1
|
Flores-Nunez VM, Stukenbrock EH. The impact of filamentous plant pathogens on the host microbiota. BMC Biol 2024; 22:175. [PMID: 39148076 PMCID: PMC11328434 DOI: 10.1186/s12915-024-01965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
When a pathogen invades a plant, it encounters a diverse microbiota with some members contributing to the health and growth of the plant host. So far, the relevance of interactions between pathogens and the plant microbiota are poorly understood; however, new lines of evidence suggest that pathogens play an important role in shaping the microbiome of their host during invasion. This review aims to summarize recent findings that document changes in microbial community composition during the invasion of filamentous pathogens in plant tissues. We explore the known mechanisms of interaction between plant pathogens and the host microbiota that underlie these changes, particularly the pathogen-encoded traits that are produced to target specific microbes. Moreover, we discuss the limitations of current strategies and shed light on new perspectives to study the complex interaction networks between filamentous pathogens and the plant microbiome.
Collapse
Affiliation(s)
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University, 24118, Kiel, Germany.
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
| |
Collapse
|
2
|
Siegieda D, Panek J, Frąc M. Ecological processes of bacterial microbiome assembly in healthy and dysbiotic strawberry farms. BMC PLANT BIOLOGY 2024; 24:692. [PMID: 39030484 PMCID: PMC11264780 DOI: 10.1186/s12870-024-05415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
The bacterial microbiome plays crucial role in plants' resistance to diseases, nutrient uptake and productivity. We examined the microbiome characteristics of healthy and unhealthy strawberry farms, focusing on soil (bulk soil, rhizosphere soil) and plant (roots and shoots). The relative abundance of most abundant taxa were correlated with the chemical soil properties and shoot niche revealed the least amount of significant correlations between the two. While alpha and beta diversities did not show differences between health groups, we identified a number of core taxa (16-59) and marker bacterial taxa for each healthy (Unclassified Tepidisphaerales, Ohtaekwangia, Hydrocarboniphaga) and dysbiotic (Udaeobacter, Solibacter, Unclassified Chitinophagales, Unclassified Nitrosomonadaceae, Nitrospira, Nocardioides, Tardiphaga, Skermanella, Pseudomonas, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Curtobacterium) niche. We also revealed selective pressure of strawberry rhizosphere soil and roots plants in unhealthy plantations increased stochastic ecological processes of bacterial microbiome assembly in shoots. Our findings contribute to understanding sustainable agriculture and plant-microbiome interactions.
Collapse
Affiliation(s)
- Dominika Siegieda
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, Lublin, 20-290, Poland
| | - Jacek Panek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, Lublin, 20-290, Poland
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, Lublin, 20-290, Poland.
| |
Collapse
|
3
|
Wang Z, Dai Q, Su D, Zhang Z, Tian Y, Tong J, Chen S, Yan C, Yang J, Cui X. Comparative analysis of the microbiomes of strawberry wild species Fragaria nilgerrensis and cultivated variety Akihime using amplicon-based next-generation sequencing. Front Microbiol 2024; 15:1377782. [PMID: 38873161 PMCID: PMC11169695 DOI: 10.3389/fmicb.2024.1377782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Fragaria nilgerrensis is a wild strawberry species widely distributed in southwest China and has strong ecological adaptability. Akihime (F. × ananassa Duch. cv. Akihime) is one of the main cultivated strawberry varieties in China and is prone to infection with a variety of diseases. In this study, high-throughput sequencing was used to analyze and compare the soil and root microbiomes of F. nilgerrensis and Akihime. Results indicate that the wild species F. nilgerrensis showed higher microbial diversity in nonrhizosphere soil and rhizosphere soil and possessed a more complex microbial network structure compared with the cultivated variety Akihime. Genera such as Bradyrhizobium and Anaeromyxobacter, which are associated with nitrogen fixation and ammonification, and Conexibacter, which is associated with ecological toxicity resistance, exhibited higher relative abundances in the rhizosphere and nonrhizosphere soil samples of F. nilgerrensis compared with those of Akihime. Meanwhile, the ammonia-oxidizing archaea Candidatus Nitrososphaera and Candidatus Nitrocosmicus showed the opposite tendencies. We also found that the relative abundances of potential pathogenic genera and biocontrol bacteria in the Akihime samples were higher than those in the F. nilgerrensis samples. The relative abundances of Blastococcus, Nocardioides, Solirubrobacter, and Gemmatimonas, which are related to pesticide degradation, and genus Variovorax, which is associated with root growth regulation, were also significantly higher in the Akihime samples than in the F. nilgerrensis samples. Moreover, the root endophytic microbiomes of both strawberry species, especially the wild F. nilgerrensis, were mainly composed of potential biocontrol and beneficial bacteria, making them important sources for the isolation of these bacteria. This study is the first to compare the differences in nonrhizosphere and rhizosphere soils and root endogenous microorganisms between wild and cultivated strawberries. The findings have great value for the research of microbiomes, disease control, and germplasm innovation of strawberry.
Collapse
Affiliation(s)
- Zongneng Wang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Qingzhong Dai
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Daifa Su
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | | | - Yunxia Tian
- Kunming Academy of Agricultural Science, Kunming, China
| | - Jiangyun Tong
- Kunming Academy of Agricultural Science, Kunming, China
| | - Shanyan Chen
- Kunming Academy of Agricultural Science, Kunming, China
| | - Congwen Yan
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Junyu Yang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology and Immunology, Kunming, China
| | - Xiaolong Cui
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Li S, Fan Y, Han J, Liu F, Ding Y, Li X, Yu E, Wang S, Wang F, Wang C. Foodborne Pathogen and Microbial Community Differences in Fresh Processing Tomatoes in Xinjiang, China. Foodborne Pathog Dis 2024; 21:236-247. [PMID: 38150226 DOI: 10.1089/fpd.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The microbes on fresh processing tomatoes correlate closely with diseases, preservation, and quality control. Investigation of the microbial communities on processing tomatoes from different production regions may help define microbial specificity, inform disease prevention methods, and improve quality. In this study, surface microbes on processing tomatoes from 10 samples in two primary production areas of southern and northern Xinjiang were investigated by sequencing fungal internal transcribed spacer and bacterial 16S rRNA hypervariable sequences. A total of 133 different fungal and bacterial taxonomies were obtained from processing tomatoes in the two regions, of which 63 genera were predominant. Bacterial and fungal communities differed significantly between southern and northern Xinjiang, and fungal diversity was higher in southern Xinjiang. Alternaria and Cladosporium on processing tomatoes in southern Xinjiang were associated with plant pathogenic risk. The plant pathogenic fungi of processing tomatoes in northern Xinjiang were more abundant in Alternaria and Fusarium. The abundance of Alternaria on processing tomatoes was higher in four regions of northern Xinjiang, indicating that there is a greater risk of plant pathogenicity in these areas. Processing tomatoes in northern and southern Xinjiang contained bacterial genera identified as gut microbes, such as Pantoea, Erwinia, Enterobacter, Enterococcus, and Serratia, indicating the potential risk of contamination of processing tomatoes with foodborne pathogens. This study highlighted the microbial specificity of processing tomatoes in two tomato production regions, providing a basis for further investigation and screening for foodborne pathogenic microorganisms.
Collapse
Affiliation(s)
- Shicui Li
- College of Life Sciences and Technology, Xinjiang University, Urumqi, China
| | - Yingying Fan
- Key Laboratory of Agro-products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agri-products (Urumqi), Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Quality Standards & Testing Technology for Agri-products, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jie Han
- College of Life Sciences and Technology, Xinjiang University, Urumqi, China
| | - Fengjuan Liu
- Key Laboratory of Agro-products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agri-products (Urumqi), Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Quality Standards & Testing Technology for Agri-products, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yu Ding
- School of Biology and Geography Sciences, Yili Normal University, Yining, China
| | - Xiaolong Li
- Information Center of Agriculture and Rural Affairs Department, Urumqi, China
| | - Enhe Yu
- College of Food Science and Pharmaceutical Science, Xinjiang Agricultural University, Urumqi, China
| | - Shuai Wang
- Key Laboratory of Agro-products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agri-products (Urumqi), Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Quality Standards & Testing Technology for Agri-products, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Fulan Wang
- Key Laboratory of Agro-products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agri-products (Urumqi), Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Quality Standards & Testing Technology for Agri-products, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Cheng Wang
- College of Life Sciences and Technology, Xinjiang University, Urumqi, China
- Key Laboratory of Agro-products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agri-products (Urumqi), Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Quality Standards & Testing Technology for Agri-products, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
5
|
Yang H, Zhang X, Qiu X, Chen J, Wang Y, Zhang G, Jia S, Shen X, Ye W, Yan Z. Fusarium Wilt Invasion Results in a Strong Impact on Strawberry Microbiomes. PLANTS (BASEL, SWITZERLAND) 2023; 12:4153. [PMID: 38140478 PMCID: PMC10747085 DOI: 10.3390/plants12244153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Plant-endophytic microbes affect plant growth, development, nutrition, and resistance to pathogens. However, how endophytic microbial communities change in different strawberry plant compartments after Fusarium pathogen infection has remained elusive. In this study, 16S and internal transcribed spacer rRNA amplicon sequencing were used to systematically investigate changes in the bacterial and fungal diversity and composition in the endophytic compartments (roots, stems, and leaves) of healthy strawberries and strawberries with Fusarium wilt, respectively. The analysis of the diversity, structure, and composition of the bacterial and fungal communities revealed a strong effect of pathogen invasion on the endophytic communities. The bacterial and fungal community diversity was lower in the Fusarium-infected endophytic compartments than in the healthy samples. The relative abundance of certain bacterial and fungal genera also changed after Fusarium wilt infection. The relative abundance of the beneficial bacterial genera Bacillus, Bradyrhizobium, Methylophilus, Sphingobium, Lactobacillus, and Streptomyces, as well as fungal genera Acremonium, Penicillium, Talaromyces, and Trichoderma, were higher in the healthy samples than in the Fusarium wilt samples. The relative abundance of Fusarium in the infected samples was significantly higher than that in the healthy samples, consistent with the field observations and culture isolation results for strawberry wilt. Our findings provide a theoretical basis for the isolation, identification, and control of strawberry wilt disease.
Collapse
Affiliation(s)
- Hongjun Yang
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China; (H.Y.); (X.Q.); (Y.W.); (G.Z.); (S.J.); (X.S.)
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang 212400, China
| | - Xu Zhang
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China; (H.Y.); (X.Q.); (Y.W.); (G.Z.); (S.J.); (X.S.)
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang 212400, China
| | - Xiaohong Qiu
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China; (H.Y.); (X.Q.); (Y.W.); (G.Z.); (S.J.); (X.S.)
| | - Jiajia Chen
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China;
| | - Yuanhua Wang
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China; (H.Y.); (X.Q.); (Y.W.); (G.Z.); (S.J.); (X.S.)
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang 212400, China
| | - Geng Zhang
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China; (H.Y.); (X.Q.); (Y.W.); (G.Z.); (S.J.); (X.S.)
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang 212400, China
| | - Sizhen Jia
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China; (H.Y.); (X.Q.); (Y.W.); (G.Z.); (S.J.); (X.S.)
| | - Xiangqi Shen
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China; (H.Y.); (X.Q.); (Y.W.); (G.Z.); (S.J.); (X.S.)
| | - Wenwu Ye
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zhiming Yan
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China; (H.Y.); (X.Q.); (Y.W.); (G.Z.); (S.J.); (X.S.)
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang 212400, China
| |
Collapse
|
6
|
Zhang M, Kong Z, Fu H, Shu X, Xue Q, Lai H, Guo Q. Rhizosphere microbial ecological characteristics of strawberry root rot. Front Microbiol 2023; 14:1286740. [PMID: 38033596 PMCID: PMC10687216 DOI: 10.3389/fmicb.2023.1286740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Strawberry (Fragaria × ananassa Duch.) holds a preeminent position among small fruits globally due to its delectable fruits and significant economic value. However, strawberry cultivation is hampered by various plant diseases, hindering the sustainable development of the strawberry industry. The occurrence of plant diseases is closely linked to imbalance in rhizosphere microbial community structure. Methods In the present study, a systematic analysis of the differences and correlations among non-culturable microorganisms, cultivable microbial communities, and soil nutrients in rhizosphere soil, root surface soil, and non-rhizosphere soil of healthy and diseased strawberry plants affected by root rot was conducted. The goal was to explore the relationship between strawberry root rot occurrence and rhizosphere microbial community structure. Results According to the results, strawberry root rot altered microbial community diversity, influenced fungal community composition in strawberry roots, reduced microbial interaction network stability, and enriched more endophytic-phytopathogenic bacteria and saprophytic bacteria. In addition, the number of bacteria isolated from the root surface soil of diseased plants was significantly higher than that of healthy plants. Discussion In summary, the diseased strawberry plants changed microbial community diversity, fungal species composition, and enriched functional microorganisms significantly, in addition to reshaping the microbial co-occurrence network. The results provide a theoretical basis for revealing the microecological mechanism of strawberry root rot and the ecological prevention and control of strawberry root rot from a microbial ecology perspective.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Zhou L, Wu S, Ma M. First insights into diversity and potential metabolic pathways of bacterial and fungal communities in the rhizosphere of Argemonemexicana L. (Papaveraceae) from the water-level-fluctuation zone of Wudongde Reservoir of the upper Yangtze river, China. Biodivers Data J 2023; 11:e101950. [PMID: 38327346 PMCID: PMC10848652 DOI: 10.3897/bdj.11.e101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/26/2023] [Indexed: 02/09/2024] Open
Abstract
The water-level fluctuation zone (WLFZ) of Wudongde reservoir of the upper Yangtze river is a completely new aquatic-terrestrial transitional zone, and its plant degenerate issue is attracting global concerns. Uncovering the unknown rhizosphere microbiome of dominant plants of this zone is helpful in understanding the plant-microbe interactions and their growth under the largely varying environment. Here, a first exploration of the rhizosphere bacterial and fungal communities of wilted (JB) and unwilted (JA) Argemonemexicana L. individuals from the WLFZ of Wudongde reservoir was carried out using high-throughput sequencing and MetaCyc metabolic pathway analyses. The results showed that rhizosphere of wilted A.mexicana L individuals exhibited a higher microbial richness and diversity than the unwilted ones, irrespective of the bacterial and fungal communities. It was noted that 837 common bacterial amplicon sequence variants (ASV) and 92 common fungal ASV were presented in both JA and JB with 3108 bacteria and 212 fungi unique to JA, and 3569 bacteria and 693 fungi unique to JB. Linear discriminant analysis effect Size (LEfSe) analyses indicated that the taxa that had the most contribution to observed differences between both JA and JB was Proteobacteria, Actinobacteria and Ascomycota for JA, and Bacteroidetes, Firmicutes, Verrucomicrobia, Basidiomycota and Ascomycota for JB. Organic compound conversion pathway (degradation/reduction/oxidation) was consistently highly represented in the rhizosphere microbiomes of both JA and JB. Overall, this study provides insights into the rhizosphere microbiome composition, diversity and metabolic pathways of both wilted and unwilted A.mexicana L. individuals in the WLFZ of Wudongde reservoir, and the results give valuable clues for manipulating microbes to support plant growth in such a recently-formed WLFZ under a dry-hot valley environment.
Collapse
Affiliation(s)
- Lanfang Zhou
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, ChinaSchool of River and Ocean Engineering, Chongqing Jiaotong UniversityChongqingChina
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, ChinaKey Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of SciencesChongqingChina
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, ChinaChongqing School, University of Chinese Academy of SciencesChongqingChina
| | - Shengjun Wu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, ChinaKey Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of SciencesChongqingChina
| | - Maohua Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, ChinaKey Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of SciencesChongqingChina
| |
Collapse
|
8
|
Becker MF, Klueken AM, Knief C. Effects of above ground pathogen infection and fungicide application on the root-associated microbiota of apple saplings. ENVIRONMENTAL MICROBIOME 2023; 18:43. [PMID: 37245023 DOI: 10.1186/s40793-023-00502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/14/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND The root-associated microbiome has been of keen research interest especially in the last decade due to the large potential for increasing overall plant performance in agricultural systems. Knowledge about the impact of above ground plant disturbances on the root-associated microbiome remains limited. We addressed this by focusing on two potential impacts, foliar pathogen infection alone and in combination with the application of a plant health protecting product. We hypothesized that these lead to plant-mediated responses in the rhizosphere microbiota. RESULTS The effects of an infection of greenhouse grown apple saplings with either Venturia inaequalis or Podosphaera leucotricha as foliar pathogen, as well as the combined effect of P. leucotricha infection and foliar application of the synthetic plant health protecting product Aliette (active ingredient: fosetyl-aluminum), were studied on the root-associated microbiota. The bacterial community structure of rhizospheric soil and endospheric root material was characterized post-infection, using 16S rRNA gene amplicon sequencing. With increasing disease severity both pathogens led to changes in the rhizosphere and endosphere bacterial communities in comparison to uninfected plants (explained variance up to 17.7%). While the preventive application of Aliette on healthy plants two weeks prior inoculation did not induce changes in the root-associated microbiota, a second later application on the diseased plants decreased disease severity and resulted in differences of the rhizosphere bacterial community between infected and several of the cured plants, though differences were overall not statistically significant. CONCLUSIONS Foliar pathogen infections can induce plant-mediated changes in the root-associated microbiota, indicating that above ground disturbances are reflected in the below-ground microbiome, even though these become evident only upon severe leaf infection. The application of the fungicide Aliette on healthy plants itself did not induce any changes, but the application to diseased plants helped the plant to regain the microbiota of a healthy plant. These findings indicate that above ground agronomic management practices have implications for the root-associated microbiome, which should be considered in the context of microbiome management strategies.
Collapse
Affiliation(s)
- Maximilian Fernando Becker
- Institute of Crop Science and Resource Conservation - Molecular Biology of the Rhizosphere, University of Bonn, Nussallee 13, 53115, Bonn, Germany
| | - A Michael Klueken
- Crop Science Division, Disease Control Biology, Bayer AG, Alfred-Nobel-Str. 50, 40789, Monheim am Rhein, Germany
| | - Claudia Knief
- Institute of Crop Science and Resource Conservation - Molecular Biology of the Rhizosphere, University of Bonn, Nussallee 13, 53115, Bonn, Germany.
| |
Collapse
|
9
|
Tao L, Zhang C, Ying Z, Xiong Z, Vaisman HS, Wang C, Shi Z, Shi R. Long-term continuous mono-cropping of Macadamia integrifolia greatly affects soil physicochemical properties, rhizospheric bacterial diversity, and metabolite contents. Front Microbiol 2022; 13:952092. [PMID: 36274682 PMCID: PMC9582743 DOI: 10.3389/fmicb.2022.952092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Macadamia integrifolia is the most economically important Proteaceae crop known for its edible nuts. The present study was conducted to examine the effect of continuous cultivation (for 1, 5, and 20 years) of M. integrifolia on soil quality, bacterial diversity, and metabolites. Soil rhizospheres from three different Macadamia rhizosphere orchards, 1-year monoculture orchard (CK), 5-year monoculture orchard (Y5), and 20-year monoculture orchard (Y20), were analyzed through metagenomic and metabolomic profiling. The soil physicochemical properties, including organic matter, and available nutrients (P, N, and K) were first increased significantly (p < 0.05) from the CK to the Y5 group and then decreased (p < 0.05) from the Y5 to the Y20 group. The soil pH continuously decreased (p < 0.05) over time from CK to Y20. Metagenomic profiling revealed that Actinobacteria, Acidobacteria, and Proteobacteria were the top three abundant phyla with their inconsistent relative abundance patterns from CK to Y20 (CK: 23.76%, Y5: 34. 06%, and Y20: 31.55%), (CK: 13.59%, Y5: 18.59%, and Y20: 21.35%), and (CK: 27.59%, Y5: 15.98%, and Y20: 17.08%), respectively. Furthermore, the Y5 rhizospheres had a higher number of beneficial bacterial genera belonging to Proteobacteria and Actinobacteria than the Y20 rhizospheres. The KEGG annotation analysis revealed that cellular processes, organism systems, metabolism, and genetic information were the most enriched functional categories. CAZy database screening indicated the highest enrichment of glycoside hydrolases following the glycoside transferases and carbohydrate-binding modules. Differential metabolite analysis revealed the highest number of metabolites (11) in the Y5 group than in the Y20 group (6). It is concluded that continuous monoculture of M. integrifolia improves the soil physicochemical properties, bacterial diversity, and metabolite contents in short-term planted orchards which, however, are deteriorated in long-term planted orchards.
Collapse
Affiliation(s)
- Liang Tao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Chunsheng Zhang
- Office of Academic Affairs, Yunnan University of Finance and Economics, Kunming, Yunnan, China
| | - Zhiping Ying
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Zhi Xiong
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan, China
| | | | - Changming Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan, China
- *Correspondence: Changming Wang,
| | - Zhuogong Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan, China
- Zhuogong Shi,
| | - Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan, China
- Rui Shi,
| |
Collapse
|
10
|
Chen J, Zeng H. Effects of continuous and rotational cropping practices on soil fungal communities in pineapple cultivation. PeerJ 2022; 10:e13937. [PMID: 36093333 PMCID: PMC9462375 DOI: 10.7717/peerj.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/02/2022] [Indexed: 01/19/2023] Open
Abstract
Background Rotational cropping practices can change the fungal structure and diversity of cropping soil, and these changes can promote crop development. However, only a few studies have explored the effects of rotational cropping of pineapple on soil fungal diversity. Methods In this study, we investigated fungal diversity in continuous and rotational cropping soil of pineapple in Xuwen and Leizhou of China in summer and winter through high throughput sequencing of the fungal internal transcribed spacer region. Results The diversity and richness of the fungal community were observed to be significantly increased after rotational cropping in Xuwen and Leizhou in summer, whereas no changes were observed in winter. Furthermore, Ascomycota, Basidiomycota, Zygomcota, and Chytridiomycota were the dominant phyla, and Chaetomium, Penicillium, Fusarium, Trichoderma, and Cryptococcus were the dominant genera in the continuous and rotational cropping soil of pineapple, respectively, in both summer and winter. Chytridiomycota at phylum level and Gibberella at genus level were observed in rotational cropping soil; however, Ascomycota at the phylum level and Chaetomium at the genus level were the most abundant fungi, and their abundance dramatically decreased in continuous cropping soil. Redundancy analysis revealed that rotational cropping reduced the correlation between environmental parameters and the fungal community in winter. In addition, several fungal biomarkers were found in Xuwen in both continuous and rotational cropping soil samples, including Sporobolomyces, Aspergillus, Corynascus sp JHG 2007, and Corynascus at the genus level, Penicillium and fungal sp p1s11 at the species level in rotational cropping soil, and ales family Incertae sedis and Sordariomycetes at the class level in continuous cropping soil. These results revealed the changes in the structure and diversity of fungal community in continuous and rotational cropping practices for pineapple cultivation, which may be associated with crop yield and quality.
Collapse
Affiliation(s)
- Jing Chen
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China,Key Laboratory of Tropical Fruit Tree Biology, Ministry of Agriculture, Zhanjiang, Guangdong, China
| | - Hui Zeng
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China,Key Laboratory of Tropical Fruit Tree Biology, Ministry of Agriculture, Zhanjiang, Guangdong, China
| |
Collapse
|
11
|
Wang J, Liu S, Han S, Wang A. High-throughput sequencing reveals soil bacterial community structure and their interactions with environmental factors of the grassland fairy ring. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:479-493. [PMID: 35373516 PMCID: PMC9542373 DOI: 10.1111/1758-2229.13065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/21/2022] [Indexed: 06/01/2023]
Abstract
Fairy rings (FRs) are common ecological grassland landscapes that have been studied for a long time. However, little is known about their interactions with soil physicochemical properties and bacterial communities. This study performed high-throughput sequencing of the 16S rRNA V3-V4 variable regions of soil bacteria in the three concentric zones of chosen FR, namely, the ON zone, on the ring; IN zone, inside the ring; and OUT zone, outside the ring. Also, the change in physicochemical properties and enzyme activities of the soil were determined. This study found that the nutrients and enzyme activities on the ring were higher than inside and outside of the ring. The activities of microorganisms were frequent and the plant grew splendidly. The bacterial species diversity was the lowest on the ring with the main genera Pseudonocardia, Streptosporangium, Kribbella and Promicromonospora. The imbalance of the microbial community structure at different ring zones may be the driving factor for the continuous outward expansion of FRs. Soil available phosphorus, electrical conductivity, total nitrogen and organic matter positively correlated with the distribution of FR soil bacteria.
Collapse
Affiliation(s)
- Jun‐xia Wang
- College of Life SciencesShihezi UniversityShihezi832000China
| | - Shan‐shan Liu
- College of Life SciencesShihezi UniversityShihezi832000China
| | - Shou‐yan Han
- College of Life SciencesShihezi UniversityShihezi832000China
| | - Ai‐ying Wang
- College of Life SciencesShihezi UniversityShihezi832000China
| |
Collapse
|
12
|
Su D, Chen S, Zhou W, Yang J, Luo Z, Zhang Z, Tian Y, Dong Q, Shen X, Wei S, Tong J, Cui X. Comparative Analysis of the Microbial Community Structures Between Healthy and Anthracnose-Infected Strawberry Rhizosphere Soils Using Illumina Sequencing Technology in Yunnan Province, Southwest of China. Front Microbiol 2022; 13:881450. [PMID: 35651487 PMCID: PMC9149601 DOI: 10.3389/fmicb.2022.881450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Anthracnose caused by Colletotrichum spp. was widespread in recent years and resulted in great damage to strawberry production. Soil microbial communities were key contributors to host nutrition, development, and immunity; however, the difference between the microbial communities of healthy and anthracnose-infected strawberry rhizosphere soils remains unclear. In this study, the Illumina sequencing technique was used to comparatively study the prokaryotic and fungal community compositions and structures between healthy and anthracnose-infected strawberry rhizosphere soils in Yuxi, Yunnan Province. Both microbial community diversities and richness of anthracnose-infected strawberry rhizosphere soils were higher than those of healthy strawberry rhizosphere soils. A total of 2,518 prokaryotic and 556 fungal operational taxonomic units (OTUs) were obtained at the 97% similarity threshold. Proteobacteria, Thaumarchaeota, and Acidobacteria were the dominant prokaryotic phyla; Ascomycota, unclassified_k__Fungi, and Mortierellomycota were the dominant fungal phyla. The relative abundances of beneficial bacterial phyla Actinobacteria and Firmicutes, genera Streptomyces, Azospirillum, and Bacillus were significantly reduced in anthracnose-infected strawberry rhizosphere soils; the relative abundance of beneficial fungal species Trichoderma asperellum shows a similar tendency with bacterial abundance. Besides Colletotrichum, 15 other potential fungal pathogen genera and seven fungal pathogen species were identified; among the potential pathogen genera and species, eight pathogen genera and Fusarium oxysporum showed significant differences between healthy and anthracnose-infected strawberry rhizosphere soils. The results suggested that strawberry planted in this area may be infected by other fungal pathogens except for Colletotrichum spp. Our present research will provide theoretical basis and data reference for the isolation and identification of strawberry pathogens and potential probiotics in future works.
Collapse
Affiliation(s)
- Daifa Su
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Shanyan Chen
- Kunming Academy of Agricultural Science, Kunming, China
| | - Wenxing Zhou
- Kunming Academy of Agricultural Science, Kunming, China
| | - Junyu Yang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Zhiwei Luo
- Kunming Academy of Agricultural Science, Kunming, China
| | | | - Yunxia Tian
- Kunming Academy of Agricultural Science, Kunming, China
| | - Qionge Dong
- Kunming Academy of Agricultural Science, Kunming, China
| | - Xuemei Shen
- Kunming Academy of Agricultural Science, Kunming, China
| | - Shijie Wei
- Kunming Academy of Agricultural Science, Kunming, China
| | - Jiangyun Tong
- Kunming Academy of Agricultural Science, Kunming, China
| | - Xiaolong Cui
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
13
|
Berrios L. The genus Caulobacter and its role in plant microbiomes. World J Microbiol Biotechnol 2022; 38:43. [PMID: 35064419 DOI: 10.1007/s11274-022-03237-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
Abstract
Recent omics approaches have revealed the prevalent microbial taxa that constitute the microbiome of various plant species. Across global scales and environmental conditions, strains belonging to the bacterial genus Caulobacter have consistently been found in association with various plant species. Aligned with agroecological relevance and biotechnological advances, many scientific communications have demonstrated that several Caulobacter strains (spanning several Caulobacter species) harbor the potential to enhance plant biomass for various plant species ranging from Arabidopsis to Citrullus and Zea mays. In the past several years, co-occurrence data have driven mechanistically resolved communications about select Caulobacter-plant interactions. Given the long-standing history of Caulobacter as a model organism for cell cycle regulation, genetic studies, and the prevalence of Caulobacter species in various plant microbiomes, the genus Caulobacter offers researchers a unique opportunity to leverage for investigating plant-microbe interactions and realizing targeted biotechnological applications. In this review, recent developments regarding Caulobacter-plant interactions are presented in terms of model utility for future biotechnological investigations.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Madsen AM, Crook B. Occupational exposure to fungi on recyclable paper pots and growing media and associated health effects - A review of the literature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147832. [PMID: 34034170 DOI: 10.1016/j.scitotenv.2021.147832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Different types of pots and growing and casing media, including biodegradable materials, are used for plant and mushroom production. The fungus Peziza ostracoderma has gained attention for its visible growth on growing media for plants and casing media for mushrooms. Through a review of the literature we aim to evaluate whether exposure to fungi from recyclable pots and different growing and casing media occurs and causes occupational health effects. Based on the published papers, specific fungal species were not related to a specific medium. Thus P. ostracoderma has been found on paper pots, peat, sterilized soil, vermiculite, and rockwool with plants, and on peat, pumice, and paper casing for mushrooms. It has been found in high concentrations in the air in mushroom farms. Also Acremonium spp., Aspergillus niger, A. fumigatus, Athelia turficola, Aureobasidium pullulans, Chaetomium globosum, Chrysonilia sitophila, Cladosporium spp., Cryptostroma corticale, Lecanicillium aphanocladii, Sporothrix schenckii, Stachybotrys chartarum, and Trichoderma spp. have been found on different types of growing or casing media. Most of the fungi have also been found in the air in greenhouses, but the knowledge about airborne fungal species in mushroom farms is very limited. Eight publications describe cases of health effects associated directly with exposure to fungi from pots or growing or casing media. These include cases of hypersensitivity pneumonitis caused by exposure to: A. fumigatus, A. niger, Au. pullulans, Cr. corticale, P. ostracoderma, and a mixture of fungi growing on different media. Different approaches have been used to avoid growth of saprophytes including: chemical fungicides, the formulation of biodegradable pots and growing media and types of peat. To increase the sustainability of growing media different types of media are tested for their use and with the present study we highlight the importance of also considering the occupational health of the growers who may be exposed to fungi from the media and pots.
Collapse
Affiliation(s)
- Anne Mette Madsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| | - Brian Crook
- Health and Safety Executive, Science and Research Centre, Buxton SK17 9JN, UK
| |
Collapse
|
15
|
Su DF, Shen QQ, Yang JY, Li ZY, Xiao W, Wang YX, Ding ZG, Cui XL. Comparison of the Bulk and Rhizosphere Soil Prokaryotic Communities Between Wild and Reintroduced Manglietiastrum sinicum Plants, a Threatened Species with Extremely Small Populations. Curr Microbiol 2021; 78:3877-3890. [PMID: 34510225 DOI: 10.1007/s00284-021-02653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Abstract
Huagaimu (Manglietiastrum sinicum) trees are critically endangered species and classified as a plant species with extremely small populations in China. Rhizospheres and bulk soils prokaryotic communities play an important role to protect and promote plants health and growth. However, the compositions and structures of prokaryotic communities in wild and reintroduced M. sinicum rhizospheres and bulk soils are still poorly understood. In the present study, prokaryotic communities in wild and reintroduced M. sinicum rhizospheres and bulk soils were compared using high-throughput sequencing. Thirty-two phyla, 76 classes, 193 orders, 296 families, and 470 genera of prokaryotes were obtained. Proteobacteria and Acidobacteria were the two most abundant phyla in all soil samples. The compositions and structures of prokaryotic communities were overall similar, and the abundance of some taxa varied significantly among soil samples. Soil prokaryotic communities were significantly affected by soil pH, total nitrogen, total phosphorus, and total potassium. Eleven of predicted functions were significantly different among the four soil groups. This study provides for the first insights into the compositions, structures, and potential functions of prokaryotic communities associated with wild and reintroduced M. sinicum rhizospheres and bulk soils, and providing a foundation for future research to help protect this endangered species.
Collapse
Affiliation(s)
- Dai-Fa Su
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Qing-Qing Shen
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China.,School of Sanqi Medicine, Wenshan University, Wenshan, 663099, Yunnan, People's Republic of China
| | - Jun-Yu Yang
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Zhi-Ying Li
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Wei Xiao
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Yong-Xia Wang
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Zhang-Gui Ding
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Xiao-Long Cui
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China. .,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China.
| |
Collapse
|
16
|
Pongsilp N, Nimnoi P. Inoculation of Ensifer fredii strain LP2/20 immobilized in agar results in growth promotion and alteration of bacterial community structure of Chinese kale planted soil. Sci Rep 2020; 10:15857. [PMID: 32985587 PMCID: PMC7522984 DOI: 10.1038/s41598-020-72986-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
In our former research, we succeeded in using agar, alginate, and perlite as immobilization materials to maintain long-term survival of the inoculant, Ensifer fredii LP2/20, in a controlled glasshouse. Therefore the information on the establishment and activity of the inoculant to promote plant growth under field conditions, the effects of the inoculant on the soil microbial communities and specific microbial taxa, and the association between the inoculant and soil elements merit further studies. Here, we found that agar was the most suitable material that supported the establishment of the inoculant under field conditions. RNA-based analysis showed that E. fredii LP2/20 immobilized in agar was still metabolically active at day 50 after being introduced into soil. Inoculation of E. fredii LP2/20 immobilized in agar conferred the highest plant dry weight (up to 89.94%) and all plant elements including total N (9.55%), P (17.94%), K (68.42%), Ca (39.77%), Mg (30.76%), Fe (29.85%), and Zn (22.44%). Inoculation of E. fredii LP2/20 immobilized in agar increased soil chemicals including soil organic matter (99.02%), total N (272.48%), P (31.75%), K (52.74%), Fe (51.06%), and Zn (63.10%). High-throughput next-generation sequencing of bacterial 16S rRNA amplicons showed that the Proteobacteria, Acidobacteria, Bacteroidetes, and Firmicutes were dominant phyla in Chinese kale field soil. Inoculation of E. fredii LP2/20 significantly affected the soil bacterial community structure by decreasing total bacterial richness and diversity. The numbers of alpha- and gamma-Proteobacteria were significantly increased while the number of delta-Proteobacteria was significantly decreased due to E. fredii LP2/20 establishment. Soil total P, K, and Ca and soil pH were the important factors that shaped the soil bacterial community composition.
Collapse
Affiliation(s)
- Neelawan Pongsilp
- Department of Microbiology, Faculty of Science, Silpakorn University, Nakhon Pathom, 7300, Thailand
| | - Pongrawee Nimnoi
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|