1
|
Domeignoz-Horta LA, Cappelli SL, Shrestha R, Gerin S, Lohila AK, Heinonsalo J, Nelson DB, Kahmen A, Duan P, Sebag D, Verrecchia E, Laine AL. Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils. Nat Commun 2024; 15:8065. [PMID: 39277633 PMCID: PMC11401882 DOI: 10.1038/s41467-024-52449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/07/2024] [Indexed: 09/17/2024] Open
Abstract
Expanding and intensifying agriculture has led to a loss of soil carbon. As agroecosystems cover over 40% of Earth's land surface, they must be part of the solution put in action to mitigate climate change. Development of efficient management practices to maximize soil carbon retention is currently limited, in part, by a poor understanding of how plants, which input carbon to soil, and microbes, which determine its fate there, interact. Here we implement a diversity gradient by intercropping undersown species with barley in a large field trial, ranging from one to eight undersown species. We find that increasing plant diversity strengthens positive associations within the rhizosphere soil microbial community in relation to negative associations. These associations, in turn, enhance community carbon use efficiency. Jointly, our results highlight how increasing plant diversity in agriculture can be used as a management strategy to enhance carbon retention potential in agricultural soils.
Collapse
Affiliation(s)
- Luiz A Domeignoz-Horta
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, Palaiseau, France.
| | - Seraina L Cappelli
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Rashmi Shrestha
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Stephanie Gerin
- Finnish Meteorological Institute, Climate System Research, Helsinki, Finland
| | - Annalea K Lohila
- Finnish Meteorological Institute, Climate System Research, Helsinki, Finland
| | - Jussi Heinonsalo
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- INAR, Institute for Atmospheric and Earth System Research/ Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Daniel B Nelson
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - Pengpeng Duan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang, China
| | - David Sebag
- IFP Energies Nouvelles, Earth Sciences and Environmental Technologies Division, Rueil-Malmaison, France
| | - Eric Verrecchia
- Institute of Earth Surface Dynamics, Faculty of Geosciences and the Environment, University of Lausanne, Lausanne, Switzerland
| | - Anna-Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
He X, Abs E, Allison SD, Tao F, Huang Y, Manzoni S, Abramoff R, Bruni E, Bowring SPK, Chakrawal A, Ciais P, Elsgaard L, Friedlingstein P, Georgiou K, Hugelius G, Holm LB, Li W, Luo Y, Marmasse G, Nunan N, Qiu C, Sitch S, Wang YP, Goll DS. Emerging multiscale insights on microbial carbon use efficiency in the land carbon cycle. Nat Commun 2024; 15:8010. [PMID: 39271672 PMCID: PMC11399347 DOI: 10.1038/s41467-024-52160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Microbial carbon use efficiency (CUE) affects the fate and storage of carbon in terrestrial ecosystems, but its global importance remains uncertain. Accurately modeling and predicting CUE on a global scale is challenging due to inconsistencies in measurement techniques and the complex interactions of climatic, edaphic, and biological factors across scales. The link between microbial CUE and soil organic carbon relies on the stabilization of microbial necromass within soil aggregates or its association with minerals, necessitating an integration of microbial and stabilization processes in modeling approaches. In this perspective, we propose a comprehensive framework that integrates diverse data sources, ranging from genomic information to traditional soil carbon assessments, to refine carbon cycle models by incorporating variations in CUE, thereby enhancing our understanding of the microbial contribution to carbon cycling.
Collapse
Affiliation(s)
- Xianjin He
- Laboratoire des Sciences du Climat et de l'Environnement, IPSL-LSCE, CEA/CNRS/UVSQ, Orme des Merisiers, Gif sur Yvette, France
| | - Elsa Abs
- Laboratoire des Sciences du Climat et de l'Environnement, IPSL-LSCE, CEA/CNRS/UVSQ, Orme des Merisiers, Gif sur Yvette, France
| | - Steven D Allison
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
- Department of Earth System Science, University of California Irvine, Irvine, CA, USA
| | - Feng Tao
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Yuanyuan Huang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Stefano Manzoni
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | | | - Elisa Bruni
- LG-ENS (Laboratoire de géologie) CNRS UMR 8538-Ecole normale supérieure, PSL University -IPSL, Paris, France
| | - Simon P K Bowring
- Laboratoire des Sciences du Climat et de l'Environnement, IPSL-LSCE, CEA/CNRS/UVSQ, Orme des Merisiers, Gif sur Yvette, France
| | - Arjun Chakrawal
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, IPSL-LSCE, CEA/CNRS/UVSQ, Orme des Merisiers, Gif sur Yvette, France
| | - Lars Elsgaard
- Department of Agroecology, Aarhus University, AU Viborg, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Pierre Friedlingstein
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
- Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, CNRS, École Normale Supérieure, Université PSL, Sorbonne Université, École Polytechnique, Paris, France
| | - Katerina Georgiou
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Gustaf Hugelius
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Lasse Busk Holm
- Department of Agroecology, Aarhus University, AU Viborg, Tjele, Denmark
| | - Wei Li
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China
| | - Yiqi Luo
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Gaëlle Marmasse
- Laboratoire des Sciences du Climat et de l'Environnement, IPSL-LSCE, CEA/CNRS/UVSQ, Orme des Merisiers, Gif sur Yvette, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Naoise Nunan
- Institute of Ecology and Environmental Sciences-Paris, Sorbonne Université, CNRS, IRD, INRA, P7, UPEC, Paris, France
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Chunjing Qiu
- Research Center for Global Change and Complex Ecosystems, East China Normal University, Shanghai, China
| | - Stephen Sitch
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Ying-Ping Wang
- CSIRO Environment, Private Bag 10, Commonwealth Scientific and Industrial Research Organization, Clayton South, VIC 3169, Australia
| | - Daniel S Goll
- Laboratoire des Sciences du Climat et de l'Environnement, IPSL-LSCE, CEA/CNRS/UVSQ, Orme des Merisiers, Gif sur Yvette, France.
| |
Collapse
|
3
|
Moretti LG, Crusciol CAC, Leite MFA, Momesso L, Bossolani JW, Costa OYA, Hungria M, Kuramae EE. Diverse bacterial consortia: key drivers of rhizosoil fertility modulating microbiome functions, plant physiology, nutrition, and soybean grain yield. ENVIRONMENTAL MICROBIOME 2024; 19:50. [PMID: 39030648 PMCID: PMC11264919 DOI: 10.1186/s40793-024-00595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Soybean cultivation in tropical regions relies on symbioses with nitrogen-fixing Bradyrhizobium and plant growth-promoting bacteria (PGPBs), reducing environmental impacts of N fertilizers and pesticides. We evaluate the effects of soybean inoculation with different bacterial consortia combined with PGPBs or microbial secondary metabolites (MSMs) on rhizosoil chemistry, plant physiology, plant nutrition, grain yield, and rhizosphere microbial functions under field conditions over three growing seasons with four treatments: standard inoculation of Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens consortium (SI); SI plus foliar spraying with Bacillus subtilis (SI + Bs); SI plus foliar spraying with Azospirillum brasilense (SI + Az); and SI plus seed application of MSMs enriched in lipo-chitooligosaccharides extracted from B. diazoefficiens and Rhizobium tropici (SI + MSM). Rhizosphere microbial composition, diversity, and function was assessed by metagenomics. The relationships between rhizosoil chemistry, plant nutrition, grain yield, and the abundance of microbial taxa and functions were determined by generalized joint attribute modeling. The bacterial consortia had the most significant impact on rhizosphere soil fertility, which in turn affected the bacterial community, plant physiology, nutrient availability, and production. Cluster analysis identified microbial groups and functions correlated with shifts in rhizosoil chemistry and plant nutrition. Bacterial consortia positively modulated specific genera and functional pathways involved in biosynthesis of plant secondary metabolites, amino acids, lipopolysaccharides, photosynthesis, bacterial secretion systems, and sulfur metabolism. The effects of the bacterial consortia on the soybean holobiont, particularly the rhizomicrobiome and rhizosoil fertility, highlight the importance of selecting appropriate consortia for desired outcomes. These findings have implications for microbial-based agricultural practices that enhance crop productivity, quality, and sustainability.
Collapse
Affiliation(s)
- Luiz Gustavo Moretti
- College of Agricultural Sciences, Department of Crop Science, São Paulo State University (UNESP), Botucatu, São Paulo, 18610-034, Brazil
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, The Netherlands
| | - Carlos Alexandre Costa Crusciol
- College of Agricultural Sciences, Department of Crop Science, São Paulo State University (UNESP), Botucatu, São Paulo, 18610-034, Brazil
| | - Marcio Fernandes Alves Leite
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, The Netherlands
| | - Letusa Momesso
- School of Agriculture, Federal University of Goiás (UFG), 74690-900, Goiânia, Goiás, Brazil
| | - João William Bossolani
- College of Agricultural Sciences, Department of Crop Science, São Paulo State University (UNESP), Botucatu, São Paulo, 18610-034, Brazil
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, The Netherlands
| | - Ohana Yonara Assis Costa
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, The Netherlands
| | - Mariangela Hungria
- Embrapa Soybean, Carlos João Strass Highway, Post Office Box 231, Londrina, Paraná, 86001-970, Brazil
| | - Eiko Eurya Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, The Netherlands.
- Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
| |
Collapse
|
4
|
Dang C, Morrissey EM. The size and diversity of microbes determine carbon use efficiency in soil. Environ Microbiol 2024; 26:e16633. [PMID: 38733078 DOI: 10.1111/1462-2920.16633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Soil is home to a multitude of microorganisms from all three domains of life. These organisms and their interactions are crucial in driving the cycling of soil carbon. One key indicator of this process is Microbial Carbon Use Efficiency (CUE), which shows how microbes influence soil carbon storage through their biomass production. Although CUE varies among different microorganisms, there have been few studies that directly examine how biotic factors influence CUE. One such factor could be body size, which can impact microbial growth rates and interactions in soil, thereby influencing CUE. Despite this, evidence demonstrating a direct causal connection between microbial biodiversity and CUE is still scarce. To address these knowledge gaps, we conducted an experiment where we manipulated microbial body size and biodiversity through size-selective filtering. Our findings show that manipulating the structure of the microbial community can reduce CUE by approximately 65%. When we restricted the maximum body size of the microbial community, we observed a reduction in bacterial diversity and functional potential, which in turn lowered the community's CUE. Interestingly, when we included large body size micro-eukarya in the soil, it shifted the soil carbon cycling, increasing CUE by approximately 50% and the soil carbon to nitrogen ratio by about 25%. Our metrics of microbial diversity and community structure were able to explain 36%-50% of the variation in CUE. This highlights the importance of microbial traits, community structure and trophic interactions in mediating soil carbon cycling.
Collapse
Affiliation(s)
- Chansotheary Dang
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Ember M Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
5
|
Li Y, Chen Z, Wagg C, Castellano MJ, Zhang N, Ding W. Soil organic carbon loss decreases biodiversity but stimulates multitrophic interactions that promote belowground metabolism. GLOBAL CHANGE BIOLOGY 2024; 30:e17101. [PMID: 38273560 DOI: 10.1111/gcb.17101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/27/2024]
Abstract
Soil organic carbon (SOC) plays an essential role in mediating community structure and metabolic activities of belowground biota. Unraveling the evolution of belowground communities and their feedback mechanisms on SOC dynamics helps embed the ecology of soil microbiome into carbon cycling, which serves to improve biodiversity conservation and carbon management strategy under global change. Here, croplands with a SOC gradient were used to understand how belowground metabolisms and SOC decomposition were linked to the diversity, composition, and co-occurrence networks of belowground communities encompassing archaea, bacteria, fungi, protists, and invertebrates. As SOC decreased, the diversity of prokaryotes and eukaryotes also decreased, but their network complexity showed contrasting patterns: prokaryotes increased due to intensified niche overlap, while that of eukaryotes decreased possibly because of greater dispersal limitation owing to the breakdown of macroaggregates. Despite the decrease in biodiversity and SOC stocks, the belowground metabolic capacity was enhanced as indicated by increased enzyme activity and decreased enzymatic stoichiometric imbalance. This could, in turn, expedite carbon loss through respiration, particularly in the slow-cycling pool. The enhanced belowground metabolic capacity was dominantly driven by greater multitrophic network complexity and particularly negative (competitive and predator-prey) associations, which fostered the stability of the belowground metacommunity. Interestingly, soil abiotic conditions including pH, aeration, and nutrient stocks, exhibited a less significant role. Overall, this study reveals a greater need for soil C resources across multitrophic levels to maintain metabolic functionality as declining SOC results in biodiversity loss. Our researchers highlight the importance of integrating belowground biological processes into models of SOC turnover, to improve agroecosystem functioning and carbon management in face of intensifying anthropogenic land-use and climate change.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zengming Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Cameron Wagg
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, Canada
| | | | - Nan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Weixin Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
6
|
Mahmoudi N, Wilhelm RC. Can we manage microbial systems to enhance carbon storage? Environ Microbiol 2023; 25:3011-3018. [PMID: 37431673 DOI: 10.1111/1462-2920.16462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Climate change is an urgent environmental issue with wide-ranging impacts on ecosystems and society. Microbes are instrumental in maintaining the balance between carbon (C) accumulation and loss in the biosphere, actively regulating greenhouse gas fluxes from vast reservoirs of organic C stored in soils, sediments and oceans. Heterotrophic microbes exhibit varying capacities to access, degrade and metabolise organic C-leading to variations in remineralisation and turnover rates. The present challenge lies in effectively translating this accumulated knowledge into strategies that effectively steer the fate of organic C towards prolonged sequestration. In this article, we discuss three ecological scenarios that offer potential avenues for shaping C turnover rates in the environment. Specifically, we explore the promotion of slow-cycling microbial byproducts, the facilitation of higher carbon use efficiency, and the influence of biotic interactions. The ability to harness and control these processes relies on the integration of ecological principles and management practices, combined with advances in economically viable technologies to effectively manage microbial systems in the environment.
Collapse
Affiliation(s)
- Nagissa Mahmoudi
- Department of Earth and Planetary Sciences, McGill University, Montréal, Quebec, Canada
| | - Roland C Wilhelm
- Department of Agronomy, Lilly Hall of Life Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
7
|
Zhao L, He Y, Zheng Y, Xu Y, Shi S, Fan M, Gu S, Li G, Tianli W, Wang J, Li J, Deng X, Liao X, Du J, Nian F. Differences in soil physicochemical properties and rhizosphere microbial communities of flue-cured tobacco at different transplantation stages and locations. Front Microbiol 2023; 14:1141720. [PMID: 37152740 PMCID: PMC10157256 DOI: 10.3389/fmicb.2023.1141720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/03/2023] [Indexed: 05/09/2023] Open
Abstract
Rhizosphere microbiota play an important role in regulating soil physical and chemical properties and improving crop production performance. This study analyzed the relationship between the diversity of rhizosphere microbiota and the yield and quality of flue-cured tobacco at different transplant times (D30 group, D60 group and D90 group) and in different regions [Linxiang Boshang (BS) and Linxiang ZhangDuo (ZD)] by high-throughput sequencing technology. The results showed that there were significant differences in the physicochemical properties and rhizosphere microbiota of flue-cured tobacco rhizosphere soil at different transplanting times, and that the relative abundance of Bacillus in the rhizosphere microbiota of the D60 group was significantly increased. RDA and Pearson correlation analysis showed that Bacillus, Streptomyces and Sphingomonas were significantly correlated with soil physical and chemical properties. PIGRUSt2 function prediction results showed that compared with the D30 group, the D60 group had significantly increased metabolic pathways such as the superpathway of pyrimidine deoxyribonucleoside salvage, allantoin degradation to glyoxylate III and pyrimidine deoxyribonucleotides de novo biosynthesis III metabolic pathways. The D90 group had significantly increased metabolic pathways such as ubiquitol-8 biosynthesis (prokaryotic), ubiquitol-7 biosynthesis (prokaryotic) and ubiquitol-10 biosynthesis (prokaryotic) compared with the D60 group. In addition, the yield and quality of flue-cured tobacco in the BS region were significantly higher than those in the ZD region, and the relative abundance of Firmicutes and Bacillus in the rhizosphere microbiota of flue-cured tobacco in the BS region at the D60 transplant stage was significantly higher than that in the ZD region. In addition, the results of the hierarchical sample metabolic pathway abundance map showed that the PWY-6572 metabolic pathway was mainly realized by Paenibacillus, and that the relative abundance of flue-cured tobacco rhizosphere microbiota (Paenibacillus) participating in PWY-6572 in the D60 transplant period in the BS region was significantly higher than that in the ZD region. In conclusion, different transplanting periods of flue-cured tobacco have important effects on soil physical and chemical properties and rhizosphere microbial communities. There were significant differences in the rhizosphere microbiota and function of flue-cured tobacco in different regions, which may affect the performance and quality of this type of tobacco.
Collapse
Affiliation(s)
- Leifeng Zhao
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuansheng He
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Yuanxian Zheng
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Yinlian Xu
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Shoujie Shi
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Meixun Fan
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Shaolong Gu
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Guohong Li
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Wajie Tianli
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Jiming Wang
- Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Junying Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Xiaopeng Deng
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Xiaolin Liao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jun Du
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Jun Du,
| | - Fuzhao Nian
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
- Fuzhao Nian,
| |
Collapse
|