1
|
Sun Y, Zhang Y, Pan S, Cong H, Jiang J. The yeast Dothiora sorbi IOJ-3 naturally produced various filamentous sectors with distinct abilities by undergoing DNA demethylation. Fungal Biol 2024; 128:2177-2189. [PMID: 39384287 DOI: 10.1016/j.funbio.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
Some fungi have demonstrated the ability to adapt rapidly to changing environments by exhibiting morphological plasticity, a trait influenced by species and environmental factors. Here, an anamorphic yeast strain IOJ-3 exhibited unique sectorization characteristics, naturally producing diverse filamentous sectors when cultivated on potato dextrose agar (PDA) medium or natural culture medium for durations exceeding 13 days. The strain IOJ-3 and its filamentous sectors were identified as Dothiora sorbi. The morphology of the sectors was consistent and heritable. The life cycle of strain IOJ-3 was investigated through microscopic observation, emphasizing the development of conidiogenous cells as a crucial stage, from which filamentous sectors originate. Some physiological characteristics of IOJ-3 and filamentous sectors are compared, and strain IOJ-3 has a higher antibiotic tolerance than two filamentous sectors, IOJ-3a expands faster on the culture medium, and IOJ-3b can penetrate cellophane. A transcriptomic analysis was conducted to investigate the differentially expressed genes between the yeast form IOJ-3 and its two filamentous sectors, revealing a total of 594 genes that exhibited consistent differential expression relative to IOJ-3, including 44 silencing genes in IOJ-3 that were activated. Gene Ontology analysis indicated that these differentially expressed genes were primarily associated with the cellular component category. Furthermore, adding 5-Azacytidine accelerated filamentous sectorization and increased the proportion of filamentous cells of strain IOJ-3 in PD liquid media, suggesting that the filamentous sectorization observed in strain IOJ-3 is linked to processes of DNA demethylation. In conclusion, this study sheds light on the biological characteristics of D. sorbi regarding morphological transitions and provides substantial direction for exploring genes related to fungal filamentous development.
Collapse
Affiliation(s)
- Yong Sun
- School of Life Science, Jiangsu Normal University, Xuzhou, China.
| | - Yijia Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Suwan Pan
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Hao Cong
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jihong Jiang
- School of Life Science, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
2
|
Aldulaijan S, Alruwili R, Almulaify R, Alhassan FA, Al-Dulaijan YA, Alshahrani FA, Mokeem L, Gad MM, Melo MAS, Balhaddad AA. Benzyldimethyldodecyl Ammonium Chloride-Doped Denture-Based Resin: Impact on Strength, Surface Properties, Antifungal Activities, and In Silico Molecular Docking Analysis. J Funct Biomater 2024; 15:310. [PMID: 39452608 PMCID: PMC11508443 DOI: 10.3390/jfb15100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Candida albicans (C. albicans) adhering to denture-based resins (DBRs) is a known cause of denture stomatitis. A new approach to prevent denture stomatitis is to include antimicrobial substances within DBRs. Here, we examined the mechanical performance and antifungal properties of DBRs containing benzyldimethyldodecyl ammonium chloride (C12BDMA-Cl) as an antimicrobial compound. C12BDMA-Cl is a quaternary ammonium compound, and its antifungal properties have never been investigated when combined with dental acrylic resin. Therefore, we modified a commercially available heat-polymerized acrylic DBR to contain 3 and 5 wt.% of C12BDMA-Cl. Unmodified DBR was used as a control group. Specimens were prepared using the conventional heat processing method. The specimen's flexural strength, elastic modulus, microhardness, and surface roughness were evaluated. C. albicans biofilm was grown on the specimens and assessed via colony-forming units (CFUs) and scanning electron microscopy (SEM). In silico molecular docking was applied to predict the potential C12BDMA-Cl inhibition activity as an antifungal drug. The 3% C12BDMA-Cl DBR demonstrated antifungal activities without a deterioration effect on the mechanical performance. SEM images indicated fewer colonies in DBR containing C12BDMA-Cl, which can be a potential approach to managing denture stomatitis. In conclusion, C12BDMA-Cl is a promising antifungal agent for preventing and treating denture stomatitis.
Collapse
Affiliation(s)
- Sarah Aldulaijan
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Raghad Alruwili
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia (F.A.A.)
| | - Rawan Almulaify
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia (F.A.A.)
| | - Fatimah A. Alhassan
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia (F.A.A.)
| | - Yousif A. Al-Dulaijan
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia (M.M.G.)
| | - Faris A. Alshahrani
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia (M.M.G.)
| | - Lamia Mokeem
- Department of Restorative Dentistry, College of Medicine and Dentistry, Riyadh Elm University, Riyadh 13244, Saudi Arabia
| | - Mohammed M. Gad
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia (M.M.G.)
| | - Mary Anne S. Melo
- Department of Comprehensive Dentistry, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Abdulrahman A. Balhaddad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
3
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
4
|
Xu Z, Li Y, Xu A, Xue L, Soteyome T, Yuan L, Ma Q, Seneviratne G, Hong W, Mao Y, Kjellerup BV, Liu J. Differential alteration in Lactiplantibacillus plantarum subsp. plantarum quorum-sensing systems and reduced Candida albicans yeast survival and virulence gene expression in dual-species interaction. Microbiol Spectr 2024; 12:e0035324. [PMID: 38717160 PMCID: PMC11237386 DOI: 10.1128/spectrum.00353-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 06/06/2024] Open
Abstract
Candida albicans (C. albicans) and Lactiplantibacillus plantarum subsp. plantarum (L. plantarum) are frequently identified in various niches, but their dual-species interaction, especially with C. albicans in yeast form, remains unclear. This study aimed to investigate the dual-species interaction of L. plantarum and C. albicans, including proliferation, morphology, and transcriptomes examined by selective agar plate counting, microscopy, and polymicrobial RNA-seq, respectively. Maintaining a stable and unchanged growth rate, L. plantarum inhibited C. albicans yeast cell proliferation but not hyphal growth. Combining optical microscopy and atomic force microscopy, cell-to-cell direct contact and co-aggregation with L. plantarum cells surrounding C. albicans yeast cells were observed during dual-species interaction. Reduced C. albicans yeast cell proliferation in mixed culture was partially due to L. plantarum cell-free culture supernatant but not the acidic environment. Upon polymicrobial transcriptomics analysis, interesting changes were identified in both L. plantarum and C. albicans gene expression. First, two L. plantarum quorum-sensing systems showed contrary changes, with the activation of lamBDCA and repression of luxS. Second, the upregulation of stress response-related genes and downregulation of cell cycle, cell survival, and cell integrity-related pathways were identified in C. albicans, possibly connected to the stress posed by L. plantarum and the reduced yeast cell proliferation. Third, a large scale of pathogenesis and virulence factors were downregulated in C. albicans, indicating the potential interruption of pathogenic activities by L. plantarum. Fourth, partial metabolism and transport pathways were changed in L. plantarum and C. albicans. The information in this study might aid in understanding the behavior of L. plantarum and C. albicans in dual-species interaction.IMPORTANCEThe anti-Candida albicans activity of Lactiplantibacillus plantarum has been explored in the past decades. However, the importance of C. albicans yeast form and the effect of C. albicans on L. plantarum had also been omitted. In this study, the dual-species interaction of L. plantarum and C. albicans was investigated with a focus on the transcriptomes. Cell-to-cell direct contact and co-aggregation with L. plantarum cells surrounding C. albicans yeast cells were observed. Upon polymicrobial transcriptomics analysis, interesting changes were identified, including contrary changes in two L. plantarum quorum-sensing systems and reduced cell survival-related pathways and pathogenesis determinants in C. albicans.
Collapse
Affiliation(s)
- Zhenbo Xu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yaqin Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Aijuan Xu
- Guangzhou Hybribio Medical Laboratory, Guangzhou, China
| | - Liang Xue
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China, Guangzhou, Guangdong
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qin Ma
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuzhu Mao
- Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA
| | - Birthe V. Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA
| | - Junyan Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Science, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
5
|
Sobel JD, Vempati YS. Bacterial Vaginosis and Vulvovaginal Candidiasis Pathophysiologic Interrelationship. Microorganisms 2024; 12:108. [PMID: 38257934 PMCID: PMC10820109 DOI: 10.3390/microorganisms12010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Among the infectious causes of vulvovaginal symptoms, bacterial vaginosis (BV) and vulvovaginal candidiasis (VVC) dominate. Apart from infrequent mixed infections, both are considered independent and caused by unrelated pathogenic mechanisms. Clinical experience, however, is strongly suggestive that in some populations these infections are linked with recurrent BV (RBV) serving as the dominant etiopathogenic trigger for development of recurrent VVC (RVVC) with profound clinical and therapeutic consequences. The biologic basis for this critical interrelationship is discussed and suggests that as a consequence of BV dysbiosis, and not necessarily because of antibiotics prescribed, immune defenses are compromised, neutralizing vaginal yeast tolerance. The consequent BV-induced vaginal proinflammatory environment predisposes to mixed infection or consecutive episodes of post-treatment VVC. Recurrent BV and repeated antimicrobial drug exposure also predispose to acquired fluconazole resistance in C. albicans isolates, contributing to refractory vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Jack D. Sobel
- C.S. Mott Center for Growth and Human Development, 275 E. Hancock St, Detroit, MI 48201, USA
| | - Yogitha Sai Vempati
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| |
Collapse
|
6
|
Guan G, Li S, Bing J, Liu L, Tao L. The Rfg1 and Bcr1 transcription factors regulate acidic pH-induced filamentous growth in Candida albicans. Microbiol Spectr 2023; 11:e0178923. [PMID: 37933972 PMCID: PMC10715123 DOI: 10.1128/spectrum.01789-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/23/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Candida albicans is a human commensal and frequent pathogen that encounters a wide range of pH stresses. The ability of C. albicans to adapt to changes in extracellular pH is crucial for its success in colonization and pathogenesis. The Rim101 pH sensing pathway is well known to govern neutral-alkaline pH responses in this pathogen. Here, we report a novel Rfg1-Bcr1 regulatory pathway that governs acidic pH responses and regulates filamentous growth in C. albicans. In addition, the Rim101-Phr1 pathway, cAMP signaling pathway, transcription factors Efg1 and Flo8, and hyphal-specific G1 cyclin Hgc1 cooperate with this regulation. Our findings provide new insights into the regulatory mechanism of acidic pH response in C. albicans.
Collapse
Affiliation(s)
- Guobo Guan
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuaihu Li
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Bing
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li Tao
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Sahoo S, Sharma S, Singh MP, Singh SK, Vamanu E, Rao KH. Metabolic and Phenotypic Changes Induced during N-Acetylglucosamine Signalling in the Fungal Pathogen Candida albicans. Biomedicines 2023; 11:1997. [PMID: 37509635 PMCID: PMC10377528 DOI: 10.3390/biomedicines11071997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The human commensal yeast Candida albicans is pathogenic and results in a variety of mucosal and deep tissue problems when the host is immunocompromised. Candida exhibits enormous metabolic flexibility and dynamic morphogenetic transition to survive under host niche environmental conditions and to cause virulence. The amino sugar N-acetylglucosamine (GlcNAc) available at the host infection sites, apart from acting as an extremely good carbon and nitrogen source, also induces cellular signalling in this pathogen. In C. albicans, GlcNAc performs multifaceted roles, including GlcNAc scavenging, GlcNAc import and metabolism, morphogenetic transition (yeast-hyphae and white-opaque switch), GlcNAc-induced cell death (GICD), and virulence. Understanding the molecular mechanism(s) involved in GlcNAc-induced cellular processes has become the main focus of many studies. In the current study, we focused on GlcNAc-induced metabolic changes associated with phenotypic changes. Here, we employed gas chromatography-mass spectrometry (GC-MS), which is a high-throughput and sensitive technology, to unveil global metabolomic changes that occur in GlcNAc vs. glucose grown conditions in Candida cells. The morphogenetic transition associated with metabolic changes was analysed by high-resolution field emission scanning electron microscopy (FE-SEM). Metabolite analysis revealed the upregulation of metabolites involved in the glyoxylate pathway, oxidative metabolism, and fatty acid catabolism to probably augment the synthesis of GlcNAc-induced hypha-specific materials. Furthermore, GlcNAc-grown cells showed slightly more sensitivity to amphotericin B treatment. These results all together provide new insights into the development of antifungal therapeutics for the control of candidiasis in humans.
Collapse
Affiliation(s)
- Somnath Sahoo
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Sarika Sharma
- Department of Sponsored Research, Division of Research & Development, Lovely Professional University, Phagwara 144411, India
| | - Mahendra P Singh
- Department of Zoology and Centre of Genomics and Bioinformatics, DDU Gorakhpur University, Gorakhpur 273009, India
| | - Sandeep K Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Kongara Hanumantha Rao
- Department of Biochemistry/Bioinformatics, School of Sciences, Gandhi Institute of Technology and Management (GITAM Deemed to be University), Visakhapatnam 530045, India
| |
Collapse
|
8
|
Bao J, Huang X, Zeng Y, Wu TT, Lu X, Meng G, Ren Y, Xiao J. Dose-Dependent Inhibitory Effect of Probiotic Lactobacillus plantarum on Streptococcus mutans- Candida albicans Cross-Kingdom Microorganisms. Pathogens 2023; 12:848. [PMID: 37375538 PMCID: PMC10301334 DOI: 10.3390/pathogens12060848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Dental caries is one of the most common chronic diseases worldwide. Streptococcus mutans and Candida albicans are two major pathogens associated with dental caries. Several recent studies revealed that Lactobacillus plantarum inhibits S. mutans and C. albicans in biofilms and in a rodent model of dental caries. The aim of this study was to investigate the dose-dependent effect of L. plantarum against S. mutans and C. albicans in a planktonic model that simulated a high-caries-risk clinical condition. Mono-, dual-, and multi-species models were utilized, with five doses of L. plantarum (ranging from 1.0 × 104 to 1.0 × 108 CFU/mL). Real-time PCR was used to assess the expression of the virulence genes of C. albicans and S. mutans and the genes of L. plantarum. Student's t-tests and one-way ANOVA, followed by post hoc tests, were employed to compare the cell viability and gene expression among groups. A dose-dependent inhibition on C. albicans and S. mutans was observed with increased dosages of L. plantarum. L. plantarum at 108 CFU/mL demonstrated the highest antibacterial and antifungal inhibitory effect in the dual- and multi-species models. Specifically, at 20 h, the growth of C. albicans and S. mutans was suppressed by 1.5 and 5 logs, respectively (p < 0.05). The antifungal and antibacterial effects were attenuated in lower doses of L. plantarum (104-107 CFU/mL). The expression of C. albicans HWP1 and ECE 1 genes and S. mutans lacC and lacG genes were significantly downregulated with an added 108 CFU/mL of L. plantarum (p < 0.05). The addition of 108 CFU/mL L. plantarum further inhibited the hyphae or pseudohyphae formation of C. albicans. In summary, L. plantarum demonstrated dose-dependent antifungal and antibacterial effects against C. albicans and S. mutans. L. plantarum emerged as a promising candidate for the creation of novel antimicrobial probiotic products targeting dental caries prevention. Further research is warranted to identify the functional metabolites produced by L. plantarum at different dosages when interacting with C. albicans and S. mutans.
Collapse
Affiliation(s)
- Jianhang Bao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.B.)
- School of Stomatology, Henan University, Zhengzhou 450046, China
| | - Xinyan Huang
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.B.)
- School of Stomatology, Henan University, Zhengzhou 450046, China
| | - Yan Zeng
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.B.)
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Xingyi Lu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Gina Meng
- School of Arts and Science, University of Rochester, Rochester, NY 14627, USA
| | - Yanfang Ren
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.B.)
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.B.)
| |
Collapse
|
9
|
Song S, Zhu L, Xu H, Wen Y, Feng R. Phenylboronic acid-installed poly(isobutene-alt-maleic anhydride) polymeric micelles for pH-dependent release of amphotericin B. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Jacobsen ID. The Role of Host and Fungal Factors in the Commensal-to-Pathogen Transition of Candida albicans. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:55-65. [PMID: 37151578 PMCID: PMC10154278 DOI: 10.1007/s40588-023-00190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 05/09/2023]
Abstract
Abstract Purpose of Review The fungus Candida albicans has evolved to live in close association with warm-blooded hosts and is found frequently on mucosal surfaces of healthy humans. As an opportunistic pathogen, C. albicans can also cause mucosal and disseminated infections (candidiasis). This review describes the features that differentiate the fungus in the commensal versus pathogenic state and the main factors underlying C. albicans commensal-to-pathogen transition. Recent Findings Adhesion, invasion, and tissue damage are critical steps in the infection process. Especially invasion and damage require transcriptional and morphological changes that differentiate C. albicans in the pathogenic from the commensal state. While the commensal-to-pathogen transition has some conserved causes and features in the oral cavity, the female urogenital tract, and the gut, site-specific differences have been identified in recent years. Summary This review highlights how specific factors in the different mucosal niches affect development of candidiasis. Recent evidence suggests that colonization of the gut is not only a risk factor for systemic candidiasis but might also provide beneficial effects to the host.
Collapse
Affiliation(s)
- Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
11
|
Tao L, Wang M, Guan G, Zhang Y, Hao T, Li C, Li S, Chen Y, Huang G. Streptococcus mutans suppresses filamentous growth of Candida albicans through secreting mutanocyclin, an unacylated tetramic acid. Virulence 2022; 13:542-557. [PMID: 35311622 PMCID: PMC8942415 DOI: 10.1080/21505594.2022.2046952] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Li Tao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Hao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuaihu Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guanghua Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms
| |
Collapse
|
12
|
Lv Q, Yan L, Jiang Y. The Importance of Vacuolar Ion Homeostasis and Trafficking in Hyphal Development and Virulence in Candida albicans. Front Microbiol 2021; 12:779176. [PMID: 34956142 PMCID: PMC8696117 DOI: 10.3389/fmicb.2021.779176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
The vacuole of Candida albicans plays a significant role in many processes including homeostasis control, cellular trafficking, dimorphic switching, and stress tolerance. Thus, understanding the factors affecting vacuole function is important for the identification of new drug targets needed in response to the world’s increasing levels of invasive infections and the growing issue of fungal drug resistance. Past studies have shown that vacuolar proton-translocating ATPases (V-ATPases) play a central role in pH homeostasis and filamentation. Vacuolar protein sorting components (VPS) regulate V-ATPases assembly and at the same time affect hyphal development. As well, vacuolar calcium exchange systems like Yvc1 and Pmc1 maintain cytosolic calcium levels while being affected by V-ATPases function. All these proteins play a role in the virulence and pathogenesis of C. albicans. This review highlights the relationships among V-ATPases, VPS, and vacuolar calcium exchange proteins while summarizing their importance in C. albicans infections.
Collapse
Affiliation(s)
- Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yuanying Jiang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Hu P, Ding H, Shen L, He GJ, Liu H, Tian X, Tao C, Bai X, Liang J, Jin C, Xu X, Yang E, Wang L. A unique cell wall synthetic response evoked by glucosamine determines pathogenicity-associated fungal cellular differentiation. PLoS Genet 2021; 17:e1009817. [PMID: 34624015 PMCID: PMC8500725 DOI: 10.1371/journal.pgen.1009817] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022] Open
Abstract
The yeast-to-hypha transition is tightly associated with pathogenicity in many human pathogenic fungi, such as the model fungal pathogen Cryptococcus neoformans, which is responsible for approximately 180,000 deaths annually. In this pathogen, the yeast-to-hypha transition can be initiated by distinct stimuli: mating stimulation or glucosamine (GlcN), the monomer of cell wall chitosan. However, it remains poorly understood how the signal specificity for Cryptococcus morphological transition by disparate stimuli is ensured. Here, by integrating temporal expression signature analysis and phenome-based clustering evaluation, we demonstrate that GlcN specifically triggers a unique cellular response, which acts as a critical determinant underlying the activation of GlcN-induced filamentation (GIF). This cellular response is defined by an unusually hyperactive cell wall synthesis that is highly ATP-consuming. A novel cell surface protein Gis1 was identified as the indicator molecule for the GlcN-induced cell wall response. The Mpk1-directed cell wall pathway critically bridges global cell wall gene induction and intracellular ATP supply, ensuring the Gis1-dependent cell wall response and the stimulus specificity of GIF. We further reveal that the ability of Mpk1 to coordinate the cell wall response and GIF activation is conserved in different Cryptococcus pathogens. Phosphoproteomics-based profiling together with genetic and phenotypic analysis revealed that the Mpk1 kinase mediates the regulatory specificity of GIF through a coordinated downstream regulatory network centered on Skn7 and Crz1. Overall, our findings discover an unprecedented and conserved cell wall biosynthesis-dependent fungal differentiation commitment mechanism, which enables the signal specificity of pathogenicity-related dimorphism induced by GlcN in Cryptococcus pathogens. Many human fungal pathogens can undergo dimorphic transition between yeast and hyphal forms in response to different external stimuli, and this morphological transition is generally and critically linked with their infections. In Cryptococcus neoformans, a model pathogenic fungus, the yeast-to-hypha transition can be elicited by mating stimulation or glucosamine (GlcN), the monomer of cell wall chitosan. Here, we show that GlcN specifically evokes a unique hyperactive cell wall synthetic response, which determines GlcN-induced filamentation (GIF) as a key commitment event. The Mpk1-directed cell wall signaling pathway as a core and conserved cascade connects the cell wall synthetic response and GIF activation in different Cryptococcus pathogens. Overall, the findings reveal a previously unrecognized function of GlcN in stimulating cell wall signaling and biosynthetic machinery, which enables a unique dimorphism commitment mechanism underlying the signal specificity of the mating-independent yeast-to-hypha transition in Cryptococcus pathogens.
Collapse
Affiliation(s)
- Pengjie Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lan Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guang-Jun He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huimin Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Science and Technology of China (USTC), Hefei, China
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Changyu Tao
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiangzheng Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingnan Liang
- Public Technology Service Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xinping Xu
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ence Yang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
14
|
Barbosa A, Araújo D, Henriques M, Silva S. The combined application of the anti-RAS1 and anti-RIM101 2'-OMethylRNA oligomers enhances Candida albicans filamentation control. Med Mycol 2021; 59:1024-1031. [PMID: 34097057 DOI: 10.1093/mmy/myab033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 01/30/2023] Open
Abstract
Whereas antisense oligomers (ASOs) have been successfully utilized to control gene expression, they have been little exploited to control Candida albicans virulence's determinants. Filamentation is an important virulence factor of C. albicans, and RAS1 and RIM101 genes are involved in its regulation. Thus, the main goal of this work was to project ASOs, based on 2'-OMethyl chemical modification, to target RAS1 and RIM101 mRNA and to validate its application either alone or in combination, to reduce Candida filamentation in different human body fluids.It was verified that both, anti-RAS1 2'OMe and anti-RIM101 2'OMe oligomers, were able to reduce the levels of RAS1 and RIM101 genes' expression and to significantly reduce C. albicans filamentation. Furthermore, the combined application of anti-RAS1 2'OMe oligomer and anti-RIM101 2'OMe oligomer enhances the control of C. albicans filamentation in artificial saliva and urine.Our work confirms that ASOs are useful tools for research and therapeutic development on the control of candidiasis. LAY ABSTRACT This work aimed to project antisense oligomers to control Candida albicans filamentation. The results revealed that the projected oligomers, anti-RAS1 2'OMe and anti-RIM101 2'OMe, were able to control RAS1 and RIM101 gene expression and to significantly reduce C. albicans filamentation.
Collapse
Affiliation(s)
- Ana Barbosa
- LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Daniela Araújo
- LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Mariana Henriques
- LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Sónia Silva
- LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
15
|
Rodriguez DL, Quail MM, Hernday AD, Nobile CJ. Transcriptional Circuits Regulating Developmental Processes in Candida albicans. Front Cell Infect Microbiol 2020; 10:605711. [PMID: 33425784 PMCID: PMC7793994 DOI: 10.3389/fcimb.2020.605711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Candida albicans is a commensal member of the human microbiota that colonizes multiple niches in the body including the skin, oral cavity, and gastrointestinal and genitourinary tracts of healthy individuals. It is also the most common human fungal pathogen isolated from patients in clinical settings. C. albicans can cause a number of superficial and invasive infections, especially in immunocompromised individuals. The ability of C. albicans to succeed as both a commensal and a pathogen, and to thrive in a wide range of environmental niches within the host, requires sophisticated transcriptional regulatory programs that can integrate and respond to host specific environmental signals. Identifying and characterizing the transcriptional regulatory networks that control important developmental processes in C. albicans will shed new light on the strategies used by C. albicans to colonize and infect its host. Here, we discuss the transcriptional regulatory circuits controlling three major developmental processes in C. albicans: biofilm formation, the white-opaque phenotypic switch, and the commensal-pathogen transition. Each of these three circuits are tightly knit and, through our analyses, we show that they are integrated together by extensive regulatory crosstalk between the core regulators that comprise each circuit.
Collapse
Affiliation(s)
- Diana L. Rodriguez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California—Merced, Merced, CA, United States
- Quantitative and Systems Biology Graduate Program, University of California—Merced, Merced, CA, United States
| | - Morgan M. Quail
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California—Merced, Merced, CA, United States
- Quantitative and Systems Biology Graduate Program, University of California—Merced, Merced, CA, United States
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California—Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California - Merced, Merced, CA, United States
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California—Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California - Merced, Merced, CA, United States
| |
Collapse
|
16
|
Effects of Storage Temperature and pH on the Antifungal Effects of Commercial Oral Moisturizers against Candida Albicans and Candida Glabrata. ACTA ACUST UNITED AC 2020; 56:medicina56100525. [PMID: 33036434 PMCID: PMC7601087 DOI: 10.3390/medicina56100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 11/30/2022]
Abstract
Background and objectives: Oral moisturizers have been used to treat dry mouth. This study aimed to investigate the effects of storage temperature and pH on the antifungal effects of oral moisturizers against Candida albicans and Candida glabrata. Materials and Methods: Thirty-one oral moisturizers and amphotericin B (AMPH-B) were stored at 25 and 37 °C for 1 week. Subsequently, they were added to cylindrical holes in 50% trypticase soy agar plates inoculated with C. albicans and C. glabrata (107 cells/ml). The antifungal effects were evaluated based on the sizes of the growth-inhibitory zones formed. Two-way analysis of variance was used to determine the effects of storage temperature and pH on the growth-inhibitory zones. Results: Significant differences in the effects of storage temperature and pH of the moisturizers were observed against C. albicans and C. glabrata. The growth-inhibitory zones of samples stored at 37 °C and with neutral pH were significantly larger than those stored at 25 °C and with acidic pH, respectively. The sizes of the zones formed by most of the oral moisturizers were larger than those formed by AMPH-B (concentration, 0.63 µg/ml). Conclusion: The antifungal effects of oral moisturizers against C. albicans and C. glabrata were affected by their storage temperature and pH.
Collapse
|
17
|
Athanasopoulos A, André B, Sophianopoulou V, Gournas C. Fungal plasma membrane domains. FEMS Microbiol Rev 2020; 43:642-673. [PMID: 31504467 DOI: 10.1093/femsre/fuz022] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022] Open
Abstract
The plasma membrane (PM) performs a plethora of physiological processes, the coordination of which requires spatial and temporal organization into specialized domains of different sizes, stability, protein/lipid composition and overall architecture. Compartmentalization of the PM has been particularly well studied in the yeast Saccharomyces cerevisiae, where five non-overlapping domains have been described: The Membrane Compartments containing the arginine permease Can1 (MCC), the H+-ATPase Pma1 (MCP), the TORC2 kinase (MCT), the sterol transporters Ltc3/4 (MCL), and the cell wall stress mechanosensor Wsc1 (MCW). Additional cortical foci at the fungal PM are the sites where clathrin-dependent endocytosis occurs, the sites where the external pH sensing complex PAL/Rim localizes, and sterol-rich domains found in apically grown regions of fungal membranes. In this review, we summarize knowledge from several fungal species regarding the organization of the lateral PM segregation. We discuss the mechanisms of formation of these domains, and the mechanisms of partitioning of proteins there. Finally, we discuss the physiological roles of the best-known membrane compartments, including the regulation of membrane and cell wall homeostasis, apical growth of fungal cells and the newly emerging role of MCCs as starvation-protective membrane domains.
Collapse
Affiliation(s)
- Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Bruno André
- Molecular Physiology of the Cell laboratory, Université Libre de Bruxelles (ULB), Institut de Biologie et de Médecine Moléculaires, rue des Pr Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| |
Collapse
|
18
|
Abstract
Malassezia is a lipophilic cutaneous commensal yeast and associated with various skin disorders. The yeast also causes bloodstream infection via intravascular catheters and can be detected even in human gut microbiota. Ambient pH is one of the major factors that affect the physiology and metabolism of several pathogenic microorganisms. Although dynamic changes of pH environment in different parts of the body is a great challenge for Malassezia to confront, the role that ambient pH plays in Malassezia is largely unknown. In this study, we investigated the impact of ambient pH on physiology and expression of lipases in M. furfur grown under different pH conditions. The yeast was able to grow in media ranging from pH 4 to 10 without morphological alteration. Elevation in pH value enhanced the extracellular lipase activity but decreased that of intracellular lipase. The qPCR results revealed that a set of functional lipase genes, LIP3-6, were constitutively expressed regardless of pH conditions or exposure time. Based on the data, we conclude that the external pH plays a promotional role in the secretion of lipases but exerts less effect on transcription of the genes and morphology in M. furfur.
Collapse
|
19
|
Wang Y, Tang LJ, Peng X, Zhang ZB, Yang HL, Yan RM, Zhu D. Transcriptome analysis of the dimorphic transition induced by pH change and lipid biosynthesis in Trichosporon cutaneum. J Ind Microbiol Biotechnol 2019; 47:49-61. [PMID: 31834585 DOI: 10.1007/s10295-019-02244-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/26/2019] [Indexed: 11/27/2022]
Abstract
Trichosporon cutaneum, a dimorphic oleaginous yeast, has immense biotechnological potential, which can use lignocellulose hydrolysates to accumulate lipids. Our preliminary studies on its dimorphic transition suggested that pH can significantly induce its morphogenesis. However, researches on dimorphic transition correlating with lipid biosynthesis in oleaginous yeasts are still limited. In this study, the unicellular yeast cells induced under pH 6.0-7.0 shake flask cultures resulted in 54.32% lipid content and 21.75 g/L dry cell weight (DCW), so lipid production was over threefold than that in hypha cells induced by acidic condition (pH 3.0-4.0). Furthermore, in bioreactor batch cultivation, the DCW and lipid content in unicellular yeast cells can reach 21.94 g/L and 58.72%, respectively, both of which were also more than twofold than that in hypha cells. Moreover, the activities of isocitrate dehydrogenase (IDH), malic enzyme (MAE), isocitrate lyase (ICL) and ATP citrate lyase (ACL) in unicellular cells were all higher than in the hyphal cells. In the meanwhile, the transcriptome data showed that the genes related to fatty acid biosynthesis, carbon metabolism and encoded Rim101 and cAMP-PKA signaling transduction pathways were significantly up-regulated in unicellular cells, which may play an important role in enhancing the lipid accumulation. In conclusion, our results provided insightful information focused on the molecular mechanism of dimorphic transition and process optimization for enhancing lipid accumulation in T. cutaneum.
Collapse
Affiliation(s)
- Ya Wang
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
- State Key Laboratory of Microbial Metabolism & School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Li Juan Tang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Xuan Peng
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhi Bin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Hui Lin Yang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Ri Ming Yan
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Du Zhu
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
20
|
Gong J, Huang Q, Liang W, Wei Y, Huang G. The general transcriptional repressor Tup1 governs filamentous development in Candida tropicalis. Acta Biochim Biophys Sin (Shanghai) 2019; 51:463-470. [PMID: 30968937 DOI: 10.1093/abbs/gmz023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/15/2019] [Accepted: 02/24/2019] [Indexed: 12/29/2022] Open
Abstract
Filamentous development is associated with the ability to cause infections and colonize the host in pathogenic Candida species. Candida tropicalis is one of the major fungal pathogens of humans. The conserved transcriptional repressor Tup1 plays a critical role in the regulation of transcription and filamentation in yeast species. Despite its central role, the full coding sequence of TUP1 has not been found in the reported genome sequence of C. tropicalis to date. In this study, we report the identification of Tup1 and characterize its role in filamentous growth in C. tropicalis. As expected, C. tropicalis Tup1 exhibits general conserved features to the orthologs of other fungi in terms of its structure and function. Deletion of TUP1 in C. tropicalis leads to increased filamentation under several culture conditions. However, Tup1 indeed exhibits species-specific roles in the regulation of filamentous development in C. tropicalis. For example, unlike the tup1/tup1 mutant of Candida albicans, the tup1/tup1 mutant of C. tropicalis is able to exist in the yeast form at low temperatures or in the presence of N-acetylglucosamine (GlcNAc). Acidic pH conditions also favor the yeast form of the tup1/tup1 mutant of C. tropicalis. Quantitative real-time PCR (qRT-PCR) assays indicate that Tup1 may regulate filamentous development through the transcriptional control of key filamentation regulators in C. tropicalis, such as Ume6, Brg1, Wor1, Sfl2, Ahr1, and Zcf3. Taken together, our findings demonstrate both conserved and species-specific roles of Tup1 in the regulation of filamentation and provide novel insights into the biology of C. tropicalis.
Collapse
Affiliation(s)
- Jiao Gong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Huang
- Dermatology Department, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Weihong Liang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yujia Wei
- Dermatology Department, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Bie X, Zhang S, Luo X, Qi RQ. Candida albicans cell wall mannoprotein synergizes with lipopolysaccharide to affect RAW264.7 proliferation, phagocytosis and apoptosis. Microb Pathog 2019; 131:98-105. [PMID: 30953745 DOI: 10.1016/j.micpath.2019.03.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
With the widespread use of invasive surgery, immunosuppressive therapy and broad-spectrum antibiotics, there has resulted a corresponding increase in severe systemic infections as produced by Candida albicans (C.albicans), as it combines with bacterial infections. Such infections often result in high rates of mortality. In this report, we examined the effects of the C. albicans cell wall mannoprotein (MP) on macrophage immunity. The MTS assay was used to detect cell proliferation activity and neutral red staining to observe cell phagocytosis. The Griess method was used to detect NO secretion in culture supernatants and apoptosis of macrophages were determined with use of FITC-Annexin V and PI staining. mRNA and protein expressions of JAK2, STAT3, IL-1β, IL-6, TNF-α and iNOS in RAW264.7 cells were determined with use of RT-PCR and western blot. MP significantly promoted the proliferation of RAW264.7 cells, inhibited their phagocytic capacity, but exerted no significant effects on apoptosis of macrophages. In addition, MP not only up-regulated the expression of cytokines, but also the expressions of p-stat3 and p-jak2. Interestingly, when MP was combined with lipopolysaccharide (LPS) a markedly accentuated release of inflammatory cytokines was observed. MP promotes macrophage inflammation induced by LPS and participates in the inflammatory response. One of the potential mechanisms of this effect involves MP activation of the JAK2/STAT3 signaling pathway in RAW264.7 cells, which enables macrophages to transform from M0 to M1 and promote the occurrence of inflammation.
Collapse
Affiliation(s)
- Xingxing Bie
- Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shuguang Zhang
- Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xue Luo
- Pathology Department, The 202 Hospital of the People's Liberation Army, China
| | - Rui-Qun Qi
- NHC/Ministry of Education/Liaoning Province Key Laboratory of Immunodermatology(China Medical University), The First Hospital of China Medical University, China.
| |
Collapse
|
22
|
Grainha TRR, Jorge PADS, Pérez-Pérez M, Pérez Rodríguez G, Pereira MOBO, Lourenço AMG. Exploring anti-quorum sensing and anti-virulence based strategies to fight Candida albicans infections: an in silico approach. FEMS Yeast Res 2019. [PMID: 29518242 DOI: 10.1093/femsyr/foy022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The complex virulence attributes of Candida albicans are an attractive target to exploit in the development of new antifungals and anti-virulence strategies to combat C. albicans infections. Particularly, quorum sensing (QS) has been reported as critical for virulence regulation in C. albicans. This work presents two knowledge networks with up-to-date information about QS regulation and experimentally tested anti-QS and anti-virulence agents for C. albicans. A semi-automatic bioinformatics workflow that combines literature mining and expert curation was used to retrieve otherwise scattered information from the scientific literature. The network representation offers an innovative and continuously updatable means for the Candida research community to query QS and virulence data systematically and in a user-friendly way. Notably, the reconstructed networks show the complexity of QS regulation and the impact that some molecules have on the inhibition of virulence mechanisms responsible for infection establishment (e.g. hyphal development) and perseverance (e.g. biofilm formation). In the future, the compiled knowledge may be used to build decision-making models that help infer new knowledge of practical significance. The knowledge networks are publicly available at http://pcquorum.org/. This Web platform enables the exploration of fungal virulence cues as well as reported inhibitors in a user-friendly fashion.
Collapse
Affiliation(s)
- Tânia Raquel Rodrigues Grainha
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Paula Alexandra da Silva Jorge
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Martín Pérez-Pérez
- ESEI-Department of Computer Science, University of Vigo, Edificio Politecnico, s/n Campus As Lagoas, 32004 Ourense, Spain.,CINBIO-Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain
| | - Gael Pérez Rodríguez
- ESEI-Department of Computer Science, University of Vigo, Edificio Politecnico, s/n Campus As Lagoas, 32004 Ourense, Spain.,CINBIO-Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain
| | - Maria Olívia Baptista Oliveira Pereira
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Anália Maria Garcia Lourenço
- ESEI-Department of Computer Science, University of Vigo, Edificio Politecnico, s/n Campus As Lagoas, 32004 Ourense, Spain.,CINBIO-Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain.,Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
23
|
Yeh SJ, Yeh CC, Lan CY, Chen BS. Investigating Common Pathogenic Mechanisms between Homo sapiens and Different Strains of Candida albicans for Drug Design: Systems Biology Approach via Two-Sided NGS Data Identification. Toxins (Basel) 2019; 11:toxins11020119. [PMID: 30769958 PMCID: PMC6409619 DOI: 10.3390/toxins11020119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 01/15/2023] Open
Abstract
Candida albicans (C. albicans) is the most prevalent fungal species. Although it is a healthy microbiota, genetic and epigenetic alterations in host and pathogen, and microenvironment changes would lead to thrush, vaginal yeast infection, and even hematogenously disseminated infection. Despite the fact that cytotoxicity is well-characterized, few studies discuss the genome-wide genetic and epigenetic molecular mechanisms between host and C. albicans. The aim of this study is to identify drug targets and design a multiple-molecule drug to prevent the infection from C. albicans. To investigate the common and specific pathogenic mechanisms in human oral epithelial OKF6/TERT-2 cells during the C. albicans infection in different strains, systems modeling and big databases mining were used to construct candidate host–pathogen genetic and epigenetic interspecies network (GEIN). System identification and system order detection are applied on two-sided next generation sequencing (NGS) data to build real host–pathogen cross-talk GEINs. Core host–pathogen cross-talk networks (HPCNs) are extracted by principal network projection (PNP) method. By comparing with core HPCNs in different strains of C. albicans, common pathogenic mechanisms were investigated and several drug targets were suggested as follows: orf19.5034 (YBP1) with the ability of anti-ROS; orf19.939 (NAM7), orf19.2087 (SAS2), orf19.1093 (FLO8) and orf19.1854 (HHF22) with high correlation to the hyphae growth and pathogen protein interaction; orf19.5585 (SAP5), orf19.5542 (SAP6) and orf19.4519 (SUV3) with the cause of biofilm formation. Eventually, five corresponding compounds—Tunicamycin, Terbinafine, Cerulenin, Tetracycline and Tetrandrine—with three known drugs could be considered as a potential multiple-molecule drug for therapeutic treatment of C. albicans.
Collapse
Affiliation(s)
- Shan-Ju Yeh
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chun-Chieh Yeh
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Electrical Engineering, Yuan Ze University, Chungli 32003, Taiwan.
| |
Collapse
|
24
|
Abstract
Fungi are prone to phenotypic instability, that is, the vegetative phase of these organisms, be they yeasts or molds, undergoes frequent switching between two or more behaviors, often with different morphologies, but also sometime having different physiologies without any obvious morphological outcome. In the context of industrial utilization of fungi, this can have a negative impact on the maintenance of strains and/or on their productivity. Instabilities have been shown to result from various mechanisms, either genetic or epigenetic. This chapter will review different types of instabilities and discuss some lesser-known ones, mostly in filamentous fungi, while it will direct readers to additional literature in the case of well-known phenomena such as the amyloid prions or fungal senescence. It will present in depth the "white/opaque" switch of Candida albicans and the "crippled growth" degeneration of the model fungus Podospora anserina. These are two of the most thoroughly studied epigenetic phenotypic switches. I will also discuss the "sectors" presented by many filamentous ascomycetes, for which a prion-based model exists but is not demonstrated. Finally, I will also describe intriguing examples of phenotypic instability for which an explanation has yet to be provided.
Collapse
|
25
|
Koch B, Traven A. Mitochondrial Control of Fungal Cell Walls: Models and Relevance in Fungal Pathogens. Curr Top Microbiol Immunol 2019; 425:277-296. [PMID: 31807895 DOI: 10.1007/82_2019_183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proper structure and function of the fungal cell wall are controlled by metabolic processes, as well as an interplay between a range of cellular organelles. Somewhat surprisingly, mitochondrial function has been shown to be important for proper cell wall biogenesis and integrity. Mitochondria also play a role in the susceptibility of fungi to cell wall-targeting drugs. This is true in a range of fungal species, including important human fungal pathogens. The biochemical mechanisms that explain the roles of mitochondria in cell wall biology have remained elusive, but studies to date strongly support the idea that mitochondrial control over cellular lipid homeostasis is at the core of these processes. Excitingly, recent evidence suggests that the mitochondria-lipid linkages drive resistance to the echinocandin drug caspofungin, a clinically important therapeutic that targets cell wall biosynthesis. Here, we review the state of affairs in mitochondria-fungal cell wall research and propose models that could be tested in future studies. Elucidating the mechanisms that drive fungal cell wall integrity through mitochondrial functions holds promise for developing new strategies to combat fungal infections, including the possibility to potentiate the effects of antifungal drugs and curb drug resistance.
Collapse
Affiliation(s)
- Barbara Koch
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia.,Protein, Science and Engineering, Callaghan Innovation, Christchurch, 8140, New Zealand
| | - Ana Traven
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia.
| |
Collapse
|
26
|
Su C, Yu J, Lu Y. Hyphal development in Candida albicans from different cell states. Curr Genet 2018; 64:1239-1243. [PMID: 29796903 DOI: 10.1007/s00294-018-0845-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 01/01/2023]
Abstract
Candida albicans is an important opportunistic fungal pathogen of immunocompromised individuals. The ability to switch between yeast, pseudohyphal, and hyphal growth forms (polymorphism) is one of the most investigated virulence attributes of C. albicans. The usual method for inducing hypha formation in the lab is by diluting cells from a saturated culture into fresh medium at 37 °C. The molecular mechanism at action under these conditions has been previously investigated. C. albicans can also form hyphae in growing cells without dilution. The ability of C. albicans to form hyphae in different cell states facilitates the fungus to adapt varied host environments during infection. A recent study by Su et al. uncovered the molecular mechanism for how C. albicans develops hyphae under the condition without inoculation. N-Acetylglucosamine (GlcNAc) stimulates filamentation in log phase cells through transcriptional down-regulation of NRG1, the major repressor of hyphal development. Instead of cAMP-PKA pathway, GlcNAc sensor Ngs1 is responsible for this process. Ngs1 binds to GlcNAc to activate its N-acetyltransferase activity, leading to the induction of BRG1 expression. The increased level of BRG1 could repress NRG1 transcripts, resulting in hyphal growth. Hyphal development in log phase cells induced by serum or neutral pH also requires activation of BRG1 to down-regulate NRG1 transcription. Therefore, hyphal induction under the condition without inoculation is trigged by Brg1-mediated removal of Nrg1 inhibition. This review describes our current understanding of the molecular mechanism underlying hyphal development, the best studied virulence factor in C. albicans. These will expand the number of potential drug targets with novel modes of action for anti-virulence therapeutics.
Collapse
Affiliation(s)
- Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yang Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
27
|
Transcription factor network efficiency in the regulation of Candida albicans biofilms: it is a small world. Curr Genet 2018; 64:883-888. [PMID: 29318385 DOI: 10.1007/s00294-018-0804-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
Abstract
Complex biological processes are frequently regulated through networks comprised of multiple signaling pathways, transcription factors, and effector molecules. The identity of specific genes carrying out these functions is usually determined by single mutant genetic analysis. However, to understand how the individual genes/gene products function, it is necessary to determine how they interact with other components of the larger network; one approach to this is to use genetic interaction analysis. The human fungal pathogen Candida albicans regulates biofilm formation through an interconnected set of transcription factor hubs and is, therefore, an example of this type of complex network. Here, we describe experiments and analyses designed to understand how the C. albicans biofilm transcription factor hubs interact and to explore the role of network structure in its overall function. To do so, we analyzed published binding and genetic interaction data to characterize the topology of the network. The hubs are best characterized as a small world network that functions with high efficiency and low robustness (high fragility). Highly efficient networks rapidly transmit perturbations at given nodes to the rest of the network. Consistent with this model, we have found that relatively modest perturbations, such as reduction in the gene dosage of hub transcription factors by one-half, lead to significant alterations in target gene expression and biofilm fitness. C. albicans biofilm formation occurs under very specific environmental conditions and we propose that the fragile, small world structure of the genetic network is part of the mechanism that imposes this stringency.
Collapse
|
28
|
Virgilio S, Bertolini MC. Functional diversity in the pH signaling pathway: an overview of the pathway regulation in Neurospora crassa. Curr Genet 2017; 64:529-534. [DOI: 10.1007/s00294-017-0772-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022]
|
29
|
Boral H, Metin B, Döğen A, Seyedmousavi S, Ilkit M. Overview of selected virulence attributes in Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis. Fungal Genet Biol 2017; 111:92-107. [PMID: 29102684 DOI: 10.1016/j.fgb.2017.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
The incidence of fungal diseases has been increasing since 1980, and is associated with excessive morbidity and mortality, particularly among immunosuppressed patients. Of the known 625 pathogenic fungal species, infections caused by the genera Aspergillus, Candida, Cryptococcus, and Trichophyton are responsible for more than 300 million estimated episodes of acute or chronic infections worldwide. In addition, a rather neglected group of opportunistic fungi known as black yeasts and their filamentous relatives cause a wide variety of recalcitrant infections in both immunocompetent and immunosuppressed hosts. This article provides an overview of selected virulence factors that are known to suppress host immunity and enhance the infectivity of these fungi.
Collapse
Affiliation(s)
- Hazal Boral
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Seyedmojtaba Seyedmousavi
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Center of Excellence for Infection Biology and Antimicrobial Pharmacology, Tehran, Iran
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey.
| |
Collapse
|
30
|
Candida albicans fatty acyl-CoA synthetase, CaFaa4p, is involved in the uptake of exogenous long-chain fatty acids and cell activity in the biofilm. Curr Genet 2017; 64:429-441. [PMID: 28942495 DOI: 10.1007/s00294-017-0751-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 01/25/2023]
Abstract
Fatty acyl-CoA synthetase (Faa) activates fatty acid (FA) by converting the FA into the CoA ester in the cell. In the present study, we characterized a FAA homologue (CaFAA4) from the opportunistic pathogen Candida albicans. Most organisms can not only synthesize long-chain fatty acyl-CoAs (LCFA-CoAs) endogenously using a fatty acid synthase (Fas) activity but also can uptake long-chain fatty acids (LCFAs) from the extracellular environment and convert them into LCFA-CoAs via a vectorial acylation system. The budding yeast Saccharomyces cerevisiae possesses two LCFA-CoA synthetases, ScFaa1p and ScFaa4p. The disruption of ScFAA1 and ScFAA4 leads to synthetic lethality in the presence of a fatty acid synthesis inhibitor-cerulenin. The homologue-CaFAA4-rescued the lethality of an S. cerevisiae Scfaa1-Scfaa4 double mutant in the presence of cerulenin. On the other hand, a C. albicans faa4 mutant was unable to grow in the presence of cerulenin even if LCFAs were provided exogenously. Moreover, a biofilm analysis showed that the metabolic activity of the Cafaa4 mutant was approximately 40% lower than that of the wild-type parent, even though there was no significant difference in cell number or cell morphology between these strains. Notably, the Cafaa4 mutant showed increased susceptibility to micafungin during biofilm formation, a phenotype that presumably can be attributed to the impaired metabolism of the mutant strain. These results indicated that CaFaa4p is the unique C. albicans Faa protein responsible for activating LCFAs and is involved in the metabolism of biofilms.
Collapse
|
31
|
Bijlani S, Nahar AS, Ganesan K. Improved Tet-On and Tet-Off systems for tetracycline-regulated expression of genes in Candida. Curr Genet 2017; 64:303-316. [DOI: 10.1007/s00294-017-0720-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/27/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
|
32
|
Woolford CA, Lagree K, Aleynikov T, Mitchell AP. Negative control of Candida albicans filamentation-associated gene expression by essential protein kinase gene KIN28. Curr Genet 2017; 63:1073-1079. [PMID: 28501989 DOI: 10.1007/s00294-017-0705-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 12/31/2022]
Abstract
The fungus Candida albicans can grow as either yeast or filaments, which include hyphae and pseudohyphae, depending on environmental conditions. Filamentous growth is of particular interest because it is required for biofilm formation and for pathogenesis. Environmentally induced filamentous growth is associated with expression of filamentation-associated genes, and both filamentous growth and associated gene expression depend upon several well-characterized transcription factors. Surprisingly, strains with reduced expression of many essential genes display filamentous growth under non-inducing conditions-those in which the wild type grows as yeast. We found recently that diminished expression of several essential protein kinase genes leads to both filamentous cell morphology and filamentation-associated gene expression under non-inducing conditions. Reduced expression of the essential protein kinase gene CAK1 promoted filamentation-associated gene expression and biofilm formation in strains that lacked key transcriptional activators of these processes, thus indicating that CAK1 expression is critical for both environmental and genetic control of filamentation. In this study, we extend our genetic interaction analysis to a second essential protein kinase gene, KIN28. Reduced expression of KIN28 also permits filamentation-associated gene expression, though not biofilm formation, in the absence of several key transcriptional activators. Our results argue that impairment of several essential cellular processes can alter the regulatory requirements for filamentation-associated gene expression. Our results also indicate that levels of filamentation-associated gene expression are not fully predictive of biofilm formation ability.
Collapse
Affiliation(s)
- C A Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - K Lagree
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - T Aleynikov
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - A P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Quorum sensing by farnesol revisited. Curr Genet 2017; 63:791-797. [DOI: 10.1007/s00294-017-0683-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
|
34
|
Glehn MDP, Ferreira LCES, Da Silva HDF, Machado ER. Prevalence of Trichomonas vaginalis and Candida albicans among Brazilian Women of Reproductive Age. J Clin Diagn Res 2016; 10:LC24-LC27. [PMID: 28050410 DOI: 10.7860/jcdr/2016/21325.8939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/25/2016] [Indexed: 01/13/2023]
Abstract
INTRODUCTION There are no studies assessing the simultaneous occurrence of Candida albicans (C. albicans) and Trichomonas vaginalis (T. vaginalis) in the primary health care in Brazil. Despite different conditions to establishment of each one, the co-detection of both has been reported by some authors in previous studies from other regions. AIM To compare the prevalence of T. vaginalis and C. albicans in correlation with associated variables. MATERIALS AND METHODS A cross-sectional study conducted in a family health clinic in the Federal District of Brazil, between November 2014 and March 2015. Vaginal swabs were collected from 201 women of the reproductive age selected from women registered at the family health clinic. Minors and pregnant women were excluded. The rates of T. vaginalis and Candida albicans prevalence were evaluated with vaginal pH, the whiff test, sexual practices and other social and demographic variables. Difference between proportions was assessed by Z-Test. RESULTS C. albicans was present in 20% of the women, while 16% of them had T. vaginalis. The simultaneous occurrence of the agents was found in 1.5%. Significant differences were found between prevalence rates for the variables race/skin colour, practice of anilingus and lifetime number of sexual partners. CONCLUSION The prevalence of T. vaginalis exceeds C.albicans among women with higher numbers of sexual partners. The prevalence of C. albicans was higher than T. vaginalis among white women and those who practice active and receptive anilingus. The simultaneous occurrence of the two microorganisms was uncommon.
Collapse
Affiliation(s)
- Mateus De Paula Glehn
- Family Health team coordination - Federal District Health Department; Tropical Medicine Department - University of Brasília
| | | | | | - Eleuza Rodrigues Machado
- Professor and Postgraduation advisor, Laboratory of Parasitology and Vector Biology of the Faculty of Medicine, University of Brasilia
| |
Collapse
|
35
|
Ferreira C, Gonçalves B, Vilas Boas D, Oliveira H, Henriques M, Azeredo J, Silva S. Candida tropicalis biofilm and human epithelium invasion is highly influenced by environmental pH. Pathog Dis 2016; 74:ftw101. [PMID: 27702793 DOI: 10.1093/femspd/ftw101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2016] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE The main goal of this study was to investigate the role of pH on Candida tropicalis virulence determinants, namely the ability to form biofilms and to colonize/invade reconstituted human vaginal epithelia. METHODS Biofilm formation was evaluated by enumeration of cultivable cells, total biomass quantification and structural analysis by scanning electron microscopy and confocal laser scanning microscopy. Candida tropicalis human vaginal epithelium colonization and invasiveness were examined qualitatively by epifluorescence microscopy and quantitatively by a novel quantitative real-time PCR protocol for Candida quantification in tissues. RESULTS The results revealed that environmental pH influences C. tropicalis biofilm formation as well as the colonization and potential to invade human epithelium with intensification at neutral and alkaline conditions compared to acidic conditions. CONCLUSIONS For the first time, we have demonstrated that C. tropicalis biofilm formation and invasion is highly influenced by environmental pH.
Collapse
Affiliation(s)
- Carina Ferreira
- CEB-Center of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Bruna Gonçalves
- CEB-Center of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Diana Vilas Boas
- CEB-Center of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Hugo Oliveira
- CEB-Center of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Mariana Henriques
- CEB-Center of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Joana Azeredo
- CEB-Center of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sónia Silva
- CEB-Center of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
36
|
Braunsdorf C, Mailänder-Sánchez D, Schaller M. Fungal sensing of host environment. Cell Microbiol 2016; 18:1188-200. [DOI: 10.1111/cmi.12610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022]
Affiliation(s)
- C. Braunsdorf
- Department of Dermatology; University Hospital Tübingen; Liebermeisterstr. 25 Tübingen Germany
| | - D. Mailänder-Sánchez
- Department of Internal Medicine I; University Hospital Tübingen; Otfried-Müller-Straße 10 72076 Tübingen
| | - M. Schaller
- Department of Dermatology; University Hospital Tübingen; Liebermeisterstr. 25 Tübingen Germany
| |
Collapse
|
37
|
Phenotypic diversity and correlation between white-opaque switching and the CAI microsatellite locus in Candida albicans. Curr Genet 2016; 62:585-93. [PMID: 26832141 DOI: 10.1007/s00294-016-0564-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/30/2015] [Accepted: 01/02/2016] [Indexed: 10/22/2022]
Abstract
Candida albicans is a commensal fungal pathogen that is often found as part of the human microbial flora. The aim of the present study was to establish a relationship between diverse genotypes and phenotypes of clinical isolates of C. albicans. Totally 231 clinical isolates were collected and used for genotyping and phenotypic switching analysis. Based on the microsatellite locus (CAI) genotyping assay, 65 different genotypes were identified, and some dominant types were found in certain human niches. For example, the genotypes of 30-44 and 30-45 were enriched in vaginal infection samples. C. albicans has a number of morphological forms including the single-celled yeasts, multicellular filaments, white, and opaque cell types. The relationship between the CAI genotype and the ability to undergo phenotypic switching was examined in the clinical isolates. We found that the strains with longer CAA/G repeats in both alleles of the CAI locus were more opaque competent. We also discovered that some MTL heterozygous (a/alpha) isolates could undergo white-opaque switching when grown on regular culture medium (containing glucose as the sole carbon source). Our study establishes a link between phenotypic switching and genotypes of the CAI microsatellite locus in clinical isolates of C. albicans.
Collapse
|