1
|
Pan Q, Zhang Y, Yang Y, Qiao Y, Qian Y, Wang J, Wang X, Kang Z, Liu J. The Puccinia striiformis effector Pst11215 manipulates mitochondria to suppress host immunity by promoting TaVDIP1-mediated ubiquitination of TaVDAC1. THE NEW PHYTOLOGIST 2024; 244:1961-1978. [PMID: 39307959 DOI: 10.1111/nph.20146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/04/2024] [Indexed: 11/08/2024]
Abstract
Mitochondria-induced cell death is closely correlated with plant immune responses against pathogens. However, the molecular mechanisms by which pathogens manipulate mitochondria to suppress host resistance remain poorly understood. In this study, a haustorium-specific effector Pst11215 from the wheat stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst) was characterized by host-induced gene silencing. The interaction partners regulated by Pst11215 were screened using the yeast two-hybrid system. In addition, Pst11215-mediated immune regulation modes were further determined. The results showed that Pst11215 was required for Pst virulence. Pst11215 interacted with the wheat voltage-dependent anion channel TaVDAC1, the negative regulator of wheat resistance to stripe rust, in mitochondria. Furthermore, the E3 ubiquitin ligase TaVDIP1 targeted and ubiquitinated TaVDAC1, which can be promoted by Pst11215. TaVDIP1 conferred enhanced wheat susceptibility to Pst by cooperating with TaVDAC1. Overexpression of TaVDIP1 reduced reactive oxygen species (ROS) accumulation and abnormal mitochondria. Our study revealed that Pst11215 functions as an important pathogenicity factor secreted to the host mitochondria to compromise wheat resistance to Pst possibly by facilitating TaVDIP1-mediated ubiquitination of TaVDAC1, thereby protecting mitochondria from ROS-induced impairment. This research unveils a novel regulation mode of effectors hijacking host mitochondria to contribute to pathogen infection.
Collapse
Affiliation(s)
- Qinglin Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yueyang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yixin Qiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yingrui Qian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinmian Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaojie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
2
|
Singh N, Ravi B, Saini LK, Pandey GK. Voltage-dependent anion channel 3 (VDAC3) mediates P. syringae induced ABA-SA signaling crosstalk in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108237. [PMID: 38109831 DOI: 10.1016/j.plaphy.2023.108237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/04/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023]
Abstract
Pathogen severely affects plant mitochondrial processes including respiration, however, the roles and mechanism of mitochondrial protein during the immune response remain largely unexplored. The interplay of plant hormone signaling during defense is an outcome of plant pathogen interaction. We recently discovered that the Arabidopsis calcineurin B-like interacting protein kinase 9 (AtCIPK9) interacts with the voltage-dependent anion channel 3 (AtVDAC3) and inhibits MV-induced oxidative damage. Here we report the characterization of AtVDAC3 in an antagonistic interaction pathway between abscisic acid (ABA) and salicylic acid (SA) signaling in Pseudomonas syringae -Arabidopsis interaction. In this study, we observed that mutants of AtVDAC3 were highly susceptible to Pseudomonas syringae infection as compared to the wild type (WT) Arabidopsis plants. Transcripts of VDAC3 and CIPK9 were inducible upon ABA application. Following pathogen exposure, expression analyses of ABA and SA biosynthesis genes indicated that the function of VDAC3 is required for isochorisimate synthase 1 (ICS1) expression but not for Nine-cis-epoxycaotenoid dioxygenase 3 (NCED3) expression. Despite the fact that vdac3 mutants had increased NCED3 expression in response to pathogen challenge, transcripts of ABA sensitive genes such as AtRD22 and AtRAB18 were downregulated even after exogenous ABA application. VDAC3 is required for ABA responsive genes expression upon exogenous ABA application. We also found that Pseudomonas syringae-induced SA signaling is downregulated in vdac3 mutants since overexpression of VDAC3 resulted in hyperaccumulation of Pathogenesis related gene1 (PR1) transcript. Interestingly, ABA application prior to P. syringae inoculation resulted in the upregulation of ABA responsive genes like Responsive to ABA18 (RAB18) and Responsive to dehydration 22 (RD22). Intriguingly, in the absence of AtVDAC3, Pst challenge can dramatically increase ABA-induced RD22 and RAB18 expression. Altogether our results reveal a novel Pathogen-SA-ABA interaction pathway in plants. Our findings show that ABA plays a significant role in modifying plant-pathogen interactions, owing to cross-talk with the biotic stress signaling pathways of ABA and SA.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Barkha Ravi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
3
|
Zhao H, Huang J, Zhao X, Yu L, Wang X, Zhao C, nasab HR, Tang C, Wang X. Stripe Rust Effector Pst_9302 Inhibits Wheat Immunity to Promote Susceptibility. PLANTS (BASEL, SWITZERLAND) 2023; 13:94. [PMID: 38202402 PMCID: PMC10780974 DOI: 10.3390/plants13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Puccinia striiformis f. sp. tritici is an obligate biotrophic fungus that causes destructive stripe rust disease in wheat. During infection, Pst secretes virulence effectors via a specific infection structure-the haustorium-inside host cells to disturb host immunity and promote fungal colonization and expansion. Hence, the identification and functional analyses of Pst effectors are of great significance in deciphering the Pst pathogenicity mechanism. Here, we identified one candidate Pst effector Pst_9302 that could suppress Bax-triggered cell death in Nicotiana benthamiana. qRT-PCR analyses showed that the transcript levels of Pst_9302 were highly increased during the early infection stages of Pst. The transient expression of Pst_9302 in wheat via the type-three secretion system (T3SS) significantly inhibited the callose deposition induced by Pseudomonas syringae EtHAn. During wheat-Pst interaction, Pst_9302 overexpression suppressed reactive oxygen species (ROS) accumulation and cell death caused by the avirulent Pst race CYR23. The host-induced gene silencing (HIGS) of Pst_9302 resulted in decreased Pst pathogenicity with reduced infection area. The results suggest that Pst_9302 plays a virulence role in suppressing plant immunity and promoting Pst pathogenicity. Moreover, wheat voltage-dependent anion channel 1 protein (TaVDAC1) was identified as candidate Pst_9302-interacting proteins by yeast two-hybrid (Y2H) screening. Pull-down assays using the His-Pst_9302 and GST-TaVDAC1 protein verified their interactions. These results suggest that Pst_9302 may modulate wheat TaVDAC1 to regulate plant immunity.
Collapse
Affiliation(s)
- Haibin Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Jiangyu Huang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Xiaoyan Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Ligang Yu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Congcong Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Hojjatollah Rabbani nasab
- State Key Laboratory of Crop Stress, Plant Protection Department, Golestan Agricultural and Natural Resource Research and Education Center, Gorgan P.O. Box 49156-77555, Iran;
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| |
Collapse
|
4
|
Rodríguez-Saavedra C, García-Ortiz DA, Burgos-Palacios A, Morgado-Martínez LE, King-Díaz B, Guevara-García ÁA, Sánchez-Nieto S. Identification and Characterization of VDAC Family in Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:2542. [PMID: 37447103 DOI: 10.3390/plants12132542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
The voltage-dependent anion channel (VDAC) is the most abundant protein in the outer mitochondrial membrane (OMM) of all eukaryotes, having an important role in the communication between mitochondria and cytosol. The plant VDAC family consists of a wide variety of members that may participate in cell responses to several environmental stresses. However, there is no experimental information about the members comprising the maize VDAC (ZmVDAC) family. In this study, the ZmVDAC family was identified, and described, and its gene transcription profile was explored during the first six days of germination and under different biotic stress stimuli. Nine members were proposed as bona fide VDAC genes with a high potential to code functional VDAC proteins. Each member of the ZmVDAC family was characterized in silico, and nomenclature was proposed according to phylogenetic relationships. Transcript levels in coleoptiles showed a different pattern of expression for each ZmVDAC gene, suggesting specific roles for each one during seedling development. This expression profile changed under Fusarium verticillioides infection and salicylic acid, methyl jasmonate, and gibberellic acid treatments, suggesting no redundancy for the nine ZmVDAC genes and, thus, probably specific and diverse functions according to plant needs and environmental conditions. Nevertheless, ZmVDAC4b was significantly upregulated upon biotic stress signals, suggesting this gene's potential role during the biotic stress response.
Collapse
Affiliation(s)
- Carolina Rodríguez-Saavedra
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Donají Azucena García-Ortiz
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Andrés Burgos-Palacios
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Luis Enrique Morgado-Martínez
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Beatriz King-Díaz
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Ángel Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca C.P. 62209, Mexico
| | - Sobeida Sánchez-Nieto
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| |
Collapse
|
5
|
Wang J, Xu G, Ning Y, Wang X, Wang GL. Mitochondrial functions in plant immunity. TRENDS IN PLANT SCIENCE 2022; 27:1063-1076. [PMID: 35659746 DOI: 10.1016/j.tplants.2022.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are energy factories of cells and are important for intracellular interactions with other organelles. Emerging evidence indicates that mitochondria play essential roles in the response to pathogen infection. During infection, pathogens deliver numerous enzymes and effectors into host cells, and some of these effectors target mitochondria, altering mitochondrial morphology, metabolism, and functions. To defend against pathogen attack, mitochondria are actively involved in changing intracellular metabolism, hormone-mediated signaling, and signal transduction, producing reactive oxygen species and reactive nitrogen species and triggering programmed cell death. Additionally, mitochondria coordinate with other organelles to integrate and amplify diverse immune signals. In this review, we summarize recent advances in understanding how mitochondria function in plant immunity and how pathogens target mitochondria for host defense suppression.
Collapse
Affiliation(s)
- Jiyang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guojuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Singh A, Sharma A, Singh N, Nandi AK. MTO1-RESPONDING DOWN 1 (MRD1) is a transcriptional target of OZF1 for promoting salicylic acid-mediated defense in Arabidopsis. PLANT CELL REPORTS 2022; 41:1319-1328. [PMID: 35325291 DOI: 10.1007/s00299-022-02861-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
OZF1 promotes the transcription of MRD1, which is essential for SA-mediated defense against virulent and avirulent bacterial pathogens in Arabidopsis. Salicylic acid (SA) is critical for defense against biotrophic pathogens. A trans-activator protein NPR1 plays significant roles in SA-signaling. However, evidences suggest the existence of NPR1-independent pathways for SA signaling in plants. Previously, we reported Arabidopsis OXIDATION-RELATED ZN-FINGER PROTEIN1 (OZF1) as a positive regulator of NPR1-independent SA-signaling. However, the mechanism or components of OZF1-mediated SA signaling was not known. Through the analysis of differentially expressing genes, we report the identification of MTO1-RESPONDING DOWN 1 (MRD1) as a transcriptional target of OZF1. Expressions of MRD1 and its overlapping gene in Arabidopsis genome, HEI10 increase upon pathogen inoculation in an OZF1-dependent manner. Their mutants are susceptible to both virulent and avirulent bacterial pathogens and show compromised SA-mediated immunity. Overexpression of MRD1 but not the HEI10 rescues the loss-of-resistance phenotype of the ozf1 mutant. OZF1 physically associates at the MRD1 promoter area upon pathogen inoculation. Results altogether support that MRD1 is a transcriptional target of OZF1 for promoting SA-mediated defense in Arabidopsis.
Collapse
Affiliation(s)
- Anupriya Singh
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Akash Sharma
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Nidhi Singh
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
7
|
Lee HC, Huang YP, Huang YW, Hu CC, Lee CW, Chang CH, Lin NS, Hsu YH. Voltage-dependent anion channel proteins associate with dynamic Bamboo mosaic virus-induced complexes. PLANT PHYSIOLOGY 2022; 188:1061-1080. [PMID: 34747475 PMCID: PMC8825239 DOI: 10.1093/plphys/kiab519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Infection cycles of viruses are highly dependent on membrane-associated host factors. To uncover the infection cycle of Bamboo mosaic virus (BaMV) in detail, we purified the membrane-associated viral complexes from infected Nicotiana benthamiana plants and analyzed the involved host factors. Four isoforms of voltage-dependent anion channel (VDAC) proteins on the outer membrane of mitochondria were identified due to their upregulated expression in the BaMV complex-enriched membranous fraction. Results from loss- and gain-of-function experiments indicated that NbVDAC2, -3, and -4 are essential for efficient BaMV accumulation. During BaMV infection, all NbVDACs concentrated into larger aggregates, which overlapped and trafficked with BaMV virions to the structure designated as the "dynamic BaMV-induced complex." Besides the endoplasmic reticulum and mitochondria, BaMV replicase and double-stranded RNAs were also found in this complex, suggesting the dynamic BaMV-induced complex is a replication complex. Yeast two-hybrid and pull-down assays confirmed that BaMV triple gene block protein 1 (TGBp1) could interact with NbVDACs. Confocal microscopy revealed that TGBp1 is sufficient to induce NbVDAC aggregates, which suggests that TGBp1 may play a pivotal role in the NbVDAC-virion complex. Collectively, these findings indicate that NbVDACs may associate with the dynamic BaMV-induced complex via TGBp1 and NbVDAC2, -3, or -4 and can promote BaMV accumulation. This study reveals the involvement of mitochondrial proteins in a viral complex and virus infection.
Collapse
Affiliation(s)
- Hsiang-Chi Lee
- PhD Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Wei Lee
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chih-Hao Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
8
|
Yu M, Yu Y, Song T, Zhang Y, Wei F, Cheng J, Zhang B, Zhang X. Characterization of the voltage-dependent anion channel (VDAC) gene family in wheat (Triticum aestivum L.) and its potential mechanism in response to drought and salinity stresses. Gene 2022; 809:146031. [PMID: 34678428 DOI: 10.1016/j.gene.2021.146031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/04/2022]
Abstract
Voltage-dependent anion channels (VDACs) are major transport proteins localized in the outer membrane of mitochondria and play critical roles in regulating plant growth and responding to stress. In this study, a total of 26 VDAC genes in common wheat (Triticum aestivum L.) were identified. TaVDACs that contained β-barrel structures were classified into three groups with phylogenetic and sequence alignment. Additionally, the gene structure and protein conserved motif composition varied among diverse subfamilies but were relatively conserved within the same subfamily. The basic elements that were stress- and hormone-related, including TATA-box, CAAT-box, MBS, LTR, TC-rich repeats, ABRE, P-box and TATC-box, were predicted within the promoter region of TaVDAC genes. TaVDAC expression patterns differed among tissues, organs and abiotic stress conditions. Overexpression (OE) of TaVDAC1-B conferred high tolerance to salinity and less resistance to drought stress in Arabidopsis thaliana. TaVDAC1-B interacted with Nucleoredoxin-D1 (TaNRX-D1) protein. Furthermore, compared with WT lines, salinity stress further upregulated the level of AtNRX1 (homologous gene of TaNRX-D1 in Arabidopsis) expression and the activity of superoxide dismutase in TaVDAC1-B OE lines, which led to a decrease in superoxide radical accumulation; drought stress further downregulated AtNRX1 expression and superoxide dismutase activity in TaVDAC1-B OE lines, resulting in the accumulation of superoxide radicals. Our study not only presents comprehensive information for understanding the VDAC gene family in wheat but also proposes a potential mechanism in response to drought and salinity stress.
Collapse
Affiliation(s)
- Ming Yu
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yang Yu
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Tianqi Song
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yunrui Zhang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Fan Wei
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jie Cheng
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Bo Zhang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Xiaoke Zhang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
9
|
Kanwar P, Sanyal SK, Mahiwal S, Ravi B, Kaur K, Fernandes JL, Yadav AK, Tokas I, Srivastava AK, Suprasanna P, Pandey GK. CIPK9 targets VDAC3 and modulates oxidative stress responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:241-260. [PMID: 34748255 DOI: 10.1111/tpj.15572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Calcium (Ca2+ ) is widely recognized as a key second messenger in mediating various plant adaptive responses. Here we show that calcineurin B-like interacting protein kinase CIPK9 along with its interacting partner VDAC3 identified in the present study are involved in mediating plant responses to methyl viologen (MV). CIPK9 physically interacts with and phosphorylates VDAC3. Co-localization, co-immunoprecipitation, and fluorescence resonance energy transfer experiments proved their physical interaction in planta. Both cipk9 and vdac3 mutants exhibited a tolerant phenotype against MV-induced oxidative stress, which coincided with the lower-level accumulation of reactive oxygen species in their roots. In addition, the analysis of cipk9vdac3 double mutant and VDAC3 overexpressing plants revealed that CIPK9 and VDAC3 were involved in the same pathway for inducing MV-dependent oxidative stress. The response to MV was suppressed by the addition of lanthanum chloride, a non-specific Ca2+ channel blocker indicating the role of Ca2+ in this pathway. Our study suggest that CIPK9-VDAC3 module may act as a key component in mediating oxidative stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Barkha Ravi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Kanwaljeet Kaur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Joel L Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Akhilesh K Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Indu Tokas
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| |
Collapse
|
10
|
Yang M, Duan X, Wang Z, Yin H, Zang J, Zhu K, Wang Y, Zhang P. Overexpression of a Voltage-Dependent Anion-Selective Channel (VDAC) Protein-Encoding Gene, MsVDAC, from Medicago sativa Confers Cold and Drought Tolerance to Transgenic Tobacco. Genes (Basel) 2021; 12:1706. [PMID: 34828312 PMCID: PMC8617925 DOI: 10.3390/genes12111706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022] Open
Abstract
Voltage-dependent anion channels (VDACs) are highly conserved proteins that are involved in the translocation of tRNA and play a key role in modulating plant senescence and multiple pathways. However, the functions of VDACs in plants are still poorly understood. Here, a novel VDAC gene was isolated and identified from alfalfa (Medicago sativa L.). MsVDAC localized to the mitochondria, and its expression was highest in alfalfa roots and was induced in response to cold, drought and salt treatment. Overexpression of MsVDAC in tobacco significantly increased MDA, GSH, soluble sugars, soluble protein and proline contents under cold and drought stress. However, the activities of SOD and POD decreased in transgenic tobacco under cold stress, while the O2- content increased. Stress-responsive genes including LTP1, ERD10B and Hxk3 were upregulated in the transgenic plants under cold and drought stress. However, GAPC, CBL1, BI-1, Cu/ZnSOD and MnSOD were upregulated only in the transgenic tobacco plants under cold stress, and GAPC, CBL1, and BI-1 were downregulated under drought stress. These results suggest that MsVDAC provides cold tolerance by regulating ROS scavenging, osmotic homeostasis and stress-responsive gene expression in plants, but the improved drought tolerance via MsVDAC may be mainly due to osmotic homeostasis and stress-responsive genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (X.D.); (Z.W.); (H.Y.); (J.Z.); (K.Z.); (Y.W.)
| |
Collapse
|
11
|
VDAC1 Negatively Regulates Floral Transition in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms222111603. [PMID: 34769031 PMCID: PMC8584032 DOI: 10.3390/ijms222111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Voltage-dependent anion channels (VDACs) are the most important proteins in mitochondria. They localize to the outer mitochondrial membrane and contribute to the metabolite transport between the mitochondria and cytoplasm, which aids plant growth regulation. Here, we report that Arabidopsis thaliana VDAC1 is involved in the floral transition, with the loss of AtVDAC1 function, resulting in an early-flowering phenotype. AtVDAC1 is expressed ubiquitously in Arabidopsis. To identify the flowering pathway integrators that may be responsible for AtVDAC1′s function during the floral transition, an RNA-seq analysis was performed. In total, 106 differentially expressed genes (DEGs) were identified between wild-type and atvdac1-5 mutant seedlings. However, none were involved in flowering-related pathways. In contrast, AtVDAC1 physically associated with FLOWERING LOCUS T. Thus, in the floral transition, AtVDAC1 may function partly through the FLOWERING LOCUS T protein.
Collapse
|
12
|
Wang R, Deng M, Yang C, Yu Q, Zhang L, Zhu Q, Guo X. A Qa-SNARE complex contributes to soybean cyst nematode resistance via regulation of mitochondria-mediated cell death. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7145-7162. [PMID: 34165531 DOI: 10.1093/jxb/erab301] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/23/2021] [Indexed: 05/27/2023]
Abstract
The resistance to Heterodera glycines 1 (Rhg1) locus is widely used by soybean breeders to reduce yield loss caused by soybean cyst nematode (SCN). α-SNAP (α-soluble NSF attachment protein) within Rhg1 locus contributes to SCN resistance by modulation of cell status at the SCN feeding site; however, the underlying mechanism is largely unclear. Here, we identified an α-SNAP-interacting protein, GmSYP31A, a Qa-SNARE (soluble NSF attachment protein receptor) protein from soybean. Expression of GmSYP31A significantly induced cell death in Nicotiana benthamiana leaves, and co-expression of α-SNAP and GmSYP31A could accelerate cell death. Overexpression of GmSYP31A increased SCN resistance, while silencing or overexpression of a dominant-negative form of GmSYP31A increased SCN sensitivity. GmSYP31A expression also disrupted endoplasmic reticulum-Golgi trafficking, and the exocytosis pathway. Moreover, α-SNAP was also found to interact with GmVDAC1D (voltage-dependent anion channel). The cytotoxicity induced by the expression of GmSYP31A could be relieved either with the addition of an inhibitor of VDAC protein, or by silencing the VDAC gene. Taken together, our data not only demonstrate that α-SNAP works together with GmSYP31A to increase SCN resistance through triggering cell death, but also highlight the unexplored link between the mitochondrial apoptosis pathway and vesicle trafficking.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Miaomiao Deng
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao Yang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qianqian Yu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lei Zhang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qun Zhu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoli Guo
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
13
|
Ravi B, Kanwar P, Sanyal SK, Bheri M, Pandey GK. VDACs: An Outlook on Biochemical Regulation and Function in Animal and Plant Systems. Front Physiol 2021; 12:683920. [PMID: 34421635 PMCID: PMC8375762 DOI: 10.3389/fphys.2021.683920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The voltage-dependent anion channels (VDACs) are the most abundant proteins present on the outer mitochondrial membrane. They serve a myriad of functions ranging from energy and metabolite exchange to highly debatable roles in apoptosis. Their role in molecular transport puts them on the center stage as communicators between cytoplasmic and mitochondrial signaling events. Beyond their general role as interchangeable pores, members of this family may exhibit specific functions. Even after nearly five decades of their discovery, their role in plant systems is still a new and rapidly emerging field. The information on biochemical regulation of VDACs is limited. Various interacting proteins and post-translational modifications (PTMs) modulate VDAC functions, amongst these, phosphorylation is quite noticeable. In this review, we have tried to give a glimpse of the recent advancements in the biochemical/interactional regulation of plant VDACs. We also cover a critical analysis on the importance of PTMs in the functional regulation of VDACs. Besides, the review also encompasses numerous studies which can identify VDACs as a connecting link between Ca2+ and reactive oxygen species signaling in special reference to the plant systems.
Collapse
Affiliation(s)
| | | | | | | | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
14
|
Xu T, Wang X, Ma H, Su L, Wang W, Meng J, Xu Y. Functional Characterization of VDACs in Grape and Its Putative Role in Response to Pathogen Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:670505. [PMID: 34220892 PMCID: PMC8242593 DOI: 10.3389/fpls.2021.670505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Voltage-dependent anion channels (VDACs) are the most abundant proteins in the mitochondrial outer membranes of all eukaryotic cells. They participate in mitochondrial energy metabolism, mitochondria-mediated apoptosis, and cell growth and reproduction. Here, the chromosomal localizations, gene structure, conserved domains, and phylogenetic relationships were analyzed. The amino acid sequences of VDACs were found to be highly conserved. The tissue-specific transcript analysis from transcriptome data and qRT-PCR demonstrated that grapevine VDACs might play an important role in plant growth and development. It was also speculated that VDAC3 might be a regulator of modulated leaf and berry development as the expression patterns during these developmental stages are up-regulated. Further, we screened the role of all grape VDACs' response to pathogen stress and found that VDAC3 from downy mildew Plasmopara viticola-resistant Chinese wild grapevine species Vitis piasezkii "Liuba-8" had a higher expression than the downy mildew susceptible species Vitis vinifera cv. "Thompson Seedless" after inoculation with P. viticola. Overexpression of VpVDAC3 resulted in increased resistance to pathogens, which was found to prevent VpVDAC3 protein accumulation through protein post-transcriptional regulation. Taken together, these data indicate that VpVDAC3 plays a role in P. viticola defense and provides the evidence with which to understand the mechanism of grape response to pathogen stress.
Collapse
Affiliation(s)
- Tengfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiaowei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Hui Ma
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Li Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Wenyuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiangfei Meng
- College of Enology, Northwest A&F University, Yangling, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Saidani H, Léonetti M, Kmita H, Homblé F. The Open State Selectivity of the Bean Seed VDAC Depends on Stigmasterol and Ion Concentration. Int J Mol Sci 2021; 22:ijms22063034. [PMID: 33809742 PMCID: PMC8002290 DOI: 10.3390/ijms22063034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) is the major pathway for metabolites and ions transport through the mitochondrial outer membrane. It can regulate the flow of solutes by switching to a low conductance state correlated with a selectivity reversal, or by a selectivity inversion of its open state. The later one was observed in non-plant VDACs and is poorly characterized. We aim at investigating the selectivity inversion of the open state using plant VDAC purified from Phaseolus coccineus (PcVDAC) to evaluate its physiological role. Our main findings are: (1) The VDAC selectivity inversion of the open state occurs in PcVDAC, (2) Ion concentration and stigmasterol affect the occurrence of the open state selectivity inversion and stigmasterol appears to interact directly with PcVDAC. Interestingly, electrophysiological data concerning the selectivity inversion of the PcVDAC open state suggests that the phenomenon probably does not have a significant physiological effect in vivo.
Collapse
Affiliation(s)
- Hayet Saidani
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Bruxelles, Belgium;
- Laboratory of Functional Neurophysiology and Pathology, Research Unit, UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, 1068 Tunis, Tunisia
| | - Marc Léonetti
- Université de. Grenoble Alpes, CNRS, LRP, 38000 Grenoble, France;
| | - Hanna Kmita
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Bruxelles, Belgium;
- Correspondence: ; Tel.: +32-2-650-5383
| |
Collapse
|
16
|
Lu S, Zhu T, Wang Z, Luo L, Wang S, Lu M, Cui Y, Zou B, Hua J. Arabidopsis immune-associated nucleotide-binding genes repress heat tolerance at the reproductive stage by inhibiting the unfolded protein response and promoting cell death. MOLECULAR PLANT 2021; 14:267-284. [PMID: 33221412 DOI: 10.1016/j.molp.2020.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/15/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
Plants are vulnerable to heat stress, especially during reproductive development. The heat shock response (HSR) in the cytosol and nucleus, as well as the unfolded protein response (UPR) in the endoplasmic reticulum (ER), are two mechanisms that enable plants to survive heat stress. Excessive heat or ER stresses lead to cell death when the UPR cannot repair stress damage, but the means by which cell survival or death is determined remains unclear. In this study, we used a genome-wide association study (GWAS) to identify that a cluster of five Immune-associated nucleotide-binding protein (IAN) genes (IAN2 to IAN6) is responsible for variation in heat tolerance at the reproductive stage in Arabidopsis thaliana. These IAN genes have both unique and overlapping functions in the negative regulation of heat tolerance, and their loss of function singly or in combination confers increased heat tolerance, measured by a lower number of barren siliques and a higher seedling survival rate under heat. The loss of rice IAN1 gene function also leads to enhanced heat tolerance, suggesting a conserved function of plant IANs. Transcriptome analysis revealed enhanced expression of HSR and UPR genes, as well as reduced cell death, under heat and ER stress in the mutant of IAN6, a major effect member in Arabidopsis. Furthermore, the IAN proteins were found to promote cell death induced by heat stress, ER stress, and cell death-inducing molecules. Thus, the Arabidopsis IAN genes repress heat tolerance, probably through the HSR and UPR and by enhancing the cell death pathway. The IAN2 to IAN6 proteins are partially localized to the ER, suggesting a direct role in the UPR and UPR-mediated cell death. In addition, a natural IAN6 variant from more heat-tolerant Arabidopsis accessions confers greater heat tolerance and induces less cell death compared with the natural variant from less heat-tolerant accessions. The heat-tolerant IAN6 variant is associated with a higher maximum temperature of the warmest month at its collection sites compared with the heat-sensitive variant. Taken together, these results reveal an important role of Arabidopsis IAN2 to IAN6 genes in the regulation of the HSR, UPR, and cell death, and suggest that their natural variations have adaptive functions in heat tolerance.
Collapse
Affiliation(s)
- Shan Lu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Tianquan Zhu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixue Wang
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Lilin Luo
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Wang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Minghui Lu
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA; College of Horticulture, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Yongmei Cui
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Baohong Zou
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jian Hua
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
Rodríguez-Alvarez CI, López-Vidriero I, Franco-Zorrilla JM, Nombela G. Basal differences in the transcriptional profiles of tomato leaves associated with the presence/absence of the resistance gene Mi-1 and changes in these differences after infestation by the whitefly Bemisia tabaci. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:463-479. [PMID: 31813394 DOI: 10.1017/s0007485319000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The tomato Mi-1 gene mediates plant resistance to whitefly Bemisia tabaci, nematodes, and aphids. Other genes are also required for this resistance, and a model of interaction between the proteins encoded by these genes was proposed. Microarray analyses were used previously to identify genes involved in plant resistance to pests or pathogens, but scarcely in resistance to insects. In the present work, the GeneChip™ Tomato Genome Array (Affymetrix®) was used to compare the transcriptional profiles of Motelle (bearing Mi-1) and Moneymaker (lacking Mi-1) cultivars, both before and after B. tabaci infestation. Ten transcripts were expressed at least twofold in uninfested Motelle than in Moneymaker, while other eight were expressed half or less. After whitefly infestation, differences between cultivars increased to 14 transcripts expressed more in Motelle than in Moneymaker and 14 transcripts less expressed. Half of these transcripts showed no differential expression before infestation. These results show the baseline differences in the tomato transcriptomic profile associated with the presence or absence of the Mi-1 gene and provide us with valuable information on candidate genes to intervene in either compatible or incompatible tomato-whitefly interactions.
Collapse
Affiliation(s)
- Clara I Rodríguez-Alvarez
- Department of Plant Protection Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., Madrid28006, Spain
| | - Irene López-Vidriero
- Genomics Unit, Centro Nacional de Biotecnología (CNB), Spanish National Research Council (CSIC), Darwin 3, Madrid28049, Spain
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología (CNB), Spanish National Research Council (CSIC), Darwin 3, Madrid28049, Spain
| | - Gloria Nombela
- Department of Plant Protection Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., Madrid28006, Spain
| |
Collapse
|
18
|
Kanwar P, Samtani H, Sanyal SK, Srivastava AK, Suprasanna P, Pandey GK. VDAC and its interacting partners in plant and animal systems: an overview. Crit Rev Biotechnol 2020; 40:715-732. [PMID: 32338074 DOI: 10.1080/07388551.2020.1756214] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular trafficking between different subcellular compartments is the key for normal cellular functioning. Voltage-dependent anion channels (VDACs) are small-sized proteins present in the outer mitochondrial membrane, which mediate molecular trafficking between mitochondria and cytoplasm. The conductivity of VDAC is dependent on the transmembrane voltage, its oligomeric state and membrane lipids. VDAC acts as a convergence point to a diverse variety of mitochondrial functions as well as cell survival. This functional diversity is attained due to their interaction with a plethora of proteins inside the cell. Although, there are hints toward functional conservation/divergence between animals and plants; knowledge about the functional role of the VDACs in plants is still limited. We present here a comparative overview to provide an integrative picture of the interactions of VDAC with different proteins in both animals and plants. Also discussed are their physiological functions from the perspective of cellular movements, signal transduction, cellular fate, disease and development. This in-depth knowledge of the biological importance of VDAC and its interacting partner(s) will assist us to explore their function in the applied context in both plant and animal.
Collapse
Affiliation(s)
- Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
19
|
dos Santos EC, Pirovani CP, Correa SC, Micheli F, Gramacho KP. The pathogen Moniliophthora perniciosa promotes differential proteomic modulation of cacao genotypes with contrasting resistance to witches´ broom disease. BMC PLANT BIOLOGY 2020; 20:1. [PMID: 31898482 PMCID: PMC6941324 DOI: 10.1186/s12870-019-2170-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/27/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Witches' broom disease (WBD) of cacao (Theobroma cacao L.), caused by Moniliophthora perniciosa, is the most important limiting factor for the cacao production in Brazil. Hence, the development of cacao genotypes with durable resistance is the key challenge for control the disease. Proteomic methods are often used to study the interactions between hosts and pathogens, therefore helping classical plant breeding projects on the development of resistant genotypes. The present study compared the proteomic alterations between two cacao genotypes standard for WBD resistance and susceptibility, in response to M. perniciosa infection at 72 h and 45 days post-inoculation; respectively the very early stages of the biotrophic and necrotrophic stages of the cacao x M. perniciosa interaction. RESULTS A total of 554 proteins were identified, being 246 in the susceptible Catongo and 308 in the resistant TSH1188 genotypes. The identified proteins were involved mainly in metabolism, energy, defense and oxidative stress. The resistant genotype showed more expressed proteins with more variability associated with stress and defense, while the susceptible genotype exhibited more repressed proteins. Among these proteins, stand out pathogenesis related proteins (PRs), oxidative stress regulation related proteins, and trypsin inhibitors. Interaction networks were predicted, and a complex protein-protein interaction was observed. Some proteins showed a high number of interactions, suggesting that those proteins may function as cross-talkers between these biological functions. CONCLUSIONS We present the first study reporting the proteomic alterations of resistant and susceptible genotypes in the T. cacao x M. perniciosa pathosystem. The important altered proteins identified in the present study are related to key biologic functions in resistance, such as oxidative stress, especially in the resistant genotype TSH1188, that showed a strong mechanism of detoxification. Also, the positive regulation of defense and stress proteins were more evident in this genotype. Proteins with significant roles against fungal plant pathogens, such as chitinases, trypsin inhibitors and PR 5 were also identified, and they may be good resistance markers. Finally, important biological functions, such as stress and defense, photosynthesis, oxidative stress and carbohydrate metabolism were differentially impacted with M. perniciosa infection in each genotype.
Collapse
Affiliation(s)
- Everton Cruz dos Santos
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- Stem Cell Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, RJ Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
| | - Stephany Cristiane Correa
- Stem Cell Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, RJ Brazil
| | - Fabienne Micheli
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- CIRAD, UMR AGAP, F-34398, Montpellier, France
| | - Karina Peres Gramacho
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- Molecular Plant Pathology Laboratory, Cocoa Research Center (CEPEC), CEPLAC, Km 22 Rod. Ilhéus-Itabuna, Ilhéus, Bahia 45600-970 Brazil
| |
Collapse
|
20
|
Zhang M, Liu S, Takano T, Zhang X. The interaction between AtMT2b and AtVDAC3 affects the mitochondrial membrane potential and reactive oxygen species generation under NaCl stress in Arabidopsis. PLANTA 2019; 249:417-429. [PMID: 30225672 DOI: 10.1007/s00425-018-3010-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
AtMT2b interacts with AtVDAC3 in mitochondria in Arabidopsis. The overexpression of the AtMT2b and AtVDAC3 T-DNA insertion mutant confers tolerance to NaCl stress in Arabidopsis. Both AtMT2b and AtVDAC3 are involved in the regulation of the mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) under NaCl stress. Metallothioneins (MTs) are small, cysteine rich, metal-binding proteins that perform multiple functions, such as heavy metal detoxification and reactive oxygen species (ROS) scavenging. MTs have been reported to be involved in mitochondrial function in mammals. However, whether a direct relationship exists between MTs and mitochondrial proteins remains unclear. In the present study, we used yeast two-hybrid and bimolecular fluorescence complementation assays to demonstrate that AtMT2b, which is a type 2 MT in Arabidopsis, interacts with the outer mitochondrial membrane voltage-dependent anion channel AtVDAC3. AtMT2b bound AtVDAC3, leading to its co-localization in mitochondria. AtMT2b transgenic seedlings exhibited increased tolerance to salt stress, and the atvdac3 mutant showed a similar phenotype. The mitochondrial membrane potential (MMP) was maintained, and ROS generation was reduced following AtMT2b overexpression and AtVDAC3 knockout under NaCl stress. Both AtMT2b and AtVDAC3 were shown to be involved in MMP regulation and ROS production under NaCl stress but showed opposite effects. We conclude that AtMT2b might negatively interact with AtVDAC3 in mitochondria, and both proteins are involved in the regulation of MMP and ROS under NaCl stress.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China
- School of Medicine, He University, Shenyang, 110163, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Tetsuo Takano
- Asian Natural Environment Science Center (ANESC), The University of Tokyo, 1-1-1 Midori Cho, Nishitokyo-shi, Tokyo, 188-0002, Japan
| | - Xinxin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
21
|
Ma H, Xiang G, Li Z, Wang Y, Dou M, Su L, Yin X, Liu R, Wang Y, Xu Y. Grapevine VpPR10.1 functions in resistance to Plasmopara viticola through triggering a cell death-like defence response by interacting with VpVDAC3. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1488-1501. [PMID: 29377445 PMCID: PMC6041444 DOI: 10.1111/pbi.12891] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 05/04/2023]
Abstract
As one of the most serious diseases in grape, downy mildew caused by Plasmopara viticola is a worldwide grape disease. Much effort has been focused on improving susceptible grapevine resistance, and wild resistant grapevine species are important for germplasm improvement of commercial cultivars. Using yeast two-hybrid screen followed by a series of immunoprecipitation experiments, we identified voltage-dependent anion channel 3 (VDAC3) protein from Vitis piasezkii 'Liuba-8' as an interacting partner of VpPR10.1 cloned from Vitis pseudoreticulata 'Baihe-35-1', which is an important germplasm for its resistance to a range of pathogens. Co-expression of VpPR10.1/VpVDAC3 induced cell death in Nicotiana benthamiana, which accompanied by ROS accumulation. VpPR10.1 transgenic grapevine line showed resistance to P. viticola. We conclude that the VpPR10.1/VpVDAC3 complex is responsible for cell death-mediated defence response to P. viticola in grapevine.
Collapse
Affiliation(s)
- Hui Ma
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhiqian Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuting Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Mengru Dou
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Li Su
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Ruiqi Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
22
|
Singh N, Swain S, Singh A, Nandi AK. AtOZF1 Positively Regulates Defense Against Bacterial Pathogens and NPR1-Independent Salicylic Acid Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:323-333. [PMID: 29327969 DOI: 10.1094/mpmi-08-17-0208-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plant hormone salicylic acid (SA) plays critical roles in defense signaling against biotrophic pathogens. Pathogen inoculation leads to SA accumulation in plants. SA activates a transactivator protein NPR1, which, in turn, transcriptionally activates many defense response genes. Reports also suggest the presence of NPR1-independent pathways for SA signaling in Arabidopsis. Here, we report the characterization of a zinc-finger protein-coding gene AtOZF1 that positively influences NPR1-independent SA signaling. Mutants of AtOZF1 are compromised, whereas AtOZF1-overexpressing plants are hyperactive for defense against virulent and avirulent pathogens. AtOZF1 expression is SA-inducible. AtOZF1 function is not required for pathogenesis-associated biosynthesis and accumulation of SA. However, it is required for SA responsiveness. By generating atozf1npr1 double mutant, we show that contributions of these two genes are additive in terms of defense. We identified AtOZF1-interacting proteins by a yeast-two-hybrid screening of an Arabidopsis cDNA library. VDAC2 and NHL3 are two AtOZF1-interacting proteins, which are positive regulators of basal defense. AtOZF1 interacts with NHL3 and VDAC2 in plasma membrane and mitochondria, respectively. Our results demonstrate that AtOZF1 coordinates multiple steps of plant-pathogen interaction.
Collapse
Affiliation(s)
- Nidhi Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swadhin Swain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anupriya Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
23
|
Carraretto L, Checchetto V, De Bortoli S, Formentin E, Costa A, Szabó I, Teardo E. Calcium Flux across Plant Mitochondrial Membranes: Possible Molecular Players. FRONTIERS IN PLANT SCIENCE 2016; 7:354. [PMID: 27065186 PMCID: PMC4814809 DOI: 10.3389/fpls.2016.00354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/07/2016] [Indexed: 05/24/2023]
Abstract
Plants, being sessile organisms, have evolved the ability to integrate external stimuli into metabolic and developmental signals. A wide variety of signals, including abiotic, biotic, and developmental stimuli, were observed to evoke specific spatio-temporal Ca(2+) transients which are further transduced by Ca(2+) sensor proteins into a transcriptional and metabolic response. Most of the research on Ca(2+) signaling in plants has been focused on the transport mechanisms for Ca(2+) across the plasma- and the vacuolar membranes as well as on the components involved in decoding of cytoplasmic Ca(2+) signals, but how intracellular organelles such as mitochondria are involved in the process of Ca(2+) signaling is just emerging. The combination of the molecular players and the elicitors of Ca(2+) signaling in mitochondria together with newly generated detection systems for measuring organellar Ca(2+) concentrations in plants has started to provide fruitful grounds for further discoveries. In the present review we give an updated overview of the currently identified/hypothesized pathways, such as voltage-dependent anion channels, homologs of the mammalian mitochondrial uniporter (MCU), LETM1, a plant glutamate receptor family member, adenine nucleotide/phosphate carriers and the permeability transition pore (PTP), that may contribute to the transport of Ca(2+) across the outer and inner mitochondrial membranes in plants. We briefly discuss the relevance of the mitochondrial Ca(2+) homeostasis for ensuring optimal bioenergetic performance of this organelle.
Collapse
Affiliation(s)
| | - Vanessa Checchetto
- Department of Biology, University of PadovaPadova, Italy
- Department of Biomedical Sciences, University of PadovaPadova, Italy
| | | | - Elide Formentin
- Department of Biology, University of PadovaPadova, Italy
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Alex Costa
- Department of Biosciences, University of MilanMilan, Italy
- CNR, Institute of Biophysics, Consiglio Nazionale delle RicercheMilan, Italy
| | - Ildikó Szabó
- Department of Biology, University of PadovaPadova, Italy
- CNR, Institute of NeurosciencesPadova, Italy
| | - Enrico Teardo
- Department of Biology, University of PadovaPadova, Italy
- CNR, Institute of NeurosciencesPadova, Italy
| |
Collapse
|
24
|
Van Aken O, Van Breusegem F. Licensed to Kill: Mitochondria, Chloroplasts, and Cell Death. TRENDS IN PLANT SCIENCE 2015; 20:754-766. [PMID: 26442680 DOI: 10.1016/j.tplants.2015.08.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD) is crucial in plant organogenesis and survival. In this review the involvement of mitochondria and chloroplasts in PCD execution is critically assessed. Recent findings support a central role for mitochondria in PCD, with newly identified components of the mitochondrial electron transport chain (mETC), FOF1 ATP synthase, cardiolipins, and ATPase AtOM66. While chloroplasts received less attention, their contribution to PCD is well supported, suggesting that they possibly contribute by producing reactive oxygen species (ROS) in the presence of light or even contribute through cytochrome f release. Finally we discuss two working models where mitochondria and chloroplasts could cooperatively execute PCD: mitochondria initiate the commitment steps and recruit chloroplasts for swift execution or, alternatively, mitochondria and chloroplasts could operate in parallel.
Collapse
Affiliation(s)
- Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Australia.
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, Ghent University, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
25
|
Zhang M, Takano T, Liu S, Zhang X. Arabidopsismitochondrial voltage-dependent anion channel 3 (AtVDAC3) protein interacts with thioredoxin m2. FEBS Lett 2015; 589:1207-13. [DOI: 10.1016/j.febslet.2015.03.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/20/2015] [Accepted: 03/29/2015] [Indexed: 10/23/2022]
|
26
|
Moscatelli A, Gagliardi A, Maneta-Peyret L, Bini L, Stroppa N, Onelli E, Landi C, Scali M, Idilli AI, Moreau P. Characterisation of detergent-insoluble membranes in pollen tubes of Nicotiana tabacum (L.). Biol Open 2015; 4:378-99. [PMID: 25701665 PMCID: PMC4359744 DOI: 10.1242/bio.201410249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pollen tubes are the vehicle for sperm cell delivery to the embryo sac during fertilisation of Angiosperms. They provide an intriguing model for unravelling mechanisms of growing to extremes. The asymmetric distribution of lipids and proteins in the pollen tube plasma membrane modulates ion fluxes and actin dynamics and is maintained by a delicate equilibrium between exocytosis and endocytosis. The structural constraints regulating polarised secretion and asymmetric protein distribution on the plasma membrane are mostly unknown. To address this problem, we investigated whether ordered membrane microdomains, namely membrane rafts, might contribute to sperm cell delivery. Detergent insoluble membranes, rich in sterols and sphingolipids, were isolated from tobacco pollen tubes. MALDI TOF/MS analysis revealed that actin, prohibitins and proteins involved in methylation reactions and in phosphoinositide pattern regulation are specifically present in pollen tube detergent insoluble membranes. Tubulins, voltage-dependent anion channels and proteins involved in membrane trafficking and signalling were also present. This paper reports the first evidence of membrane rafts in Angiosperm pollen tubes, opening new perspectives on the coordination of signal transduction, cytoskeleton dynamics and polarised secretion.
Collapse
Affiliation(s)
- Alessandra Moscatelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Assunta Gagliardi
- Laboratorio di Proteomica Funzionale, Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Lilly Maneta-Peyret
- Laboratoire de Biogenèse Membranaire, Université Bordeaux Segalen, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France
| | - Luca Bini
- Laboratorio di Proteomica Funzionale, Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Nadia Stroppa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Elisabetta Onelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Claudia Landi
- Laboratorio di Proteomica Funzionale, Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Monica Scali
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via P. A. Mattioli 4, 53100 Siena, Italy
| | - Aurora Irene Idilli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy Present address: Institute of Biophysics, National Research Council and FBK, 38123 Trento, Italy
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, Université Bordeaux Segalen, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France
| |
Collapse
|
27
|
Plant mitochondria under pathogen attack: A sigh of relief or a last breath? Mitochondrion 2014; 19 Pt B:238-44. [DOI: 10.1016/j.mito.2014.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/05/2014] [Accepted: 03/18/2014] [Indexed: 12/19/2022]
|
28
|
Pan X, Chen Z, Yang X, Liu G. Arabidopsis voltage-dependent anion channel 1 (AtVDAC1) is required for female development and maintenance of mitochondrial functions related to energy-transaction. PLoS One 2014; 9:e106941. [PMID: 25192453 PMCID: PMC4156401 DOI: 10.1371/journal.pone.0106941] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/10/2014] [Indexed: 11/18/2022] Open
Abstract
The voltage-dependent anion channels (VDACs), prominently localized in the outer mitochondrial membrane, play important roles in the metabolite exchange, energy metabolism and mitochondria-mediated apoptosis process in mammalian cells. However, relatively little is known about the functions of VDACs in plants. To further investigate the function of AtVDAC1 in Arabidopsis, we analyzed a T-DNA insertion line for the AtVDAC1 gene. The knock-out mutant atvdac1 showed reduced seed set due to a large number of undeveloped ovules in siliques. Genetic analyses indicated that the mutation of AtVDAC1 affected female fertility and belonged to a sporophytic mutation. Abnormal ovules in the process of female gametogenesis were observed using a confocal laser scanning microscope. Interestingly, both mitochondrial transmembrane potential (ΔΨ) and ATP synthesis rate were obviously reduced in the mitochondria isolated from atvdac1 plants.
Collapse
Affiliation(s)
- Xiaodi Pan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ziwei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoqin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
29
|
Abstract
Voltage-dependent anion channels (VDACs), known as outer mitochondrial membrane proteins, are present in all eukaryotic cells. In mammals, they are now recognized to play crucial roles in the regulation of metabolic and energetic functions of mitochondria as well as in mitochondria-mediated apoptosis, in association with various proteins and non-protein modulators. Although there is much less information available for plant than for animal VDACs, their similar electrophysiological and topological properties suggest that some common functions are conserved among eukaryotic VDACs. Recently, it has been revealed that plant VDACs also have various important physiological functions not only in developmental and reproductive processes, but also in biotic and abiotic stress responses, including programmed cell death. In this review, we summarize recent findings about the sequence motifs, localization, and function of plant VDACs and discuss these results in the light of recent advances in research on animal VDACs.
Collapse
Affiliation(s)
- Yoshihiro Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan.
| | | |
Collapse
|
30
|
Chen H, Osuna D, Colville L, Lorenzo O, Graeber K, Küster H, Leubner-Metzger G, Kranner I. Transcriptome-wide mapping of pea seed ageing reveals a pivotal role for genes related to oxidative stress and programmed cell death. PLoS One 2013; 8:e78471. [PMID: 24205239 PMCID: PMC3812160 DOI: 10.1371/journal.pone.0078471] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/13/2013] [Indexed: 01/19/2023] Open
Abstract
Understanding of seed ageing, which leads to viability loss during storage, is vital for ex situ plant conservation and agriculture alike. Yet the potential for regulation at the transcriptional level has not been fully investigated. Here, we studied the relationship between seed viability, gene expression and glutathione redox status during artificial ageing of pea (Pisum sativum) seeds. Transcriptome-wide analysis using microarrays was complemented with qRT-PCR analysis of selected genes and a multilevel analysis of the antioxidant glutathione. Partial degradation of DNA and RNA occurred from the onset of artificial ageing at 60% RH and 50°C, and transcriptome profiling showed that the expression of genes associated with programmed cell death, oxidative stress and protein ubiquitination were altered prior to any sign of viability loss. After 25 days of ageing viability started to decline in conjunction with progressively oxidising cellular conditions, as indicated by a shift of the glutathione redox state towards more positive values (>-190 mV). The unravelling of the molecular basis of seed ageing revealed that transcriptome reprogramming is a key component of the ageing process, which influences the progression of programmed cell death and decline in antioxidant capacity that ultimately lead to seed viability loss.
Collapse
Affiliation(s)
- Hongying Chen
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
- Seed Conservation Department, Royal Botanic Gardens, Kew, Ardingly, West Sussex, United Kingdom
| | - Daniel Osuna
- Departamento de Fisiología Vegetal, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología. Universidad de Salamanca, Salamanca, Spain
| | - Louise Colville
- Seed Conservation Department, Royal Botanic Gardens, Kew, Ardingly, West Sussex, United Kingdom
| | - Oscar Lorenzo
- Departamento de Fisiología Vegetal, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología. Universidad de Salamanca, Salamanca, Spain
| | - Kai Graeber
- Institute for Biology II, Botany/Plant Physiology, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Institute for Plant Genetics, Unit IV – Plant Genomics, Leibniz Universität Hannover, Hannover, Germany
| | - Helge Küster
- Institute for Plant Genetics, Unit IV – Plant Genomics, Leibniz Universität Hannover, Hannover, Germany
| | - Gerhard Leubner-Metzger
- Institute for Biology II, Botany/Plant Physiology, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ilse Kranner
- Seed Conservation Department, Royal Botanic Gardens, Kew, Ardingly, West Sussex, United Kingdom
| |
Collapse
|
31
|
Godbole A, Dubey AK, Reddy PS, Udayakumar M, Mathew MK. Mitochondrial VDAC and hexokinase together modulate plant programmed cell death. PROTOPLASMA 2013; 250:875-884. [PMID: 23247919 DOI: 10.1007/s00709-012-0470-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/27/2012] [Indexed: 06/01/2023]
Abstract
The voltage-dependent anion channel (VDAC) and mitochondrially located hexokinase have been implicated both in pathways leading to cell death on the one hand, and immortalization in tumor formation on the other. While both proteins have also been implicated in death processes in plants, their interaction has not been explored. We have examined cell death following heterologous expression of a rice VDAC in the tobacco cell line BY2 and in leaves of tobacco plants and show that it is ameliorated by co-expression of hexokinase. Hexokinase also abrogates death induced by H2O2. We conclude that the ratio of expression of the two proteins and their interaction play a major role in modulating death pathways in plants.
Collapse
Affiliation(s)
- Ashwini Godbole
- National Centre for Biological Sciences, TIFR,UAS-GKVK Campus, Bangalore 560065, India
| | | | | | | | | |
Collapse
|
32
|
The voltage-dependent anion channel 1 (AtVDAC1) negatively regulates plant cold responses during germination and seedling development in Arabidopsis and interacts with calcium sensor CBL1. Int J Mol Sci 2013; 14:701-13. [PMID: 23344040 PMCID: PMC3565290 DOI: 10.3390/ijms14010701] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/12/2012] [Accepted: 12/12/2012] [Indexed: 11/16/2022] Open
Abstract
The voltage-dependent anion channel (VDAC), a highly conserved major mitochondrial outer membrane protein, plays crucial roles in energy metabolism and metabolite transport. However, knowledge about the roles of the VDAC family in plants is limited. In this study, we investigated the expression pattern of VDAC1 in Arabidopsis and found that cold stress promoted the accumulation of VDAC1 transcripts in imbibed seeds and mature plants. Overexpression of VDAC1 reduced tolerance to cold stress in Arabidopsis. Phenotype analysis of VDAC1 T-DNA insertion mutant plants indicated that a vdac1 mutant line had faster germination kinetics under cold treatment and showed enhanced tolerance to freezing. The yeast two-hybrid system revealed that VDAC1 interacts with CBL1, a calcium sensor in plants. Like the vdac1, a cbl1 mutant also exhibited a higher seed germination rate. We conclude that both VDAC1 and CBL1 regulate cold stress responses during seed germination and plant development.
Collapse
|
33
|
Dickman MB, Fluhr R. Centrality of host cell death in plant-microbe interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:543-70. [PMID: 23915134 DOI: 10.1146/annurev-phyto-081211-173027] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Programmed cell death (PCD) is essential for proper growth, development, and cellular homeostasis in all eukaryotes. The regulation of PCD is of central importance in plant-microbe interactions; notably, PCD and features associated with PCD are observed in many host resistance responses. Conversely, pathogen induction of inappropriate cell death in the host results in a susceptible phenotype and disease. Thus, the party in control of PCD has a distinct advantage in these battles. PCD processes appear to be of ancient origin, as indicated by the fact that many features of cell death strategy are conserved between animals and plants; however, some of the details of death execution differ. Mammalian core PCD genes, such as caspases, are not present in plant genomes. Similarly, pro- and antiapoptotic mammalian regulatory elements are absent in plants, but, remarkably, when expressed in plants, successfully impact plant PCD. Thus, subtle structural similarities independent of sequence homology appear to sustain operational equivalence. The vacuole is emerging as a key organelle in the modulation of plant PCD. Under different signals for cell death, the vacuole either fuses with the plasmalemma membrane or disintegrates. Moreover, the vacuole appears to play a key role in autophagy; evidence suggests a prosurvival function for autophagy, but other studies propose a prodeath phenotype. Here, we describe and discuss what we know and what we do not know about various PCD pathways and how the host integrates signals to activate salicylic acid and reactive oxygen pathways that orchestrate cell death. We suggest that it is not cell death as such but rather the processes leading to cell death that contribute to the outcome of a given plant-pathogen interaction.
Collapse
Affiliation(s)
- Martin B Dickman
- Institute for Plant Genomics and Biotechnology, Center for Cell Death and Differentiation, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA.
| | | |
Collapse
|
34
|
Tateda C, Kusano T, Takahashi Y. The Arabidopsis voltage-dependent anion channel 2 is required for plant growth. PLANT SIGNALING & BEHAVIOR 2012; 7:31-33. [PMID: 22301963 PMCID: PMC3357362 DOI: 10.4161/psb.7.1.18394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The voltage-dependent anion channels (VDACs) known as a major group of outer mitochondrial membrane proteins are present in all eukaryotic species. In mammalian cells, they have been established as a key player in mitochondrial metabolism and apoptosis regulation. By contrast, little is known about the function of plant VDACs. Recently, we performed functional analysis of all VDAC gene members in Arabidopsis thaliana, and revealed that each AtVDAC member has a specialized function. Especially, in spite of similar subcellular localization and expression profiling of AtVDAC2 and AtVDAC4, both the T-DNA insertion knockout mutants of them, vdac2-2 and vdac4-2, showed severe growth retardation. These results suggest that AtVDAC2 and AtVDAC4 proteins clearly have distinct functions. Here, we introduced the AtVDAC2 gene into the vdac2-2 mutant, and demonstrated that the miniature phenotype of vdac2-2 plant is abolished by AtVDAC2 expression.
Collapse
Affiliation(s)
- Chika Tateda
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | | |
Collapse
|
35
|
Godbole A, Mitra R, Dubey AK, Reddy PS, Mathew MK. Bacterial expression, purification and characterization of a rice voltage-dependent, anion-selective channel isoform, OsVDAC4. J Membr Biol 2011; 244:67-80. [PMID: 22057934 DOI: 10.1007/s00232-011-9399-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 10/15/2011] [Indexed: 10/15/2022]
Abstract
The voltage-dependent anion-selective channel (VDAC) is the most abundant protein in the mitochondrial outer membrane and forms the major conduit for metabolite transport across this membrane. VDACs from different sources show varied primary sequence but conserved functional properties. Here, we report on the characterization of a rice channel, OsVDAC4, which complements a VDAC1 deficiency in yeast. We present a consensus secondary structure prediction of an N-terminal α-helix and 19 β-strands. Bacterially expressed OsVDAC4 was purified from inclusion bodies into detergent-containing solution, where it is largely helical. Detergent-solubilized OsVDAC4 inserts spontaneously into artificial membranes of two topologies-spherical liposomes and planar bilayers. Insertion into liposomes results in an increase in β-structure. Transport of polyethylene glycols was used to estimate a pore diameter of ~2.6 nm in liposomes. Channels formed in planar bilayers exhibit large conductance (4.6 ± 0.3 nS in 1 M KCl), strong voltage dependence and weak anion selectivity. The open state of the channel is shown to be permeable to ATP. These data are consistent with a large β-barrel pore formed by OsVDAC4 on inserting into membranes. This study forms a platform to carry out studies of the interaction of OsVDAC4 with putative modulators.
Collapse
Affiliation(s)
- Ashwini Godbole
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bangalore, India
| | | | | | | | | |
Collapse
|
36
|
Tateda C, Watanabe K, Kusano T, Takahashi Y. Molecular and genetic characterization of the gene family encoding the voltage-dependent anion channel in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4773-85. [PMID: 21705391 PMCID: PMC3192994 DOI: 10.1093/jxb/err113] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The voltage-dependent anion channel (VDAC), a major outer mitochondrial membrane protein, is thought to play an important role in energy production and apoptotic cell death in mammalian systems. However, the function of VDACs in plants is largely unknown. In order to determine the individual function of plant VDACs, molecular and genetic analysis was performed on four VDAC genes, VDAC1-VDAC4, found in Arabidopsis thaliana. VDAC1 and VDAC3 possess the eukaryotic mitochondrial porin signature (MPS) in their C-termini, while VDAC2 and VDAC4 do not. Localization analysis of VDAC-green fluorescent protein (GFP) fusions and their chimeric or mutated derivatives revealed that the MPS sequence is important for mitochondrial localization. Through the functional analysis of vdac knockout mutants due to T-DNA insertion, VDAC2 and VDAC4 which are expressed in the whole plant body are important for various physiological functions such as leaf development, the steady state of the mitochondrial membrane potential, and pollen development. Moreover, it was demonstrated that VDAC1 is not only necessary for normal growth but also important for disease resistance through regulation of hydrogen peroxide generation.
Collapse
|
37
|
Bae H, Roberts DP, Lim HS, Strem MD, Park SC, Ryu CM, Melnick RL, Bailey BA. Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:336-51. [PMID: 21091159 DOI: 10.1094/mpmi-09-10-0221] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Endophytic Trichoderma isolates collected in tropical environments were evaluated for biocontrol activity against Phytophthora capsici in hot pepper (Capsicum annuum). Six isolates were tested for parasitic and antimicrobial activity against P. capsici and for endophytic and induced resistance capabilities in pepper. Isolates DIS 70a, DIS 219b, and DIS 376f were P. capsici parasites, while DIS 70a, DIS 259j, DIS 320c, and DIS 376f metabolites inhibited P. capsici. All six isolates colonized roots but were inefficient stem colonizers. DIS 259j, DIS 320c, and DIS 376f induced defense-related expressed sequence tags (EST) in 32-day-old peppers. DIS 70a, DIS 259j, and DIS 376f delayed disease development. Initial colonization of roots by DIS 259j or DIS 376f induced EST with potential to impact Trichoderma endophytic colonization and disease development, including multiple lipid transferase protein (LTP)-like family members. The timing and intensity of induction varied between isolates. Expression of CaLTP-N, encoding a LTP-like protein in pepper, in N. benthamiana leaves reduced disease development in response to P. nicotianae inoculation, suggesting LTP are functional components of resistance induced by Trichoderma species. Trichoderma isolates were endophytic on pepper roots in which, depending on the isolate, they delayed disease development by P. capsici and induced strong and divergent defense reactions.
Collapse
Affiliation(s)
- Hanhong Bae
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA. [corrected]
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kusano T, Tateda C, Berberich T, Takahashi Y. Voltage-dependent anion channels: their roles in plant defense and cell death. PLANT CELL REPORTS 2009; 28:1301-1308. [PMID: 19585120 DOI: 10.1007/s00299-009-0741-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/23/2009] [Accepted: 06/23/2009] [Indexed: 05/28/2023]
Abstract
The voltage-dependent anion channels (VDACs), mitochondrial outer membrane components, are present in organisms from fungi to animals and plants. They are thought to function in the regulation of metabolite transport between mitochondria and the cytoplasm. Sufficient knowledge on plant VDACs has been accumulated, so that we can here summarize the current information. Then, the involvement of mitochondria in plant defense and cell death is overviewed. While, in mammals, it is suggested that VDAC, also known as a component of the permeability transition pore (PTP) complex formed in the junction site of mitochondrial outer and inner membrane, is a key player in mitochondria-mediated cell death, little is known about the role of plant VDACs in this process. We have shown that plant VDACs are involved in mitochondria-mediated cell death and in defense against a non-host pathogen. In light of the current findings, we discuss the role of the PTP complex and VDAC as its component in plant pathogen defense and cell death.
Collapse
Affiliation(s)
- Tomonobu Kusano
- Laboratory of Plant Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai-City, Miyagi, 980-8577, Japan.
| | | | | | | |
Collapse
|
39
|
Yan J, He H, Tong S, Zhang W, Wang J, Li X, Yang Y. Voltage-dependent anion channel 2 of Arabidopsis thaliana (AtVDAC2) is involved in ABA-mediated early seedling development. Int J Mol Sci 2009; 10:2476-2486. [PMID: 19582214 PMCID: PMC2705501 DOI: 10.3390/ijms10062476] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 05/13/2009] [Accepted: 05/17/2009] [Indexed: 01/24/2023] Open
Abstract
The voltage-dependent anion channel (VDAC) is the major transport protein in the outer membrane of mitochondria and plays crucial roles in energy metabolism, apoptosis, and metabolites transport. In plants, the expression of VDACs can be affected by different stresses, including drought, salinity and pathogen defense. In this study, we investigated the expression pattern of AtVDAC2 in A. thaliana and found ABA suppressed the accumulation of AtVDAC2 transcripts. Further, phenotype analysis of this VDAC deregulated-expression transgenic Arabidopsis plants indicated that AtVDAC2 anti-sense line showed an ABA-insensitivity phenotype during the early seedling development under ABA treatment. The results suggested that AtVDAC2 might be involved in ABA signaling in A. thaliana.
Collapse
Affiliation(s)
- Jinping Yan
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; E-Mails:
(J.Y.);
(H.H.);
(S.T.);
(W.Z.);
(J.W.);
(X.L.)
- Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, 9# Xueyun Road, Kunming 650223, China
| | - Han He
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; E-Mails:
(J.Y.);
(H.H.);
(S.T.);
(W.Z.);
(J.W.);
(X.L.)
| | - Shibo Tong
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; E-Mails:
(J.Y.);
(H.H.);
(S.T.);
(W.Z.);
(J.W.);
(X.L.)
| | - Wanrong Zhang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; E-Mails:
(J.Y.);
(H.H.);
(S.T.);
(W.Z.);
(J.W.);
(X.L.)
| | - Jianmei Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; E-Mails:
(J.Y.);
(H.H.);
(S.T.);
(W.Z.);
(J.W.);
(X.L.)
| | - Xufeng Li
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; E-Mails:
(J.Y.);
(H.H.);
(S.T.);
(W.Z.);
(J.W.);
(X.L.)
| | - Yi Yang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; E-Mails:
(J.Y.);
(H.H.);
(S.T.);
(W.Z.);
(J.W.);
(X.L.)
- Author to whom correspondence should be addressed; E-mail:
; Tel. +86-28-85410957; Fax: +86-28-85410957
| |
Collapse
|