1
|
Arias-Sibillotte M, Considine MJ, Signorelli S. Reinterpreting olive bud dormancy. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6017-6021. [PMID: 39168817 PMCID: PMC11480694 DOI: 10.1093/jxb/erae353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Mercedes Arias-Sibillotte
- Department of Plant Production, School of Agriculture, Universidad de la República, Montevideo, 12900, Uruguay
| | - Michael J Considine
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Primary Industries and Regional Development, Perth, WA 6000, Australia
| | - Santiago Signorelli
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Food and Plant Biology group, School of Agriculture, Universidad de la República, Montevideo, 12900, Uruguay
| |
Collapse
|
2
|
Yin W, Wang L, Shu Q, Chen M, Li F, Luo X. Genome-wide identification and expression analysis of the CONSTANS-like family in potato ( Solanum tuberosum L.). Front Genet 2024; 15:1390411. [PMID: 39045317 PMCID: PMC11263207 DOI: 10.3389/fgene.2024.1390411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024] Open
Abstract
The CONSTANS-like (COL) gene plays important roles in plant growth, development, and abiotic stress. A total of 15 COL genes are unevenly distributed on eight chromosomes in the potato genome. The amino acid length of the family members was 347-453 aa, the molecular weight was 38.65-49.92 kD, and the isoelectric point was 5.13-6.09. The StCOL family can be divided into three subfamilies by evolutionary tree analysis, with conserved motifs and similar gene structure positions in each subfamily. The analysis of promoter cis-acting elements showed 17 cis-acting elements related to plant hormones, stress, and light response. Collinearity analysis of COL genes of tomato, potato, and Arabidopsis showed that 13 StCOL genes in the different species may have a common ancestor. A total of 10 conserved motifs and six kinds of post-translational modifications in the 15 StCOL proteins were identified. The 15 StCOL genes exhibit a genomic structure consisting of exons and introns, typically ranging from two to four in number. The results showed that 10 genes displayed significant expression across all potato tissues, while the remaining five genes were down-expressed in potato transcriptome data. The quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis exhibited differential expression of 8 StCOL genes in the potato leaves and tubers at different growth stages, as well as 7 StCOL genes under 2°C treatment conditions. These results suggested that the StCOL gene family may play an important role in regulating potato tuberization and responding to cold stress.
Collapse
Affiliation(s)
- Wang Yin
- Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Luo Wang
- Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, China
- Guizhou Key Laboratory of Agriculture Biotechnology, Guiyang, China
| | - Qiqiong Shu
- Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Mingjun Chen
- Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Fei Li
- Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, China
| | - Xiaobo Luo
- Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, China
- Guizhou Key Laboratory of Agriculture Biotechnology, Guiyang, China
| |
Collapse
|
3
|
Romero JM, Serrano-Bueno G, Camacho-Fernández C, Vicente MH, Ruiz MT, Pérez-Castiñeira JR, Pérez-Hormaeche J, Nogueira FTS, Valverde F. CONSTANS, a HUB for all seasons: How photoperiod pervades plant physiology regulatory circuits. THE PLANT CELL 2024; 36:2086-2102. [PMID: 38513610 PMCID: PMC11132886 DOI: 10.1093/plcell/koae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
How does a plant detect the changing seasons and make important developmental decisions accordingly? How do they incorporate daylength information into their routine physiological processes? Photoperiodism, or the capacity to measure the daylength, is a crucial aspect of plant development that helps plants determine the best time of the year to make vital decisions, such as flowering. The protein CONSTANS (CO) constitutes the central regulator of this sensing mechanism, not only activating florigen production in the leaves but also participating in many physiological aspects in which seasonality is important. Recent discoveries place CO in the center of a gene network that can determine the length of the day and confer seasonal input to aspects of plant development and physiology as important as senescence, seed size, or circadian rhythms. In this review, we discuss the importance of CO protein structure, function, and evolutionary mechanisms that embryophytes have developed to incorporate annual information into their physiology.
Collapse
Affiliation(s)
- Jose M Romero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Gloria Serrano-Bueno
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Carolina Camacho-Fernández
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
- Universidad Politécnica de Valencia, Vicerrectorado de Investigación, 46022 Valencia, Spain
| | - Mateus Henrique Vicente
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900 São Paulo, Brazil
| | - M Teresa Ruiz
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| | - J Román Pérez-Castiñeira
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Javier Pérez-Hormaeche
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900 São Paulo, Brazil
| | - Federico Valverde
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| |
Collapse
|
4
|
Liu Y, Luo C, Lan M, Guo Y, Li R, Liang R, Chen S, Zhong J, Li B, Xie F, Chen C, He X. MiCOL6, MiCOL7A and MiCOL7B isolated from mango regulate flowering and stress response in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14242. [PMID: 38439528 DOI: 10.1111/ppl.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024]
Abstract
The CONSTANS/CONSTANS-Like (CO/COL) family has been shown to play important roles in flowering, stress tolerance, fruit development and ripening in higher plants. In this study, three COL genes, MiCOL6, MiCOL7A and MiCOL7B, which each contain only one CCT domain, were isolated from mango (Mangifera indica), and their functions were investigated. MiCOL7A and MiCOL7B were expressed mainly at 20 days after flowering (DAF), and all three genes were highly expressed during the flowering induction period. The expression levels of the three genes were affected by light conditions, but only MiCOL6 exhibited a clear circadian rhythm. Overexpression of MiCOL6 promoted earlier flowering, while overexpression of MiCOL7A or MiCOL7B delayed flowering compared to that in the control lines of Arabidopsis thaliana under long-day (LD) and short-day (SD) conditions. Overexpressing MiCOL6, MiCOL7A or MiCOL7B in transgenic plants increased superoxide dismutase (SOD) and proline levels, decreased malondialdehyde (MAD) levels, and improved survival under drought and salt stress. In addition, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses showed that the MiCOL6, MiCOL7A and MiCOL7B proteins interact with several stress- and flower-related proteins. This work demonstrates the functions of MiCOL6, MiCOL7A and MiCOL7B and provides a foundation for further research on the role of mango COL genes in flowering regulation and the abiotic stress response.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Cong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Moying Lan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Yihang Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
- College of Agronomy and Horticulture, Huaihua Polytechnic College, Huaihua, Hunan
| | - Ruoyan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Rongzhen Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Shuquan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Junjie Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Baijun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Fangfang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Canbin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Xinhua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| |
Collapse
|
5
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
6
|
Sui C, Cheng S, Wang D, Lv L, Meng H, Du M, Li J, Su P, Guo S. Systematic identification and characterization of the soybean ( Glycine max) B-box transcription factor family. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2022.2155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Chao Sui
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Shanshan Cheng
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Deying Wang
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Lujia Lv
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Huiran Meng
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Mengxue Du
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Jingyu Li
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Peisen Su
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Shangjing Guo
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| |
Collapse
|
7
|
Lu Y, Li T, Zhao X, Wang M, Huang J, Huang Z, Teixeira da Silva JA, Duan J, Si C, Zhang J. Identification of the CONSTANS-like family in Cymbidium sinense, and their functional characterization. BMC Genomics 2023; 24:786. [PMID: 38110864 PMCID: PMC10729429 DOI: 10.1186/s12864-023-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cymbidium sinense is an orchid that is typically used as a potted plant, given its high-grade ornamental characteristics, and is most frequently distributed in China and SE Asia. The inability to strictly regulate flowering in this economically important potted and cut-flower orchid is a bottleneck that limits its industrial development. Studies on C. sinense flowering time genes would help to elucidate the mechanism regulating flowering. There are very few studies on the genetic regulation of flowering pathways in C. sinense. Photoperiod significantly affects the flowering of C. sinense, but it was unknown how the CONSTANS gene family is involved in regulating flowering. RESULTS In this study, eight CONSTANS-like genes were identified and cloned. They were divided into three groups based on a phylogenetic analysis. Five representative CsCOL genes (CsCOL3/4/6/8/9) were selected from the three groups to perform expression characterization and functional study. CsCOL3/4/6/8/9 are nucleus-localized proteins, and all five CsCOL genes were expressed in all organs, mainly in leaves followed by sepals. The expression levels of CsCOL3/4 (group I) were higher in all organs than other CsCOL genes. Developmental stage specific expression revealed that the expression of CsCOL3/4/9 peaked at the initial flowering stage. In contrast, the transcript level of CsCOL6/8 was highest at the pedicel development stage. Photoperiodic experiments demonstrated that the transcripts of the five CsCOL genes exhibited distinct diurnal rhythms. Under LD conditions, the overexpression of CsCOL3/4 promoted early flowering, and CsCOL6 had little effect on flowering time, whereas CsCOL8 delayed flowering of Arabidopsis thaliana. However, under SD conditions, overexpression of CsCOL4/6/8 promoted early flowering and the rosette leaves growth, and CsCOL3 induced flower bud formation in transgenic Arabidopsis. CONCLUSION The phylogenetic analysis, temporal and spatial expression patterns, photoperiodic rhythms and functional study indicate that CsCOL family members in C. sinense were involved in growth, development and flowering regulation through different photoperiodic pathway. The results will be useful for future research on mechanisms pertaining to photoperiod-dependent flowering, and will also facilitate genetic engineering-based research that uses Cymbidium flowering time genes.
Collapse
Affiliation(s)
- Youfa Lu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Tengji Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaolan Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Mingjun Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiexian Huang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ziqin Huang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | | | - Jun Duan
- Key laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Can Si
- Key laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Jianxia Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Wei Y, Jin J, Lin Z, Lu C, Gao J, Li J, Xie Q, Zhu W, Zhu G, Yang F. Genome-Wide Identification, Expression, and Molecular Characterization of the CONSTANS-like Gene Family in Seven Orchid Species. Int J Mol Sci 2023; 24:16825. [PMID: 38069148 PMCID: PMC10706594 DOI: 10.3390/ijms242316825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The orchid is one of the most distinctive and highly valued flowering plants. Nevertheless, the CONSTANS-like (COL) gene family plays significant roles in the control of flowering, and its functions in Orchidaceae have been minimally explored. This research identified 68 potential COL genes within seven orchids' complete genome, divided into three groups (groups I, II, and III) via a phylogenetic tree. The modeled three-dimensional structure and the conserved domains exhibited a high degree of similarity among the orchid COL proteins. The selection pressure analysis showed that all orchid COLs suffered a strong purifying selection. Furthermore, the orchid COL genes exhibited functional and structural heterogeneity in terms of collinearity, gene structure, cis-acting elements within their promoters, and expression patterns. Moreover, we identified 50 genes in orchids with a homology to those involved in the COL transcriptional regulatory network in Arabidopsis. Additionally, the first overexpression of CsiCOL05 and CsiCOL09 in Cymbidium sinense protoplasts suggests that they may antagonize the regulation of flowering time and gynostemium development. Our study will undoubtedly provide new resources, ideas, and values for the modern breeding of orchids and other plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.W.); (J.J.); (Z.L.); (C.L.); (J.G.); (J.L.); (Q.X.); (W.Z.); (G.Z.)
| |
Collapse
|
9
|
Chen SQ, Luo C, Liu Y, Liang RZ, Huang X, Lu TT, Guo YH, Li RY, Huang CT, Wang Z, He XH. Lack of the CCT domain changes the ability of mango MiCOL14A to resist salt and drought stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111826. [PMID: 37574138 DOI: 10.1016/j.plantsci.2023.111826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
CONSTANS (CO) is the key gene in the photoperiodic pathway that regulates flowering in plants. In this paper, a CONSTANS-like 14A (COL14A) gene was obtained from mango, and its expression patterns and functions were characterized. Sequence analysis shows that MiCOL14A-JH has an additional A base, which leads to code shifting in subsequent coding boxes and loss of the CCT domain. The MiCOL14A-JH and MiCOL14A-GQ genes both belonged to group Ⅲ of the CO/COL gene family. Analysis of tissue expression patterns showed that MiCOL14A was expressed in all tissues, with the highest expression in the leaves of seedling, followed by lower expression levels in the flowers and stems of adult leaves. However, there was no significant difference between different mango varieties. At different development stages of flowering, the expression level of MiCOL14A-GQ was the highest in the leaves before floral induction period, and the lowest at flowering stage, while the highest expression level of MiCOL14A-JH appeared in the leaves at flowering stage. The transgenic functional analysis showed that both MiCOL14A-GQ and MiCOL14A-JH induced delayed flowering of transgenic Arabidopsis. In addition, MiCOL14A-JH enhanced the resistance of transgenic Arabidopsis to drought stress, while MiCOL14A-GQ increased the sensitivity of transgenic Arabidopsis to salt stress. Further proteinprotein interaction analysis showed that MiCOL14A-JH directly interacted with MYB30-INTERACTING E3 LIGASE 1 (MiMIEL1), CBL-interacting protein kinase 9 (MiCIPK9) and zinc-finger protein 4 (MiZFP4), but MiCOL14A-GQ could not interact with these three stress-related proteins. Together, our results demonstrated that MiCOL14A-JH and MiCOL14A-GQ not only regulate flowering but also play a role in the abiotic stress response in mango, and the lack of the CCT domain affects the proteinprotein interaction, thus affecting the gene response to stress. The insertion of an A base can provide a possible detection site for mango resistance breeding.
Collapse
Affiliation(s)
- Shu-Quan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Cong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Rong-Zhen Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Ting-Ting Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yi-Hang Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Ruo-Yan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Chu-Ting Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhuo Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xin-Hua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
10
|
Liang RZ, Luo C, Liu Y, Hu WL, Guo YH, Yu HX, Lu TT, Chen SQ, Zhang XJ, He XH. Overexpression of two CONSTANS-like 2 (MiCOL2) genes from mango delays flowering and enhances tolerance to abiotic stress in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111541. [PMID: 36417961 DOI: 10.1016/j.plantsci.2022.111541] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
The CO/COL gene family plays an important role in regulating photoperiod-dependent flowering time in plants. In this study, two COL2 gene homologs, MiCOL2A and MiCOL2B, were isolated from 'SiJiMi' mango, and their expression patterns and functions were characterized. The MiCOL2A and MiCOL2B genes both belonged to the group Ⅰ of CO/COL gene family. MiCOL2A and MiCOL2B exhibited distinct circadian rhythms and were highly expressed in leaves during the flowering induction period. Subcellular localization analysis revealed that MiCOL2A and MiCOL2B are localized in the nucleus. The overexpression of MiCOL2A and MiCOL2B significantly delayed flowering time in Arabidopsis under both long-day (LD) and short-day (SD) conditions. The MiCOL2A and MiCOL2B overexpression Arabidopsis plants exhibited more tolerance to slat and drought stress after abiotic stress treatments, with greater ROS scavenging capacity and protective enzyme activity, less cell damage and death and higher expression of stress response genes than wild type plants. Bimolecular fluorescence complementation (BiFC) analysis showed that MiCOL2A and MiCOL2B interacted with several stress-related proteins, including zinc finger protein 4 (MiZFP4), MYB30-INTERACTING E3 LIGASE 1 (MiMIEL1) and RING zinc finger protein 34 (MiRZFP34). The results indicate that MiCOL2A and MiCOL2B are not only involved in flowering time but also play a positive role in abiotic stress responses in plants.
Collapse
Affiliation(s)
- Rong-Zhen Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Cong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Yuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Wan-Li Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Yi-Hang Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Hai-Xia Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Ting-Ting Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Shu-Quan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Xiu-Juan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Xin-Hua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
11
|
Ouyang Y, Zhang X, Wei Y, He Y, Zhang X, Li Z, Wang C, Zhang H. AcBBX5, a B-box transcription factor from pineapple, regulates flowering time and floral organ development in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1060276. [PMID: 36507446 PMCID: PMC9729951 DOI: 10.3389/fpls.2022.1060276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Flowering is an important factor to ensure the success of plant reproduction, and reasonable flowering time is crucial to the crop yield. BBX transcription factors can regulate several growth and development processes. However, there is little research on whether BBX is involved in flower formation and floral organ development of pineapple. In this study, AcBBX5, a BBX family gene with two conserved B-box domains, was identified from pineapple. Subcellular localization analysis showed that AcBBX5 was located in the nucleus. Transactivation analysis indicated that AcBBX5 had no significant toxic effects on the yeast system and presented transcriptional activation activity in yeast. Overexpression of AcBBX5 delayed flowering time and enlarged flower morphology in Arabidopsis. Meanwhile, the expression levels of AtFT, AtSOC1, AtFUL and AtSEP3 were decreased, and the transcription levels of AtFLC and AtSVP were increased in AcBBX5-overexpressing Arabidopsis, which might lead to delayed flowering of transgenic plants. Furthermore, transcriptome data and QRT-PCR results showed that AcBBX5 was expressed in all floral organs, with the high expression levels in stamens, ovaries and petals. Yeast one-hybrid and dual luciferase assay results showed that AcBBX5 bound to AcFT promoter and inhibited AcFT gene expression. In conclusion, AcBBX5 was involved in flower bud differentiation and floral organ development, which provides an important reference for studying the functions of BBX and the molecular regulation of flower.
Collapse
Affiliation(s)
- Yanwei Ouyang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
| | - Xiumei Zhang
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Yongzan Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Yukun He
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
| | - Xiaohan Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
| | - Ziqiong Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
| | - Can Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
| | - Hongna Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
12
|
Yan X, Wang LJ, Zhao YQ, Jia GX. Expression Patterns of Key Genes in the Photoperiod and Vernalization Flowering Pathways in Lilium longiflorum with Different Bulb Sizes. Int J Mol Sci 2022; 23:ijms23158341. [PMID: 35955483 PMCID: PMC9368551 DOI: 10.3390/ijms23158341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Lilium longiflorum is a wild Lilium, and its flowering transition requires a long period of cold exposure to meet the demand of vernalization. The responses of different sized bulbs to cold exposure and photoperiod are different, and the floral transition pathways of small and large bulbs are different. In this study, small and large bulbs were placed in cold storage for different weeks and then cultured at a constant ambient temperature of 25 °C under long day (LD) and short day (SD) conditions. Then, the flowering characteristics and expression patterns of key genes related to the vernalization and photoperiod pathways in different groups were calculated and analyzed. The results showed that the floral transition of Lilium longiflorum was influenced by both vernalization and photoperiod, that vernalization and LD conditions can significantly improve the flowering rate of Lilium longiflorum, and that the time from planting to visible flowering buds’ appearance was decreased. The flowering time and rate of large bulbs were greatly influenced by cold exposure, and the vernalization pathway acted more actively at the floral transition stage. The floral transition of small bulbs was affected more by the photoperiod pathway. Moreover, it was speculated that cold exposure may promote greater sensitivity of the small bulbs to LD conditions. In addition, the expression of LlVRN1, LlFKF1, LlGI, LlCO5, LlCO7, LlCO16, LlFT1, LlFT3 and LlSOC1 was high during the process of floral transition, and LlCO13, LlCO14 and LlCO15 were highly expressed in the vegetative stage. The expression of LlCO13 and LlCO14 was different under different lighting conditions, and the flowering induction function of LlCO9 and LlFT3 was related to vernalization. Moreover, LlFKF1, LlGI, LlCO5, LlCO16, LlSOC1 and LlFT2 were involved in the entire growth process of plants, while LlCO6, LlCO16 and LlFT1 are involved in the differentiation and formation of small bulblets of plants after the inflorescence stage, and this process is also closely related to LD conditions. This study has great significance for understanding the molecular mechanisms of the vernalization and photoperiod flowering pathways of Lilium longiflorum.
Collapse
|
13
|
Zhao X, Yu F, Guo Q, Wang Y, Zhang Z, Liu Y. Genome-Wide Identification, Characterization, and Expression Profile Analysis of CONSTANS-like Genes in Woodland Strawberry ( Fragaria vesca). FRONTIERS IN PLANT SCIENCE 2022; 13:931721. [PMID: 35903224 PMCID: PMC9318167 DOI: 10.3389/fpls.2022.931721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
CONSTANS-like (CO-like) gene is one of the most important regulators in the flowering process of the plant, playing a core role in the photoperiodic flowering induction pathway. In this study, we identified 10 distinct CO-like genes (FveCOs) in woodland strawberry (Fragaria vesca). They were classified into three groups with specific gene structure characteristics or protein domains in each group. The effect of selection pressure on the FveCOs in the woodland strawberry was tested by Ka/Ks, and it was shown that the evolution rate of FveCOs was controlled by purification selection factors. Intraspecific synteny analysis of woodland strawberry FveCOs showed that at least one duplication event existed in the gene family members. Collinearity analysis of woodland strawberry genome with genomes of Arabidopsis, rice (Oryza sativa), and apple (Malus × domestica) showed that CO-like genes of F. vesca and Malus × domestica owned higher similarity for their similar genomes compared with those of other two species. The FveCOs showed different tissue-specific expression patterns. Moreover, real-time quantitative PCR results revealed that the expressions of the most FveCOs followed a 24-h rhythm oscillation under both long-day (LD) and short-day (SD) conditions. Further expression analysis showed that the individual expression changing profile of FveCO3 and FveCO5 was opposite to each other under both LD and SD conditions. Moreover, the expression of FveCO3 and FveCO5 was both negatively correlated with the flowering time variation of the woodland strawberry grown under LD and SD conditions, indicating their potential vital roles in the photoperiodic flowering regulation. Further protein interaction network analysis also showed that most of the candidate interaction proteins of FveCO3 and FveCO5 were predicted to be the flowering regulators. Finally, LUC assay indicated that both FveCO3 and FveCO5 could bind to the promoter of FveFT1, the key regulator of flowering regulation in the woodland strawberry, and thus activate its expression. Taken together, this study laid a foundation for understanding the exact roles of FveCOs in the reproductive development regulation of the woodland strawberry, especially in the photoperiodic flowering process.
Collapse
Affiliation(s)
- Xinyong Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, Shenyang, China
| | - Fuhai Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- TieLing Academy of Agricultural Science, Tieling, China
| | - Qing Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, Shenyang, China
| | - Yu Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, Shenyang, China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, Shenyang, China
| | - Yuexue Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
14
|
Huang Z, Bai X, Duan W, Chen B, Chen G, Xu B, Cheng R, Wang J. Genome-Wide Identification and Expression Profiling of CONSTANS-Like Genes in Pepper ( Capsicum annuum): Gaining an Insight to Their Phylogenetic Evolution and Stress-Specific Roles. FRONTIERS IN PLANT SCIENCE 2022; 13:828209. [PMID: 35251098 PMCID: PMC8892298 DOI: 10.3389/fpls.2022.828209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
CONSTANS-like (COL) genes play important regulatory roles in multiple growth and development processes of plants but have rarely been studied in Capsicum annuum. This study explored the evolutionary relationship and expression patterns of COL genes from C. annuum. A total of 10 COL genes were identified in the genome of the cultivated pepper Zunla-1 and were named CaCOL01-10. These genes were unequally distributed among five chromosomes and could be divided into three groups based on differences in gene structure characteristics. During evolutionary history, duplications and retentions were divergent among different groups of COL genes. Tandem duplication caused amplification of group I genes. Genetic distance among COL genes was the largest in group III, suggesting that group III genes undergo more relaxed selection pressure compared with the other groups. Expression patterns of CaCOLs in tissues were significantly different, with CaCOL08 exhibiting the highest expression in stem and leaf. Some COL orthologous genes showed markedly different expression patterns in pepper compared with tomato, such as COL_1 orthologs, which may be involved in fruit development in pepper. In addition, CaCOLs participated in the regulation of abiotic stresses to varying degrees. Five CaCOL genes were induced by cold, and CaCOL02 and CaCOL03 were specifically upregulated by cold and downregulated by heat. This study provides a theoretical basis for the in-depth understanding of the functions of COL genes in pepper and their molecular mechanisms involved in growth and development and responses to abiotic stresses.
Collapse
Affiliation(s)
- Zhinan Huang
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Xueying Bai
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Weike Duan
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Boqing Chen
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Guodong Chen
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Binghua Xu
- Huai’an Key Laboratory for Facility Vegetables, Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai’an, China
| | - Rui Cheng
- Huai’an Key Laboratory for Facility Vegetables, Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai’an, China
| | - Jizhong Wang
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| |
Collapse
|
15
|
Guo YH, Luo C, Liu Y, Liang RZ, Yu HX, Lu XX, Mo X, Chen SQ, He XH. Isolation and functional analysis of two CONSTANS-like 1 genes from mango. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:125-135. [PMID: 35065373 DOI: 10.1016/j.plaphy.2022.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The CONSTANS-LIKE1 (COL1) gene plays an important role in the regulation of photoperiodic flowering in plants. In this study, two COL1 homolog genes, MiCOL1A and MiCOL1B, were isolated from mango (Mangifera indica L.). The open reading frames of MiCOL1A and MiCOL1B are 852 and 822 bp in length and encode 284 and 274 amino acids, respectively. The MiCOL1A and MiCOL1B proteins contain only one CCT domain and belong to the CO/COL group IV protein family. MiCOL1A and MiCOL1B were expressed both in vegetative and reproductive organs but with expression level differences. MiCOL1A was highly expressed in juvenile and adult leaves, but MiCOL1B was highly expressed in flowers. Seasonal expression analysis showed that MiCOL1A and MiCOL1B have similar expression patterns and higher expression levels during flower induction and flower organ differentiation periods. However, MiCOL1A and MiCOL1B exhibited unstable patterns in circadian expression analysis. MiCOL1A and MiCOL1B were localized in the nucleus and had transcriptional activation activity in yeast. Overexpression of MiCOL1A and MiCOL1B resulted in significantly delayed flowering time in Arabidopsis. Furthermore, we also found that overexpression of MiCOL1A and MiCOL1B enhanced drought tolerance in transgenic Arabidopsis. The results demonstrated that MiCOL1A and MiCOL1B are not only involved in flowering regulation but also play a role in the stress response of plants.
Collapse
Affiliation(s)
- Yi-Hang Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Cong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Rong-Zhen Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hai-Xia Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xin-Xi Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiao Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Shu-Quan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xin-Hua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
16
|
Khatun K, Debnath S, Robin AHK, Wai AH, Nath UK, Lee DJ, Kim CK, Chung MY. Genome-wide identification, genomic organization, and expression profiling of the CONSTANS-like (COL) gene family in petunia under multiple stresses. BMC Genomics 2021; 22:727. [PMID: 34620088 PMCID: PMC8499527 DOI: 10.1186/s12864-021-08019-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background CONSTANS-like (CO-like, COL) are putative zinc-finger transcription factors known to play vital role in various plant biological processes such as control of flowering time, regulation of plant growth and development and responses to stresses. However, no systematic analysis of COL family gene regarding the plant development and stress response has been previously performed in any solanaceous crop. In the present study, a comprehensive genome-wide analysis of COL family genes in petunia has been conducted to figure out their roles in development of organs and stress response. Results A total of 33 COL genes, 15 PaCOL genes in P. axillaris and 18 PiCOL genes in P. inflata, were identified in petunia. Subsequently, a genome-wide systematic analysis was performed in 15 PaCOL genes. Considering the domain composition and sequence similarity the 15 PaCOL and 18 PiCOL genes were phylogenetically classified into three groups those are conserved among the flowering plants. Moreover, all of the 15 PaCOL proteins were localized in nucleus. Furthermore, differential expression patterns of PaCOL genes were observed at different developmental stages of petunia. Additionally, transcript expression of 15 PaCOL genes under various abiotic and phytohormone treatments showed their response against stresses. Moreover, several cis-elements related to stress, light-responsive, hormone signaling were also detected in different PaCOL genes. Conclusion The phylogenetic clustering, organ specific expression pattern and stress responsive expression profile of conserved petunia COL genes indicating their involvement in plant growth and development and stress response mechanism. This work provide a significant foundation for understanding the biological roles of petunia COL genes in plant growth, development and in stress response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08019-w.
Collapse
Affiliation(s)
- Khadiza Khatun
- Department of Biotechnology, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Sourav Debnath
- Department of Biochemistry and Food Analysis, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Antt Htet Wai
- Department of Biology, Yangon University of Education, Kamayut Township, 11041, Yangon, Yangon Region, Myanmar
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Do-Jin Lee
- Department of Agricultural Education, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Chang-Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, South Korea.
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
17
|
Liu W, Tang R, Zhang Y, Liu X, Gao Y, Dai Z, Li S, Wu B, Wang L. Genome-wide identification of B-box proteins and VvBBX44 involved in light-induced anthocyanin biosynthesis in grape (Vitis vinifera L.). PLANTA 2021; 253:114. [PMID: 33934247 DOI: 10.1007/s00425-021-03618-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/26/2021] [Indexed: 05/27/2023]
Abstract
Genome-wide identification, analysis and functional characterization of an unreported VvBBX gene showed a response to light and positive correlation with anthocyanin content, but also inhibition of light-induced anthocyanin synthesis. B-box (BBX) proteins are a class of zinc (Zn) finger transcription factors or regulators characterized by the presence of one or two BBX domains and play important roles in plant growth and development. However, the BBX genes' potential functions are insufficiently characterized in grape, a globally popular berry with high economic value. Here, 25 BBX family genes including a novel member (assigned VvBBX44) were identified genome widely in grape. The expression level of these VvBBXs were analyzed in 'Cabernet Sauvignon' (V. vinifera) stem, flower, leaf, tendril, petiole, and developing berries. The expression of VvBBX44 increased in developing 'Cabernet Sauvignon' berries. Its expression was inhibited in 'Jingxiu' and 'Muscat Hamburg' berry skin without sunlight. Furthermore, overexpression of VvBBX44 decreased the expression of LONG HYPOCOTYL 5 (VvHY5) and UDP-glucose flavonoid 3-O-glucosyltransferase (VvUFGT), and reduced the anthocyanin content in grape calli. Our results suggest that VvBBX44 may play an important role in grape berry coloring by directly repressing VvHY5 expression. This study provides new insights into the potential role of VvBBXs in berry development and light response and contributes to the understanding on the regulation mechanism of VvBBX44 in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Wenwen Liu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Renkun Tang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Yuyu Zhang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Xianju Liu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Yingying Gao
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Benhong Wu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China.
| | - Lijun Wang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China.
| |
Collapse
|
18
|
Genome-wide identification and expression analysis of the B-box transcription factor gene family in grapevine (Vitis vinifera L.). BMC Genomics 2021; 22:221. [PMID: 33781207 PMCID: PMC8008696 DOI: 10.1186/s12864-021-07479-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Abstract
Background B-box (BBX) zinc-finger transcription factors play important roles in plant growth, development, and stress response. Although these proteins have been studied in model plants such as Arabidopsis thaliana or Oryza sativa, little is known about the evolutionary history or expression patterns of BBX proteins in grapevine (Vitis vinifera L.). Results We identified a total of 25 VviBBX genes in the grapevine genome and named them according to the homology with Arabidopsis. These proteins were classified into five groups on the basis of their phylogenetic relationships, number of B-box domains, and presence or absence of a CCT domain or VP motif. BBX proteins within the same group showed similar exon-intron structures and were unevenly distributed in grapevine chromosomes. Synteny analyses suggested that only segmental duplication events contributed to the expansion of the VviBBX gene family in grapevine. The observed syntenic relationships between some BBX genes from grapevine and Arabidopsis suggest that they evolved from a common ancestor. Transcriptional analyses showed that the grapevine BBX genes were regulated distinctly in response to powdery mildew infection and various phytohormones. Moreover, the expression levels of a subset of BBX genes in ovules were much higher in seedless grapevine cultivars compared with seeded cultivars during ovule development, implying a potential role in seed abortion. Additionally, VviBBX8, VquBBX15a and VquBBX29b were all located in the nucleus and had transcriptional activity except for VquBBX29b. Conclusions The results of this study establish the genome-wide analysis of the grapevine BBX family and provide a framework for understanding the biological roles of BBX genes in grapevine. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07479-4.
Collapse
|
19
|
Talar U, Kiełbowicz-Matuk A. Beyond Arabidopsis: BBX Regulators in Crop Plants. Int J Mol Sci 2021; 22:ijms22062906. [PMID: 33809370 PMCID: PMC7999331 DOI: 10.3390/ijms22062906] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023] Open
Abstract
B-box proteins represent diverse zinc finger transcription factors and regulators forming large families in various plants. A unique domain structure defines them—besides the highly conserved B-box domains, some B-box (BBX) proteins also possess CCT domain and VP motif. Based on the presence of these specific domains, they are mostly classified into five structural groups. The particular members widely differ in structure and fulfill distinct functions in regulating plant growth and development, including seedling photomorphogenesis, the anthocyanins biosynthesis, photoperiodic regulation of flowering, and hormonal pathways. Several BBX proteins are additionally involved in biotic and abiotic stress response. Overexpression of some BBX genes stimulates various stress-related genes and enhanced tolerance to different stresses. Moreover, there is evidence of interplay between B-box and the circadian clock mechanism. This review highlights the role of BBX proteins as a part of a broad regulatory network in crop plants, considering their participation in development, physiology, defense, and environmental constraints. A description is also provided of how various BBX regulators involved in stress tolerance were applied in genetic engineering to obtain stress tolerance in transgenic crops.
Collapse
|
20
|
Bai S, Tao R, Tang Y, Yin L, Ma Y, Ni J, Yan X, Yang Q, Wu Z, Zeng Y, Teng Y. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1985-1997. [PMID: 30963689 PMCID: PMC6737026 DOI: 10.1111/pbi.13114] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/10/2019] [Accepted: 03/24/2019] [Indexed: 05/14/2023]
Abstract
The red coloration of pear (Pyrus pyrifolia) results from anthocyanin accumulation in the fruit peel. Light is required for anthocyanin biosynthesis in pear. A pear homolog of Arabidopsis thaliana BBX22, PpBBX16, was differentially expressed after fruits were removed from bags and may be involved in anthocyanin biosynthesis. Here, the expression and function of PpBBX16 were analysed. PpBBX16's expression was highly induced by white-light irradiation, as was anthocyanin accumulation. PpBBX16's ectopic expression in Arabidopsis increased anthocyanin biosynthesis in the hypocotyls and tops of flower stalks. PpBBX16 was localized in the nucleus and showed trans-activity in yeast cells. Although PpBBX16 could not directly bind to the promoter of PpMYB10 or PpCHS in yeast one-hybrid assays, the complex of PpBBX16/PpHY5 strongly trans-activated anthocyanin pathway genes in tobacco. PpBBX16's overexpression in pear calli enhanced the red coloration during light treatments. Additionally, PpBBX16's transient overexpression in pear peel increased anthocyanin accumulation, while virus-induced gene silencing of PpBBX16 decreased anthocyanin accumulation. The expression patterns of pear BBX family members were analysed, and six additional BBX genes, which were differentially expressed during light-induced anthocyanin biosynthesis, were identified. Thus, PpBBX16 is a positive regulator of light-induced anthocyanin accumulation, but it could not directly induce the expression of the anthocyanin biosynthesis-related genes by itself but needed PpHY5 to gain full function. Our work uncovered regulatory modes for PpBBX16 and suggested the potential functions of other pear BBX genes in the regulation of anthocyanin accumulation, thereby providing target genes for further studies on anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Songling Bai
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| | - Ruiyan Tao
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| | - Yinxin Tang
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| | - Lei Yin
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| | - Yunjing Ma
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| | - Junbei Ni
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| | - Xinhui Yan
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| | - Qinsong Yang
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| | - Zhongying Wu
- Institute of HorticultureHenan Academy of Agriculture SciencesZhengzhouChina
| | - Yanling Zeng
- Key Laboratory of Cultivation and Protection for Non‐Wood Forest TreesMinistry of EducationCentral South University of Forestry and TechnologyChangshaChina
| | - Yuanwen Teng
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| |
Collapse
|
21
|
Liu J, Cheng Z, Li X, Xie L, Bai Y, Peng L, Li J, Gao J. Expression Analysis and Regulation Network Identification of the CONSTANS-Like Gene Family in Moso Bamboo ( Phyllostachys edulis) Under Photoperiod Treatments. DNA Cell Biol 2019; 38:607-626. [PMID: 31210530 DOI: 10.1089/dna.2018.4611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONSTANS (CO)/CONSTANS-like (COL) genes that have been studied in annual model plants such as Arabidopsis thaliana and Oryza sativa play key roles in the photoperiodic flowering pathway. Moso bamboo is a perennial plant characterized by a long vegetative stage and flowers synchronously followed by widespread death. However, the characteristics of COL in moso bamboo remain unclear. In view of this, we performed a genome-wide identification and expression analysis of the COL gene family in moso bamboo. Fourteen nonredundant PheCOL genes were identified, and we analyzed gene structures, phylogeny, and subcellular location predictions. Phylogenetic analyses indicated that 14 PheCOLs could be clustered into three groups, and each clade was well supported by conserved intron/exon structures and motifs. A number of light-related and tissue-specific cis-elements were randomly distributed within the promoter sequences of the PheCOLs. The expression profiling of PheCOL genes in various tissues and developmental stages revealed that most of PheCOL genes were most highly expressed in the leaves and took part in moso bamboo flower development and rapid shoot growth. In addition, the transcription of PheCOLs exhibited a clear diurnal oscillation in both long-day and short-day conditions. Most of the PheCOL genes were inhibited under light treatment and upregulated in dark conditions. PheCOLs can interact with each other. Subcellular localization result showed that PheCOL14 encoded a cell membrane protein, and it bound to the promoter of PheCOL3. Taken together, the results of this study will be useful not only as they contribute to comprehensive information for further analyses of the molecular functions of the PheCOL gene family, but also will provide a theoretical foundation for the further construction of moso bamboo photoperiod regulation networks.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China
| | - Zhanchao Cheng
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China
| | - Xiangyu Li
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China
| | - Lihua Xie
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China
| | - Yucong Bai
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China
| | - Lixin Peng
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China
| | - Juan Li
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China
| | - Jian Gao
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China
| |
Collapse
|
22
|
Arro J, Yang Y, Song GQ, Zhong GY. RNA-Seq reveals new DELLA targets and regulation in transgenic GA-insensitive grapevines. BMC PLANT BIOLOGY 2019; 19:80. [PMID: 30777012 PMCID: PMC6379989 DOI: 10.1186/s12870-019-1675-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/07/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Gibberellins (GAs) and their regulator DELLA are involved in many aspects of plant growth and development and most of our current knowledge in the DELLA-facilitated GA signaling was obtained from the studies of annual species. To understand GA-DELLA signaling in perennial species, we created ten GA-insensitive transgenic grapevines carrying a DELLA mutant allele (Vvgai1) in the background of Vitis vinifera 'Thompson Seedless' and conducted comprehensive analysis of their RNA expression profiles in the shoot, leaf and root tissues. RESULTS The transgenic lines showed varying degrees of dwarf stature and other typical DELLA mutant phenotypes tightly correlated with the levels of Vvgai1 expression. A large number of differentially expressed genes (DEGs) were identified in the shoot, leaf and root tissues of the transgenic lines and these DEGs were involved in diverse biological processes; many of the DEGs showed strong tissue specificity and about 30% them carried a DELLA motif. We further discovered unexpected expression patterns of several key flowering induction genes VvCO, VvCOL1 and VvTFL1. CONCLUSIONS Our results not only confirmed many previous DELLA study findings in annual species, but also revealed new DELLA targets and responses in grapevine, including the roles of homeodomain transcription factors as potential co-regulators with DELLA in controlling the development of grapevine which uniquely possess both vegetative and reproductive meristems at the same time. The contrasting responses of some key flowering induction pathway genes provides new insights into the divergence of GA-DELLA regulations between annual and perennial species in GA-DELLA signaling.
Collapse
Affiliation(s)
- Jie Arro
- USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456 USA
| | - Yingzhen Yang
- USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456 USA
| | - Guo-Qing Song
- Department of Horticulture, Michigan State University, East Lansing, MI 48823 USA
| | - Gan-Yuan Zhong
- USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456 USA
| |
Collapse
|
23
|
Zhou R, Liu P, Li D, Zhang X, Wei X. Photoperiod response-related gene SiCOL1 contributes to flowering in sesame. BMC PLANT BIOLOGY 2018; 18:343. [PMID: 30526484 PMCID: PMC6288898 DOI: 10.1186/s12870-018-1583-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/30/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Sesame is a major oilseed crop which is widely cultivated all around the world. Flowering, the timing of transition from vegetative to reproductive growth, is one of the most important events in the life cycle of sesame. Sesame is a typical short-day (SD) plant and its flowering is largely affected by photoperiod. However, the flowering mechanism in sesame at the molecular level is still not very clear. Previous studies showed that the CONSTANS (CO) gene is the crucial photoperiod response gene which plays a center role in duration of the plant vegetative growth. RESULTS In this study, the CO-like (COL) genes were identified and characterized in the sesame genome. Two homologs of the CO gene in the SiCOLs, SiCOL1 and SiCOL2, were recognized and comprehensively analyzed. However, sequence analysis showed that SiCOL2 lacked one of the B-box motifs. In addition, the flowering time of the transgenic Arabidopsis lines with overexpressed SiCOL2 were longer than that of SiCOL1, indicating that SiCOL1 was more likely to be the potential functional homologue of CO in sesame. Expression analysis revealed that SiCOL1 had high expressed levels before flowering in leaves and exhibited diurnal rhythmic expression in both SD and long-day (LD) conditions. In total, 16 haplotypes of SiCOL1 were discovered in the sesame collections from Asia. However, the mutated haplotypes did not express under both SD and LD conditions and was regarded as a nonfunctional allele. Notably, the sesame landraces from high-latitude regions harboring nonfunctional alleles of SiCOL1 flowered much earlier than landraces from low-latitude regions under LD condition, and adapted to the northernmost regions of sesame cultivation. The result indicated that sesame landraces from high-latitude regions might have undergone artificial selection to adapt to the LD environment. CONCLUSIONS Our results suggested that SiCOL1 might contribute to regulation of flowering in sesame and natural variations in SiCOL1 were probably related to the expansion of sesame cultivation to high-latitude regions. The results could be used in sesame breeding and in broadening adaptation of sesame varieties to new regions.
Collapse
Affiliation(s)
- Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Pan Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Xin Wei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| |
Collapse
|
24
|
Xiao G, Li B, Chen H, Chen W, Wang Z, Mao B, Gui R, Guo X. Overexpression of PvCO1, a bamboo CONSTANS-LIKE gene, delays flowering by reducing expression of the FT gene in transgenic Arabidopsis. BMC PLANT BIOLOGY 2018; 18:232. [PMID: 30314465 PMCID: PMC6186071 DOI: 10.1186/s12870-018-1469-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/04/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND In Arabidopsis, a long day flowering plant, CONSTANS (CO) acts as a transcriptional activator of flowering under long day (LD) condition. In rice, a short day flowering plant, Hd1, the ortholog of CO, plays dual functions in respond to day-length, activates flowering in short days and represses flowering in long days. In addition, alleles of Hd1 account for ~ 44% of the variation in flowering time observed in cultivated rice and sorghum. How does it work in bamboo? The function of CO in bamboo is similar to that in Arabidopsis? RESULTS Two CO homologous genes, PvCO1 and PvCO2, in Phyllostachys violascens were identified. Alignment analysis showed that the two PvCOLs had the highest sequence similarity to rice Hd1. Both PvCO1 and PvCO2 expressed in specific tissues, mainly in leaf. The PvCO1 gene had low expression before flowering, high expression during the flowering stage, and then declined to low expression again after flowering. In contrast, expression of PvCO2 was low during the flowering stage, but rapidly increased to a high level after flowering. The mRNA levels of both PvCOs exhibited a diurnal rhythm. Both PvCO1 and PvCO2 proteins were localized in nucleus of cells. PvCO1 could interact with PvGF14c protein which belonged to 14-3-3 gene family through B-box domain. Overexpression of PvCO1 in Arabidopsis significantly caused late flowering by reducing the expression of AtFT, whereas, transgenic plants overexpressing PvCO2 showed a similar flowering time with WT under LD conditions. Taken together, these results suggested that PvCO1 was involved in the flowering regulation, and PvCO2 may either not have a role in regulating flowering or act redundantly with other flowering regulators in Arabidopsis. Our data also indicated regulatory divergence between PvCOLs in Ph. violascens and CO in Arabidopsis as well as Hd1 in Oryza sativa. Our results will provide useful information for elucidating the regulatory mechanism of COLs involved in the flowering. CONCLUSIONS Unlike to the CO gene in Arabidopsis, PvCO1 was a negative regulator of flowering in transgenic Arabidopsis under LD condition. It was likely that long period of vegetative growth of this bamboo species was related with the regulation of PvCO1.
Collapse
Affiliation(s)
- Guohui Xiao
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 China
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029 China
| | - Bingjuan Li
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 China
| | - Hongjun Chen
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 China
| | - Wei Chen
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 China
| | - Zhengyi Wang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029 China
| | - Bizeng Mao
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029 China
| | - Renyi Gui
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 China
| | - Xiaoqin Guo
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Hangzhou, 311300 China
| |
Collapse
|
25
|
Peng D, Jiang Y, Liu X, Zhou B. Molecular characterization of a CONSTANS gene from Sapium sebiferum (L.) Rxob. Gene 2018; 654:69-76. [PMID: 29466764 DOI: 10.1016/j.gene.2018.02.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
Abstract
Sapium sebiferum (L.) Roxb [S. sebiferum L.] is not only one of the most important economic woody oil trees, but is also a significant traditional herbal medicine in China. The CONSTANS (CO) gene is a key regulator of the long day-dependent flowering pathway in Arabidopsis and other plants. To gain insight into the role of CO in woody oil trees, SsCO from S. sebiferum L. was isolated and characterized in this study. The corresponding SsCO protein, with 340 amino acid residues, included two putative zinc finger motifs B-Box1 and B-Box2 in the N-terminal region and a conserved CCT domain in the C-terminal region. SsCO expression was high in flowers and exhibited distinct circadian regulation. In addition, SsCO had a transcriptional activation effect in yeast strains. Moreover, heterologous expression of SsCO complemented the late-flowering phenotype of the Arabidopsis CO mutant co-1. These results indicate that SsCO is a transcription factor and may regulate the photoperiodic flowering time and SsCO is regulated by circadian rhythms in Sapium sebiferum L.
Collapse
Affiliation(s)
- Dan Peng
- College of Bioscience and Biotechnology, Central South University of Forestry and Technology, 410018 Changsha, China; Forestry Biotechnology Hunan Key Laboratories, Hunan, Changsha 410018, China
| | - Yueqiao Jiang
- College of Bioscience and Biotechnology, Central South University of Forestry and Technology, 410018 Changsha, China
| | - Xuanming Liu
- Key Laboratory of Plant Function Gnomonic for Development and Regulation, Hunan University, 410082 Changsha, China
| | - Bo Zhou
- College of Bioscience and Biotechnology, Central South University of Forestry and Technology, 410018 Changsha, China; Key Laboratory of Cultivation and Protection for Non-Wood Forest Tree, Central South University of Forestry and Technology, 410018 Changsha, China; Collaborative Innovation Central of Cultivation and Utilization for Non-Wood Forest Tree, Central South University of Forestry and Technology, 410018 Changsha, China; Forestry Biotechnology Hunan Key Laboratories, Hunan, Changsha 410018, China.
| |
Collapse
|
26
|
Chen C, Zeng Z, Liu Z, Xia R. Small RNAs, emerging regulators critical for the development of horticultural traits. HORTICULTURE RESEARCH 2018; 5:63. [PMID: 30245834 PMCID: PMC6139297 DOI: 10.1038/s41438-018-0072-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/23/2018] [Accepted: 07/01/2018] [Indexed: 05/14/2023]
Abstract
Small RNAs (sRNAs) have been recently recognized as key genetic and epigenetic regulators in various organisms, ranging from the modification of DNA and histone methylations to the modulation of the abundance of coding or non-coding RNAs. In plants, major regulatory sRNAs are classified as respective microRNA (miRNA) and small interfering RNA (siRNA) species, with the former primarily engaging in posttranscriptional regulation while the latter in transcriptional one. Many of these characterized sRNAs are involved in regulation of diverse biological programs, processes, and pathways in response to developmental cues, environmental signals/stresses, pathogen infection, and pest attacks. Recently, sRNAs-mediated regulations have also been extensively investigated in horticultural plants, with many novel mechanisms unveiled, which display far more mechanistic complexity and unique regulatory features compared to those studied in model species. Here, we review the recent progress of sRNA research in horticultural plants, with emphasis on mechanistic aspects as well as their relevance to trait regulation. Given that major and pioneered sRNA research has been carried out in the model and other plants, we also discuss ongoing sRNA research on these plants. Because miRNAs and phased siRNAs (phasiRNAs) are the most studied sRNA regulators, this review focuses on their biogenesis, conservation, function, and targeted genes and traits as well as the mechanistic relation between them, aiming at providing readers comprehensive information instrumental for future sRNA research in horticulture crops.
Collapse
Affiliation(s)
- Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Zaohai Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Zongrang Liu
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV 25430 USA
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
27
|
Yan J, Mao D, Liu X, Wang L, Xu F, Wang G, Zhang W, Liao Y. Isolation and functional characterization of a circadian-regulated CONSTANS homolog (GbCO) from Ginkgo biloba. PLANT CELL REPORTS 2017; 36:1387-1399. [PMID: 28616659 DOI: 10.1007/s00299-017-2162-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
This is the first report to clone and functionally characterize a flowering time gene GbCO in perennial gymnosperm Ginkgo biloba. GbCO complements the co mutant of Arabidopsis, restoring normal early flowering. CONSTANS (CO) is a central regulator of photoperiod pathway, which channels inputs from light, day length, and circadian clock to promote the floral transition. In order to understand the role of CO in gymnosperm Ginkgo biloba, which has a long juvenile phase (15-20 years), a CO homolog (GbCO) was isolated and characterized from G. biloba. GbCO encodes a 1741-bp gene with a predicted protein of 400 amino acids with two zinc finger domains (B-box I and B-box II) and a CCT domain. Phylogenic analysis classified GbCO into the group 1a clade of CO families in accordance with the grouping scheme for Arabidopsis CO (AtCO). Southern blot analysis indicated that GbCO belongs to a multigene family in G. biloba. Real-time PCR analysis showed that GbCO was expressed in aerial parts of Ginkgo, with the highest transcript level of GbCO being observed in shoot apexes. GbCO transcript level exhibited a strong diurnal rhythm under flowering-inductive long days and peaked during early morning, suggesting that GbCO is tightly coupled to the floral inductive long-day signal. In addition, an increasing trend of GbCO transcript level was observed both in shoot tips and leaves as the shoot growth under long-day condition, whereas GbCO transcript level decreased in both tissues under short-day condition prior to growth cessation of shoot in G. biloba. GbCO complemented the Arabidopsis co-2 mutant, restoring normal early flowering. All the evidence being taken together, our findings suggested that GbCO served as a potential inducer of flowering in G. biloba.
Collapse
Affiliation(s)
- Jiaping Yan
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Dun Mao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lanlan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Guiyuan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| |
Collapse
|
28
|
Ghan R, Petereit J, Tillett RL, Schlauch KA, Toubiana D, Fait A, Cramer GR. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening. BMC PLANT BIOLOGY 2017; 17:94. [PMID: 28558655 PMCID: PMC5450095 DOI: 10.1186/s12870-017-1043-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/22/2017] [Indexed: 05/16/2023]
Abstract
BACKGROUND Wine grapes are important economically in many countries around the world. Defining the optimum time for grape harvest is a major challenge to the grower and winemaker. Berry skins are an important source of flavor, color and other quality traits in the ripening stage. Senescent-like processes such as chloroplast disorganization and cell death characterize the late ripening stage. RESULTS To better understand the molecular and physiological processes involved in the late stages of berry ripening, RNA-seq analysis of the skins of seven wine grape cultivars (Cabernet Franc, Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay, Sauvignon Blanc and Semillon) was performed. RNA-seq analysis identified approximately 2000 common differentially expressed genes for all seven cultivars across four different berry sugar levels (20 to 26 °Brix). Network analyses, both a posteriori (standard) and a priori (gene co-expression network analysis), were used to elucidate transcriptional subnetworks and hub genes associated with traits in the berry skins of the late stages of berry ripening. These independent approaches revealed genes involved in photosynthesis, catabolism, and nucleotide metabolism. The transcript abundance of most photosynthetic genes declined with increasing sugar levels in the berries. The transcript abundance of other processes increased such as nucleic acid metabolism, chromosome organization and lipid catabolism. Weighted gene co-expression network analysis (WGCNA) identified 64 gene modules that were organized into 12 subnetworks of three modules or more and six higher order gene subnetworks. Some gene subnetworks were highly correlated with sugar levels and some subnetworks were highly enriched in the chloroplast and nucleus. The petal R package was utilized independently to construct a true small-world and scale-free complex gene co-expression network model. A subnetwork of 216 genes with the highest connectivity was elucidated, consistent with the module results from WGCNA. Hub genes in these subnetworks were identified including numerous members of the core circadian clock, RNA splicing, proteolysis and chromosome organization. An integrated model was constructed linking light sensing with alternative splicing, chromosome remodeling and the circadian clock. CONCLUSIONS A common set of differentially expressed genes and gene subnetworks from seven different cultivars were examined in the skin of the late stages of grapevine berry ripening. A densely connected gene subnetwork was elucidated involving a complex interaction of berry senescent processes (autophagy), catabolism, the circadian clock, RNA splicing, proteolysis and epigenetic regulation. Hypotheses were induced from these data sets involving sugar accumulation, light, autophagy, epigenetic regulation, and fruit development. This work provides a better understanding of berry development and the transcriptional processes involved in the late stages of ripening.
Collapse
Affiliation(s)
- Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Juli Petereit
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - Richard L. Tillett
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - Karen A. Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - David Toubiana
- Telekom Innovation, Laboratories and Cyber Security Research Center, Department of Information, Systems Engineering, Ben Gurion University, Beer Sheva, Israel
| | - Aaron Fait
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, 84990 Midreshet Ben-Gurion, Israel
| | - Grant R. Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| |
Collapse
|
29
|
Guo X, Ma Z, Zhang Z, Cheng L, Zhang X, Li T. Small RNA-Sequencing Links Physiological Changes and RdDM Process to Vegetative-to-Floral Transition in Apple. FRONTIERS IN PLANT SCIENCE 2017; 8:873. [PMID: 28611800 PMCID: PMC5447065 DOI: 10.3389/fpls.2017.00873] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/10/2017] [Indexed: 05/22/2023]
Abstract
Transition from vegetative to floral buds is a critical physiological change during flower induction that determines fruit productivity. Small non-coding RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are pivotal regulators of plant growth and development. Although the key role of sRNAs in flowering regulation has been well-described in Arabidopsis and some other annual plants, their relevance to vegetative-to-floral transition (hereafter, referred to floral transition) in perennial woody trees remains under defined. Here, we performed Illumina sequencing of sRNA libraries prepared from vegetative and floral bud during flower induction of the apple trees. A large number of sRNAs exemplified by 33 previously annotated miRNAs and six novel members display significant differential expression (DE) patterns. Notably, most of these DE-miRNAs in floral transition displayed opposite expression changes in reported phase transition in apple trees. Bioinformatics analysis suggests most of the DE-miRNAs targeted transcripts involved in SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene regulation, stress responses, and auxin and gibberellin (GA) pathways, with further suggestion that there is an inherent link between physiological stress response and metabolism reprogramming during floral transition. We also observed significant changes in 24 nucleotide (nt) sRNAs that are hallmarks for RNA-dependent DNA methylation (RdDM) pathway, suggestive of the correlation between epigenetic modifications and the floral transition. The study not only provides new insight into our understanding of fundamental mechanism of poorly studied floral transition in apple and other woody plants, but also presents important sRNA resource for future in-depth research in the apple flowering physiology.
Collapse
Affiliation(s)
- Xinwei Guo
- Department of Fruit Science, College of Horticulture, China Agricultural UniversityBeijing, China
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, TX, United States
- Institute for Plant Genomics and Biotechnology, Texas A&M UniversityCollege Station, TX, United States
| | - Zeyang Ma
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, TX, United States
- Institute for Plant Genomics and Biotechnology, Texas A&M UniversityCollege Station, TX, United States
| | - Zhonghui Zhang
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, TX, United States
- Institute for Plant Genomics and Biotechnology, Texas A&M UniversityCollege Station, TX, United States
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal UniversityGuangzhou, China
| | - Lailiang Cheng
- Department of Horticulture, Cornell UniversityIthaca, NY, United States
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, TX, United States
- Institute for Plant Genomics and Biotechnology, Texas A&M UniversityCollege Station, TX, United States
- *Correspondence: Xiuren Zhang
| | - Tianhong Li
- Department of Fruit Science, College of Horticulture, China Agricultural UniversityBeijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit TreesBeijing, China
- Tianhong Li
| |
Collapse
|
30
|
Abelenda JA, Cruz-Oró E, Franco-Zorrilla JM, Prat S. Potato StCONSTANS-like1 Suppresses Storage Organ Formation by Directly Activating the FT-like StSP5G Repressor. Curr Biol 2016; 26:872-81. [PMID: 26972319 DOI: 10.1016/j.cub.2016.01.066] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 11/18/2022]
Abstract
The CONSTANS-FT pathway defines a core module for reproductive transition in both long-day (LD) and short-day (SD) plants. Changes in the transcriptional function of the CONSTANS (CO) protein have been proposed to mediate differential SD activation of FLOWERING LOCUS T (FT) orthologs in SD plants. Potato Andigena genotypes have an obligate SD requirement for tuber formation, and this photoperiodic response correlates with activation of the FT StSP6A gene in leaves. The potato StCOL1 factor represses expression of this mobile tuberization signal, but the control mechanism is poorly understood. Here, we analyzed StCOL1 diurnal oscillation and protein accumulation at different photoperiods and light wavelengths. We observed that the potato StCOL1 gene peaked at dawn and that, in contrast to the Arabidopsis AtCO homolog, the light receptor phyB is necessary for protein stabilization in the light. Reduced StCOL1 levels in RNAi lines strongly correlated with downregulated expression of an additional potato FT family member, StSP5G. Co-regulated StCOL1 and StSP5G expression suggested that StCOL1 activates this target directly rather than controlling StSP6A expression. By hybridization of a universal protein-binding microarray, we established that StCOL1 binds a TGTGGT element, and we found that immunoprecipitated StCOL1 protein fractions were enriched in StSP5G promoter fragments bearing this element. We show that StSP5G represses tuberization in LD conditions and that this FT-like homolog suppresses StSP6A gene expression. Rewiring StCOL1 transcriptional function from direct activation of the StSP6A inducer signal to the control of an FT-like repressor thus mediates the strict SD requirement of Andigena plants for tuberization.
Collapse
Affiliation(s)
- José A Abelenda
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Eduard Cruz-Oró
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | | | - Salomé Prat
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
31
|
Pérez-Díaz R, Madrid-Espinoza J, Salinas-Cornejo J, González-Villanueva E, Ruiz-Lara S. Differential Roles for VviGST1, VviGST3, and VviGST4 in Proanthocyanidin and Anthocyanin Transport in Vitis vinífera. FRONTIERS IN PLANT SCIENCE 2016; 7:1166. [PMID: 27536314 PMCID: PMC4971086 DOI: 10.3389/fpls.2016.01166] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/20/2016] [Indexed: 05/20/2023]
Abstract
In plant cells, flavonoids are synthesized in the cytosol and then are transported and accumulated in the vacuole. Glutathione S-transferase-mediated transport has been proposed as a mechanism involved in flavonoid transport, however, whether binding of flavonoids to glutathione S-transferase (GST) or their transport is glutathione-dependent is not well understood. Glutathione S-transferases from Vitis vinífera (VviGSTs) have been associated with the transport of anthocyanins, however, their ability to transport other flavonoids such as proanthocyanidins (PAs) has not been established. Following bioinformatics approaches, we analyzed the capability of VviGST1, VviGST3, VviGST4, and Arabidopsis TT19 to bind different flavonoids. Analyses of protein-ligand interactions indicate that these GSTs can bind glutathione and monomers of anthocyanin, PAs and flavonols. A total or partial overlap of the binding sites for glutathione and flavonoids was found in VviGST1, and a similar condition was observed in VviGST3 using anthocyanin and flavonols as ligands, whereas VviGST4 and TT19 have both sites for GSH and flavonoids separated. To validate the bioinformatics predictions, functional complementation assays using the Arabidopsis tt19 mutant were performed. Overexpression of VviGST3 in tt19-1 specifically rescued the dark seed coat phenotype associated to correct PA transport, which correlated with higher binding affinity for PA precursors. VviGST4, originally characterized as an anthocyanin-related GST, complemented both the anthocyanin and PA deposition, resembling the function of TT19. By contrast, VviGST1 only partially rescued the normal seed color. Furthermore the expression pattern of these VviGSTs showed that each of these genes could be associated with the accumulation of different flavonoids in specific tissues during grapevine fruit development. These results provide new insights into GST-mediated PA transport in grapevine and suggest that VviGSTs present different specificities for flavonoid ligands. In addition, our data provide evidence to suggest that GST-mediate flavonoid transport is glutathione-dependent.
Collapse
|
32
|
Pérez-Díaz JR, Pérez-Díaz J, Madrid-Espinoza J, González-Villanueva E, Moreno Y, Ruiz-Lara S. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco. PLANT MOLECULAR BIOLOGY 2016; 90:63-76. [PMID: 26497001 DOI: 10.1007/s11103-015-0394-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/17/2015] [Indexed: 05/18/2023]
Abstract
In grapevine, anthocyanins and proanthocyanidins are the main flavonoids in berries, which are associated to organoleptic properties in red wine such as color and astringency. Flavonoid pathway is specifically regulated at transcriptional level and several R2R3-MYB proteins have shown to act as positive regulators. However, some members of this family have shown to repress the flavonoid biosynthesis. In this work, we present the characterization of VvMYB4-like gene, which encodes a putative transcriptional factor highly expressed in the skin of berries at the pre veraison stage in grapevine. Its over-expression in tobacco resulted in the loss of pigmentation in flowers due a decrease in anthocyanin accumulation. Severity in anthocyanin suppression observed in petals could be associated with the expression level of the VvMYB4-like transgene. Expression analysis of flavonoid structural genes revealed the strong down-regulation of the flavonoid-related genes anthocyanidin synthase (ANS) and dihydroflavonol reductase (DFR) genes and also the reduction of the anthocyanin-related gene UDP glucose:flavonoid 3-O-glucosyl transferase (UFGT), which was dependent of the transgene expression. In addition, expression of VvMYB4-like in the model plant Arabidopsis showed similar results, with the higher down-regulation observed in the AtDFR and AtLDOX genes. These results suggest that VvMYB4-like may play an important role in regulation of anthocyanin biosynthesis in grapevine acting as a transcriptional repressor of flavonoid structural genes.
Collapse
Affiliation(s)
- J Ricardo Pérez-Díaz
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Jorge Pérez-Díaz
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - José Madrid-Espinoza
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | | | - Yerko Moreno
- Centro Tecnológico de la Vid y el Vino, Universidad de Talca, Av. Lircay s/n, Talca, Chile
| | - Simón Ruiz-Lara
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| |
Collapse
|
33
|
Chaurasia AK, Patil HB, Azeez A, Subramaniam VR, Krishna B, Sane AP, Sane PV. Molecular characterization of CONSTANS-Like (COL) genes in banana (Musa acuminata L. AAA Group, cv. Grand Nain). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:1-15. [PMID: 27186015 PMCID: PMC4840155 DOI: 10.1007/s12298-016-0345-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/31/2016] [Indexed: 05/15/2023]
Abstract
The CONSTANS (CO) family is an important regulator of flowering in photoperiod sensitive plants. But information regarding their role in day neutral plants is limited. We report identification of nine Group I type CONSTANS-like (COL) genes of banana and their characterization for their age dependent, diurnal and tissue-specific expression. Our studies show that the Group I genes are conserved in structure to members in other plants. Expression of these genes shows a distinct circadian regulation with a peak during light period. Developmental stage specific expression reveals high level transcript accumulation of two genes, MaCOL3a and MaCOL3b, well before flowering and until the initiation of flowering. A decrease in their transcript levels after initiation of flowering is followed by an increase in transcription of other members that coincides with the continued development of the inflorescence and fruiting. CO binding cis-elements are observed in at least three FT -like genes in banana suggesting possible CO-FT interactions that might regulate flowering. Distinct tissue specific expression patterns are observed for different family members in mature leaves, apical inflorescence, bracts, fruit skin and fruit pulp suggesting possible roles other than flowering. This is the first exhaustive study of the COL genes belonging to Group I of banana.
Collapse
Affiliation(s)
- Akhilesh Kumar Chaurasia
- />Plant Molecular Biology Lab, Jain R&D Lab, Agri Park, Jain Hills, Shirsoli Road, Jalgaon, 425001 India
| | - Hemant Bhagwan Patil
- />Plant Molecular Biology Lab, Jain R&D Lab, Agri Park, Jain Hills, Shirsoli Road, Jalgaon, 425001 India
| | - Abdul Azeez
- />Plant Molecular Biology Lab, Jain R&D Lab, Agri Park, Jain Hills, Shirsoli Road, Jalgaon, 425001 India
| | | | - Bal Krishna
- />Plant Molecular Biology Lab, Jain R&D Lab, Agri Park, Jain Hills, Shirsoli Road, Jalgaon, 425001 India
| | | | | |
Collapse
|
34
|
Pollen Morphology and Boron Concentration in Floral Tissues as Factors Triggering Natural and GA-Induced Parthenocarpic Fruit Development in Grapevine. PLoS One 2015; 10:e0139503. [PMID: 26440413 PMCID: PMC4595136 DOI: 10.1371/journal.pone.0139503] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/12/2015] [Indexed: 12/24/2022] Open
Abstract
Parthenocarpic fruit development (PFD) reduces fruit yield and quality in grapevine. Parthenocarpic seedless berries arise from fruit set without effective fertilization due to defective pollen germination. PFD has been associated to micronutrient deficiency but the relation of this phenomenon with pollen polymorphism has not been reported before. In this work, six grapevine cultivars with different tendency for PFD and grown under micronutrient-sufficient conditions were analyzed to determine pollen structure and germination capability as well as PFD rates. Wide variation in non-germinative abnormal pollen was detected either among cultivars as well as for the same cultivar in different growing seasons. A straight correlation with PFD rates was found (R2 = 0.9896), suggesting that natural parthenocarpy is related to defective pollen development. Such relation was not observed when PFD was analyzed in grapevine plants exposed to exogenous gibberellin (GA) or abscissic acid (ABA) applications at pre-anthesis. Increase (GA treatment) or reduction (ABA treatment) in PFD rates without significative changes in abnormal pollen was determined. Although these plants were maintained at sufficient boron (B) condition, a down-regulation of the floral genes VvBOR3 and VvBOR4 together with a reduction of floral B content in GA-treated plants was established. These results suggest that impairment in B mobility to reproductive tissues and restriction of pollen tube growth could be involved in the GA-induced parthenocarpy.
Collapse
|
35
|
Imtiaz M, Yang Y, Liu R, Xu Y, Khan MA, Wei Q, Gao J, Hong B. Identification and functional characterization of the BBX24 promoter and gene from chrysanthemum in Arabidopsis. PLANT MOLECULAR BIOLOGY 2015; 89:1-19. [PMID: 26253592 DOI: 10.1007/s11103-015-0347-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 07/14/2015] [Indexed: 06/04/2023]
Abstract
The B-box (BBX) family is a subgroup of zinc finger transcription factors that regulate flowering time, light-regulated morphogenesis, and abiotic stress in Arabidopsis. Overexpression of CmBBX24, a zinc finger transcription factor gene in chrysanthemum, results in abiotic stress tolerance. We have investigated and characterized the promoter of CmBBX24, isolating a 2.7-kb CmBBX24 promoter sequence and annotating a number of abiotic stress-related cis-regulatory elements, such as DRE, MYB, MYC, as well as cis-elements which respond to plant hormones, such as GARE, ABRE, and CARE. We also observed a number of cis-elements related to light, such as TBOX and GBOX, and some tissue-specific cis-elements, such as those for guard cells (TAAAG). Expression of the CmBBX24 promoter produced a clear response in leaves and a lower response in roots, based on β-glucuronidase histochemical staining and fluorometric analysis. The CmBBX24 promoter was induced by abiotic stresses (mannitol, cold temperature), hormones (gibberellic acid, abscisic acid), and different light treatments (white, blue, red); activation was measured by fluorometric analysis in the leaves and roots. The deletion of fragments from the 5'-end of the promoter led to different responses under various stress conditions. Some CmBBX24 promoter segments were found to be more important than others for regulating all stresses, while other segments were relatively more specific to stress type. D0-, D1-, D2-, D3-, and D4-proCmBBX24::CmBBX24 transgenic Arabidopsis lines developed for further study were found to be more tolerant to the low temperature and drought stresses than the controls. We therefore speculate that CmBBX24 is of prime importance in the regulation of abiotic stress in Arabidopsis and that the CmBBX24 promoter is inductive in abiotic stress conditions. Consequently, we suggest that CmBBX24 is a potential candidate for the use in breeding programs of important ornamental plants.
Collapse
Affiliation(s)
- Muhammad Imtiaz
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yingjie Yang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ruixue Liu
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanjie Xu
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Muhammad Ali Khan
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qian Wei
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bo Hong
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
36
|
Simon S, Rühl M, de Montaigu A, Wötzel S, Coupland G. Evolution of CONSTANS Regulation and Function after Gene Duplication Produced a Photoperiodic Flowering Switch in the Brassicaceae. Mol Biol Evol 2015; 32:2284-301. [PMID: 25972346 PMCID: PMC4540966 DOI: 10.1093/molbev/msv110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Environmental control of flowering allows plant reproduction to occur under optimal conditions and facilitates adaptation to different locations. At high latitude, flowering of many plants is controlled by seasonal changes in day length. The photoperiodic flowering pathway confers this response in the Brassicaceae, which colonized temperate latitudes after divergence from the Cleomaceae, their subtropical sister family. The CONSTANS (CO) transcription factor of Arabidopsis thaliana, a member of the Brassicaceae, is central to the photoperiodic flowering response and shows characteristic patterns of transcription required for day-length sensing. CO is believed to be widely conserved among flowering plants; however, we show that it arose after gene duplication at the root of the Brassicaceae followed by divergence of transcriptional regulation and protein function. CO has two close homologs, CONSTANS-LIKE1 (COL1) and COL2, which are related to CO by tandem duplication and whole-genome duplication, respectively. The single CO homolog present in the Cleomaceae shows transcriptional and functional features similar to those of COL1 and COL2, suggesting that these were ancestral. We detect cis-regulatory and codon changes characteristic of CO and use transgenic assays to demonstrate their significance in the day-length-dependent activation of the CO target gene FLOWERING LOCUS T. Thus, the function of CO as a potent photoperiodic flowering switch evolved in the Brassicaceae after gene duplication. The origin of CO may have contributed to the range expansion of the Brassicaceae and suggests that in other families CO genes involved in photoperiodic flowering arose by convergent evolution.
Collapse
Affiliation(s)
- Samson Simon
- Department of Plant Developmental Biology, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Mark Rühl
- Department of Plant Developmental Biology, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Amaury de Montaigu
- Department of Plant Developmental Biology, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Stefan Wötzel
- Department of Plant Developmental Biology, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - George Coupland
- Department of Plant Developmental Biology, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
37
|
Fu J, Yang L, Dai S. Identification and characterization of the CONSTANS-like gene family in the short-day plant Chrysanthemum lavandulifolium. Mol Genet Genomics 2014; 290:1039-54. [PMID: 25523304 DOI: 10.1007/s00438-014-0977-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/30/2014] [Indexed: 12/16/2022]
Abstract
The CONSTANS (CO) and CONSTANS-like (COL) genes play key roles in the photoperiodic flowering pathways, and studying their functions can elucidate the molecular mechanisms underlying flowering control in photoperiod-regulated plants. We identified eleven COL genes (ClCOL1-ClCOL11) in Chrysanthemum lavandulifolium and divided them into three groups that are conserved among the flowering plants based on phylogenetic analysis. Most of the ClCOL genes are primarily expressed in the leaf and shoot apices, except for ClCOL6-ClCOL9, which belong to Group II. The expression levels of ClCOL4-ClCOL5 and ClCOL7-ClCOL8 are up-regulated under inductive short-day (SD) conditions, whereas ClCOL6 is down-regulated under inductive SD conditions. The ClCOL genes exhibit four different diurnal rhythm expressions (Type I-Type IV). The Type I genes (ClCOL4-ClCOL5) are highly transcribed under light. The Type II genes (ClCOL1-ClCOL2, ClCOL10) display increased expression in darkness and are rapidly suppressed under light. Transcripts of ClCOL6-ClCOL9 and ClCOL11, belonging to Type III, are abundant in the late light period or at the beginning of the dark period. ClCOL3 belongs to Type IV, with high expression in the early light period and dark period. The peak expression levels of ClCOL4-ClCOL6 are decreased and postponed in the non-inductive night break (NB) and under long-day (LD) conditions, indicating that those genes may play an essential role in the flowering regulation of C. lavandulifolium. The overexpression of ClCOL5 promotes the flowering of Arabidopsis grown under LD conditions, suggesting that ClCOL5 may function as a flowering enhancer in C. lavandulifolium. This study will be useful not only for the study of the C. lavandulifolium photoperiod-dependent flowering process but also for the genetic manipulation of flowering time-related genes to change the flowering time in the chrysanthemum.
Collapse
Affiliation(s)
- Jianxin Fu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | | | | |
Collapse
|
38
|
Fechter I, Hausmann L, Zyprian E, Daum M, Holtgräwe D, Weisshaar B, Töpfer R. QTL analysis of flowering time and ripening traits suggests an impact of a genomic region on linkage group 1 in Vitis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1857-72. [PMID: 25112201 PMCID: PMC4145202 DOI: 10.1007/s00122-014-2310-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/05/2014] [Indexed: 05/21/2023]
Abstract
In the recent past, genetic analyses of grapevine focused mainly on the identification of resistance loci for major diseases such as powdery and downy mildew. Currently, breeding programs make intensive use of these results by applying molecular markers linked to the resistance traits. However, modern genetics also allows to address additional agronomic traits that have considerable impact on the selection of grapevine cultivars. In this study, we have used linkage mapping for the identification and characterization of flowering time and ripening traits in a mapping population from a cross of V3125 ('Schiava Grossa' × 'Riesling') and the interspecific rootstock cultivar 'Börner' (Vitis riparia × Vitis cinerea). Comparison of the flowering time QTL mapping with data derived from a second independent segregating population identified several common QTLs. Especially a large region on linkage group 1 proved to be of special interest given the genetic divergence of the parents of the two populations. The proximity of the QTL region contains two CONSTANS-like genes. In accordance with data from other plants such as Arabidopsis thaliana and Oryza sativa, we hypothesize that these genes are major contributors to control the time of flowering in Vitis.
Collapse
Affiliation(s)
- Iris Fechter
- Institute for Grapevine Breeding, Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Geilweilerhof, 76833, Siebeldingen, Germany,
| | | | | | | | | | | | | |
Collapse
|
39
|
Gangappa SN, Botto JF. The BBX family of plant transcription factors. TRENDS IN PLANT SCIENCE 2014; 19:460-70. [PMID: 24582145 DOI: 10.1016/j.tplants.2014.01.010] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 05/04/2023]
Abstract
The B-box (BBX) proteins are a class of zinc-finger transcription factors containing a B-box domain with one or two B-box motifs, and sometimes also feature a CCT (CONSTANS, CO-like, and TOC1) domain. BBX proteins are key factors in regulatory networks controlling growth and developmental processes that include seedling photomorphogenesis, photoperiodic regulation of flowering, shade avoidance, and responses to biotic and abiotic stresses. In this review we discuss the functions of BBX proteins and the role of B-box motif in mediating transcriptional regulation and protein-protein interaction in plant signaling. In addition, we provide novel insights into the molecular mechanisms of their action and the evolutionary significance of their functional divergence.
Collapse
Affiliation(s)
- Sreeramaiah N Gangappa
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg 40530, Sweden
| | - Javier F Botto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1417, Argentina.
| |
Collapse
|
40
|
Zhang Z, Wang P, Li Y, Ma L, Li L, Yang R, Ma Y, Wang S, Wang Q. Global transcriptome analysis and identification of the flowering regulatory genes expressed in leaves of Lagerstroemia indica. DNA Cell Biol 2014; 33:680-8. [PMID: 24983664 DOI: 10.1089/dna.2014.2469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Flowering time is an important trait for ornamental plants, and flowering regulation has thus been both a focus of and challenge to researchers. Lagerstroemia indica is an important summer flowering tree in China and has been introduced abroad as a key parent of new cultivars; no previous reports have addressed the regulation of flowering time in this species. In this study, 28,567,778×2 reads were obtained from leaves of L. indica. A total of 37,325 unigenes were assembled with an average length of 849.56 bp, and 17,506 (46.90%) unigenes were significantly matched to known genes in the nr database of GenBank. The annotated sequences were clustered into putative functional categories using the Gene Ontology framework. Potential genes and their functions were predicted by the Cluster of Orthologous Groups analysis and Kyoto Encyclopedia of Genes and Genomes pathway mapping. A total of 115 unigenes related to flowering time control were discovered. Ten homologous genes of the CONSTANS-like (COL) gene family were identified based on transcript data. Phylogenetic analysis of the CONSTANS and COL genes from L. indica and other species grouped them into three clades. The transcriptome dataset and outcome of the analysis provide a valuable new resource for research on the functional genomics and molecular mechanisms of flowering control in L. indica.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Institute of Botany , Jiangsu Province & Chinese Academy of Sciences, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pérez-Díaz R, Ryngajllo M, Pérez-Díaz J, Peña-Cortés H, Casaretto JA, González-Villanueva E, Ruiz-Lara S. VvMATE1 and VvMATE2 encode putative proanthocyanidin transporters expressed during berry development in Vitis vinifera L. PLANT CELL REPORTS 2014; 33:1147-59. [PMID: 24700246 DOI: 10.1007/s00299-014-1604-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/18/2014] [Accepted: 03/17/2014] [Indexed: 05/18/2023]
Abstract
VvMATE1 and VvMATE2 encode putative PA transporters expressed during seed development in grapevine. The subcellular localization of these MATE proteins suggests different routes for the intracellular transport of PAs. Proanthocyanidins (PAs), also called condensed tannins, protect plants against herbivores and are important quality components of many fruits. PAs biosynthesis is part of the flavonoid pathway that also produces anthocyanins and flavonols. In grape fruits, PAs are present in seeds and skin tissues. PAs are synthesized in the cytoplasm and accumulated into the vacuole and apoplast; however, little is known about the mechanisms involved in the transport of these compounds to such cellular compartments. A gene encoding a Multidrug And Toxic compound Extrusion (MATE) family protein suggested to transport anthocyanins-named VvMATE1-was used to identify a second gene of the MATE family, VvMATE2. Analysis of their deduced amino acid sequences and the phylogenetic relationship with other MATE-like proteins indicated that VvMATE1 and VvMATE2 encode putative PA transporters. Subcellular localization assays in Arabidopsis protoplasts transformed with VvMATE-GFP fusion constructs along with organelle-specific markers revealed that VvMATE1 is localized in the tonoplast whereas VvMATE2 is localized in the Golgi complex. Major expression of both genes occurs during the early stages of seed development concomitant with the accumulation of PAs. Both genes are poorly expressed in the skin of berries while VvMATE2 is also expressed in leaves. The presence of putative cis-acting elements in the promoters of VvMATE1 and VvMATE2 may explain the differential transcriptional regulation of these genes in grapevine. Altogether, these results suggest that these MATE proteins could mediate the transport and accumulation of PAs in grapevine through different routes and cellular compartments.
Collapse
Affiliation(s)
- Ricardo Pérez-Díaz
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | | | | | | | | | | | | |
Collapse
|
42
|
Lind-Riehl JF, Sullivan AR, Gailing O. Evidence for selection on a CONSTANS-like gene between two red oak species. ANNALS OF BOTANY 2014; 113:967-75. [PMID: 24615344 PMCID: PMC3997637 DOI: 10.1093/aob/mcu019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/27/2014] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Hybridizing species such as oaks may provide a model to study the role of selection in speciation with gene flow. Discrete species' identities and different adaptations are maintained among closely related oak species despite recurrent gene flow. This is probably due to ecologically mediated selection at a few key genes or genomic regions. Neutrality tests can be applied to identify so-called outlier loci, which demonstrate locus-specific signatures of divergent selection and are candidate genes for further study. METHODS Thirty-six genic microsatellite markers, some with putative functions in flowering time and drought tolerance, and eight non-genic microsatellite markers were screened in two population pairs (n = 160) of the interfertile species Quercus rubra and Q. ellipsoidalis, which are characterized by contrasting adaptations to drought. Putative outliers were then tested in additional population pairs from two different geographic regions (n = 159) to support further their potential role in adaptive divergence. KEY RESULTS A marker located in the coding sequence of a putative CONSTANS-like (COL) gene was repeatedly identified as under strong divergent selection across all three geographically disjunct population pairs. COL genes are involved in the photoperiodic control of growth and development and are implicated in the regulation of flowering time. CONCLUSIONS The location of the polymorphism in the Quercus COL gene and given the potential role of COL genes in adaptive divergence and reproductive isolation makes this a promising candidate speciation gene. Further investigation of the phenological characteristics of both species and flowering time pathway genes is suggested in order to elucidate the importance of phenology genes for the maintenance of species integrity. Next-generation sequencing in multiple population pairs in combination with high-density genetic linkage maps could reveal the genome-wide distribution of outlier genes and their potential role in reproductive isolation between these species.
Collapse
Affiliation(s)
| | | | - Oliver Gailing
- Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| |
Collapse
|
43
|
Drabešová J, Cháb D, Kolář J, Haškovcová K, Štorchová H. A dark-light transition triggers expression of the floral promoter CrFTL1 and downregulates CONSTANS-like genes in a short-day plant Chenopodium rubrum. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2137-2146. [PMID: 24642846 PMCID: PMC3991744 DOI: 10.1093/jxb/eru073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The proper timing of flowering is essential for the adaptation of plant species to their ever-changing environments. The central position in a complex regulatory network is occupied by the protein FT, which acts as a florigen. We found that light, following a permissive period of darkness, was essential to induce the floral promoter CrFTL1 and to initiate flowering in seedlings of the short-day plant Chenopodium rubrum L. We also identified two novel CONSTANS-like genes in C. rubrum and observed their rhythmic diurnal and circadian expressions. Strong rhythmicity of expression suggested that the two genes might have been involved in the regulation of photoperiod-dependent processes, despite their inability to complement co mutation in A. thaliana. The CrCOL1 and CrCOL2 genes were downregulated by dark-light transition, regardless of the length of a preceding dark period. The same treatment activated the floral promoter CrFTL1. Light therefore affected CrCOL and CrFTL1 in an opposite manner. Both CrCOL genes and CrFTL1 displayed expression patterns unique among short-day plants. Chenopodium rubrum, the subject of classical physiological studies in the past, is emerging as a useful model for the investigation of flowering at the molecular level.
Collapse
|
44
|
The B-box family gene STO (BBX24) in Arabidopsis thaliana regulates flowering time in different pathways. PLoS One 2014; 9:e87544. [PMID: 24498334 PMCID: PMC3911981 DOI: 10.1371/journal.pone.0087544] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/31/2013] [Indexed: 12/13/2022] Open
Abstract
Flowering at the appropriate time is crucial for reproductive success and is strongly influenced by various pathways such as photoperiod, circadian clock, FRIGIDA and vernalization. Although each separate pathway has been extensively studied, much less is known about the interactions between them. In this study we have investigated the relationship between the photoperiod/circadian clock gene and FRIGIDA/FLC by characterizing the function of the B-box STO gene family. STO has two B-box Zn-finger domains but lacks the CCT domain. Its expression is controlled by circadian rhythm and is affected by environmental factors and phytohormones. Loss and gain of function mutants show diversiform phenotypes from seed germination to flowering. The sto-1 mutant flowers later than the wild type (WT) under short day growth conditions, while over-expression of STO causes early flowering both in long and short days. STO over-expression not only reduces FLC expression level but it also activates FT and SOC1 expression. It also does not rely on the other B-box gene CO or change the circadian clock system to activate FT and SOC1. Furthermore, the STO activation of FT and SOC1 expression is independent of the repression of FLC; rather STO and FLC compete with each other to regulate downstream genes. Our results indicate that photoperiod and the circadian clock pathway gene STO can affect the key flowering time genes FLC and FT/SOC1 separately, and reveals a novel perspective to the mechanism of flowering regulation.
Collapse
|
45
|
Wu F, Price BW, Haider W, Seufferheld G, Nelson R, Hanzawa Y. Functional and evolutionary characterization of the CONSTANS gene family in short-day photoperiodic flowering in soybean. PLoS One 2014; 9:e85754. [PMID: 24465684 PMCID: PMC3897488 DOI: 10.1371/journal.pone.0085754] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/29/2013] [Indexed: 12/03/2022] Open
Abstract
CONSTANS (CO) plays a central role in photoperiodic flowering control of plants. However, much remains unknown about the function of the CO gene family in soybean and the molecular mechanisms underlying short-day photoperiodic flowering of soybean. We identified 26 CO homologs (GmCOLs) in the soybean genome, many of them previously unreported. Phylogenic analysis classified GmCOLs into three clades conserved among flowering plants. Two homeologous pairs in Clade I, GmCOL1a/GmCOL1b and GmCOL2a/GmCOL2b, showed the highest sequence similarity to Arabidopsis CO. The mRNA abundance of GmCOL1a and GmCOL1b exhibited a strong diurnal rhythm under flowering-inductive short days and peaked at dawn, which coincided with the rise of GmFT5a expression. In contrast, the mRNA abundance of GmCOL2a and GmCOL2b was extremely low. Our transgenic study demonstrated that GmCOL1a, GmCOL1b, GmCOL2a and GmCOL2b fully complemented the late flowering effect of the co-1 mutant in Arabidopsis. Together, these results indicate that GmCOL1a and GmCOL1b are potential inducers of flowering in soybean. Our data also indicate rapid regulatory divergence between GmCOL1a/GmCOL1b and GmCOL2a/GmCOL2b but conservation of their protein function. Dynamic evolution of GmCOL regulatory mechanisms may underlie the evolution of photoperiodic signaling in soybean.
Collapse
Affiliation(s)
- Faqiang Wu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brian William Price
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Waseem Haider
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gabriela Seufferheld
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Randall Nelson
- USDA-Agricultural Research Service, Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yoshie Hanzawa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
46
|
Fan C, Hu R, Zhang X, Wang X, Zhang W, Zhang Q, Ma J, Fu YF. Conserved CO-FT regulons contribute to the photoperiod flowering control in soybean. BMC PLANT BIOLOGY 2014; 14:9. [PMID: 24397545 PMCID: PMC3890618 DOI: 10.1186/1471-2229-14-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 11/25/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND CO and FT orthologs, belonging to the BBX and PEBP family, respectively, have important and conserved roles in the photoperiod regulation of flowering time in plants. Soybean genome experienced at least three rounds of whole genome duplications (WGDs), which resulted in multiple copies of about 75% of genes. Subsequent subfunctionalization is the main fate for paralogous gene pairs during the evolutionary process. RESULTS The phylogenic relationships revealed that CO orthologs were widespread in the plant kingdom while FT orthologs were present only in angiosperms. Twenty-eight CO homologous genes and twenty-four FT homologous genes were gained in the soybean genome. Based on the collinear relationship, the soybean ancestral CO ortholog experienced three WGD events, but only two paralogous gene pairs (GmCOL1/2 and GmCOL5/13) survived in the modern soybean. The paralogous gene pairs, GmCOL1/2 or GmCOL5/13, showed similar expression patterns in pair but different between pairs, indicating that they functionally diverged. GmFTL1 to 7 were derived from the same ancestor prior to the whole genome triplication (WGT) event, and after the Legume WGD event the ancestor diverged into two branches, GmFTL3/5/7 and GmFTL1/2/4/6. GmFTL7 were truncated in the N-terminus compared to other FT-lineage genes, but ubiquitously expressed. Expressions of GmFTL1 to 6 were higher in leaves at the flowering stage than that at the seedling stage. GmFTL3 was expressed at the highest level in all tissues except roots at the seedling stage, and its circadian pattern was different from the other five ones. The transcript of GmFTL6 was highly accumulated in seedling roots. The circadian rhythms of GmCOL5/13 and GmFT1/2/4/5/6 were synchronized in a day, demonstrating the complicate relationship of CO-FT regulons in soybean leaves. Over-expression of GmCOL2 did not rescue the flowering phenotype of the Arabidopsis co mutant. However, ectopic expression of GmCOL5 did rescue the co mutant phenotype. All GmFTL1 to 6 showed flower-promoting activities in Arabidopsis. CONCLUSIONS After three recent rounds of whole genome duplications in the soybean, the paralogous genes of CO-FT regulons showed subfunctionalization through expression divergence. Then, only GmCOL5/13 kept flowering-promoting activities, while GmFTL1 to 6 contributed to flowering control. Additionally, GmCOL5/13 and GmFT1/2/3/4/5/6 showed similar circadian expression profiles. Therefore, our results suggested that GmCOL5/13 and GmFT1/2/3/4/5/6 formed the complicate CO-FT regulons in the photoperiod regulation of flowering time in soybean.
Collapse
Affiliation(s)
- Chengming Fan
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ruibo Hu
- CAS Key Lab of Biofuels, Shandong Provincial Key Lab of Energy Genetics, Qingdao Institute of BioEnergy and BioProcess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiaomei Zhang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Xu Wang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Wenjing Zhang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Qingzhe Zhang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Jinhua Ma
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Yong-Fu Fu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| |
Collapse
|
47
|
Liu J, Franks RG, Feng CM, Liu X, Fu CX, (Jenny) Xiang QY. Characterization of the sequence and expression pattern of LFY homologues from dogwood species (Cornus) with divergent inflorescence architectures. ANNALS OF BOTANY 2013; 112:1629-41. [PMID: 24052556 PMCID: PMC3828947 DOI: 10.1093/aob/mct202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 07/15/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS LFY homologues encode transcription factors that regulate the transition from vegetative to reproductive growth in flowering plants and have been shown to control inflorescence patterning in model species. This study investigated the expression patterns of LFY homologues within the diverse inflorescence types (head-like, umbel-like and inflorescences with elongated internodes) in closely related lineages in the dogwood genus (Cornus s.l.). The study sought to determine whether LFY homologues in Cornus species are expressed during floral and inflorescence development and if the pattern of expression is consistent with a function in regulating floral development and inflorescence architectures in the genus. METHODS Total RNAs were extracted using the CTAB method and the first-strand cDNA was synthesized using the SuperScript III first-strand synthesis system kit (Invitrogen). Expression of CorLFY was investigated by RT-PCR and RNA in situ hybridization. Phylogenetic analyses were conducted using the maximum likelihood methods implemented in RAxML-HPC v7.2.8. KEY RESULTS cDNA clones of LFY homologues (designated CorLFY) were isolated from six Cornus species bearing different types of inflorescence. CorLFY cDNAs were predicted to encode proteins of approximately 375 amino acids. The detection of CorLFY expression patterns using in situ RNA hybridization demonstrated the expression of CorLFY within the inflorescence meristems, inflorescence branch meristems, floral meristems and developing floral organ primordia. PCR analyses for cDNA libraries derived from reverse transcription of total RNAs showed that CorLFY was also expressed during the late-stage development of flowers and inflorescences, as well as in bracts and developing leaves. Consistent differences in the CorLFY expression patterns were not detected among the distinct inflorescence types. CONCLUSIONS The results suggest a role for CorLFY genes during floral and inflorescence development in dogwoods. However, the failure to detect expression differences between the inflorescence types in the Cornus species analysed suggests that the evolutionary shift between major inflorescence types in the genus is not controlled by dramatic alterations in the levels of CorLFY gene transcript accumulation. However, due to spatial, temporal and quantitative limitations of the expression data, it cannot be ruled out that subtle differences in the level or location of CorLFY transcripts may underlie the different inflorescence architectures that are observed across these species. Alternatively, differences in CorLFY protein function or the expression or function of other regulators (e.g. TFL1 and UFO homologues) may support the divergent developmental trajectories.
Collapse
Affiliation(s)
- Juan Liu
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
- College of Life Sciences, Zhejiang University, Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Hangzhou 310058, China
| | - Robert G. Franks
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - Chun-Miao Feng
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Xiang Liu
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Cheng-Xin Fu
- College of Life Sciences, Zhejiang University, Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Hangzhou 310058, China
| | - Qiu-Yun (Jenny) Xiang
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
- For correspondence. E-mail
| |
Collapse
|
48
|
Duchêne E, Butterlin G, Dumas V, Merdinoglu D. Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:623-35. [PMID: 22052019 DOI: 10.1007/s00122-011-1734-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/14/2011] [Indexed: 05/20/2023]
Abstract
The genetic determinism of developmental stages in grapevine was studied in the progeny of a cross between grapevine cultivars Riesling and Gewurztraminer by combining ecophysiological modelling, genetic analysis and data mining of the grapevine whole genome sequence. The dates of three phenological stages, budbreak, flowering and veraison, were recorded during four successive years for 120 genotypes in the vineyard. The phenotypic data analysed were the duration of three periods expressed in thermal time (degree-days): 15 February to budbreak (Bud), budbreak to flowering (Flo) and flowering to veraison (Ver). Parental and consensus genetic maps were built using 153 microsatellite markers on 188 individuals. Six independent quantitative trait loci (QTLs) were detected for the three phases. They were located on chromosomes 4 and 19 for Bud, chromosomes 7 and 14 for Flo and chromosomes 16 and 18 for Ver. Interactions were detected between loci and also between alleles at the same locus. Using the available grapevine whole-genome sequences, candidate genes underlying the QTLs were identified. VvFT, on chromosome 7, and a CONSTANS-like gene, on chromosome 14, were found to colocalise with the QTLs for flowering time. Genes related to the abscisic acid response and to sugar metabolism were detected within the confidence intervals of QTLs for veraison time. Their possible roles in the developmental process are discussed. These results raise new hypotheses for a better understanding of the physiological processes governing grapevine phenology and provide a framework for breeding new varieties adapted to the future predicted climatic conditions.
Collapse
Affiliation(s)
- Eric Duchêne
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA, Université de Strasbourg, 28, rue de Herrlisheim, BP 20507, 68021, Colmar, France.
| | | | | | | |
Collapse
|
49
|
FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. Proc Natl Acad Sci U S A 2012; 109:3582-7. [PMID: 22334645 DOI: 10.1073/pnas.1118876109] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many plants monitor day-length changes throughout the year and use the information to precisely regulate the timing of seasonal flowering for maximum reproductive success. In Arabidopsis thaliana, transcriptional regulation of the CONSTANS (CO) gene and posttranslational regulation of CO protein are crucial mechanisms for proper day-length measurement in photoperiodic flowering. Currently, the CYCLING DOF FACTOR proteins are the only transcription factors known to directly regulate CO gene expression, and the mechanisms that directly activate CO transcription have remained unknown. Here we report the identification of four CO transcriptional activators, named FLOWERING BHLH 1 (FBH1), FBH2, FBH3, and FBH4. All FBH proteins are related basic helix-loop-helix-type transcription factors that preferentially bind to the E-box cis-elements in the CO promoter. Overexpression of all FBH genes drastically elevated CO levels and caused early flowering regardless of photoperiod, whereas CO levels were reduced in the fbh quadruple mutants. In addition, FBH1 is expressed in the vascular tissue and bound near the transcription start site of the CO promoter in vivo. Furthermore, FBH homologs in poplar and rice induced CO expression in Arabidopsis. These results indicate that FBH proteins positively regulate CO transcription for photoperiodic flowering and that this mechanism may be conserved in diverse plant species. Our results suggest that the diurnal CO expression pattern is generated by a concert of redundant functions of positive and negative transcriptional regulators.
Collapse
|
50
|
Pérez-Castro R, Kasai K, Gainza-Cortés F, Ruiz-Lara S, Casaretto JA, Peña-Cortés H, Tapia J, Fujiwara T, González E. VvBOR1, the grapevine ortholog of AtBOR1, encodes an efflux boron transporter that is differentially expressed throughout reproductive development of Vitis vinifera L. PLANT & CELL PHYSIOLOGY 2012; 53:485-94. [PMID: 22247248 DOI: 10.1093/pcp/pcs001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Boron (B) is an essential micronutrient for normal development of roots, shoots and reproductive tissues in plants. Due to its role in the structure of rhamnogalacturonan II, a polysaccharide required for pollen tube growth, B deficiency has been associated with the occurrence of parthenocarpic seedless grapes in some varieties of Vitis vinifera L. Despite that, it is unclear how B is mobilized and accumulated in reproductive tissues. Here we describe the characterization of an efflux B transporter, VvBOR1, homolog to AtBOR1, which is involved in B xylem loading in Arabidopsis thaliana roots. VvBOR1-green fluorescent protein (GFP) fusion protein expressed in A. thaliana localizes in the proximal plasma membrane domain in root pericycle cells, and VvBOR1 overexpression restores the wild-type phenotype in A. thaliana bor1-3 mutant plants exposed to B deficiency. Complementation of a mutant yeast strain indicates that VvBOR1 corresponds to a B efflux transporter. Transcriptional analyses during grapevine reproductive development show that the VvBOR1 gene is preferentially expressed in flowers at anthesis and a direct correlation between the expression pattern and B content in grapes was established, suggesting the involvement of this transporter in B accumulation in grapevine berries.
Collapse
Affiliation(s)
- Ramón Pérez-Castro
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|