1
|
Yang Y, Liu J, Singer SD, Yan G, Bennet DR, Liu Y, Hily JM, Xu W, Yang Y, Wang X, Zhong GY, Liu Z, Charles An YQ, Liu H, Liu Z. Ectopic enhancer-enhancer interactions as causal forces driving RNA-directed DNA methylation in gene regulatory regions. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3121-3134. [PMID: 39021281 DOI: 10.1111/pbi.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
Cis-regulatory elements (CREs) are integral to the spatiotemporal and quantitative expression dynamics of target genes, thus directly influencing phenotypic variation and evolution. However, many of these CREs become highly susceptible to transcriptional silencing when in a transgenic state, particularly when organised as tandem repeats. We investigated the mechanism of this phenomenon and found that three of the six selected flower-specific CREs were prone to transcriptional silencing when in a transgenic context. We determined that this silencing was caused by the ectopic expression of non-coding RNAs (ncRNAs), which were processed into 24-nt small interfering RNAs (siRNAs) that drove RNA-directed DNA methylation (RdDM). Detailed analyses revealed that aberrant ncRNA transcription within the AGAMOUS enhancer (AGe) in a transgenic context was significantly enhanced by an adjacent CaMV35S enhancer (35Se). This particular enhancer is known to mis-activate the regulatory activities of various CREs, including the AGe. Furthermore, an insertion of 35Se approximately 3.5 kb upstream of the AGe in its genomic locus also resulted in the ectopic induction of ncRNA/siRNA production and de novo methylation specifically in the AGe, but not other regions, as well as the production of mutant flowers. This confirmed that interactions between the 35Se and AGe can induce RdDM activity in both genomic and transgenic states. These findings highlight a novel epigenetic role for CRE-CRE interactions in plants, shedding light on the underlying forces driving hypermethylation in transgenes, duplicate genes/enhancers, and repetitive transposons, in which interactions between CREs are inevitable.
Collapse
Affiliation(s)
- Yazhou Yang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jia Liu
- College of Landscape, Architecture and Life science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Guohua Yan
- The Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dennis R Bennet
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, West Virginia, USA
| | - Yue Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jean-Michel Hily
- Institut Français de la Vigne et du Vin (IFV), Le Grau du Roi, France
| | - Weirong Xu
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Yingzhen Yang
- USDA-ARS, Grape Genetic Research Unit, Geneva, New York, USA
| | - Xiping Wang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Gan-Yuan Zhong
- USDA-ARS, Grape Genetic Research Unit, Geneva, New York, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Yong-Qiang Charles An
- USDA-ARS, Plant Genetics Research Unit, Donald Danforth Plant Science Center, St Louis, Missouri, USA
| | - Huawei Liu
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Zongrang Liu
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, West Virginia, USA
| |
Collapse
|
2
|
Li X, Jin D, Yi F, Tang M, Wan S, Fan Y, Xiao Y, Liu T, Li H, Li J, Qiu M, Pei Y. BpAFP, a Broussonetia papyrifera latex chitinase, exhibits a dual role in resisting to both Verticillium wilt disease and lepidopterous pests, Plutella xylostella and Prodenia litura. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112161. [PMID: 38879177 DOI: 10.1016/j.plantsci.2024.112161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Paper mulberry (Broussonetia papyrifera) is a fast-growing tree known for its tolerance to diverse biotic and abiotic stresses. To explore genes combating Verticillium wilt, a devasting and formidable disease damage to cotton and many economically significant crops, we purified an antifungal protein, named BpAFP, from the latex of paper mulberry. Based on peptide fingerprint, we cloned the full cDNA sequence of BpAFP and revealed that BpAFP belongs to Class I chitinases, sharing 74 % identity with B. papyrifera leaf chitinase, PMAPII. We further introduced BpAFP into Arabidopsis, tobacco, and cotton. Transgenic plants exhibited significant resistance to Verticillium wilt. Importantly, BpAFP also demonstrated insecticidal activity against herbivorous pests, Plutella xylostella, and Prodenia litura, when feeding the larvae with transgenic leaves. Our finding unveils a dual role of BpAFP in conferring resistance to both plant diseases and lepidopterous pests.
Collapse
Affiliation(s)
- Xianbi Li
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Dan Jin
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Feifei Yi
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Meng Tang
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Siyi Wan
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Yanhua Fan
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Yuehua Xiao
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Ting Liu
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Hui Li
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Jiancong Li
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Mingliang Qiu
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Yan Pei
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China.
| |
Collapse
|
3
|
Shi J, Zhao Y, Zhao P, Yang H, Wang C, Xia J, Zhao Z, Wang Z, Yang Z, Wang Z, Xu S, Zhang Y. Preferentially expressed endosperm genes reveal unique activities in wheat endosperm during grain filling. BMC Genomics 2024; 25:795. [PMID: 39174916 PMCID: PMC11340063 DOI: 10.1186/s12864-024-10713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Bread wheat (Triticum aestivum L.) endosperm contains starch and proteins, which determine the final yield, quality, and nutritional value of wheat grain. The preferentially expressed endosperm genes can precisely provide targets in the endosperm for improving wheat grain quality and nutrition using modern bioengineering technologies. However, the genes specifically expressed in developing endosperms remain largely unknown. RESULTS In this study, 315 preferentially expressed endosperm genes (PEEGs) in the spring wheat landrace, Chinese Spring, were screened using data obtained from an open bioinformatics database, which reveals a unique grain reserve deposition process and special signal transduction in a developing wheat endosperm. Furthermore, transcription and accumulation of storage proteins in the wheat cultivar, XC26 were evaluated. The results revealed that 315 PEEG plays a critical role in storage protein fragment deposition and is a potential candidate for modifying grain quality and nutrition. CONCLUSION These results provide new insights into endosperm development and candidate genes and promoters for improving wheat grain quality through genetic engineering and plant breeding techniques.
Collapse
Affiliation(s)
- Jia Shi
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Yuqian Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongmei Yang
- Institute of Applied Microbiology/Xinjiang Laboratory of Special Environmental Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, PR China
| | - Chunsheng Wang
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Jianqiang Xia
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhun Zhao
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhenlong Wang
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhenyu Yang
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhong Wang
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Shengbao Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yueqiang Zhang
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| |
Collapse
|
4
|
Lv J, Feng Y, Zhai L, Jiang L, Wu Y, Huang Y, Yu R, Wu T, Zhang X, Wang Y, Han Z. MdARF3 switches the lateral root elongation to regulate dwarfing in apple plants. HORTICULTURE RESEARCH 2024; 11:uhae051. [PMID: 38706578 PMCID: PMC11069427 DOI: 10.1093/hr/uhae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/17/2023] [Indexed: 05/07/2024]
Abstract
Apple rootstock dwarfing and dense planting are common practices in apple farming. However, the dwarfing mechanisms are not understood. In our study, the expression of MdARF3 in the root system of dwarfing rootstock 'M9' was lower than in the vigorous rootstock from Malus micromalus due to the deletion of the WUSATAg element in the promoter of the 'M9' genotype. Notably, this deletion variation was significantly associated with dwarfing rootstocks. Subsequently, transgenic tobacco (Nicotiana tabacum) cv. Xanthi was generated with the ARF3 promoter from 'M9' and M. micromalus genotypes. The transgenic apple with 35S::MdARF3 was also obtained. The transgenic tobacco and apple with the highly expressed ARF3 had a longer root system and a higher plant height phenotype. Furthermore, the yeast one-hybrid, luciferase, electrophoretic mobility shift assays, and Chip-qPCR identified MdWOX4-1 in apples that interacted with the pMm-ARF3 promoter but not the pM9-ARF3 promoter. Notably, MdWOX4-1 significantly increased the transcriptional activity of MdARF3 and MdLBD16-2. However, MdARF3 significantly decreased the transcriptional activity of MdLBD16-2. Further analysis revealed that MdARF3 and MdLBD16-2 were temporally expressed during different stages of lateral root development. pMdLBD16-2 was mainly expressed during the early stage of lateral root development, which promoted lateral root production. On the contrary, pMmARF3 was expressed during the late stage of lateral root development to promote elongation. The findings in our study will shed light on the genetic causes of apple plant dwarfism and provide strategies for molecular breeding of dwarfing apple rootstocks.
Collapse
Affiliation(s)
- Jiahong Lv
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yi Feng
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Longmei Zhai
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lizhong Jiang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yue Wu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yimei Huang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Runqi Yu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ting Wu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xinzhong Zhang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yi Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhenhai Han
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
5
|
Ivanova LA, Komakhin RA. Efficiency of the alpha-hairpinin SmAMP-X gene promoter from Stellaria media plant depends on selection of transgenic approach. Transgenic Res 2024; 33:1-19. [PMID: 38071732 DOI: 10.1007/s11248-023-00374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/27/2023] [Indexed: 04/18/2024]
Abstract
The antimicrobial activity of the alpha-HAIRPININ ANTIMICROBIAL PEPTIDE X (SmAMP-X gene, GenBank acc. No. HG423454.1) from Stellaria media plant has been shown in vitro. Here, we isolated the SmAMP-X gene promoter and found two genomic sequences for the promoter (designated pro-SmAMP-X and pro-SmAMP-X-Ψ2) with 83% identity in their core and proximal regions. We found that the abilities of these promoters to express the uidA reporter and the nptII selectable marker differ according to the structural organization of T-DNA in the binary vector used for plant transformation. Analysis of Agrobacterium-infiltrated Nicotiana benthamiana leaves, transgenic Arabidopsis thaliana lines, and transgenic Solanum tuberosum plants revealed that both promoters in the pCambia1381Z and pCambia2301 binary vectors generate 42-100% of the ß-glucuronidase (GUS) activity generated by the CaMV35S promoter. According to 5'-RACE (rapid amplification of cDNA ends) analysis, both plant promoters are influenced by the CaMV35S enhancer used to express selectable markers in the T-DNA region of pCambia1381Z and pCambia2301. The exclusion of CaMV35S enhancer from the T-DNA region significantly reduces the efficiency of pro-SmAMP-X-Ψ2 promoter for GUS production. Both promoters in the pCambia2300 vector without CaMV35S enhancer in the T-DNA region weakly express the nptII selectable marker in different tissues of transgenic N. tabacum plants and enable selection of transgenic cells in media with a high concentration of kanamycin. Overall, promoter sequences must be functionally validated in binary vectors lacking CaMV35S enhancer.
Collapse
Affiliation(s)
- Lyubov A Ivanova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia, 127550
| | - Roman A Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia, 127550.
| |
Collapse
|
6
|
Li X, Niu G, Fan Y, Liu W, Wu Q, Yu C, Wang J, Xiao Y, Hou L, Jin D, Chen S, Hu R, Yang Y, Pei Y. Synthetic dual hormone-responsive promoters enable engineering of plants with broad-spectrum resistance. PLANT COMMUNICATIONS 2023:100596. [PMID: 36998212 PMCID: PMC10363552 DOI: 10.1016/j.xplc.2023.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/17/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In plant immunity, the mutually antagonistic hormones salicylic acid (SA) and jasmonic acid (JA) are implicated in resistance to biotrophic and necrotrophic pathogens, respectively. Promoters that can respond to both SA and JA signals are urgently needed to engineer plants with enhanced resistance to a broad spectrum of pathogens. However, few natural pathogen-inducible promoters are available for this purpose. To address this problem, we have developed a strategy to synthesize dual SA- and JA-responsive promoters by combining SA- and JA-responsive cis elements based on the interaction between their cognate trans-acting factors. The resulting promoters respond rapidly and strongly to both SA and Methyl Jasmonate (MeJA), as well as different types of phytopathogens. When such a synthetic promoter was used to control expression of an antimicrobial peptide, transgenic plants displayed enhanced resistance to a diverse range of biotrophic, necrotrophic, and hemi-biotrophic pathogens. A dual-inducible promoter responsive to the antagonistic signals auxin and cytokinin was generated in a similar manner, confirming that our strategy can be used for the design of other biotically or abiotically inducible systems.
Collapse
Affiliation(s)
- Xianbi Li
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Guoqing Niu
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Yanhua Fan
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Wenying Liu
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Qian Wu
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Chen Yu
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Jian Wang
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Yuehua Xiao
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Lei Hou
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Dan Jin
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Song Chen
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Rongyu Hu
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Yumei Yang
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Yan Pei
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China.
| |
Collapse
|
7
|
Fan X, Li Y, Deng CH, Wang S, Wang Z, Wang Y, Qiu C, Xu X, Han Z, Li W. Strigolactone regulates adventitious root formation via the MdSMXL7-MdWRKY6-MdBRC1 signaling cascade in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:772-786. [PMID: 36575587 DOI: 10.1111/tpj.16082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Propagation through stem cuttings is a popular method worldwide for species such as fruit tree rootstocks and forest trees. Adventitious root (AR) formation from stem cuttings is crucial for effective and successful clonal propagation of apple rootstocks. Strigolactones (SLs) are newly identified hormones involved in AR formation. However, the regulatory mechanisms underpinning this process remain elusive. In the present study, weighted gene co-expression network analysis, as well as rooting assays using stable transgenic apple materials, revealed that MdBRC1 served as a key gene in the inhibition of AR formation by SLs. We have demonstrated that MdSMXL7 and MdWRKY6 synergistically regulated MdBRC1 expression, depending on the interactions of MdSMXL7 and MdWRKY6 at the protein level downstream of SLs as well as the direct promoter binding on MdBRC1 by MdWRKY6. Furthermore, biochemical studies and genetic analysis revealed that MdBRC1 inhibited AR formation by triggering the expression of MdGH3.1 in a transcriptional activation pathway. Finally, the present study not only proposes a component, MdWRKY6, that enables MdSMXL7 to regulate MdBRC1 during the process of SL-controlled AR formation in apple, but also provides prospective target genes to enhance AR formation capacity using CRISPR (i.e. clustered regularly interspaced short palindromic repeats) technology, particularly in woody plants.
Collapse
Affiliation(s)
- Xingqiang Fan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yuqi Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Mt Albert, Auckland, 1025, New Zealand
| | - Shiyao Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zijun Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Changpeng Qiu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wei Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
Khan A, Nasim N, Pudhuvai B, Koul B, Upadhyay SK, Sethi L, Dey N. Plant Synthetic Promoters: Advancement and Prospective. AGRICULTURE 2023; 13:298. [DOI: 10.3390/agriculture13020298] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Native/endogenous promoters have several fundamental limitations in terms of their size, Cis-elements distribution/patterning, and mode of induction, which is ultimately reflected in their insufficient transcriptional activity. Several customized synthetic promoters were designed and tested in plants during the past decade to circumvent such constraints. Such synthetic promoters have a built-in capacity to drive the expression of the foreign genes at their maximum amplitude in plant orthologous systems. The basic structure and function of the promoter has been discussed in this review, with emphasis on the role of the Cis-element in regulating gene expression. In addition to this, the necessity of synthetic promoters in the arena of plant biology has been highlighted. This review also provides explicit information on the two major approaches for developing plant-based synthetic promoters: the conventional approach (by utilizing the basic knowledge of promoter structure and Cis-trans interaction) and the advancement in gene editing technology. The success of plant genetic manipulation relies on the promoter efficiency and the expression level of the transgene. Therefore, advancements in the field of synthetic promoters has enormous potential in genetic engineering-mediated crop improvement.
Collapse
Affiliation(s)
- Ahamed Khan
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 370 05 České Budějovice, Czech Republic
| | - Noohi Nasim
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| | - Baveesh Pudhuvai
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India
| | | | - Lini Sethi
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| | - Nrisingha Dey
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| |
Collapse
|
9
|
Fan X, Li H, Guo Y, Sun H, Wang S, Qi Q, Jiang X, Wang Y, Xu X, Qiu C, Li W, Han Z. Integrated multi-omics analysis uncovers roles of mdm-miR164b-MdORE1 in strigolactone-mediated inhibition of adventitious root formation in apple. PLANT, CELL & ENVIRONMENT 2022; 45:3582-3603. [PMID: 36000454 DOI: 10.1111/pce.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Apple is one of the most important fruit crops in temperate regions and largely relies on cutting propagation. Adventitious root formation is crucial for the success of cutting propagation. Strigolactones have been reported to function in rooting of woody plants. In this study, we determined that strigolactones have inhibitory effects on adventitious root formation in apple. Transcriptome analysis identified 12 051 differentially expressed genes over the course of adventitious root initiation, with functions related to organogenesis, cell wall biogenesis or plant development. Further analysis indicated that strigolactones might inhibit adventitious root formation through repressing two core hub genes, MdLAC3 and MdORE1. Combining small RNA and degradome sequencing, as well as dual-luciferase sensor assays, we identified and validated three negatively correlated miRNA-mRNA pairs, including mdm-miR397-MdLAC3 and mdm-miR164a/b-MdORE1. Overexpression of mdm-miR164b and silencing MdORE1 exhibited enhanced adventitious root formation in tobacco and apple, respectively. Finally, we verified the role of mdm-miR164b-MdORE1 in strigolactone-mediated repression of rooting ability. Overall, the identified comprehensive regulatory network in apple not only provides insight into strigolactone-mediated adventitious root formation in other woody plants, but also points to a potential strategy for genetic improvement of rooting capacity in woody plants.
Collapse
Affiliation(s)
- Xingqiang Fan
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Hui Li
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Yushuang Guo
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Haochen Sun
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Shiyao Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Qi Qi
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiangning Jiang
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yi Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Changpeng Qiu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Wei Li
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Asghar S, Xiong Y, Che M, Fan X, Li H, Wang Y, Xu X, Li W, Han Z. Transcriptome analysis reveals the effects of strigolactone on shoot regeneration of apple. PLANT CELL REPORTS 2022; 41:1613-1626. [PMID: 35680714 DOI: 10.1007/s00299-022-02882-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
We have demonstrated that strigolactone inhibitor, Tis108, could be used to improve shoot regeneration of apple, and provided insights into the molecular mechanism of strigolactone-mediated inhibition of adventitious shoot formation. Lack of an efficient transformation system largely stagnated the application of transgenic and CRISPR technology in apple rootstock. High shoot regeneration ability is an important basis for establishing an effective transformation system. In this study, we first demonstrated the inhibitory effects of strigolactones on the adventitious shoot formation of apple rootstock M26. Next, we successfully verified that strigolactone-biosynthesis inhibitor, Tis108, could be used to improve the shoot regeneration of woody plants. Our results also suggest strigolactone-biosynthesis gene, MdCCD7, can be a target gene for biotechnological improvements of shoot regeneration capacity. Furthermore, we have employed transcriptome analysis to reveal the molecular mechanism of strigolactone-mediated inhibition of adventitious shoot formation. Differentially expressed genes associated with photosynthesis, secondary growth, and organ development were identified. WGCNA suggests SLs might affect shoot regeneration through interaction with other hormones, especially, auxin, cytokinin, and ethylene. We were able to identify important candidate genes mediating the cross-talk between strigolactone and other hormones during the process of adventitious shoot formation. Overall, our findings not only propose a useful chemical for improving shoot regeneration in practice but also provide insights into the molecular mechanism of strigolactone-mediated inhibition of adventitious shoot formation.
Collapse
Affiliation(s)
- Sumeera Asghar
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yao Xiong
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Meng Che
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xingqiang Fan
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hui Li
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wei Li
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Zhenhai Han
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Wang Y, Gui C, Wu J, Gao X, Huang T, Cui F, Liu H, Sethupathy S. Spatio-Temporal Modification of Lignin Biosynthesis in Plants: A Promising Strategy for Lignocellulose Improvement and Lignin Valorization. Front Bioeng Biotechnol 2022; 10:917459. [PMID: 35845403 PMCID: PMC9283729 DOI: 10.3389/fbioe.2022.917459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Lignin is essential for plant growth, structural integrity, biotic/abiotic stress resistance, and water transport. Besides, lignin constitutes 10–30% of lignocellulosic biomass and is difficult to utilize for biofuel production. Over the past few decades, extensive research has uncovered numerous metabolic pathways and genes involved in lignin biosynthesis, several of which have been highlighted as the primary targets for genetic manipulation. However, direct manipulation of lignin biosynthesis is often associated with unexpected abnormalities in plant growth and development for unknown causes, thus limiting the usefulness of genetic engineering for biomass production and utilization. Recent advances in understanding the complex regulatory mechanisms of lignin biosynthesis have revealed new avenues for spatial and temporal modification of lignin in lignocellulosic plants that avoid growth abnormalities. This review explores recent work on utilizing specific transcriptional regulators to modify lignin biosynthesis at both tissue and cellular levels, focusing on using specific promoters paired with functional or regulatory genes to precisely control lignin synthesis and achieve biomass production with desired properties. Further advances in designing more appropriate promoters and other regulators will increase our capacity to modulate lignin content and structure in plants, thus setting the stage for high-value utilization of lignin in the future.
Collapse
Affiliation(s)
- Yongli Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Yongli Wang, ; Sivasamy Sethupathy,
| | - Cunjin Gui
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jiangyan Wu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xing Gao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Huang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Huan Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Yongli Wang, ; Sivasamy Sethupathy,
| |
Collapse
|
12
|
Oh Y, Kim SG. RPS5A Promoter-Driven Cas9 Produces Heritable Virus-Induced Genome Editing in Nicotiana attenuata. Mol Cells 2021; 44:911-919. [PMID: 34963106 PMCID: PMC8718363 DOI: 10.14348/molcells.2021.0237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022] Open
Abstract
The virus-induced genome editing (VIGE) system aims to induce targeted mutations in seeds without requiring any tissue culture. Here, we show that tobacco rattle virus (TRV) harboring guide RNA (gRNA) edits germ cells in a wild tobacco, Nicotiana attenuata, that expresses Streptococcus pyogenes Cas9 (SpCas9). We first generated N. attenuata transgenic plants expressing SpCas9 under the control of 35S promoter and infected rosette leaves with TRV carrying gRNA. Gene-edited seeds were not found in the progeny of the infected N. attenuata. Next, the N. attenuata ribosomal protein S5 A (RPS5A) promoter fused to SpCas9 was employed to induce the heritable gene editing with TRV. The RPS5A promoter-driven SpCas9 successfully produced monoallelic mutations at three target genes in N. attenuata seeds with TRV-delivered guide RNA. These monoallelic mutations were found in 2%-6% seeds among M1 progenies. This editing method provides an alternative way to increase the heritable editing efficacy of VIGE.
Collapse
Affiliation(s)
- Youngbin Oh
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
13
|
Arabidopsis P4 ATPase-mediated cell detoxification confers resistance to Fusarium graminearum and Verticillium dahliae. Nat Commun 2021; 12:6426. [PMID: 34741039 PMCID: PMC8571369 DOI: 10.1038/s41467-021-26727-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Many toxic secondary metabolites produced by phytopathogens can subvert host immunity, and some of them are recognized as pathogenicity factors. Fusarium head blight and Verticillium wilt are destructive plant diseases worldwide. Using toxins produced by the causal fungi Fusarium graminearum and Verticillium dahliae as screening agents, here we show that the Arabidopsis P4 ATPases AtALA1 and AtALA7 are responsible for cellular detoxification of mycotoxins. Through AtALA1-/AtALA7-mediated vesicle transport, toxins are sequestered in vacuoles for degradation. Overexpression of AtALA1 and AtALA7 significantly increases the resistance of transgenic plants to F. graminearum and V. dahliae, respectively. Notably, the concentration of deoxynivalenol, a mycotoxin harmful to the health of humans and animals, was decreased in transgenic Arabidopsis siliques and maize seeds. This vesicle-mediated cell detoxification process provides a strategy to increase plant resistance against different toxin-associated diseases and to reduce the mycotoxin contamination in food and feed.
Collapse
|
14
|
Zhai L, Wang X, Tang D, Qi Q, Yer H, Jiang X, Han Z, McAvoy R, Li W, Li Y. Molecular and physiological characterization of the effects of auxin-enriched rootstock on grafting. HORTICULTURE RESEARCH 2021; 8:74. [PMID: 33790234 PMCID: PMC8012700 DOI: 10.1038/s41438-021-00509-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 05/12/2023]
Abstract
Grafting is a highly useful technique, and its success largely depends on graft union formation. In this study, we found that root-specific expression of the auxin biosynthetic gene iaaM in tobacco, when used as rootstock, resulted in more rapid callus formation and faster graft healing. However, overexpression of the auxin-inactivating iaaL gene in rootstocks delayed graft healing. We observed increased endogenous auxin levels and auxin-responsive DR5::GUS expression in scions of WT/iaaM grafts compared with those found in WT/WT grafts, which suggested that auxin is transported upward from rootstock to scion tissues. A transcriptome analysis showed that auxin enhanced graft union formation through increases in the expression of genes involved in graft healing in both rootstock and scion tissues. We also observed that the ethylene biosynthetic gene ACS1 and the ethylene-responsive gene ERF5 were upregulated in both scions and rootstocks of the WT/iaaM grafts. Furthermore, exogenous applications of the ethylene precursor ACC to the junction of WT/WT grafts promoted graft union formation, whereas application of the ethylene biosynthesis inhibitor AVG delayed graft healing in WT/WT grafts, and the observed delay was less pronounced in the WT/iaaM grafts. These results demonstrated that elevated auxin levels in the iaaM rootstock in combination with the increased auxin levels in scions caused by upward transport/diffusion enhanced graft union formation and that ethylene was partially responsible for the effects of auxin on grafting. Our findings showed that grafting success can be enhanced by increasing the auxin levels in rootstocks using transgenic or gene-editing techniques.
Collapse
Affiliation(s)
- Longmei Zhai
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China
| | - Xiaomin Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, PR China
| | - Dan Tang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Qi Qi
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, PR China
| | - Huseyin Yer
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Xiangning Jiang
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, PR China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China
| | - Richard McAvoy
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Wei Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA.
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China.
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
15
|
Darqui FS, Radonic LM, Beracochea VC, Hopp HE, López Bilbao M. Peculiarities of the Transformation of Asteraceae Family Species: The Cases of Sunflower and Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:767459. [PMID: 34899788 PMCID: PMC8662702 DOI: 10.3389/fpls.2021.767459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 05/17/2023]
Abstract
The Asteraceae family is the largest and most diversified family of the Angiosperms, characterized by the presence of numerous clustered inflorescences, which have the appearance of a single compound flower. It is estimated that this family represents around 10% of all flowered species, with a great biodiversity, covering all environments on the planet, except Antarctica. Also, it includes economically important crops, such as lettuce, sunflower, and chrysanthemum; wild flowers; herbs, and several species that produce molecules with pharmacological properties. Nevertheless, the biotechnological improvement of this family is limited to a few species and their genetic transformation was achieved later than in other plant families. Lettuce (Lactuca sativa L.) is a model species in molecular biology and plant biotechnology that has easily adapted to tissue culture, with efficient shoot regeneration from different tissues, organs, cells, and protoplasts. Due to this plasticity, it was possible to obtain transgenic plants tolerant to biotic or abiotic stresses as well as for the production of commercially interesting molecules (molecular farming). These advances, together with the complete sequencing of lettuce genome allowed the rapid adoption of gene editing using the CRISPR system. On the other hand, sunflower (Helianthus annuus L.) is a species that for years was considered recalcitrant to in vitro culture. Although this difficulty was overcome and some publications were made on sunflower genetic transformation, until now there is no transgenic variety commercialized or authorized for cultivation. In this article, we review similarities (such as avoiding the utilization of the CaMV35S promoter in transformation vectors) and differences (such as transformation efficiency) in the state of the art of genetic transformation techniques performed in these two species.
Collapse
Affiliation(s)
- Flavia Soledad Darqui
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - Laura Mabel Radonic
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - Valeria Cecilia Beracochea
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - H. Esteban Hopp
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Marisa López Bilbao
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
- *Correspondence: Marisa López Bilbao,
| |
Collapse
|
16
|
Wang Y, Liang C, Wu S, Jian G, Zhang X, Zhang H, Tang J, Li J, Jiao G, Li F, Chu C. Vascular-specific expression of Gastrodia antifungal protein gene significantly enhanced cotton Verticillium wilt resistance. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1498-1500. [PMID: 31808275 PMCID: PMC7292534 DOI: 10.1111/pbi.13308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/13/2019] [Accepted: 11/23/2019] [Indexed: 05/20/2023]
Affiliation(s)
- Yiqin Wang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, the Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Chengzhen Liang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Shenjie Wu
- Research Center of BiotechnologyShanxi Academy of Agricultural SciencesTaiyuanShanxi provinceChina
| | - Guiliang Jian
- Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xueyan Zhang
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan provinceChina
| | - Huanyang Zhang
- Cotton Research InstituteShanxi Academy of Agricultural SciencesYunchengShanxi provinceChina
| | - Jiuyou Tang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, the Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Jing Li
- Cotton Research InstituteShanxi Academy of Agricultural SciencesYunchengShanxi provinceChina
| | - Gaili Jiao
- Cotton Research InstituteShanxi Academy of Agricultural SciencesYunchengShanxi provinceChina
| | - Fuguang Li
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan provinceChina
| | - Chengcai Chu
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, the Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
17
|
Liu R, Zou X, Wang Y, Long Q, Pei Y. A 100 bp GAGA motif-containing sequence in AGAMOUS second intron is able to suppress the activity of CaMV35S enhancer in vegetative tissues. PLoS One 2020; 15:e0230203. [PMID: 32134990 PMCID: PMC7058354 DOI: 10.1371/journal.pone.0230203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 11/19/2022] Open
Abstract
Flower-specific promoters enable genetic manipulation of floral organs to improve crop yield and quality without affecting vegetative growth. However, the identification of strong tissue-specific promoters is a challenge. In addition, information on cis elements that is able to repress gene expression in vegetative tissues remains limited. Here, we report that fusing a 35S enhancer to the stamen- and carpel-specific NtAGIP1 promoter derived from the tobacco AGAMOUS second intron (AGI) can significantly increase the promoter activity. Interestingly, although the activity of the new promoter extends to sepals and pedicles, it does not cross the boundary of the reproductive organs. Serial deletion of the AGI and chromatin immunoprecipitation (ChIP) assay reveal a 100-bp fragment that contains a conserved GAGA factor binding motif contributes to the flower specificity by mediating histone H3 lysine 27 trimethylation (H3K27me3) modification of the promoter. Furthermore, this fragment shows significant suppressive effect on the activity of the 35S enhancer in vegetative tissues, consequently, resulting in a significant increase of the activity of 35S enhancer:AGI chimeric promoter without sacrifice of its specificity in inflorescence.
Collapse
Affiliation(s)
- Ruochen Liu
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Xiuping Zou
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - You Wang
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Qin Long
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Yan Pei
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| |
Collapse
|
18
|
Gupta SD, Levey M, Schulze S, Karki S, Emmerling J, Streubel M, Gowik U, Paul Quick W, Westhoff P. The C 4 Ppc promoters of many C 4 grass species share a common regulatory mechanism for gene expression in the mesophyll cell. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:204-216. [PMID: 31529521 DOI: 10.1111/tpj.14532] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
C4 photosynthetic plants have evolved from C3 ancestors and are characterized by differential expression of several hundred genes. Strict compartmentalization of key C4 enzymes either to mesophyll (M) or bundle sheath cells is considered a crucial step towards the evolution of C4 photosynthesis. In this study, we demonstrate that the 5'-flanking sequences of the C4 type phosphoenolpyruvate carboxylase (Ppc) gene from three C4 grass species could drive M-cell-specific expression of a reporter gene in rice. In addition to that, we identified about 450 bp (upstream of their transcription start site) of the analyzed C4 Ppc promoters contain all the essential regulatory elements for driving M-cell-specific expression in rice leaves. Importantly, four motifs of conserved nucleotide sequences (CNSs) were also determined, which are essential for the activity of the promoter. A putative interaction between the CNSs and an unknown upstream element(s) is required for driving M-cell-specific expression. This work identifies the evolutionary conservation of C4 Ppc regulatory mechanisms of multiple closely related C4 grass species.
Collapse
Affiliation(s)
- Shipan Das Gupta
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, 40225, Düsseldorf, Germany
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakahli, 3814, Bangladesh
| | - Myles Levey
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Stefanie Schulze
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Shanta Karki
- International Rice Research Institute, Los Banos, Laguna, 4031, Philippines
- National Citrus Development Program, Kirtipur, Kathmandu, Nepal
| | - Jan Emmerling
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Monika Streubel
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, 40225, Düsseldorf, Germany
- Department of Biology and Environmental Sciences, Carl Von Ossietzky University, D-26129, Oldenburg, Germany
| | - W Paul Quick
- International Rice Research Institute, Los Banos, Laguna, 4031, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences from Complex Traits towards Synthetic Modules, 40225 Duesseldorf and, 50923, Cologne, Germany
| |
Collapse
|
19
|
Schumann U, Lee JM, Smith NA, Zhong C, Zhu JK, Dennis ES, Millar AA, Wang MB. DEMETER plays a role in DNA demethylation and disease response in somatic tissues of Arabidopsis. Epigenetics 2019; 14:1074-1087. [PMID: 31189415 PMCID: PMC6773409 DOI: 10.1080/15592294.2019.1631113] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022] Open
Abstract
DNA demethylases function in conjunction with DNA methyltransferases to modulate genomic DNA methylation levels in plants. The Arabidopsis genome contains four DNA demethylase genes, DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1) also known as DEMETER-LIKE 1 (DML1), DML2, and DML3. While ROS1, DML2, and DML3 were shown to function in disease response in somatic tissues, DME has been thought to function only in reproductive tissues to maintain the maternal-specific expression pattern of a subset of imprinted genes. Here we used promoter:β-glucuronidase (GUS) fusion constructs to show that DME is constitutively expressed throughout the plant, and that ROS1, DML2, and DML3 have tissue-specific expression patterns. Loss-of-function mutations in DME cause seed abortion and therefore viable DME mutants are not available for gene function analysis. We knocked down DME expression in a triple ros1 dml2 dml3 (rdd) mutant background using green tissue-specific expression of a hairpin RNA transgene (RNAi), generating a viable 'quadruple' demethylase mutant line. We show that this rdd DME RNAi line has enhanced disease susceptibility to Fusarium oxysporum infection compared to the rdd triple mutant. Furthermore, several defence-related genes, previously shown to be repressed in rdd, were further repressed in the rdd DME RNAi plants. DNA methylation analysis of two of these genes revealed increased differential promoter DNA methylation in rdd DME RNAi plants compared to WT, beyond the difference observed in the parental rdd plants. These results indicate that DME contributes to DNA demethylase activity and disease response in somatic tissues.
Collapse
Affiliation(s)
| | | | | | | | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | | | - Anthony A. Millar
- Research School of Biology, Australian National University, Acton, Australia
| | | |
Collapse
|
20
|
Sun Y, Huang J, Zhong S, Gu H, He S, Qu LJ. Novel DYW-type pentatricopeptide repeat (PPR) protein BLX controls mitochondrial RNA editing and splicing essential for early seed development of Arabidopsis. J Genet Genomics 2018; 45:155-168. [PMID: 29580769 DOI: 10.1016/j.jgg.2018.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/20/2018] [Indexed: 01/01/2023]
Abstract
In plants, RNA editing is a post-transcriptional process that changes specific cytidine to uridine in both mitochondria and plastids. Most pentatricopeptide repeat (PPR) proteins are involved in organelle RNA editing by recognizing specific RNA sequences. We here report the functional characterization of a PPR protein from the DYW subclass, Baili Xi (BLX), which contains five PPR motifs and a DYW domain. BLX is essential for early seed development, as plants lacking the BLX gene was embryo lethal and the endosperm failed to initiate cellularization. BLX was highly expressed in the embryo and endosperm, and the BLX protein was specifically localized in mitochondria, which is essential for BLX function. We found that BLX was required for the efficient editing of 36 editing sites in mitochondria. Moreover, BLX was involved in the splicing regulation of the fourth intron of nad1 and the first intron of nad2. The loss of BLX function impaired the mitochondrial function and increased the reactive oxygen species (ROS) level. Genetic complementation with truncated variants of BLX revealed that, in addition to the DYW domain, only the fifth PPR motif was essential for BLX function. The upstream sequences of the BLX-targeted editing sites are not conserved, suggesting that BLX serves as a novel and major mitochondrial editing factor (MEF) via a new non-RNA-interacting manner. This finding provides new insights into how a DYW-type PPR protein with fewer PPR motifs regulates RNA editing in plants.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Jiaying Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China; The National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Shan He
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China.
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China; The National Plant Gene Research Center (Beijing), Beijing 100101, China.
| |
Collapse
|
21
|
Ali S, Mir ZA, Bhat JA, Tyagi A, Chandrashekar N, Yadav P, Rawat S, Sultana M, Grover A. Isolation and characterization of systemic acquired resistance marker gene PR1 and its promoter from Brassica juncea. 3 Biotech 2018; 8:10. [PMID: 29259885 DOI: 10.1007/s13205-017-1027-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/04/2017] [Indexed: 11/30/2022] Open
Abstract
Systemic acquired resistance (SAR) is an inducible defense response in plants that provides enhanced resistance against a variety of pathogens. In this regard, SAR marker gene PR1 (pathogenesis-related gene 1) was isolated from Brassica juncea and was named as BjPR1. The amino acid sequence of BjPR1 protein showed 99, 92, and 78% similarity with known PR1 proteins of Brassica rapa, Brassica napus, and Arabidopsis thaliana, respectively. Quantitative real-time PCR (qRT-PCR) analysis showed increased expression of BjPR1 gene both in local (infected) and distal (non-infected) leaves of B. juncea after Alternaria brassicae infection, whereas mechanical wounding showed expression only in local (wounded) leaves but not in distal (unwounded) leaves. Moreover, BjPR1 gene was strongly induced by salicylic acid (SA), whereas no such induction was observed following jasmonic acid (JA) or abscisic acid (ABA) treatments. To further elucidate gene regulation pattern of BjPR1, 2 kb promoter region of BjPR1 was isolated and subjected to in silico analysis which identified many potential cis-regulatory elements associated with plant defense as well as signaling pathways. The transient GUS expression analysis showed strong expression of GUS gene driven by BjPR1 promoter after SA treatment, while as ABA and JA downregulates GUS gene expression compared to control. In addition, BjPR1 promoter was significantly induced by wounding at local tissues. Hence, these results highlight the multiple role of BjPR1 gene in response to biotic and abiotic stresses. In addition, the present study also reported BjPR1 promoter as stress-specific inducible promoter that can be ideal candidate for controlling the expression of biotic stress response genes in transgenic plants.
Collapse
Affiliation(s)
- Sajad Ali
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, 110012 India
- Department of Advanced Zoology and Biotechnology, Presidency College, Chennai, India
| | - Zahoor Ahmad Mir
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, 110012 India
| | - Javaid Akhter Bhat
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Anshika Tyagi
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, 110012 India
| | - N Chandrashekar
- Division of Microbiology, CCUBGA, Indian Agricultural Research Institute, New Delhi, India
| | - Prashant Yadav
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, 110012 India
| | - Sandhya Rawat
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, 110012 India
| | - Mazher Sultana
- Department of Advanced Zoology and Biotechnology, Presidency College, Chennai, India
| | - Anita Grover
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, 110012 India
| |
Collapse
|
22
|
Li W, Fang C, Krishnan S, Chen J, Yu H, Murphy AS, Merewitz E, Katin‐Grazzini L, McAvoy RJ, Deng Z, Zale J, Li Y. Elevated auxin and reduced cytokinin contents in rootstocks improve their performance and grafting success. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1556-1565. [PMID: 28376249 PMCID: PMC5698044 DOI: 10.1111/pbi.12738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 05/21/2023]
Abstract
Plant grafting is an important technique for horticultural and silvicultural production. However, many rootstock plants suffer from undesirable lateral bud outgrowth, low grafting success rates or poor rooting. Here, we used a root-predominant gene promoter (SbUGT) to drive the expression of a tryptophan-2-monooxygenase gene (iaaM) from Agrobacterium tumefaciens to increase auxin levels in tobacco. The transgenic plants, when used as a rootstock, displayed inhibited lateral bud outgrowth, enhanced grafting success rate and improved root initiation. However, root elongation and biomass of SbUGT::iaaM transgenic plants were reduced compared to those of wild-type plants. In contrast, when we used this same promoter to drive CKX (a cytokinin degradation gene) expression, the transgenic tobacco plants displayed enhanced root elongation and biomass. We then made crosses between the SbUGT::CKX and SbUGT::iaaM transgenic plants. We observed that overexpression of the CKX gene neutralized the negative effects of auxin overproduction on root elongation. Also, the simultaneous expression of both the iaaM and CKX genes in rootstock did not disrupt normal growth and developmental patterns in wild-type scions. Our results demonstrate that expression of both the iaaM and CKX genes predominantly in roots of rootstock inhibits lateral bud release from rootstock, improves grafting success rates and enhances root initiation and biomass.
Collapse
Affiliation(s)
- Wei Li
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | - Chu Fang
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | | | - Junmei Chen
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | - Hao Yu
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | - Angus S. Murphy
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMDUSA
| | - Emily Merewitz
- Department of Crop ScienceMichigan State UniversityEast LansingMIUSA
| | - Lorenzo Katin‐Grazzini
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | - Richard J. McAvoy
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | - Ziniu Deng
- College of Horticulture, Hunan Agricultural UniversityChangshaHunanChina
| | - Janice Zale
- Plant Pathology Department, Institute of Food and Agricultural SciencesCitrus Research and Education CenterUniversity of FloridaLake AlfredFLUSA
| | - Yi Li
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
- College of Horticulture, Hunan Agricultural UniversityChangshaHunanChina
| |
Collapse
|
23
|
Li W, Hu W, Fang C, Chen L, Zhuang W, Katin‐Grazzini L, McAvoy RJ, Guillard K, Li Y. An AGAMOUS intron-driven cytotoxin leads to flowerless tobacco and produces no detrimental effects on vegetative growth of either tobacco or poplar. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2276-2287. [PMID: 27168170 PMCID: PMC5103258 DOI: 10.1111/pbi.12581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/01/2016] [Accepted: 05/04/2016] [Indexed: 05/22/2023]
Abstract
Flowerless trait is highly desirable for poplar because it can prevent pollen- and seed-mediated transgene flow. We have isolated the second intron of PTAG2, an AGAMOUS (AG) orthologue from Populus trichocarpa. By fusing this intron sequence to a minimal 35S promoter sequence, we created two artificial promoters, fPTAG2I (forward orientation of the PTAG2 intron sequence) and rPTAG2I (reverse orientation of the PTAG2 intron sequence). In tobacco, expression of the β-glucuronidase gene (uidA) demonstrates that the fPTAG2I promoter is non-floral-specific, while the rPTAG2I promoter is active in floral buds but with no detectable vegetative activity. Under glasshouse conditions, transgenic tobacco plants expressing the Diphtheria toxin A (DT-A) gene driven by the rPTAG2I promoter produced three floral ablation phenotypes: flowerless, neuter (stamenless and carpel-less) and carpel-less. Further, the vegetative growth of these transgenic lines was similar to that of the wild-type plants. In field trials during 2014 and 2015, the flowerless transgenic tobacco stably maintained its flowerless phenotype, and also produced more shoot and root biomass when compared to wild-type plants. In poplar, the rPTAG2I::GUS gene exhibited no detectable activity in vegetative organs. Under field conditions over two growing seasons (2014 to the end of 2015), vegetative growth of the rPTAG2I::DT-A transgenic poplar plants was similar to that of the wild-type plants. Our results demonstrate that the rPTAG2I artificial promoter has no detectable activities in vegetative tissues and organs, and the rPTAG2I::DT-A gene may be useful for producing flowerless poplar that retains normal vegetative growth.
Collapse
Affiliation(s)
- Wei Li
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | - Wei Hu
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | - Chu Fang
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | - Longzheng Chen
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
- Institute of Vegetable CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Weibing Zhuang
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
- College of Horticulture and State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Lorenzo Katin‐Grazzini
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | - Richard J. McAvoy
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | - Karl Guillard
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | - Yi Li
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
- College of Horticulture and State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
24
|
Artlip TS, Wisniewski ME, Takatsuji H, Bassett CL. Engineering carpel-specific cold stress tolerance: a case study in Arabidopsis. PHYSIOLOGIA PLANTARUM 2016; 157:469-478. [PMID: 26806544 DOI: 10.1111/ppl.12420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Climate change predictions forecast an increase in early spring frosts that could result in severe damage to perennial crops. For example, the Easter freeze of April 2007 left several states in the United States reporting a complete loss of that year's peach crop. The most susceptible organ to early frost damage in fruit trees is the carpel, particularly during bloom opening. In this study, we explored the use of a carpel-specific promoter (ZPT2-10) from petunia (Petunia hybrida var. Mitchell) to drive expression of the peach dehydrin PpDhn1. In peach, this gene is exceptionally responsive to low temperature but has not been observed to be expressed in carpels. This study examined carpel-specific properties of a petunia promoter driving the expression of the GUS gene (uidA) in transgenic Arabidopsis flowers and developed a carpel-specific ion leakage test to assess freezing tolerance. A homozygous Arabidopsis line (line 1-20) carrying the petunia ZPT2-10 promoter::PpDhn1 construct was obtained and freezing tolerance in the transgenic line was compared with an untransformed control. Overexpression of PpDhn1 in line 1-20 provided as much as a 1.9°C increase in carpel freezing tolerance as measured by electrolyte leakage.
Collapse
Affiliation(s)
- Timothy S Artlip
- USDA, ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | - Michael E Wisniewski
- USDA, ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | - Hiroshi Takatsuji
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | | |
Collapse
|
25
|
Lim S, Nam M, Kim KH, Lee SH, Moon JK, Lim HS, Choung MG, Kim SM, Moon JS. Development of a new vector using Soybean yellow common mosaic virus for gene function study or heterologous protein expression in soybeans. J Virol Methods 2016; 228:1-9. [PMID: 26569351 DOI: 10.1016/j.jviromet.2015.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 11/22/2022]
Abstract
A new vector using Soybean yellow common mosaic virus (SYCMV) was constructed for gene function study or heterologous protein expression in soybeans. The in vitro transcript with a 5' cap analog m7GpppG from an SYCMV full-length infectious vector driven by a T7 promoter infected soybeans (pSYCMVT7-full). The symptoms observed in the soybeans infected with either the sap from SYCMV-infected leaves or pSYCMVT7-full were indistinguishable, suggesting that the vector exhibits equivalent biological activity as the virus itself. To utilize the vector further, a DNA-based vector driven by the Cauliflower mosaic virus (CaMV) 35S promoter was constructed. The complete sequence of the SYCMV genome was inserted into a binary vector flanked by a CaMV 35S promoter at the 5' terminus of the SYCMV genome and a cis-cleaving ribozyme sequence followed by a nopaline synthase terminator at the 3' terminus of the SYCMV genome (pSYCMV-full). The SYCMV-derived vector was tested for use as a virus-induced gene silencing (VIGS) vector for the functional analysis of soybean genes. VIGS constructs containing either a fragment of the Phytoene desaturase (PDS) gene (pSYCMV-PDS1) or a fragment of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RbcS) gene (pSYCMV-RbcS2) were constructed. Plants infiltrated with each vector using the Agrobacterium-mediated inoculation method exhibited distinct symptoms, such as photo-bleaching in plants infiltrated with pSYCMV-PDS1 and yellow or pale green coloring in plants infiltrated with pSYCMV-RbcS2. In addition, down-regulation of the transcripts of the two target genes was confirmed via northern blot analysis. Particle bombardment and direct plasmid DNA rubbing were also confirmed as alternative inoculation methods. To determine if the SYCMV vector can be used for the expression of heterologous proteins in soybean plants, the vector encoding amino acids 135-160 of VP1 of Foot-and-mouth disease virus (FMDV) serotype O1 Campos (O1C) was constructed (pSYCMV-FMDV). Plants infiltrated with pSYCMV-FMDV were only detected via western blotting using the O1C antibody. Based on these results, we propose that the SYCMV-derived vector can be used for gene function study or expression of useful heterologous proteins in soybeans.
Collapse
Affiliation(s)
- Seungmo Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea
| | - Moon Nam
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Kil Hyun Kim
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Republic of Korea
| | - Su-Heon Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jung-Kyung Moon
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Republic of Korea
| | - Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Myoung-Gun Choung
- Department of Herbal Medicine Resource, Kangwon National University, Samcheok 245-710, Republic of Korea
| | - Sang-Mok Kim
- Yeongnam Regional Office, Animal and Plant Quarantine Agency, Busan 600-016, Republic of Korea
| | - Jae Sun Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea.
| |
Collapse
|
26
|
Mao Y, Zhang Z, Feng Z, Wei P, Zhang H, Botella JR, Zhu JK. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:519-32. [PMID: 26360626 PMCID: PMC5515382 DOI: 10.1111/pbi.12468] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/30/2015] [Accepted: 08/05/2015] [Indexed: 05/18/2023]
Abstract
The Streptococcus-derived CRISPR/Cas9 system is being widely used to perform targeted gene modifications in plants. This customized endonuclease system has two components, the single-guide RNA (sgRNA) for target DNA recognition and the CRISPR-associated protein 9 (Cas9) for DNA cleavage. Ubiquitously expressed CRISPR/Cas9 systems (UC) generate targeted gene modifications with high efficiency but only those produced in reproductive cells are transmitted to the next generation. We report the design and characterization of a germ-line-specific Cas9 system (GSC) for Arabidopsis gene modification in male gametocytes, constructed using a SPOROCYTELESS (SPL) genomic expression cassette. Four loci in two endogenous genes were targeted by both systems for comparative analysis. Mutations generated by the GSC system were rare in T1 plants but were abundant (30%) in the T2 generation. The vast majority (70%) of the T2 mutant population generated using the UC system were chimeras while the newly developed GSC system produced only 29% chimeras, with 70% of the T2 mutants being heterozygous. Analysis of two loci in the T2 population showed that the abundance of heritable gene mutations was 37% higher in the GSC system compared to the UC system and the level of polymorphism of the mutations was also dramatically increased with the GSC system. Two additional systems based on germ-line-specific promoters (pDD45-GT and pLAT52-GT) were also tested, and one of them was capable of generating heritable homozygous T1 mutant plants. Our results suggest that future application of the described GSC system will facilitate the screening for targeted gene modifications, especially lethal mutations in the T2 population.
Collapse
Affiliation(s)
- Yanfei Mao
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Zhengjing Zhang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences (CAS), Shanghai, China
| | - Zhengyan Feng
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences (CAS), Shanghai, China
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pengliang Wei
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences (CAS), Shanghai, China
| | - Hui Zhang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - José Ramón Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
- Correspondence: (Tel 1-765-496-7601; fax 1-765-494-0391,
| |
Collapse
|
27
|
Yu SI, Han JH, Chhoeun C, Lee BH. Genetic Screening for Arabidopsis Mutants Defective in STA1 Regulation under Thermal Stress Implicates the Existence of Regulators of Its Specific Expression, and the Genetic Interactions in the Stress Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2016; 7:618. [PMID: 27242824 PMCID: PMC4861721 DOI: 10.3389/fpls.2016.00618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/22/2016] [Indexed: 05/04/2023]
Abstract
To cope with environmental stresses, plants have developed various stress tolerance mechanisms that involve the induction of many stress responsive genes through stress-specific and common signaling pathways. Stress-specific/common transcription factors, rather than general basal factors, were considered important in this stress tolerance. The Arabidopsis STABILIZED1 (STA1) gene encodes a putative pre-mRNA splicing factor that is similar to the human U5 snRNP-associated 102-kDa protein and the yeast pre-mRNA splicing factors, PRP1p and Prp6p. As pre-mRNA splicing is a necessary process for proper gene expression in eukaryotes, STA1 is expected to be constantly functional in all conditions. Interestingly, STA1 expression is induced by temperature stresses, and STA1 recessive mutation (sta1-1) resulted in temperature stress-specific hypersensitivity. This suggests STA1's stress specific function in addition to its presumed "housekeeping" role. In order to establish the genetic system to understand the regulation of STA1 expression in temperature stresses, we generated a bioluminescent Arabidopsis plant harboring the STA1 promoter fused to the firefly luciferase coding sequence (STA1p-LUC). Through genetic analysis, the bioluminescent Arabidopsis homozygous for one-copy STA1p-LUC was isolated and characterized. In this STA1p-LUC line, the expression patterns of STA1p-LUC were similar to those of the endogenous STA1 gene under cold and heat stresses. The STA1p-LUC line was then chemically mutagenized and screened to isolate the genetic loci of STA1 regulators under cold or heat stresses. Mutants with altered STA1p-LUC luminescence were identified and further confirmed through luminescence imaging in the next generation and analysis of endogenous STA1 expression. The categorization of STA1p-LUC deregulated mutants implicated the existence of cold or heat stress-specific as well as common genetic regulators for STA1 expression. Interestingly, some mutants showed opposite-directional deregulation of STA1 expression depending on the type of thermal stress, suggesting that the loci may represent important switch factors which determine the direction of signaling pathways for STA1 expression in response to temperature.
Collapse
|
28
|
Zheng X, Li Q, Liu D, Zang L, Zhang K, Deng K, Yang S, Xie Z, Tang X, Qi Y, Zhang Y. Promoter analysis of the sweet potato ADP-glucose pyrophosphorylase gene IbAGP1 in Nicotiana tabacum. PLANT CELL REPORTS 2015; 34:1873-84. [PMID: 26183951 DOI: 10.1007/s00299-015-1834-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/23/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE The IbAGP1 gene of sweet potato ( Ipomoea batatas ) encodes the sucrose-inducible small subunit of ADP-glucose pyrophosphorylase. Through expression analysis of 5'-truncations and synthetic forms of the IbAGP1 promoter in transgenic tobacco, we show that SURE-Like elements and W-box elements of the promoter contribute to the sucrose inducibility of this gene. Sweet potato (Ipomoea batatas) contains two genes (IbAGP1 and IbAGP2) encoding the catalytically active small subunits of ADP-glucose pyrophosphorylase, an enzyme with an important role in regulating starch synthesis in higher plants. Previous studies have shown that IbAGP1 is expressed in the storage roots, leaves, and stem tissues of sweet potato, and its transcript is strongly induced by applying sucrose exogenously to detached leaves. To investigate the tissue-specific expression of the IbAGP1 promoter, a series of 5'-truncated promoters extending from bases -1913, -1598, -1298, -1053, -716, and -286 to base +75 were used to drive the expression of the β-glucuronidase reporter gene (GUS) in tobacco plants (Nicotiana tabacum). Histochemical and fluorometric GUS assays showed that (1) GUS expression driven by the longest fragment (1989 bp) of the IbAGP1 promoter was detected in vegetative tissues (roots, stems, leaves), (2) fragments extending to -1053 or beyond retained strong GUS expression in roots, stems, and leaves, whereas further 5'-deletions resulted in considerable reduction in GUS activity, and (3) the series of 5'-truncated promoters responded differently to exogenously applied sucrose. The 1989-bp IbAGP1 promoter contains five sequences (two AATAAAA, one AATAAAAAA, and two AATAAATAAA) that are similar to sucrose-responsive elements (SURE). These SURE-Like sequences are found at nucleotide positions -1273, -1239, -681, -610, and -189. Moreover, putative W-box elements are found at positions -1985, -1434, -750, and -578. Synthetic promoters containing tandem repeats of the 4X SURE-Like or 4X W-box upstream from a minimal CaMV35S promoter-GUS fusion showed significant expression in transgenic tobacco in response to exogenous sucrose. These results show that SURE-Like elements and W-box elements of the IbAGP1 promoter contribute to the sucrose inducibility of this gene.
Collapse
Affiliation(s)
- Xuelian Zheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qian Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Dongqing Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lili Zang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Kaiyue Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Kejun Deng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shixin Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhengyang Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xu Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yiping Qi
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| | - Yong Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
29
|
Pandurangan S, Pajak A, Rintoul T, Beyaert R, Hernández-Sebastià C, Brown DCW, Marsolais F. Soybean seeds overexpressing asparaginase exhibit reduced nitrogen concentration. PHYSIOLOGIA PLANTARUM 2015; 155:126-137. [PMID: 25898948 DOI: 10.1111/ppl.12341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/18/2015] [Accepted: 03/28/2015] [Indexed: 06/04/2023]
Abstract
In soybean seed, a correlation has been observed between the concentration of free asparagine at mid-maturation and protein concentration at maturity. In this study, a Phaseolus vulgaris K+ -dependent asparaginase cDNA, PvAspG2, was expressed in transgenic soybean under the control of the embryo specific promoter of the β-subunit of β-conglycinin. Three lines were isolated having high expression of the transgene at the transcript, protein and enzyme activity levels at mid-maturation, with a 20- to 40-fold higher asparaginase activity in embryo than a control line expressing β-glucuronidase. Increased asparaginase activity was associated with a reduction in free asparagine levels as a percentage of total free amino acids, by 11-18%, and an increase in free aspartic acid levels, by 25-60%. Two of the lines had reduced nitrogen concentration in mature seed as determined by nitrogen analysis, by 9-13%. Their levels of extractible globulins were reduced by 11-30%. This was accompanied by an increase in oil concentration, by 5-8%. The lack of change in nitrogen concentration in the third transgenic line was correlated with an increase in free glutamic acid levels by approximately 40% at mid-maturation.
Collapse
Affiliation(s)
- Sudhakar Pandurangan
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Agnieszka Pajak
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Tara Rintoul
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Ronald Beyaert
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Cinta Hernández-Sebastià
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Daniel C W Brown
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Frédéric Marsolais
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| |
Collapse
|
30
|
Singhal P, Jan AT, Azam M, Haq QMR. Plant abiotic stress: a prospective strategy of exploiting promoters as alternative to overcome the escalating burden. FRONTIERS IN LIFE SCIENCE 2015. [DOI: 10.1080/21553769.2015.1077478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Chen Z, Gao X, Zhang J. Alteration of osa-miR156e expression affects rice plant architecture and strigolactones (SLs) pathway. PLANT CELL REPORTS 2015; 34:767-81. [PMID: 25604991 DOI: 10.1007/s00299-015-1740-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/30/2014] [Accepted: 01/06/2015] [Indexed: 05/20/2023]
Abstract
Overexpressing osa--miR156e in rice produced a bushy mutant and osa--miR156e regulation of tillering may do this through the strigolactones (SLs) pathway. Appropriate downregulation of osa--miR156 expression contributed to the improvement of plant architecture. Tillering is one of the main determinants for rice architecture and yield. In this study, a bushy mutant of rice was identified with increased tiller number, reduced plant height, prolonged heading date, low seed setting, and small panicle size due to a T-DNA insertion which essentially elevated the expression of osa-miR156e. Transgenic plants with constitutive expression of osa-miR156e also had the bushy phenotype, which showed osa-miR156 may control apical dominance and tiller outgrowth via regulating the strigolactones signaling pathway. Furthermore, the extent of impaired morphology was correlated with the expression level of osa-miR156e. In an attempt to genetically improve rice architecture, ectopic expression of osa-miR156e under the GAL4-UAS system or OsTB1 promoter was conducted. According to agronomic trait analysis, pTB1:osa-miR156e transgenic plants significantly improved the grain yield per plant compared to plants overexpressing osa-miR156e, even though the yield was still inferior to the wild type, making it a very interesting albeit negative result. Our results suggested that osa-miR156 could serve as a potential tool for modifying rice plant architecture through genetic manipulation of the osa-miR156 expression level.
Collapse
Affiliation(s)
- Zhihui Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China,
| | | | | |
Collapse
|
32
|
Wen Z, Yang Y, Zhang J, Wang X, Singer S, Liu Z, Yang Y, Yan G, Liu Z. Highly interactive nature of flower-specific enhancers and promoters, and its potential impact on tissue-specific expression and engineering of multiple genes or agronomic traits. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:951-62. [PMID: 24893677 DOI: 10.1111/pbi.12203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/22/2014] [Indexed: 06/03/2023]
Abstract
Molecular stacking enables multiple traits to be effectively engineered in crops using a single vector. However, the co-existence of distinct plant promoters in the same transgenic unit might, like their mammalian counterparts, interfere with one another. In this study, we devised a novel approach to investigate enhancer-promoter and promoter-promoter interactions in transgenic plants and demonstrated that three of four flower-specific enhancer/promoters were capable of distantly activating a pollen- and stigma-specific Pps promoter (fused to the cytotoxic DT-A gene) in other tissues, as revealed by novel tissue ablation phenotypes in transgenic plants. The NtAGI1 enhancer exclusively activated stamen- and carpel-specific DT-A expression, thus resulting in tissue ablation in an orientation-independent manner; this activation was completely abolished by the insertion of an enhancer-blocking insulator (EXOB) between the NtAGI1 enhancer and Pps promoter. Similarly, AGL8 and AP1Lb1, but not AP1La, promoters also activated distinct tissue-specific DT-A expression and ablation, with the former causing global growth retardation and the latter ablating apical inflorescences. While the tissue specificity of the enhancer/promoters generally defined their activation specificities, the strength of their activity in particular tissues or developmental stages appeared to determine whether activation actually occurred. Our findings provide the first evidence that plant-derived enhancer/promoters can distantly interact/interfere with one another, which could pose potential problems for the tissue-specific engineering of multiple traits using a single-vector stacking approach. Therefore, our work highlights the importance of adopting enhancer-blocking insulators in transformation vectors to minimize promoter-promoter interactions. The practical and fundamental significance of these findings will be discussed.
Collapse
Affiliation(s)
- Zhifeng Wen
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA; State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Construction of a Binary Vector for Transformation ofArabidopsis thalianawith a New Selection Marker. Biosci Biotechnol Biochem 2014; 72:3041-3. [DOI: 10.1271/bbb.80428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Hua W, Zheng P, He Y, Cui L, Kong W, Wang Z. An insight into the genes involved in secoiridoid biosynthesis in Gentiana macrophylla by RNA-seq. Mol Biol Rep 2014; 41:4817-25. [PMID: 24706059 DOI: 10.1007/s11033-014-3352-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/25/2014] [Indexed: 12/25/2022]
Abstract
The dried root of Gentiana macrophylla is a well-known traditional Chinese herbal medicine for treating jaundice, hepatitis, and stomachic and choleretic ailments. However, natural sources are now in short supply. A lack of information about its genetic background has been a great hindrance to producing its active constituents via genetic engineering. We performed RNA-seq to obtain 42,918 unigenes (average length = 667 bp) in its transcriptome. Of these, 32,141 (74.89 %) were annotated and 2,339 unigenes were assigned to secondary-metabolite pathways. In all, 114 putative unigenes involved in secoiridoid biosynthesis were identified in our transcriptome library. A Blast X search against the Arabidopsis gene regulatory information server showed that 4,413 unigenes are homologous to transcription factor genes from Arabidopsis. Organ-specific genes and candidate gene expression profiles were also investigated with digital gene expression technology. Quantitative PCR was used to verify the expression patterns of several novel transcripts involved in secoiridoid biosynthesis. Our results not only enrich the gene resource but will also benefit research into the molecular genetics and functional genomics of this species.
Collapse
Affiliation(s)
- Wenping Hua
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Zhou J, Yu F, Wang X, Yang Y, Yu C, Liu H, Cheng Y, Yan C, Chen J. Specific expression of DR5 promoter in rice roots using a tCUP derived promoter-reporter system. PLoS One 2014; 9:e87008. [PMID: 24466314 PMCID: PMC3899362 DOI: 10.1371/journal.pone.0087008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/15/2013] [Indexed: 11/19/2022] Open
Abstract
Variation of transgene expression caused by either position effect at the insertion site or the promoter/enhancer elements employed for the expression of selectable marker genes has complicated phenotype characterization and caused misinterpretation. We have developed a reporter system in rice to analyze the influence of vector configuration, spacer and selectable marker gene promoter on the expression of the promoterless GUS reporter and DR5 promoter. Our results indicate that a spacer inserted between the reversed 35S promoter and the GUS reporter could reduce leaky expression of the reporter but was unable to block the nonspecific expression of DR5::GUS. Stacking the selectable marker unit in head to tail with the GUS reporter aided the gene specific expression of the GUS reporter under the DR5 promoter even when the 35S promoter is used for expression of the selectable marker. Compared to 35S under this configuration, a quick and distinctive expression of DR5::GUS was observed in the root cap, quiescent center and xylem cells in the root apical meristem by using the tCUP derived promoter (tCUP1) for selection, that is similar to the pattern obtained by a sensitive DR5 variant (DR5rev) in Arabidopsis. These data suggest a conserved property of the tCUP promoter in preventing enhancer-promoter interactions in rice as it does in Arabidopsis, and also demonstrate that an analogous distal auxin maximum exists in roots of rice. Therefore, the tCUP promoter based selection system provides a new strategy for specific expression of transgenes in rice.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Feibo Yu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Xuming Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Yong Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Chulang Yu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Hongjia Liu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Ye Cheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Chengqi Yan
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- * E-mail: (JC); (CY)
| | - Jianping Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- * E-mail: (JC); (CY)
| |
Collapse
|
36
|
Thilmony R, Guttman ME, Lin JW, Blechl AE. The wheat HMW-glutenin 1Dy10 gene promoter controls endosperm expression in Brachypodium distachyon. GM CROPS & FOOD 2014; 5:36-43. [PMID: 24322586 PMCID: PMC5033164 DOI: 10.4161/gmcr.27371] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/18/2022]
Abstract
The grass species Brachypodium distachyon has emerged as a model system for the study of gene structure and function in temperate cereals. As a first demonstration of the utility of Brachypodium to study wheat gene promoter function, we transformed it with a T-DNA that included the uidA reporter gene under control of a wheat High-Molecular-Weight Glutenin Subunit (HMW-GS) gene promoter and transcription terminator. For comparison, the same expression cassette was introduced into wheat by biolistics. Histochemical staining for β-glucuronidase (GUS) activity showed that the wheat promoter was highly expressed in the endosperms of all the seeds of Brachypodium and wheat homozygous plants. It was not active in any other tissue of transgenic wheat, but showed variable and sporadic activity in a minority of styles of the pistils of four homozygous transgenic Brachypodium lines. The ease of obtaining transgenic Brachypodium plants and the overall faithfulness of expression of the wheat HMW-GS promoter in those plants make it likely that this model system can be used for studies of other promoters from cereal crop species that are difficult to transform.
Collapse
Affiliation(s)
- Roger Thilmony
- USDA-ARS; Western Regional Research Center; Crop Improvement and Utilization Research Unit; Albany, CA USA
| | - Mara E Guttman
- USDA-ARS; Western Regional Research Center; Crop Improvement and Utilization Research Unit; Albany, CA USA
| | - Jeanie W Lin
- USDA-ARS; Western Regional Research Center; Crop Improvement and Utilization Research Unit; Albany, CA USA
| | - Ann E Blechl
- USDA-ARS; Western Regional Research Center; Crop Improvement and Utilization Research Unit; Albany, CA USA
| |
Collapse
|
37
|
Zhang S, Lian Y, Liu Y, Wang X, Liu Y, Wang G. Characterization of a maize Wip1 promoter in transgenic plants. Int J Mol Sci 2013; 14:23872-92. [PMID: 24322445 PMCID: PMC3876083 DOI: 10.3390/ijms141223872] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 12/04/2022] Open
Abstract
The Maize Wip1 gene encodes a wound-induced Bowman-Birk inhibitor (BBI) protein which is a type of serine protease inhibitor, and its expression is induced by wounding or infection, conferring resistance against pathogens and pests. In this study, the maize Wip1 promoter was isolated and its function was analyzed. Different truncated Wip1 promoters were fused upstream of the GUS reporter gene and transformed into Arabidopsis, tobacco and rice plants. We found that (1) several truncated maize Wip1 promoters led to strong GUS activities in both transgenic Arabidopsis and tobacco leaves, whereas low GUS activity was detected in transgenic rice leaves; (2) the Wip1 promoter was not wound-induced in transgenic tobacco leaves, but was induced by wounding in transgenic rice leaves; (3) the truncated Wip1 promoter had different activity in different organs of transgenic tobacco plants; (4) the transgenic plant leaves containing different truncated Wip1 promoters had low GUS transcripts, even though high GUS protein level and GUS activities were observed; (5) there was one transcription start site of Wip1 gene in maize and two transcription start sites of GUS in Wip1::GUS transgenic lines; (6) the adjacent 35S promoter which is present in the transformation vectors enhanced the activity of the truncated Wip1 promoters in transgenic tobacco leaves, but did not influence the disability of truncated Wip1231 promoter to respond to wounding signals. We speculate that an ACAAAA hexamer, several CAA trimers and several elements similar to ACAATTAC octamer in the 5'-untranslated region might contribute to the strong GUS activity in Wip1231 transgenic lines, meanwhile, compared to the 5'-untranslated region from Wip1231 transgenic lines, the additional upstream open reading frames (uORFs) in the 5'-untranslated region from Wip1737 transgenic lines might contribute to the lower level of GUS transcript and GUS activity.
Collapse
Affiliation(s)
- Shengxue Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing 100081, China; E-Mails: (S.Z.); (Y.L.); (X.W.)
| | - Yun Lian
- Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China; E-Mail:
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing 100081, China; E-Mails: (S.Z.); (Y.L.); (X.W.)
| | - Xiaoqing Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing 100081, China; E-Mails: (S.Z.); (Y.L.); (X.W.)
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing 100081, China; E-Mails: (S.Z.); (Y.L.); (X.W.)
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing 100081, China; E-Mails: (S.Z.); (Y.L.); (X.W.)
| |
Collapse
|
38
|
Wang X, Fan C, Zhang X, Zhu J, Fu YF. BioVector, a flexible system for gene specific-expression in plants. BMC PLANT BIOLOGY 2013; 13:198. [PMID: 24304941 PMCID: PMC4235170 DOI: 10.1186/1471-2229-13-198] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/27/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND Functional genomic research always needs to assemble different DNA fragments into a binary vector, so as to express genes with different tags from various promoters with different levels. The cloning systems available bear similar disadvantages, such as promoters/tags are fixed on a binary vector, which is generally with low cloning efficiency and limited for cloning sites if a novel promoter/tag is in need. Therefore, it is difficult both to assemble a gene and a promoter together and to modify the vectors in hand. Another disadvantage is that a long spacer from recombination sites, which may be detrimental to the protein function, exists between a gene and a tag. Multiple GATEWAY system only resolves former problem at the expense of very low efficiency and expensive for multiple LR reaction. RESULTS To improve efficiency and flexibility for constructing expression vectors, we developed a platform, BioVector, by combining classical restriction enzyme/ligase strategy with modern Gateway DNA recombination system. This system included a series of vectors for gene cloning, promoter cloning, and binary vector construction to meet various needs for plant functional genomic study. CONCLUSION This BioVector platform makes it easy to construct any vectors to express a target gene from a specific promoter with desired intensity, and it is also waiting to be freely modified by researchers themselves for ongoing demands. This idea can also be transferred to the different fields including animal or yeast study.
Collapse
Affiliation(s)
- Xu Wang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Chengming Fan
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Xiaomei Zhang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Jinlong Zhu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Yong-Fu Fu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| |
Collapse
|
39
|
Watanabe S, Shimada TL, Hiruma K, Takano Y. Pathogen infection trial increases the secretion of proteins localized in the endoplasmic reticulum body of Arabidopsis. PLANT PHYSIOLOGY 2013; 163:659-64. [PMID: 23918901 PMCID: PMC3793047 DOI: 10.1104/pp.113.217364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Endoplasmic reticulum structures facilitate the increased secretion of proteins during the plant immune response.
Collapse
|
40
|
Shcherbak N, Kishchenko O, Sakhno L, Komarnytsky I, Kuchuk M. Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation. CYTOL GENET+ 2013. [DOI: 10.3103/s0095452713030079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Yuan Y, Chen Y, Yan S, Liang Y, Zheng Y, Dongdong L. Molecular cloning and characterisation of an acyl carrier protein thioesterase gene (CocoFatB1) expressed in the endosperm of coconut (Cocos nucifera) and its heterologous expression in Nicotiana tabacum to engineer the accumulation of different fatty acids. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 41:80-86. [PMID: 32480968 DOI: 10.1071/fp13050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/31/2013] [Indexed: 06/11/2023]
Abstract
Coconut (Cocos nucifera L.) contains large amounts of medium chain fatty acids, which mostly recognise acyl-acyl carrier protein (ACP) thioesterases that hydrolyse acyl-ACP into free fatty acids to terminate acyl chain elongation during fatty acid biosynthesis. A full-length cDNA of an acyl-ACP thioesterase, designated CocoFatB1, was isolated from cDNA libraries prepared from coconut endosperm during fruit development. The gene contained an open reading frame of 1254 bp, encoding a 417-amino acid protein. The amino acid sequence of the CocoFatB1 protein showed 100% and 95% sequence similarity to CnFatB1 and oil palm (Elaeis guineensis Jacq.) acyl-ACP thioesterases, respectively. Real-time fluorescent quantitative PCR analysis indicated that the CocoFatB1 transcript was most abundant in the endosperm from 8-month-old coconuts; the leaves and endosperm from 15-month-old coconuts had ~80% and ~10% of this level. The CocoFatB1 coding region was overexpressed in tobacco (Nicotiana tabacum L.) under the control of the seed-specific napin promoter following Agrobacterium tumefaciens-mediated transformation. CocoFatB1 transcript expression varied 20-fold between different transgenic plants, with 21 plants exhibiting detectable levels of CocoFatB1 expression. Analysis of the fatty acid composition of transgenic tobacco seeds showed that the levels of myristic acid (14 : 0), palmitic acid (16 : 0) and stearic acid (18 : 0) were increased by 25%, 34% and 17%, respectively, compared with untransformed plants. These results indicated that CocoFatB1 acts specifically on 14 : 0-ACP, 16 : 0-ACP and 18 : 0-ACP, and can increase medium chain saturated fatty acids. The gene may valuable for engineering fatty acid metabolism in crop improvement programmes.
Collapse
Affiliation(s)
- Yijun Yuan
- Department of Biotechnology, Hainan University, Haikou, Hainan 570228, China
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Hainan University, Haikou, Hainan 570228, China
| | - Shan Yan
- Department of Biotechnology, Hainan University, Haikou, Hainan 570228, China
| | - Yuanxue Liang
- Department of Biotechnology, Hainan University, Haikou, Hainan 570228, China
| | - Yusheng Zheng
- Department of Biotechnology, Hainan University, Haikou, Hainan 570228, China
| | - Li Dongdong
- Department of Biotechnology, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
42
|
Ilina EL, Logachov AA, Laplaze L, Demchenko NP, Pawlowski K, Demchenko KN. Composite Cucurbita pepo plants with transgenic roots as a tool to study root development. ANNALS OF BOTANY 2012; 110:479-89. [PMID: 22553131 PMCID: PMC3394650 DOI: 10.1093/aob/mcs086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/05/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS In most plant species, initiation of lateral root primordia occurs above the elongation zone. However, in cucurbits and some other species, lateral root primordia initiation and development takes place in the apical meristem of the parental root. Composite transgenic plants obtained by Agrobacterium rhizogenes-mediated transformation are known as a suitable model to study root development. The aim of the present study was to establish this transformation technique for squash. METHODS The auxin-responsive promoter DR5 was cloned into the binary vectors pKGW-RR-MGW and pMDC162-GFP. Incorporation of 5-ethynyl-2'-deoxyuridine (EdU) was used to evaluate the presence of DNA-synthesizing cells in the hypocotyl of squash seedlings to find out whether they were suitable for infection. Two A. rhizogenes strains, R1000 and MSU440, were used. Roots containing the respective constructs were selected based on DsRED1 or green fluorescent protein (GFP) fluorescence, and DR5::Egfp-gusA or DR5::gusA insertion, respectively, was verified by PCR. Distribution of the response to auxin was visualized by GFP fluorescence or β-glucuronidase (GUS) activity staining and confirmed by immunolocalization of GFP and GUS proteins, respectively. KEY RESULTS Based on the distribution of EdU-labelled cells, it was determined that 6-day-old squash seedlings were suited for inoculation by A. rhizogenes since their root pericycle and the adjacent layers contain enough proliferating cells. Agrobacterium rhizogenes R1000 proved to be the most virulent strain on squash seedlings. Squash roots containing the respective constructs did not exhibit the hairy root phenotype and were morphologically and structurally similar to wild-type roots. CONCLUSIONS The auxin response pattern in the root apex of squash resembled that in arabidopsis roots. Composite squash plants obtained by A. rhizogenes-mediated transformation are a good tool for the investigation of root apical meristem development and root branching.
Collapse
Affiliation(s)
- Elena L. Ilina
- Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova 2, 197376, St.-Petersburg, Russia
| | - Anton A. Logachov
- Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova 2, 197376, St.-Petersburg, Russia
| | - Laurent Laplaze
- Institut de Recherche pour le Développement, UMR DIADE (Agro.M/INRA/IRD/UM2), Equipe Rhizogenèse, 911 Avenue Agropolis, F-34394 Montpellier cedex 5, France
| | - Nikolay P. Demchenko
- Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova 2, 197376, St.-Petersburg, Russia
| | | | - Kirill N. Demchenko
- Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova 2, 197376, St.-Petersburg, Russia
- For correspondence. E-mail
| |
Collapse
|
43
|
Ginis O, Courdavault V, Melin C, Lanoue A, Giglioli-Guivarc'h N, St-Pierre B, Courtois M, Oudin A. Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4-diphosphate synthase gene promoter from the methyl erythritol phosphate pathway. Mol Biol Rep 2012; 39:5433-47. [PMID: 22160472 DOI: 10.1007/s11033-011-1343-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
Abstract
The Madagascar periwinkle produces monoterpenoid indole alkaloids (MIA) of high interest due to their therapeutical values. The terpenoid moiety of MIA is derived from the methyl erythritol phosphate (MEP) and seco-iridoid pathways. These pathways are regarded as the limiting branch for MIA biosynthesis in C. roseus cell and tissue cultures. In previous studies, we demonstrated a coordinated regulation at the transcriptional and spatial levels of genes from both pathways. We report here on the isolation of the 5'-flanking region (1,049 bp) of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene from the MEP pathway. To investigate promoter transcriptional activities, the HDS promoter was fused to GUS reporter gene. Agrobacterium-mediated transformation of young tobacco leaves revealed that the cloned HDS promoter displays a tissue-specific GUS staining restricted to the vascular region of the leaves and limited to a part of the vein that encompasses the phloem in agreement with the previous localization of HDS transcripts in C. roseus aerial organs. Further functional characterizations in stably or transiently transformed C. roseus cells allowed us to identify the region that can be consider as the minimal promoter and to demonstrate the induction of HDS promoter by several hormonal signals (auxin, cytokinin, methyljasmonate and ethylene) leading to MIA production. These results, and the bioinformatic analysis of the HDS 5'-region, suggest that the HDS promoter harbours a number of cis-elements binding specific transcription factors that would regulate the flux of terpenoid precursors involved in MIA biosynthesis.
Collapse
Affiliation(s)
- Olivia Ginis
- Université François Rabelais de Tours, EA 2106, Biomolécules et Biotechnologies Végétales, 31 avenue Monge, 37200, Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Singer SD, Liu Z, Cox KD. Minimizing the unpredictability of transgene expression in plants: the role of genetic insulators. PLANT CELL REPORTS 2012; 31:13-25. [PMID: 21987122 DOI: 10.1007/s00299-011-1167-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 09/27/2011] [Indexed: 05/20/2023]
Abstract
The genetic transformation of plants has become a necessary tool for fundamental plant biology research, as well as the generation of engineered plants exhibiting improved agronomic and industrial traits. However, this technology is significantly hindered by the fact that transgene expression is often highly variable amongst independent transgenic lines. Two of the major contributing factors to this type of inconsistency are inappropriate enhancer-promoter interactions and chromosomal position effects, which frequently result in mis-expression or silencing of the transgene, respectively. Since the precise, often tissue-specific, expression of the transgene(s) of interest is often a necessity for the successful generation of transgenic plants, these undesirable side effects have the potential to pose a major challenge for the genetic engineering of these organisms. In this review, we discuss strategies for improving foreign gene expression in plants via the inclusion of enhancer-blocking insulators, which function to impede enhancer-promoter communication, and barrier insulators, which block the spread of heterochromatin, in transgenic constructs. While a complete understanding of these elements remains elusive, recent studies regarding their use in genetically engineered plants indicate that they hold great promise for the improvement of transgene expression, and thus the future of plant biotechnology.
Collapse
Affiliation(s)
- Stacy D Singer
- Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | | | | |
Collapse
|
45
|
Singer SD, Hily JM, Cox KD. Analysis of the enhancer-blocking function of the TBS element from Petunia hybrida in transgenic Arabidopsis thaliana and Nicotiana tabacum. PLANT CELL REPORTS 2011; 30:2013-25. [PMID: 21706298 DOI: 10.1007/s00299-011-1109-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/01/2011] [Accepted: 06/13/2011] [Indexed: 05/31/2023]
Abstract
Transcriptional enhancers possess the ability to override the tissue-specificity and efficiency of nearby promoters, which is of concern when generating transgenic constructs bearing multiple cassettes. One means of preventing these inappropriate interactions is through the use of enhancer-blocking insulators. The 2-kb transformation booster sequence (TBS) from Petunia hybrida has been shown previously to exhibit this function when inserted between an enhancer and promoter in transgenic Arabidopsis thaliana. In this study, we attempted to further characterize the ability of this fragment to impede enhancer-promoter interference through an analysis of transgenic Arabidopsis and Nicotiana tabacum lines bearing various permutations of the TBS element between the cauliflower mosaic virus (CaMV) 35S enhancer and an assortment of tissue-specific promoters fused to the β-glucuronidase (GUS) reporter gene. The full-length TBS fragment was found to function in both orientations, although to a significantly lesser degree in the reverse orientation, and was operational in both plant species tested. While multiple deletion fragments were found to exhibit activity, it appeared that several regions of the TBS were required for maximal enhancer-blocking function. Furthermore, we found that this element exhibited promoter-like activity, which has implications in terms of possible mechanisms behind its ability to impede enhancer-promoter communication in plants.
Collapse
Affiliation(s)
- Stacy D Singer
- Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | | | | |
Collapse
|
46
|
Singer SD, Cox KD, Liu Z. Enhancer-promoter interference and its prevention in transgenic plants. PLANT CELL REPORTS 2011; 30:723-31. [PMID: 21170713 DOI: 10.1007/s00299-010-0977-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/07/2010] [Accepted: 12/07/2010] [Indexed: 05/22/2023]
Abstract
Biotechnology has several advantages over conventional breeding for the precise engineering of gene function and provides a powerful tool for the genetic improvement of agronomically important traits in crops. In particular, it has been exploited for the improvement of multiple traits through the simultaneous introduction or stacking of several genes driven by distinct tissue-specific promoters. Since transcriptional enhancer elements have been shown to override the specificity of nearby promoters in a position- and orientation-independent manner, the co-existence of multiple enhancers/promoters within a single transgenic construct could be problematic as it has the potential to cause the mis-expression of transgene product(s). In order to develop strategies with, which to prevent such interference, a clear understanding of the mechanisms underlying enhancer-mediated activation of target promoters, as well as the identification of DNA sequences that function to block these interactions in plants, will be necessary. To date, little is known concerning enhancer function in plants and only a very limited number of enhancer-blocking insulators that operate in plant species have been identified. In this review, we discuss the current knowledge surrounding enhancer-promoter interactions, as well as possible means of minimizing such interference during plant transformation experiments.
Collapse
Affiliation(s)
- Stacy D Singer
- USDA-ARS Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | | | | |
Collapse
|
47
|
Development of a series of gateway binary vectors possessing a tunicamycin resistance gene as a marker for the transformation of Arabidopsis thaliana. Biosci Biotechnol Biochem 2011; 75:804-7. [PMID: 21512216 DOI: 10.1271/bbb.110063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We made two series of Gateway binary vectors, pGWBs and R4pGWBs, possessing a UDP-N-acetylglucosamine: dolichol phosphate N-acetylglucosamine-1-P transferase (GPT) gene driven by the nopaline synthase promoter (Pnos) as a tunicamycin resistance marker for the transformation of Arabidopsis thaliana. The reporters and tags employed in this system are sGFP, GUS, LUC, EYFP, ECFP, G3GFP, mRFP, TagRFP, 6xHis, FLAG, 3xHA, 4xMyc, 10xMyc, GST, T7, and TAP. Selection of transformants was successful on plates containing 0.15 mg/L of tunicamycin. These vectors were compatible with existing pGWB and R4pGWB vectors for kanamycin, hygromycin B, and BASTA® selection, and are useful new tools for making transgenic Arabidopsis.
Collapse
|
48
|
Thomson JG, Cook M, Guttman M, Smith J, Thilmony R. Novel sulI binary vectors enable an inexpensive foliar selection method in Arabidopsis. BMC Res Notes 2011; 4:44. [PMID: 21366919 PMCID: PMC3060128 DOI: 10.1186/1756-0500-4-44] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 03/02/2011] [Indexed: 11/18/2022] Open
Abstract
Background Sulfonamide resistance is conferred by the sulI gene found on many Enterobacteriaceae R plasmids and Tn21 type transposons. The sulI gene encodes a sulfonamide insensitive dihydropteroate synthase enzyme required for folate biosynthesis. Transformation of tobacco, potato or Arabidopsis using sulI as a selectable marker generates sulfadiazine-resistant plants. Typically sulI-based selection of transgenic plants is performed on tissue culture media under sterile conditions. Findings A set of novel binary vectors containing a sulI selectable marker expression cassette were constructed and used to generate transgenic Arabidopsis. We demonstrate that the sulI selectable marker can be utilized for direct selection of plants grown in soil with a simple foliar spray application procedure. A highly effective and inexpensive high throughput screening strategy to identify transgenic Arabidopsis without use of tissue culture was developed. Conclusion Novel sulI-containing Agrobacterium binary vectors designed to over-express a gene of interest or to characterize a test promoter in transgenic plants have been constructed. These new vector tools combined with the various beneficial attributes of sulfonamide selection and the simple foliar screening strategy provide an advantageous alternative for plant biotechnology researchers. The set of binary vectors is freely available upon request.
Collapse
Affiliation(s)
- James G Thomson
- USDA-ARS, Western Regional Research Center, Crop Improvement and Utilization Research Unit, 800 Buchanan Street, Albany, CA 94710 USA.
| | | | | | | | | |
Collapse
|
49
|
Singer SD, Cox KD, Liu Z. Both the constitutive cauliflower mosaic virus 35S and tissue-specific AGAMOUS enhancers activate transcription autonomously in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2010; 74:293-305. [PMID: 20703807 DOI: 10.1007/s11103-010-9673-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 07/27/2010] [Indexed: 05/20/2023]
Abstract
The expression of eukaryotic genes from their cognate promoters is often regulated by the action of transcriptional enhancer elements that function in an orientation-independent manner either locally or at a distance within a genome. This interactive nature often provokes unexpected interference within transgenes in plants, as reflected by misexpression of the introduced gene and undesired phenotypes in transgenic lines. To gain a better understanding of the mechanism underlying enhancer/promoter interactions in a plant system, we analyzed the activation of a β-glucuronidase (GUS) reporter gene by enhancers contained within the AGAMOUS second intron (AGI) and the Cauliflower Mosaic Virus (CaMV) 35S promoter, respectively, in the presence and absence of a target promoter. Our results indicate that both the AGI and 35S enhancers, which differ significantly in their species of origin and in the pattern of expression that they induce, have the capacity to activate the expression of a nearby gene through the promoter-independent initiation of autonomous transcriptional events. Furthermore, we provide evidence that the 35S enhancer utilizes a mechanism resembling animal- and yeast-derived scanning or facilitated tracking models of long-distance enhancer action in its activation of a remote target promoter.
Collapse
Affiliation(s)
- Stacy D Singer
- USDA-ARS Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | | | | |
Collapse
|
50
|
Peremarti A, Twyman RM, Gómez-Galera S, Naqvi S, Farré G, Sabalza M, Miralpeix B, Dashevskaya S, Yuan D, Ramessar K, Christou P, Zhu C, Bassie L, Capell T. Promoter diversity in multigene transformation. PLANT MOLECULAR BIOLOGY 2010; 73:363-78. [PMID: 20354894 DOI: 10.1007/s11103-010-9628-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 03/11/2010] [Indexed: 05/03/2023]
Abstract
Multigene transformation (MGT) is becoming routine in plant biotechnology as researchers seek to generate more complex and ambitious phenotypes in transgenic plants. Every nuclear transgene requires its own promoter, so when coordinated expression is required, the introduction of multiple genes leads inevitably to two opposing strategies: different promoters may be used for each transgene, or the same promoter may be used over and over again. In the former case, there may be a shortage of different promoters with matching activities, but repetitious promoter use may in some cases have a negative impact on transgene stability and expression. Using illustrative case studies, we discuss promoter deployment strategies in transgenic plants that increase the likelihood of successful and stable multiple transgene expression.
Collapse
Affiliation(s)
- Ariadna Peremarti
- Departament de Producció Vegetal i Ciència Forestal, ETSEA, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|