Mesquita JR. Airborne SARS-CoV-2 is more frequently detected in environments related to children and elderly but likely non-infectious, Norway, 2022. Virol J 2023; 20:275. [PMID: 38001529 PMCID: PMC10675927 DOI: 10.1186/s12985-023-02243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigates the presence of SARS-CoV-2 in indoor and outdoor environments in two cities in Norway between April and May 2022. With the lifting of COVID-19 restrictions in the country and a focus on vaccination, this research aims to shed light on the potential for virus transmission in various settings. Air sampling was conducted in healthcare and non-healthcare facilities, covering locations frequented by individuals across different age groups. The study found that out of 31 air samples, only four showed the presence of SARS-CoV-2 RNA by RT-qPCR, with no viable virus detected after RNAse pre-treatment. These positive samples were primarily associated with environments involving children and the elderly. Notably, sequencing revealed mutations associated with increased infectivity in one of the samples. The results highlight the importance of considering children as potential sources of virus transmission, especially in settings with prolonged indoor exposure. As vaccination coverage increases globally, and with children still representing a substantial unvaccinated population, the study emphasizes the need to re-implement mask-wearing mandates indoors and in public transport to reduce virus transmission. The findings have implications for public health strategies to control COVID-19, particularly in the face of new variants and the potential for increased transmission during the autumn and winter seasons.
Collapse
Affiliation(s)
- Priscilla Gomes da Silva
- ICBAS-School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Mahima Hemnani
- ICBAS-School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - José Gonçalves
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid, 47011, Spain
| | - Elisa Rodriguéz
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid, 47011, Spain
| | - Pedro A García-Encina
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid, 47011, Spain
| | | | - Sofia I V Sousa
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Mette Myrmel
- Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João R Mesquita
- ICBAS-School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal.
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, Porto, Portugal.
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
- Virology Unit, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
9
|
Jo TS. Utilizing the state of environmental DNA (eDNA) to incorporate time-scale information into eDNA analysis. Proc Biol Sci 2023; 290:20230979. [PMID: 37253423 PMCID: PMC10229230 DOI: 10.1098/rspb.2023.0979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Environmental DNA (eDNA) analysis allows cost-effective and non-destructive biomonitoring with a high detection sensitivity in terrestrial and aquatic environments. However, the eDNA results can sometimes include false-positive inferences of target organisms owing to the detection of aged eDNA that has long since been released from the individual and is more likely to be detected at a site further away from its source. In order to address the issue, this manuscript focuses on the state of eDNA, proposing new methodologies to estimate the age of eDNA: (1) DNA damage rate, (2) eDNA particle size distribution, and (3) viable cell-derived eDNA. In addition, the manuscript also focuses on the shorter persistence of environmental RNA (eRNA) compared with eDNA, highlighting the application of eRNA and environmental nucleic acid ratio for assessing the age of the genetic materials in water. Although substantial further research is essential to support the feasibility of these methodologies, incorporating time-scale information into eDNA analysis would update current eDNA analysis, improve the accuracy and reliability of eDNA-based monitoring, and further refine eDNA analysis as a useful monitoring tool in ecology, fisheries and various environmental sciences.
Collapse
Affiliation(s)
- Toshiaki S. Jo
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
- Ryukoku Center for Biodiversity Science, Ryukoku University, 1-5, Yokotani, Oe-cho, Seta, Otsu City, Shiga 520-2194, Japan
- Faculty of Advanced Science and Technology, Ryukoku University, 1-5, Yokotani, Oe-cho, Seta, Otsu City, Shiga 520-2194, Japan
| |
Collapse
|
10
|
Thilakarathna SH, Stokowski T, Chui L. An Improved Real-Time Viability PCR Assay to Detect Salmonella in a Culture-Independent Era. Int J Mol Sci 2022; 23:ijms232314708. [PMID: 36499040 PMCID: PMC9738789 DOI: 10.3390/ijms232314708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Viability PCR (vPCR) uses a DNA intercalating dye to irreversibly bind double-stranded DNA from organisms with compromised cell membranes. This allows the selective amplification of DNA from intact cells. An optimized vPCR protocol should minimize false positives (DNA from compromised cells not fully removed) and false negatives (live cell DNA bound by the dye). We aimed to optimize a vPCR protocol using PMAxx™ as the intercalating agent and Salmonella Enteritidis as the target organism. To do this, we studied (1) single vs. sequential PMAxx™ addition; (2) a wash step post-PMAxx™ treatment; (3) a change of tube post-treatment before DNA extraction. The single vs. sequential PMAxx™ addition showed no difference. Results signified that PMAxx™ potentially attached to polypropylene tube walls and bound the released DNA from PMA-treated live cells when lysed in the same tube. A wash step was ineffective but transfer of the treated live cells to a new tube minimized these false-negative results. Our optimized protocol eliminated 108 CFU/mL heat-killed cell DNA in the presence of different live cell dilutions without compromising the amplification of the live cells, minimizing false positives. With further improvements, vPCR has great potential as a culture-independent diagnostic tool.
Collapse
Affiliation(s)
- Surangi H. Thilakarathna
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Taryn Stokowski
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Alberta Precision Laboratories, Public Health Laboratory (ProvLab), Edmonton, AB T6G 2J2, Canada
- Correspondence:
| |
Collapse
|
11
|
Ortí-Lucas RM, Luciano E. New immunomagnetic separation method to analyze risk factors for Legionella colonization in health care centres. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:744-750. [PMID: 35264765 PMCID: PMC8906530 DOI: 10.1038/s41370-022-00421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND It's pivotal to control the presence of legionella in sanitary structures. So, it's important to determine the risk factors associated with Legionella colonization in health care centres. In recent years that is why new diagnostic techniques have been developed. OBJECTIVE To evaluate risks factors for Legionella colonization using a novel and more sensitive Legionella positivity index. METHODS A total of 204 one-litre water samples (102 cold water samples and 102 hot water samples), were collected from 68 different sampling sites of the hospital water system and tested for Legionella spp. by two laboratories using culture, polymerase chain reaction and a method based on immunomagnetic separation (IMS). A Legionella positivity index was defined to evaluate Legionella colonization and associated risk factors in the 68 water samples sites. We performed bivariate analyses and then logistic regression analysis with adjustment of potentially confounding variables. We compared the performance of culture and IMS methods using this index as a new gold standard to determine if rapid IMS method is an acceptable alternative to the use of slower culture method. RESULTS Based on the new Legionella positivity index, no statistically significant differences were found neither between laboratories nor between methods (culture, IMS). Positivity was significantly correlated with ambulatory health assistance (p = 0.05) and frequency of use of the terminal points. The logistic regression model revealed that chlorine (p = 0.009) and the frequency of use of the terminal points (p = 0.001) are predictors of Legionella colonization. Regarding this index, the IMS method proved more sensitive (69%) than culture method (65.4%) in hot water samples. SIGNIFICANCE We showed that the frequency of use of terminal points should be considered when examining environmental Legionella colonization, which can be better evaluated using the provided Legionella positivity index. This study has implications for the prevention of Legionnaires' disease in hospital settings.
Collapse
Affiliation(s)
- Rafael Manuel Ortí-Lucas
- Research group on Public Health and Patient Safety, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
- Department of Preventive Medicine, Hospital Clínico Universitario de Valencia, Valencia, Spain.
| | - Eugenio Luciano
- Department of Preventive Medicine, Hospital Clínico Universitario de Valencia, Valencia, Spain.
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
| |
Collapse
|
12
|
Hu L, Fu Y, Zhang S, Pan Z, Xia J, Zhu P, Guo J. An Assay Combining Droplet Digital PCR With Propidium Monoazide Treatment for the Accurate Detection of Live Cells of Vibrio vulnificus in Plasma Samples. Front Microbiol 2022; 13:927285. [PMID: 35910629 PMCID: PMC9335127 DOI: 10.3389/fmicb.2022.927285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Vibrio vulnificus (V. vulnificus) is one of the most common pathogenic Vibrio species to humans; therefore, the establishment of timely and credible detection methods has become an urgent requirement for V. vulnificus illness surveillance. In this study, an assay combining droplet digital PCR (ddPCR) with propidium monoazide (PMA) treatment was developed for detecting V. vulnificus. The primers/probes targeting the V. vulnificus hemolysin A (vvhA) gene, amplification procedures, and PMA processing conditions involved in the assay were optimized. Then, we analyzed the specificity, sensitivity, and ability to detect live cell DNA while testing the performance of PMA-ddPCR in clinical samples. The optimal concentrations of primers and probes were 1.0 and 0.3 μM, respectively. The annealing temperature achieving the highest accuracy in ddPCR assay was 60°C. With an initial V. vulnificus cell concentration of 108 CFU/mL (colony-forming units per milliliter), the optimal strategy to distinguish live cells from dead cells was to treat samples with 100 μM PMA for 15 min in the dark and expose them to LED light with an output wavelength of 465 nm for 10 min. The specificity of the PMA-ddPCR assay was tested on 27 strains, including seven V. vulnificus strains and 20 other bacterial strains. Only the seven V. vulnificus strains were observed with positive signals in specificity analysis. Comparative experiments on the detection ability of PMA-ddPCR and PMA-qPCR in pure cultures and plasma samples were performed. The limit of detection (LOD) and the limit of quantitation (LOQ) in pure culture solutions of V. vulnificus were 29.33 and 53.64 CFU/mL in PMA-ddPCR, respectively. For artificially clinical sample tests in PMA-ddPCR, V. vulnificus could be detected at concentrations as low as 65.20 CFU/mL. The sensitivity of the PMA-ddPCR assay was 15- to 40-fold more sensitive than the PMA-qPCR in this study. The PMA-ddPCR assay we developed provides a new insight to accurately detect live cells of V. vulnificus in clinical samples, which is of great significance to enhance public health safety and security capability and improve the emergency response level for V. vulnificus infection.
Collapse
Affiliation(s)
- Ling Hu
- Hangzhou Medical College, Hangzhou, China
- Ningbo Stomatology Hospital, Ningbo, China
| | - Yidong Fu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Shun Zhang
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Zhilei Pan
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Jiang Xia
- Pilot Gene Technologies (Hangzhou) Co., Ltd., Hangzhou, China
| | - Peng Zhu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
- *Correspondence: Peng Zhu,
| | - Jing Guo
- Hangzhou Medical College, Hangzhou, China
- Ningbo Stomatology Hospital, Ningbo, China
- Jing Guo,
| |
Collapse
|
13
|
Boutsioukis C, Arias‐Moliz MT, Chávez de Paz LE. A critical analysis of research methods and experimental models to study irrigants and irrigation systems. Int Endod J 2022; 55 Suppl 2:295-329. [PMID: 35171506 PMCID: PMC9314845 DOI: 10.1111/iej.13710] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Abstract
Irrigation plays an essential role in root canal treatment. The purpose of this narrative review was to critically appraise the experimental methods and models used to study irrigants and irrigation systems and to provide directions for future research. Studies on the antimicrobial effect of irrigants should use mature multispecies biofilms grown on dentine or inside root canals and should combine at least two complementary evaluation methods. Dissolution of pulp tissue remnants should be examined in the presence of dentine and, preferably, inside human root canals. Micro-computed tomography is currently the method of choice for the assessment of accumulated dentine debris and their removal. A combination of experiments in transparent root canals and numerical modeling is needed to address irrigant penetration. Finally, models to evaluate irrigant extrusion through the apical foramen should simulate the periapical tissues and provide quantitative data on the amount of extruded irrigant. Mimicking the in vivo conditions as close as possible and standardization of the specimens and experimental protocols are universal requirements irrespective of the surrogate endpoint studied. Obsolete and unrealistic models must be abandoned in favour of more appropriate and valid ones that have more direct application and translation to clinical Endodontics.
Collapse
Affiliation(s)
- Christos Boutsioukis
- Department of EndodontologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | | |
Collapse
|
14
|
Weber MT, Alkhafaji Y, Pioch A, Trips E, Basche S, Dannemann M, Kilistoff A, Hannig C, Sterzenbach T. Quantification of Bacterial DNA from Infected Human Root Canals Using qPCR and DAPI after Disinfection with Established and Novel Irrigation Protocols. MATERIALS 2022; 15:ma15051911. [PMID: 35269141 PMCID: PMC8912041 DOI: 10.3390/ma15051911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023]
Abstract
The removal of bacterial infections within the root canal system is still a challenge. Therefore, the cleansing effect of established and new irrigation-protocols (IP) containing silver diamine fluoride (SDF) 3.8% on the whole root canal system was analyzed using quantitative PCR (qPCR) and 4′,6-diamidino-phenylindole-(DAPI)-staining. Extracted human premolars were instrumented up to F2 (ProTaper Gold) under NaCl 0.9% irrigation and incubated with Enterococcus faecalis for 42 days. Subsequently, different ultrasonically agitated IP were applied to the roots: control (no irrigation), 1. NaOCl 3%, EDTA 20%, CHX 2%, 2. NaOCl 3%, EDTA 20%, 3. NaOCl 3%, EDTA 20%, SDF 3.8%, 4. SDF 3.8%, and 5. NaCl 0.9%. One half of the root was investigated fluorescent-microscopically with DAPI. The other half was grinded in a cryogenic mill and the bacterial DNA was quantified with qPCR. The qPCR results showed a statistically significant reduction of bacteria after the application of IP 1, 2, and 3 compared to the control group. While IP 4 lead to a bacterial reduction which was not significant, IP 5 showed no reduction. These data corresponded with DAPI staining. With qPCR a new molecular-biological method for the investigation of the complete root canal system was implemented. The novel IP 3 had an equally good cleansing effect as the already established IP.
Collapse
Affiliation(s)
- Marie-Theres Weber
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (Y.A.); (A.P.); (S.B.); (C.H.); (T.S.)
- Correspondence: ; Tel.: +49-351-458-7456
| | - Yousef Alkhafaji
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (Y.A.); (A.P.); (S.B.); (C.H.); (T.S.)
| | - Anne Pioch
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (Y.A.); (A.P.); (S.B.); (C.H.); (T.S.)
| | - Evelyn Trips
- Coordination Center for Clinical Studies Dresden, Medical Faculty Carl Gustav Carus, Technical University Dresden, Fetscherstraße 74, 01309 Dresden, Germany;
| | - Sabine Basche
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (Y.A.); (A.P.); (S.B.); (C.H.); (T.S.)
| | - Martin Dannemann
- Faculty of Automotive Engineering, Institute of Energy and Transport Engineering, Westsächsische Hochschule Zwickau, Scheffelstraße 39, 08012 Zwickau, Germany;
| | - Alan Kilistoff
- Faculty of Medicine & Dentistry, University of Alberta, 11405 87th Ave NW, Edmonton, AB T6G 1C9, Canada;
| | - Christian Hannig
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (Y.A.); (A.P.); (S.B.); (C.H.); (T.S.)
| | - Torsten Sterzenbach
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (Y.A.); (A.P.); (S.B.); (C.H.); (T.S.)
| |
Collapse
|
15
|
Dunkers JP, Iyer H, Jones B, Camp CH, Stranick SJ, Lin NJ. Toward absolute viability measurements for bacteria. JOURNAL OF BIOPHOTONICS 2021; 14:e202100175. [PMID: 34510771 DOI: 10.1002/jbio.202100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/13/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
We aim to develop a quantitative viability method that distinguishes individual quiescent from dead cells and is measured in time (ns) as a referenceable, comparable quantity. We demonstrate that fluorescence lifetime imaging of an anionic, fluorescent membrane voltage probe fulfills these requirements for Streptococcus mutans. A random forest machine-learning model assesses whether individual S. mutans can be correctly classified into their original populations: stationary phase (quiescent), heat killed and inactivated via chemical fixation. We compare the results to intensity using three models: lifetime variables (τ1 , τ2 and p1 ), phasor variables (G, S) or all five variables, with the five variable models having the most accurate classification. This initial work affirms the potential for using fluorescence lifetime of a membrane voltage probe as a viability marker for quiescent bacteria, and future efforts on other bacterial species and fluorophores will help refine this approach.
Collapse
Affiliation(s)
- Joy P Dunkers
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Hariharan Iyer
- Statistical Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Brynna Jones
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
- Department of Chemistry, University of North Florida, Jacksonville, Florida, USA
| | - Charles H Camp
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Stephan J Stranick
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Nancy J Lin
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
16
|
Zhang C, Lu J. Legionella: A Promising Supplementary Indicator of Microbial Drinking Water Quality in Municipal Engineered Water Systems. FRONTIERS IN ENVIRONMENTAL SCIENCE 2021; 9:1-22. [PMID: 35004706 PMCID: PMC8740890 DOI: 10.3389/fenvs.2021.684319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Opportunistic pathogens (OPs) are natural inhabitants and the predominant disease causative biotic agents in municipal engineered water systems (EWSs). In EWSs, OPs occur at high frequencies and concentrations, cause drinking-water-related disease outbreaks, and are a major factor threatening public health. Therefore, the prevalence of OPs in EWSs represents microbial drinking water quality. Closely or routinely monitoring the dynamics of OPs in municipal EWSs is thus critical to ensuring drinking water quality and protecting public health. Monitoring the dynamics of conventional (fecal) indicators (e.g., total coliforms, fecal coliforms, and Escherichia coli) is the customary or even exclusive means of assessing microbial drinking water quality. However, those indicators infer only fecal contamination due to treatment (e.g., disinfection within water utilities) failure and EWS infrastructure issues (e.g., water main breaks and infiltration), whereas OPs are not contaminants in drinking water. In addition, those indicators appear in EWSs at low concentrations (often absent in well-maintained EWSs) and are uncorrelated with OPs. For instance, conventional indicators decay, while OPs regrow with increasing hydraulic residence time. As a result, conventional indicators are poor indicators of OPs (the major aspect of microbial drinking water quality) in EWSs. An additional or supplementary indicator that can well infer the prevalence of OPs in EWSs is highly needed. This systematic review argues that Legionella as a dominant OP-containing genus and natural inhabitant in EWSs is a promising candidate for such a supplementary indicator. Through comprehensively comparing the behavior (i.e., occurrence, growth and regrowth, spatiotemporal variations in concentrations, resistance to disinfectant residuals, and responses to physicochemical water quality parameters) of major OPs (e.g., Legionella especially L. pneumophila, Mycobacterium, and Pseudomonas especially P. aeruginosa), this review proves that Legionella is a promising supplementary indicator for the prevalence of OPs in EWSs while other OPs lack this indication feature. Legionella as a dominant natural inhabitant in EWSs occurs frequently, has a high concentration, and correlates with more microbial and physicochemical water quality parameters than other common OPs. Legionella and OPs in EWSs share multiple key features such as high disinfectant resistance, biofilm formation, proliferation within amoebae, and significant spatiotemporal variations in concentrations. Therefore, the presence and concentration of Legionella well indicate the presence and concentrations of OPs (especially L. pneumophila) and microbial drinking water quality in EWSs. In addition, Legionella concentration indicates the efficacies of disinfectant residuals in EWSs. Furthermore, with the development of modern Legionella quantification methods (especially quantitative polymerase chain reactions), monitoring Legionella in ESWs is becoming easier, more affordable, and less labor-intensive. Those features make Legionella a proper supplementary indicator for microbial drinking water quality (especially the prevalence of OPs) in EWSs. Water authorities may use Legionella and conventional indicators in combination to more comprehensively assess microbial drinking water quality in municipal EWSs. Future work should further explore the indication role of Legionella in EWSs and propose drinking water Legionella concentration limits that indicate serious public health effects and require enhanced treatment (e.g., booster disinfection).
Collapse
Affiliation(s)
- Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, OH, United States
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| |
Collapse
|
17
|
Ulmann V, Modrá H, Babak V, Weston RT, Pavlik I. Recovery of Mycobacteria from Heavily Contaminated Environmental Matrices. Microorganisms 2021; 9:microorganisms9102178. [PMID: 34683499 PMCID: PMC8538195 DOI: 10.3390/microorganisms9102178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022] Open
Abstract
For epidemiology studies, a decontamination method using a solution containing 4.0% NaOH and 0.5% tetradecyltrimethylammonium bromide (TDAB) represents a relatively simple and universal procedure for processing heavily microbially contaminated matrices together with increase of mycobacteria yield and elimination of gross contamination. A contamination rate only averaging 7.3% (2.4% in Cluster S; 6.9% in Cluster R and 12.6% in Cluster E) was found in 787 examined environmental samples. Mycobacteria were cultured from 28.5% of 274 soil and water sediments samples (Cluster S), 60.2% of 251 samples of raw and processed peat and other horticultural substrates (Cluster R), and 29.4% of 262 faecal samples along with other samples of animal origin (Cluster E). A total of 38 species of slow and rapidly growing mycobacteria were isolated. M. avium ssp. hominissuis, M. fortuitum and M. malmoense were the species most often isolated. The parameters for the quantitative detection of mycobacteria by PCR can be significantly refined by treating the sample suspension before DNA isolation with PMA (propidium monoazide) solution. This effectively eliminates DNA residue from both dead mycobacterial cells and potentially interfering DNA segments present from other microbial flora. In terms of human exposure risk assessment, the potential exposure to live non-tuberculous mycobacteria can be more accurately determined.
Collapse
Affiliation(s)
- Vit Ulmann
- Public Health Institute in Ostrava, Partyzanske Nam. 7, 702 00 Ostrava, Czech Republic;
| | - Helena Modrá
- Faculty of Regional Development and International Studies, Mendel University in Brno, Tr. Generala Piky 7, 613 00 Brno, Czech Republic;
| | - Vladimir Babak
- Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic;
| | - Ross Tim Weston
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia;
| | - Ivo Pavlik
- Faculty of Regional Development and International Studies, Mendel University in Brno, Tr. Generala Piky 7, 613 00 Brno, Czech Republic;
- Correspondence: ; Tel.: +420-773-491-836
| |
Collapse
|
18
|
Rosenberg JN, Cady NC. Surveilling cellular vital signs: toward label-free biosensors and real-time viability assays for bioprocessing. Curr Opin Biotechnol 2021; 71:123-129. [PMID: 34358978 DOI: 10.1016/j.copbio.2021.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/20/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Cell viability is an essential facet of mammalian and microbial bioprocessing. While robust methods of monitoring cellular health remain critically important to biomanufacturing and biofabrication, the complexity of advanced cell culture platforms often poses challenges for conventional viability assays. This review surveys novel approaches to discern the metabolic, morphological, and mechanistic hallmarks of living systems - spanning subcellular and multicellular scales. While fluorescent probes coupled with 3D image analysis generate rapid results with spatiotemporal detail, molecular techniques like viability PCR can distinguish live cells with genetic specificity. Notably, label-free biosensors can detect nuanced attributes of cellular vital signs with single-cell resolution via optical, acoustic, and electrical signals. Ultimately, efforts to integrate these modalities with automation, machine learning, and high-throughput workflows will lead to exciting new vistas across the cell viability landscape.
Collapse
Affiliation(s)
- Julian N Rosenberg
- Stack Family Center for Biopharmaceutical Education and Training (CBET), Albany College of Pharmacy and Health Sciences, 257 Fuller Road, Albany, NY 12203, USA.
| | - Nathaniel C Cady
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| |
Collapse
|
19
|
Leifels M, Cheng D, Sozzi E, Shoults DC, Wuertz S, Mongkolsuk S, Sirikanchana K. Capsid integrity quantitative PCR to determine virus infectivity in environmental and food applications - A systematic review. WATER RESEARCH X 2021; 11:100080. [PMID: 33490943 DOI: 10.1101/2020.05.08.20095364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/08/2020] [Accepted: 12/06/2020] [Indexed: 05/19/2023]
Abstract
Capsid integrity quantitative PCR (qPCR), a molecular detection method for infectious viruses combining azo dye pretreatment with qPCR, has been widely used in recent years; however, variations in pretreatment conditions for various virus types can limit the efficacy of specific protocols. By identifying and critically synthesizing forty-one recent peer-reviewed studies employing capsid integrity qPCR for viruses in the last decade (2009-2019) in the fields of food safety and environmental virology, we aimed to establish recommendations for the detection of infectious viruses. Intercalating dyes are effective measures of viability in PCR assays provided the viral capsid is damaged; viruses that have been inactivated by other causes, such as loss of attachment or genomic damage, are less well detected using this approach. Although optimizing specific protocols for each virus is recommended, we identify a framework for general assay conditions. These include concentrations of ethidium monoazide, propidium monoazide or its derivates between 10 and 200 μM; incubation on ice or at room temperature (20 - 25 °C) for 5-120 min; and dye activation using LED or high light (500-800 Watts) exposure for periods ranging from 5 to 20 min. These simple steps can benefit the investigation of infectious virus transmission in routine (water) monitoring settings and during viral outbreaks such as the current COVID-19 pandemic or endemic diseases like dengue fever.
Collapse
Affiliation(s)
- Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Emanuele Sozzi
- Gilling's School of Global Public Health, Department of Environmental Science and Engineering, University of North Carolina at Chapel Hill, NC, USA
| | - David C Shoults
- Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- School of Civil and Environmental Engineering, NTU, Singapore
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| |
Collapse
|
20
|
Leifels M, Cheng D, Sozzi E, Shoults DC, Wuertz S, Mongkolsuk S, Sirikanchana K. Capsid integrity quantitative PCR to determine virus infectivity in environmental and food applications - A systematic review. WATER RESEARCH X 2021; 11:100080. [PMID: 33490943 PMCID: PMC7811166 DOI: 10.1016/j.wroa.2020.100080] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/08/2020] [Accepted: 12/06/2020] [Indexed: 05/19/2023]
Abstract
Capsid integrity quantitative PCR (qPCR), a molecular detection method for infectious viruses combining azo dye pretreatment with qPCR, has been widely used in recent years; however, variations in pretreatment conditions for various virus types can limit the efficacy of specific protocols. By identifying and critically synthesizing forty-one recent peer-reviewed studies employing capsid integrity qPCR for viruses in the last decade (2009-2019) in the fields of food safety and environmental virology, we aimed to establish recommendations for the detection of infectious viruses. Intercalating dyes are effective measures of viability in PCR assays provided the viral capsid is damaged; viruses that have been inactivated by other causes, such as loss of attachment or genomic damage, are less well detected using this approach. Although optimizing specific protocols for each virus is recommended, we identify a framework for general assay conditions. These include concentrations of ethidium monoazide, propidium monoazide or its derivates between 10 and 200 μM; incubation on ice or at room temperature (20 - 25 °C) for 5-120 min; and dye activation using LED or high light (500-800 Watts) exposure for periods ranging from 5 to 20 min. These simple steps can benefit the investigation of infectious virus transmission in routine (water) monitoring settings and during viral outbreaks such as the current COVID-19 pandemic or endemic diseases like dengue fever.
Collapse
Affiliation(s)
- Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Emanuele Sozzi
- Gilling's School of Global Public Health, Department of Environmental Science and Engineering, University of North Carolina at Chapel Hill, NC, USA
| | - David C. Shoults
- Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- School of Civil and Environmental Engineering, NTU, Singapore
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| |
Collapse
|
21
|
Shen J, McFarland AG, Young VB, Hayden MK, Hartmann EM. Toward Accurate and Robust Environmental Surveillance Using Metagenomics. Front Genet 2021; 12:600111. [PMID: 33747038 PMCID: PMC7973286 DOI: 10.3389/fgene.2021.600111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/21/2021] [Indexed: 01/23/2023] Open
Abstract
Environmental surveillance is a critical tool for combatting public health threats represented by the global COVID-19 pandemic and the continuous increase of antibiotic resistance in pathogens. With its power to detect entire microbial communities, metagenomics-based methods stand out in addressing the need. However, several hurdles remain to be overcome in order to generate actionable interpretations from metagenomic sequencing data for infection prevention. Conceptually and technically, we focus on viability assessment, taxonomic resolution, and quantitative metagenomics, and discuss their current advancements, necessary precautions and directions to further development. We highlight the importance of building solid conceptual frameworks and identifying rational limits to facilitate the application of techniques. We also propose the usage of internal standards as a promising approach to overcome analytical bottlenecks introduced by low biomass samples and the inherent lack of quantitation in metagenomics. Taken together, we hope this perspective will contribute to bringing accurate and consistent metagenomics-based environmental surveillance to the ground.
Collapse
Affiliation(s)
- Jiaxian Shen
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| | - Alexander G. McFarland
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| | - Vincent B. Young
- Division of Infectious Diseases, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mary K. Hayden
- Division of Infectious Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
22
|
Abstract
The development of viability quantitative PCR (v-qPCR) has allowed for a more accurate assessment of the viability of a microbial sample by limiting the amplification of DNA from dead cells. Although valuable, v-qPCR is not infallible. One of the most limiting factors for accurate live/dead distinction is the length of the qPCR amplicon used. However, no consensus or guidelines exist for selecting and designing amplicon lengths for optimal results. In this study, a wide range of incrementally increasing amplicon lengths (68 to 906 base pairs [bp]) was used on live and killed cells of nine bacterial species treated with a viability dye (propidium monoazide [PMA]). Increasing amplicon lengths up to approximately 200 bp resulted in increasing quantification cycle (Cq) differences between live and killed cells while maintaining a good qPCR efficiency. Longer amplicon lengths, up to approximately 400 bp, further increased the Cq difference but at the cost of qPCR efficiency. Above 400 bp, no valuable increase in Cq differences was observed. IMPORTANCE Viability quantitative PCR (v-qPCR) has evolved into a valuable, mainstream technique for determining the number of viable microorganisms in samples by qPCR. Amplicon length is known to be positively correlated with the ability to distinguish between live and dead bacteria but is negatively correlated with qPCR efficiency. This trade-off is often not taken into account and might have an impact on the accuracy of v-qPCR data. Currently, there is no consensus on the optimal amplicon length. This paper provides methods to determine the optimal amplicon length and suggests an amplicon length range for optimal v-qPCR, taking into consideration the trade-off between qPCR efficiency and live/dead distinction.
Collapse
|
23
|
Sterzenbach T, Pioch A, Dannemann M, Hannig C, Weber MT. Quantification of Bacterial Colonization in Dental Hard Tissues Using Optimized Molecular Biological Methods. Front Genet 2021; 11:599137. [PMID: 33391351 PMCID: PMC7775318 DOI: 10.3389/fgene.2020.599137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/01/2020] [Indexed: 11/25/2022] Open
Abstract
Bacterial infections of root canals and the surrounding dental hard tissue are still a challenge due to biofilm formation as well as the complex root canal anatomy. However, current methods for analyzing biofilm formation, bacterial colonization of root canals and dental hard tissue [e.g., scanning electron microscopy, confocal laser scanning microscopy (CLSM) or determination of colony forming units (CFU)] are time-consuming and only offer a selective qualitative or semi-quantitative analysis. The aim of the present study is the establishment of optimized molecular biological methods for DNA-isolation and quantification of bacterial colonization via quantitative PCR (qPCR) from dental hard tissue. Root canals of human premolars were colonized with Enterococcus faecalis. For isolation of DNA, teeth were then grinded with a cryo mill. Since the hard tissues dentin and especially enamel belong to the hardest materials in the human organism, the isolation of bacterial DNA from root dentin is very challenging. Therefore, treatment steps for the isolation of DNA from grinded teeth were systematically analyzed to allow improved recovery of bacterial DNA from dental hard tissues. Starting with the disintegration of the peptidoglycan-layer of bacterial cells, different lysozyme solutions were tested for efficacy. Furthermore, incubation times and concentrations of chelating agents such as EDTA were optimized. These solutions are crucial for the disintegration of teeth and hence improve the accessibility of bacterial DNA. The final step was the determination of prior bacterial colonization of each root canal as determined by qPCR and comparing the results to alternative methods such as CFU. As a result of this study, optimized procedures for bacterial DNA-isolation from teeth were established, which result in an increased recovery rate of bacterial DNA. This method allows a non-selective and straightforward procedure to quantify bacterial colonization from dental hard tissue. It can be easily adapted for other study types such as microbiome studies and for comparable tissues like bones.
Collapse
Affiliation(s)
- Torsten Sterzenbach
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anne Pioch
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Dannemann
- Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, Dresden, Germany
| | - Christian Hannig
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marie-Theres Weber
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|