1
|
Liu H, Li J, Xie L, Wu H, Han S, Hu L, Zhang F, Wang H. Quantitative proteomic analysis reveals hub proteins for high temperature-induced male sterility in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1426832. [PMID: 39290742 PMCID: PMC11405254 DOI: 10.3389/fpls.2024.1426832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
High-temperature (HT) stress can induce male sterility in wheat; however, the underlying mechanisms remain poorly understood. This study examined proteomic alterations across three developmental stages between normal and HT-induced male-sterile (HT-ms) anthers in wheat. Utilizing tandem mass tags-based proteomics, we identified 2532 differentially abundant proteins (DAPs): 27 in the tetrad stage, 157 in the binuclear stage, and 2348 in the trinuclear stage. Analyses through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways indicated significant enrichment of these DAPs in seven pathways, namely phenylpropanoid biosynthesis, flavonoid biosynthesis, sphingolipid metabolism, MAPK signaling pathway, starch and sucrose metabolism, response to heat, and response to reactive oxygen species (ROS). Our results indicated the downregulation of DAPs associated with phenylpropanoid biosynthesis and starch and sucrose metabolism, which aligns with anther indehiscence and the lack of starch in HT-ms anthers. By contrast, DAPs in the ROS pathway were upregulated, which aligns with excessive ROS accumulation in HT-ms anthers. Additionally, we conducted protein-protein interaction analysis for the DAPs of these pathways, identifying 15 hub DAPs. The abundance of these hub proteins was confirmed through qRT-PCR, assessing mRNA expression levels of the corresponding transcripts. Collectively, these results offer insights into the molecular mechanisms underlying HT-induced male sterility in wheat at the proteomic level, providing a valuable resource for further research in plant sexual reproduction.
Collapse
Affiliation(s)
- Hongzhan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou Normal University, Zhoukou, Henan, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jinlei Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Liuyong Xie
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou Normal University, Zhoukou, Henan, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou Normal University, Zhoukou, Henan, China
| | - Huanhuan Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Shuying Han
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Lizong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Fuli Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou Normal University, Zhoukou, Henan, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou Normal University, Zhoukou, Henan, China
| | - Hongxing Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou Normal University, Zhoukou, Henan, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou Normal University, Zhoukou, Henan, China
| |
Collapse
|
2
|
Zu Q, Deng X, Qu Y, Chen X, Cai Y, Wang C, Li Y, Chen Q, Zheng K, Liu X, Chen Q. Genetic Channelization Mechanism of Four Chalcone Isomerase Homologous Genes for Synergistic Resistance to Fusarium wilt in Gossypium barbadense L. Int J Mol Sci 2023; 24:14775. [PMID: 37834230 PMCID: PMC10572676 DOI: 10.3390/ijms241914775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Duplication events occur very frequently during plant evolution. The genes in the duplicated pathway or network can evolve new functions through neofunctionalization and subfunctionalization. Flavonoids are secondary metabolites involved in plant development and defense. Our previous transcriptomic analysis of F6 recombinant inbred lines (RILs) and the parent lines after Fusarium oxysporum f. sp. vasinfectum (Fov) infection showed that CHI genes have important functions in cotton. However, there are few reports on the possible neofunctionalization differences of CHI family paralogous genes involved in Fusarium wilt resistance in cotton. In this study, the resistance to Fusarium wilt, expression of metabolic pathway-related genes, metabolite content, endogenous hormone content, reactive oxygen species (ROS) content and subcellular localization of four paralogous CHI family genes in cotton were investigated. The results show that the four paralogous CHI family genes may play a synergistic role in Fusarium wilt resistance. These results revealed a genetic channelization mechanism that can regulate the metabolic flux homeostasis of flavonoids under the mediation of endogenous salicylic acid (SA) and methyl jasmonate (MeJA) via the four paralogous CHI genes, thereby achieving disease resistance. Our study provides a theoretical basis for studying the evolutionary patterns of homologous plant genes and using homologous genes for molecular breeding.
Collapse
Affiliation(s)
- Qianli Zu
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Xiaojuan Deng
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Xunji Chen
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), No. 403, Nanchang Road, Urumqi 830052, China;
| | - Yongsheng Cai
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Caoyue Wang
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Ying Li
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Qin Chen
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Kai Zheng
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Xiaodong Liu
- College of Life Science, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China;
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| |
Collapse
|
3
|
Guo J, Wang Y, Li J, Zhang J, Wu Y, Wang G. Overview and Recent Progress on the Biosynthesis and Regulation of Flavonoids in Ginkgo biloba L. Int J Mol Sci 2023; 24:14604. [PMID: 37834050 PMCID: PMC10572177 DOI: 10.3390/ijms241914604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Flavonoids and their derivatives play important roles in plants, such as exerting protective activity against biotic and abiotic stresses, functioning in visual signaling to attract pollinators, and regulating phytohormone activity. They are also important secondary metabolites that are beneficial to humans. Ginkgo biloba L. is a well-known relict plant considered to be a "living fossil". Flavonoids present in ginkgo leaves have antioxidant and anti-aging capacities and show good therapeutic effects on a variety of neurological diseases. To date, studies on flavonoids have mainly focused on their extraction, pharmacological effects, and component analysis and on the expression levels of the key genes involved. However, a systematic review summarizing the biosynthesis and regulatory mechanisms of ginkgo flavonoids is still lacking. Thus, this review was conducted to comprehensively introduce the biological characteristics, value, and utilization status of ginkgo; summarize the effects, biosynthetic pathways, and transcriptional regulation of flavonoids; and finally, discuss the factors (ecological factors, hormones, etc.) that regulate the biosynthesis of flavonoids in ginkgo. This review will provide a reference basis for future research on the biosynthesis and efficient utilization of flavonoids in ginkgo.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (J.G.); (Y.W.); (J.L.); (J.Z.)
| | - Yeqiao Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (J.G.); (Y.W.); (J.L.); (J.Z.)
| | - Jiaqi Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (J.G.); (Y.W.); (J.L.); (J.Z.)
| | - Jingjing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (J.G.); (Y.W.); (J.L.); (J.Z.)
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Qian Hu Hou Cun No. 1, Nanjing 210014, China;
| | - Guibin Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (J.G.); (Y.W.); (J.L.); (J.Z.)
| |
Collapse
|
4
|
Feng Y, Yang S, Li W, Mao J, Chen B, Ma Z. Genome-Wide Identification and Expression Analysis of ANS Family in Strawberry Fruits at Different Coloring Stages. Int J Mol Sci 2023; 24:12554. [PMID: 37628740 PMCID: PMC10454780 DOI: 10.3390/ijms241612554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
To elucidate the structural characteristics, phylogeny and biological function of anthocyanin synthase (ANS) and its role in anthocyanin synthesis, members of the strawberry ANS gene family were obtained by whole genome retrieval, and their bioinformatic analysis and expression analysis at different developmental stages of fruit were performed. The results showed that the strawberry ANS family consisted of 141 members distributed on 7 chromosomes and could be divided into 4 subfamilies. Secondary structure prediction showed that the members of this family were mainly composed of random curls and α-helices, and were mainly located in chloroplasts, cytoplasm, nuclei and cytoskeletons. The promoter region of the FvANS gene family contains light-responsive elements, abiotic stress responsive elements and hormone responsive elements, etc. Intraspecific collinearity analysis revealed 10 pairs of FvANS genes, and interspecific collinearity analysis revealed more relationships between strawberries and apples, grapes and Arabidopsis, but fewer between strawberries and rice. Chip data analysis showed that FvANS15, FvANS41, FvANS47, FvANS48, FvANS49, FvANS67, FvANS114 and FvANS132 were higher in seed coat tissues and endosperm. FvANS16, FvANS85, FvANS90 and FvANS102 were higher in internal and fleshy tissues. Quantitative real-time PCR (qRT-PCR) showed that the ANS gene was expressed throughout the fruit coloring process. The expression levels of most genes were highest in the 50% coloring stage (S3), such as FvANS16, FvANS19, FvANS31, FvANS43, FvANS73, FvANS78 and FvANS91. The expression levels of FvANS52 were the highest in the green fruit stage (S1), and FvANS39 and FvANS109 were the highest in the 20% coloring stage (S2). These results indicate that different members of the FvANS gene family play a role in different pigmentation stages, with most genes playing a role in the expression level of the rapid accumulation of fruit coloring. This study lays a foundation for further study on the function of ANS gene family.
Collapse
Affiliation(s)
| | | | | | | | | | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Han H, Dong L, Zhang W, Liao Y, Wang L, Wang Q, Ye J, Xu F. Ginkgo biloba GbbZIP08 transcription factor is involved in the regulation of flavonoid biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154054. [PMID: 37487356 DOI: 10.1016/j.jplph.2023.154054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Ginkgo biloba is the oldest relict plant on Earth and an economic plant resource derived from China. Flavonoids extracted from G. biloba are beneficial to the prevention and treatment of cardiovascular and cerebrovascular diseases. Basic leucine zipper (bZIP) transcription factors (TFs) have been recognized to play important roles in plant secondary metabolism. In this study, GbbZIP08 was isolated and characterized. It encodes a protein containing 154 amino acids, which belongs to hypocotyl 5 in group H of the bZIP family. Tobacco transient expression assay indicated that GbbZIP08 was localized in the plant nucleus. GbbZIP08 overexpression showed that the contents of total flavonoids, kaempferol, and anthocyanin in transgenic tobacco were significantly higher than those in the wild type. Transcriptome sequencing analysis revealed significant upregulation of structural genes in the flavonoid biosynthesis pathway. In addition, phytohormone signal transduction pathways, such as the abscisic acid, salicylic acid, auxin, and jasmonic acid pathways, were enriched with a large number of differentially expressed genes. TFs such as MYB, AP2, WRKY, NAC, bZIP, and bHLH, were also differentially expressed. The above results indicated that GbbZIP08 overexpression promoted flavonoid accumulation and increased the transcription levels of flavonoid-synthesis-related genes in plants.
Collapse
Affiliation(s)
- Huan Han
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Liwei Dong
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lina Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Qijian Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
6
|
Zhang X, Xu J, Si L, Cao K, Wang Y, Li H, Wang J. Cloning, Identification, and Functional Analysis of the Chalcone Isomerase Gene from Astragalus sinicus. Genes (Basel) 2023; 14:1400. [PMID: 37510305 PMCID: PMC10379301 DOI: 10.3390/genes14071400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Astragalus sinicus is an important winter-growing cover crop. It is widely utilized, not only as a cover crop for its benefits in fertilizing the soil but also as a landscape ground cover plant. Anthocyanins are involved in the pigmentation of plants in leaves and flowers, which is a crucial characteristic trait for A. sinicus. The formation of anthocyanins depends significantly on the enzyme chalcone isomerase (CHI). However, research on the CHI gene of A. sinicus remains unexplored. The rapid amplification of cDNA ends (RACE) approach was used in this research to clone the CHI sequence from A. sinicus (AsiCHI). The expression profiles of the AsiCHI gene in multiple tissues of A. sinicus were subsequently examined by qRT-PCR (Quantitative Real-Time PCR). Furthermore, the function of the AsiCHI was identified by the performance of ectopic expression in Arabidopsis (Arabidopsis thaliana). The outcomes revealed that the full-length cDNA of the AsiCHI gene (GeneBank: OQ870547) measured 972 bp in length and included an open reading frame of 660 bp. The encoded protein contains 219 amino acids with a molecular weight of 24.14 kDa and a theoretical isoelectric point of 5.11. In addition, the remarkable similarity between the AsiCHI protein and the CHI proteins of other Astragalus species was demonstrated by the sequence alignment and phylogenetic analysis. Moreover, the highest expression level of AsiCHI was observed in leaves and showed a positive correlation with anthocyanin content. The functional analysis further revealed that the overexpression of AsiCHI enhanced the anthocyanidin accumulation in the transgenic lines. This study provided a better understanding of AsiCHI and elucidated its role in anthocyanin production.
Collapse
Affiliation(s)
- Xian Zhang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Xu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Linlin Si
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Kai Cao
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuge Wang
- College of Science, Northeastern University, Boston, MA 02115, USA;
| | - Hua Li
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianhong Wang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
7
|
Shah FLA, Baharum SN, Goh HH, Leow TC, Ramzi AB, Oslan SN, Sabri S. Molecular cloning and in silico analysis of chalcone isomerase from Polygonum minus. Mol Biol Rep 2023; 50:5283-5294. [PMID: 37148413 DOI: 10.1007/s11033-023-08417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/29/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Chalcone isomerase (CHI; EC 5.5.1.6) is one of the key enzymes in the flavonoid biosynthetic pathway that is responsible for the intramolecular cyclization of chalcones into specific 2S-flavanones. METHODS AND RESULTS In this study, the open reading frame (ORF) of CHI was successfully isolated from the cDNA of Polygonum minus at 711-bp long, encoding for 236 amino acid residues, with a predicted molecular weight of 25.4 kDa. Multiple sequence alignment and phylogenetic analysis revealed that the conserved residues (Thr50, Tyr108, Asn115, and Ser192) in the cleft of CHI enzyme group active site are present in PmCHI protein sequence and classified as type I. PmCHI comprises more hydrophobic residues without a signal peptide and transmembrane helices. The three-dimensional (3D) structure of PmCHI predicted through homology modeling was validated by Ramachandran plot and Verify3D, with values within the acceptable range of a good model. PmCHI was cloned into pET-28b(+) plasmid, expressed in Escherichia coli BL21(DE3) at 16 °C and partially purified. CONCLUSION These findings contribute to a deeper understanding of the PmCHI protein and its potential for further characterization of its functional properties in the flavonoid biosynthetic pathway.
Collapse
Affiliation(s)
- Fatin Lyana Azman Shah
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia.
| |
Collapse
|
8
|
Tang X, Ren C, Hu J, Chen J, Wang J, Wang R, Wu Q, Liao W, Pei J. Cloning, expression and activity analysises of chalcone synthase genes in Carthamus tinctorius. CHINESE HERBAL MEDICINES 2023; 15:291-297. [PMID: 37265765 PMCID: PMC10230621 DOI: 10.1016/j.chmed.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/10/2022] [Accepted: 12/08/2022] [Indexed: 02/18/2023] Open
Abstract
Objective Flavonoids are the bioactive compounds in safflower (Carthamus tinctorius), in which chalcone synthase (CHS) is the first limiting enzyme. However, it is unclear that which chalcone synthase genes (CHSs) are participated in flavonoids biosynthesis in C. tinctorius. In this study, the CHSs in the molecular characterization and enzyme activities were investigated. Methods Putative chalcone biosynthase genes were screened by the full-length transcriptome sequences data in C. tinctorius. Chalcone biosynthase genes in C. tinctorius (CtCHSs) were cloned from cDNA of flowers of C. tinctorius. The cloned gene sequences were analyzed by bioinformatics, and their expression patterns were analyzed by real-time PCR (RT-PCR). The protein of CtCHS in the development of flowers was detected by polyclonal antibody Western blot. A recombinant vector of CtCHS was constructed. The CtCHS recombinant protein was induced and purified to detect the enzyme reaction (catalyzing the reaction of p-coumaryl-CoA and malonyl-CoA to produce naringin chalcone). The reaction product was detected by HPLC and LC-MS. Results Two full-length CtCHS genes were successfully cloned from the flowers of safflower (CtCHS1 and CtCHS3), with gene lengths of 1525 bp and 1358 bp, respectively. RT-PCR analysis showed that both genes were highly expressed in the flowers, but the expression of CtCHS1 was higher than that of CtCHS3 at each developmental stage of the flowers. WB analysis showed that only CtCHS1 protein could be detected at each developmental stage of the flowers. HPLC and LC-MS analyses showed that CtCHS1 could catalyze the conversion of p-coumaryl-CoA and malonyl-CoA substrates to naringin chalcone. Conclusion CtCHS1 is involved in the biosynthesis of naringin chalcone in safflower.
Collapse
Affiliation(s)
- Xiaohui Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Chaoxiang Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qinghua Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
9
|
Transcriptional and Metabolic Characterization of Feeding Ramie Growth Enhanced by a Combined Application of Gibberellin and Ethrel. Int J Mol Sci 2022; 23:ijms231912025. [PMID: 36233324 PMCID: PMC9570313 DOI: 10.3390/ijms231912025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Feeding ramie cultivars (Boehmaria nivea L.) are an important feedstock for livestock. Increasing their biomass and improving their nutritional values are essential for animal feeding. Gibberellin (GA3) and ethylene (ETH) are two plant hormones that regulate the growth, development, and metabolism of plants. Herein, we report effects of the GA3 and ETH application on the growth and plant metabolism of feeding ramie in the field. A combination of GA3 and ETH was designed to spray new plants. The two hormones enhanced the growth of plants to produce more biomass. Meanwhile, the two hormones reduced the contents of lignin in leaves and stems, while increased the content of flavonoids in leaves. To understand the potential mechanisms behind these results, we used RNA-seq-based transcriptomics and UPLC-MS/MS-based metabolomics to characterize gene expression and metabolite profiles associated with the treatment of GA3 and ETH. 1562 and 2364 differentially expressed genes (DEGs) were obtained from leaves and stems (treated versus control), respectively. Meanwhile, 99 and 88 differentially accumulated metabolites (DAMs) were annotated from treated versus control leaves and treated versus control stems, respectively. Data mining revealed that both DEGs and DAMs were associated with multiple plant metabolisms, especially plant secondary metabolism. A specific focus on the plant phenylpropanoid pathway identified candidates of DEGs and DEMs that were associated with lignin and flavonoid biosynthesis. Shikimate hydroxycinnamoyl transferase (HCT) is a key enzyme that is involved in the lignin biosynthesis. The gene encoding B. nivea HCT was downregulated in the treated leaves and stems. In addition, genes encoding 4-coumaryl CoA ligase (4CL) and trans-cinnamate 4-monooxygenase (CYP73A), two lignin pathway enzymes, were downregulated in the treated stems. Meanwhile, the reduction in lignin in the treated leaves led to an increase in cinnamic acid and p-coumaryl CoA, two shared substrates of flavonoids that are enhanced in contents. Taken together, these findings indicated that an appropriate combination of GA3 and ETH is an effective strategy to enhance plant growth via altering gene expression and plant secondary metabolism for biomass-enhanced and value-improved feeding ramie.
Collapse
|
10
|
Zhang B, Yao X, Chen H, Lu L. High-quality chromosome-level genome assembly of Litsea coreana L. provides insights into Magnoliids evolution and flavonoid biosynthesis. Genomics 2022; 114:110394. [PMID: 35659563 DOI: 10.1016/j.ygeno.2022.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/15/2022] [Accepted: 05/28/2022] [Indexed: 11/27/2022]
Abstract
The magnoliid Litsea coreana has been the subject of a substantial amount of research owing to its production of many flavonoid metabolites, high food processing value, and a controversial phylogenetic position. For this study, we assembled a high-grade genome at the chromosome scale and annotation of L. coreana that was anchored to 12 chromosomes. The total genome was 1139.45 Mb, while the N50 scaffold was 97.18 Mb long. The analysis of phylogenetic trees constructed by different methods show that the phylogeny of Magnoliids is inconsistent, indicating that the differentiation process of monocots, eudicots, and Magnoliids still remains in dispute. An ancient whole-genome duplication (WGD) event was shown to have occurred before the Magnoliales and Laurels had differentiated. Subsequently, an independent WGD appeared in the Lauralean lineage. A total of 27 types of flavonoids were detected in all five tissues of L. coreana. Chalcone synthases (CHSs) that are responsible for production of flavonoids have been validated at the bioinformatics level. The retention of comparative genomic analyses of the CHS gene family showed that this family had contracted significantly in L. coreana. Our research further elaborated the evolution of Lauraceae and perfected the genetic basis of flavonoid biosynthesis in L. coreana. SIGNIFICANCE STATEMENT: Provides evidence that determines the evolutionary status of Magnoliids. The chalcone synthase gene family was significantly contracted in Litsea coreana.
Collapse
Affiliation(s)
- Baohui Zhang
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Xinzhuan Yao
- College of Tea Science, Guizhou University, Guiyang, Guizhou, China
| | - HuFang Chen
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Litang Lu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guiyang, Guizhou, China.
| |
Collapse
|
11
|
Biosynthesis and regulation of anthocyanin pathway genes. Appl Microbiol Biotechnol 2022; 106:1783-1798. [PMID: 35171341 DOI: 10.1007/s00253-022-11835-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/02/2022]
Abstract
Anthocyanins are the phenolic compounds responsible for coloring pigments in fruits and vegetables. Anthocyanins offer a wide range of health benefits to human health. Their scope has expanded dramatically in the past decade, making anthocyanin control, influx, and outflow regulation fascinating for many researchers. The main culprit is anthocyanin stability and concentration form, which demands novel ways because these are critical in the food industry. This review aims to examine anthocyanin synthesis via triggering transcription genes that code for anthocyanin-producing enzymes. The balance between production and breakdown determines anthocyanin accumulation. Thus, increasing the anthocyanin content in food requires the stability of molecules in the vacuolar lumen, the pigment fading process, and a better understanding of the mechanism. The promising option is biosynthesis by metabolically engineered microorganisms with a lot of success. This study aims to look into and evaluate the existing literature on anthocyanin production, namely the biosynthesis of anthocyanin pathway genes, production by microbial cell factories, and the regulatory factors that can modulate the production of anthocyanins. Understanding these mechanisms will provide new biotechnological approaches.Key points• Factors affecting the regulation of anthocyanins• Focus on degradation, biosynthesis pathway genes, and alternative systems for the production of anthocyanins• Microbial cell factories can be used to produce large amounts of anthocyanins.
Collapse
|
12
|
Liu XG, Lu X, Gao W, Li P, Yang H. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Nat Prod Rep 2021; 39:474-511. [PMID: 34581387 DOI: 10.1039/d1np00026h] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 1928-2021Ginkgo biloba L. is one of the most distinctive plants to have emerged on earth and has no close living relatives. Owing to its phylogenetic divergence from other plants, G. biloba contains many compounds with unique structures that have served to broaden the chemical diversity of herbal medicine. Examples of such compounds include terpene trilactones (ginkgolides), acylated flavonol glycosides (ginkgoghrelins), biflavones (ginkgetin), ginkgotides and ginkgolic acids. The extract of G. biloba leaf is used to prevent and/or treat cardiovascular diseases, while many ginkgo-derived compounds are currently at various stages of preclinical and clinical trials worldwide. The global annual sales of G. biloba products are estimated to total US$10 billion. However, the content and purity of the active compounds isolated by traditional methods are usually low and subject to varying environmental factors, making it difficult to meet the huge demand of the international market. This highlights the need to develop new strategies for the preparation of these characteristic compounds from G. biloba. In this review, we provide a detailed description of the structures and bioactivities of these compounds and summarize the recent research on the development of strategies for the synthesis, biosynthesis, and biotechnological production of the characteristic terpenoids, flavonoids, and alkylphenols/alkylphenolic acids of G. biloba. Our aim is to provide an important point of reference for all scientists who research ginkgo-related compounds for medicinal or other purposes.
Collapse
Affiliation(s)
- Xin-Guang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
13
|
Gad D, El-Shora H, Fraternale D, Maricchiolo E, Pompa A, Dietz KJ. Bioconversion of Callus-Produced Precursors to Silymarin Derivatives in Silybum marianum Leaves for the Production of Bioactive Compounds. Int J Mol Sci 2021; 22:2149. [PMID: 33670070 PMCID: PMC7926748 DOI: 10.3390/ijms22042149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/02/2022] Open
Abstract
The present study aimed to investigate the enzymatic potential of Silybum marianum leaves to bioconvert phenolic acids produced in S. marianum callus into silymarin derivatives as chemopreventive agent. Here we demonstrate that despite the fact that leaves of S. marianum did not accumulate silymarin themselves, expanding leaves had the full capacity to convert di-caffeoylquinic acid to silymarin complex. This was proven by HPLC separations coupled with electrospray ionization mass spectrometry (ESI-MS) analysis. Soaking the leaf discs with S. marianum callus extract for different times revealed that silymarin derivatives had been formed at high yield after 16 h. Bioconverted products displayed the same retention time and the same mass spectra (MS or MS/MS) as standard silymarin. Bioconversion was achieved only when using leaves of a specific age, as both very young and old leaves failed to produce silymarin from callus extract. Only medium leaves had the metabolic capacity to convert callus components into silymarin. The results revealed higher activities of enzymes of the phenylpropanoid pathway in medium leaves than in young and old leaves. It is concluded that cotyledon-derived callus efficiently produces compounds that can be bio-converted to flavonolignans in leaves tissue of S. marianum.
Collapse
Affiliation(s)
- Dina Gad
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin EL-Koum 32511, Egypt
- Biochemistry and Physiology of Plants, Faculty of Biology W5, Bielefeld University, 33501 Bielefeld, Germany;
| | - Hamed El-Shora
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt;
| | - Daniele Fraternale
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo” Via Donato Bramante, 28, 61029 Urbino, Italy; (D.F.); (E.M.)
| | - Elisa Maricchiolo
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo” Via Donato Bramante, 28, 61029 Urbino, Italy; (D.F.); (E.M.)
| | - Andrea Pompa
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo” Via Donato Bramante, 28, 61029 Urbino, Italy; (D.F.); (E.M.)
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology W5, Bielefeld University, 33501 Bielefeld, Germany;
| |
Collapse
|
14
|
Sohn SI, Pandian S, Oh YJ, Kang HJ, Cho WS, Cho YS. Metabolic Engineering of Isoflavones: An Updated Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:670103. [PMID: 34163508 PMCID: PMC8216759 DOI: 10.3389/fpls.2021.670103] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/21/2021] [Indexed: 05/04/2023]
Abstract
Isoflavones are ecophysiologically active secondary metabolites derived from the phenylpropanoid pathway. They were mostly found in leguminous plants, especially in the pea family. Isoflavones play a key role in plant-environment interactions and act as phytoalexins also having an array of health benefits to the humans. According to epidemiological studies, a high intake of isoflavones-rich diets linked to a lower risk of hormone-related cancers, osteoporosis, menopausal symptoms, and cardiovascular diseases. These characteristics lead to the significant advancement in the studies on genetic and metabolic engineering of isoflavones in plants. As a result, a number of structural and regulatory genes involved in isoflavone biosynthesis in plants have been identified and characterized. Subsequently, they were engineered in various crop plants for the increased production of isoflavones. Furthermore, with the advent of high-throughput technologies, the regulation of isoflavone biosynthesis gains attention to increase or decrease the level of isoflavones in the crop plants. In the review, we begin with the role of isoflavones in plants, environment, and its benefits in human health. Besides, the main theme is to discuss the updated research progress in metabolic engineering of isoflavones in other plants species and regulation of production of isoflavones in soybeans.
Collapse
Affiliation(s)
- Soo In Sohn
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
- *Correspondence: Soo-In Sohn,
| | - Subramani Pandian
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| | - Young Ju Oh
- Institute for Future Environmental Ecology Co., Ltd., Jeonju, South Korea
| | - Hyeon Jung Kang
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| | - Woo Suk Cho
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| | - Youn Sung Cho
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| |
Collapse
|
15
|
Wu Y, Wang T, Xin Y, Wang G, Xu LA. Overexpression of GbF3'5'H1 Provides a Potential to Improve the Content of Epicatechin and Gallocatechin. Molecules 2020; 25:molecules25204836. [PMID: 33092253 PMCID: PMC7594021 DOI: 10.3390/molecules25204836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/30/2022] Open
Abstract
The flavonoids in Ginkgo biloba L. (ginkgo) have important medicinal uses due to their antioxidant, antitumor, and blood circulation-promoting effects. However, the genetic mechanisms underlying flavonoid biosynthesis in ginkgo remain elusive. Flavonoid 3′, 5′-hydroxylase (F3′5′H) is an important enzyme in flavonoid synthesis. We detected a novel differentially expressed GbF3′5′H1 gene homologous to the F3′5′H enzyme involved in the flavonoid synthesis pathway through transcriptome sequencing. In this study, we characterized this gene, performed an expression analysis, and heterologously overexpressed GbF3′5′H1 in Populus. Our results showed that GbF3′5′H1 is abundant in the leaf and highly expressed during April. We also found four metabolites closely related to flavonoid biosynthesis. Importantly, the contents of 4′,5-dihydroxy-7-glucosyloxyflavanone, epicatechin, and gallocatechin were significantly higher in transgenic plants than in nontransgenic plants. Our findings revealed that the GbF3′5′H1 gene functions in the biosynthesis of flavonoid-related metabolites, suggesting that GbF3′5′H1 represents a prime candidate for future studies (e.g., gene-editing) aiming to optimize ginkgo flavonoid production, especially that of flavan-3-ols.
Collapse
Affiliation(s)
- Yaqiong Wu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (Y.W.); (Y.X.); (G.W.)
- Research Center for Pomology, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Qian Hu Hou Cun No.1, Nanjing 210014, China
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Tongli Wang
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Yue Xin
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (Y.W.); (Y.X.); (G.W.)
| | - Guibin Wang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (Y.W.); (Y.X.); (G.W.)
| | - Li-An Xu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (Y.W.); (Y.X.); (G.W.)
- Correspondence: ; Tel.: +86-25-8542-7882
| |
Collapse
|
16
|
Genome-wide identification and characterization of bHLH family genes from Ginkgo biloba. Sci Rep 2020; 10:13723. [PMID: 32792673 PMCID: PMC7426926 DOI: 10.1038/s41598-020-69305-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/02/2020] [Indexed: 01/05/2023] Open
Abstract
Basic helix–loop–helix (bHLH) proteins, one of the most important and largest transcription factor family in plants, play important roles in regulating growth and development, stress response. In recent years, many bHLH family genes have been identified and characterized in woody plants. However, a systematic analysis of the bHLH gene family has not been reported in Ginkgo biloba, the oldest relic plant species. In this study, we identifed a total of 85 GbbHLH genes from the genomic and transcriptomic databases of G. biloba, which were classified into 17 subfamilies based on the phylogenetic analysis. Gene structures analysis indicated that the number of exon–intron range in GbbHLHs from 0 to 12. The MEME analysis showed that two conserved motifs, motif 1 and motif 2, distributed in most GbbHLH protein. Subcellular localization analysis exhibited that most GbbHLHs located in nucleus and a few GbbHLHs were distributed in chloroplast, plasma membrane and peroxisome. Promoter cis-element analysis revealed that most of the GbbHLH genes contained abundant cis-elements that involved in plant growth and development, secondary metabolism biosynthesis, various abiotic stresses response. In addition, correlation analysis between gene expression and flavonoid content screened seven candidate GbbHLH genes involved in flavonoid biosynthesis, providing the targeted gene encoding transcript factor for increase the flavonoid production through genetic engineering in G. biloba.
Collapse
|
17
|
Sun S, Li Y, Chu L, Kuang X, Song J, Sun C. Full-length sequencing of ginkgo transcriptomes for an in-depth understanding of flavonoid and terpenoid trilactone biosynthesis. Gene 2020; 758:144961. [PMID: 32693148 DOI: 10.1016/j.gene.2020.144961] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Ginkgo biloba L. is regarded as the most ancient living tree, and its kernel has been used as a traditional Chinese medicine for more than 2,000 years. The leaf extracts of this tree have been among the bestselling herbal remedies in Western countries since the last century. To understand the biosynthesis of the pharmacologically active ingredients in G. biloba, flavonoids and terpenoid trilactones (TTLs), we sequenced the transcriptomes of G. biloba leaves, kernels and testae with Iso-Seq and RNA-Seq technologies and obtained 152,524 clean consensus reads. When these reads were used to improve the annotation of the G. biloba genome, 4,856 novel genes, 25,583 new isoforms of previously annotated genes and 4,363 lncRNAs were discovered. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that genes involved in growth, regulation and response to stress were more likely to be regulated by alternative splicing (AS) or alternative polyadenylation (APA), which represent the two most important posttranscriptional regulation mechanisms. It was found that some of the characterized genes involved in the biosynthesis of flavonoids and TTLs were also possibly regulated by AS and APA. Using phylogenetic and gene expression pattern analyses, some candidate genes for the biosynthesis of flavonoids and TTLs were screened. After qRT-PCR validation, the final candidate genes for flavonoid biosynthesis included three UDP-glycosyltransferases and one MYB transcription factor, while the candidate genes for TTL biosynthesis included two cytochrome P450 and one WRKY transcription factor. Our study suggested that Iso-Seq may play an important role in improving genome annotation, elucidating AS and APA mechanisms and discovering candidate genes involved in the biosynthesis of some secondary metabolites.
Collapse
Affiliation(s)
- Sijie Sun
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ying Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China
| | - Lihua Chu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xuejun Kuang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China
| | - Chao Sun
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
18
|
Liew YJM, Lee YK, Khalid N, Rahman NA, Tan BC. Enhancing flavonoid production by promiscuous activity of prenyltransferase, BrPT2 from Boesenbergia rotunda. PeerJ 2020; 8:e9094. [PMID: 32391211 PMCID: PMC7197402 DOI: 10.7717/peerj.9094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/09/2020] [Indexed: 11/20/2022] Open
Abstract
Flavonoids and prenylated flavonoids are active components in medicinal plant extracts which exhibit beneficial effects on human health. Prenylated flavonoids consist of a flavonoid core with a prenyl group attached to it. This prenylation process is catalyzed by prenyltranferases (PTs). At present, only a few flavonoid-related PT genes have been identified. In this study, we aimed to investigate the roles of PT in flavonoid production. We isolated a putative PT gene (designated as BrPT2) from a medicinal ginger, Boesenbergia rotunda. The deduced protein sequence shared highest gene sequence homology (81%) with the predicted homogentisate phytyltransferase 2 chloroplastic isoform X1 from Musa acuminata subsp. Malaccensis. We then cloned the BrPT2 into pRI vector and expressed in B. rotunda cell suspension cultures via Agrobacterium-mediated transformation. The BrPT2-expressing cells were fed with substrate, pinostrobin chalcone, and their products were analyzed by liquid chromatography mass spectrometry. We found that the amount of flavonoids, namely alpinetin, pinostrobin, naringenin and pinocembrin, in BrPT2-expressing cells was higher than those obtained from the wild type cells. However, we were unable to detect any targeted prenylated flavonoids. Further in-vitro assay revealed that the reaction containing the BrPT2 protein produced the highest accumulation of pinostrobin from the substrate pinostrobin chalcone compared to the reaction without BrPT2 protein, suggesting that BrPT2 was able to accelerate the enzymatic reaction. The finding of this study implied that the isolated BrPT2 may not be involved in the prenylation of pinostrobin chalcone but resulted in high yield and production of other flavonoids, which is likely related to enzyme promiscuous activities.
Collapse
Affiliation(s)
- Yvonne Jing Mei Liew
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kee Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Norzulaani Khalid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Center for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Boon Chin Tan
- Center for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Su X, Xia Y, Jiang W, Shen G, Pang Y. GbMYBR1 from Ginkgo biloba represses phenylpropanoid biosynthesis and trichome development in Arabidopsis. PLANTA 2020; 252:68. [PMID: 32990805 PMCID: PMC7524859 DOI: 10.1007/s00425-020-03476-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/18/2020] [Indexed: 05/02/2023]
Abstract
Main Conclusion GbMYBR1, a new type of R2R3-MYB repressor from Ginkgo biloba, displayed pleiotropic effects on plant growth, phenylpropanoid accumulation, by regulating multiple related genes at different levels. Abstract Ginkgo biloba is a typical gymnosperm that has been thriving on earth for millions of years. MYB transcription factors (TFs) play important roles in diverse processes in plants. However, the role of MYBs remains largely unknown in Ginkgo. Here, an MYB TF gene from Ginkgo, designated as GbMYBR1, was found to act as a repressor in multiple processes. GbMYBR1 was mainly expressed in the leaves of Ginkgo. Over-expression of GbMYBR1 in Arabidopsis thaliana led to growth retardation, decreases in lignin content, reduced trichome density, and remarkable reduction in anthocyanin and flavonol contents in leaves. Proanthocyanidin content was decreased in the seeds of transgenic Arabidopsis, which led to light-brown seed color. Both qPCR and transcriptome sequencing analyses demonstrated that the transcript levels of multiple genes related to phenylpropanoid biosynthesis, trichome formation, and pathogen resistance were down-regulated in the transgenic Arabidopsis. In particular, we found that GbMYBR1 directly interacts with the bHLH cofactor GL3 as revealed by yeast two-hybrid assays. Our work indicated that GbMYBR1 has pleiotropic effects on plant growth, phenylpropanoid accumulation, and trichome development, mediated by interaction with GL3 or direct suppression of key pathway genes. Thus, GbMYBR1 represents a novel type of R2R3 MYB repressor. Electronic supplementary material The online version of this article (10.1007/s00425-020-03476-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaojia Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yaying Xia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Guoan Shen
- The Institute of Medicinal Plant Development, Beijing, 100193 China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
20
|
Chung MS, Lee GW, Jeong YS, Kuk YI, Lee SS, Chung BY, Lee S. Functional and genomic characterization of a wound- and methyl jasmonate-inducible chalcone isomerase in Eremochloa ophiuroides [Munro] Hack. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:355-364. [PMID: 31622938 DOI: 10.1016/j.plaphy.2019.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/06/2019] [Accepted: 10/06/2019] [Indexed: 05/02/2023]
Abstract
Eremochloa ophiuroides, a perennial warm-season lawn grass, has a characteristic phenotype of red pigmentation in tissues during maturation. The putative gene families associated with the red coloration were previously identified in E. ophiuroides. These genes encode chalcone synthases, flavonol 3-hydroxylases, and flavonol 3'-hydroxylases, acting on the early flavonoid-biosynthesis pathway. Here, a type-I chalcone isomerase (CHI) gene was isolated from E. ophiuroides based on leaf-transcriptome data, and the corresponding enzyme was functionally characterized in vitro and in planta. Complementation of Arabidopsis tt5 mutants by overexpressing EoCHI recapitulated the wild-type seed coat color. Wounding and methyl jasmonate treatments significantly elevated the transcript level of EoCHI and total anthocyanin content in shoots. Confocal microscopy indicated the localization of EoCHI to the endoplasmic reticulum. The genomic EoCHI sequence contained two introns with a novel pattern of exon‒intron organization. Further examinations on genomic structures of CHI family from ancient to advanced plant lineages should be of interests to decipher evolutionary pathways of extant plant CHI genes.
Collapse
Affiliation(s)
- Moon-Soo Chung
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Gun Woong Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Yeon Sim Jeong
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Yong In Kuk
- Department of Oriental Medicine Resources, Sunchon National University, Sunchon-si, Jeollanam-do, 57922, Republic of Korea
| | - Seung Sik Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea; Department of Radiation Science and Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Byung Yeoup Chung
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Sungbeom Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea; Department of Radiation Science and Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
21
|
Zha J, Wu X, Gong G, Koffas MAG. Pathway enzyme engineering for flavonoid production in recombinant microbes. Metab Eng Commun 2019; 9:e00104. [PMID: 31720219 PMCID: PMC6838514 DOI: 10.1016/j.mec.2019.e00104] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022] Open
Abstract
Metabolic engineering of microbial strains for the production of flavonoids of industrial interest has attracted great attention due to its promising advantages over traditional extraction approaches, such as independence of plantation, facile downstream separation, and ease of process and quality control. However, most of the constructed microbial production systems suffer from low production titers, low yields and low productivities, restricting their commercial applications. One important reason of the inefficient production is that the expression conditions and the detailed functions of the flavonoid pathway enzymes are not well understood. In this review, we have collected the biochemical properties, structural details, and genetic information of the enzymes in the flavonoid biosynthetic pathway as a guide for the expression and analysis of these enzymes in microbial systems. Additionally, we have summarized the engineering approaches used in improving the performances of these enzymes in recombinant microorganisms. Major challenges and future directions on the flavonoid pathway are also discussed.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, 12180, NY, USA.,Department of Chemical and Biological Engineering, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, 12180, NY, USA
| |
Collapse
|
22
|
Liu X, Ahmad N, Yang L, Fu T, Kong J, Yao N, Dong Y, Wang N, Li X, Wang F, Liu X, Liu W, Li H. Molecular cloning and functional characterization of chalcone isomerase from Carthamus tinctorius. AMB Express 2019; 9:132. [PMID: 31435742 PMCID: PMC6704227 DOI: 10.1186/s13568-019-0854-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Flavonoid is one of the widespread groups of plant secondary metabolites that provide several health benefits. However, the explicit mechanism of flavonoid biosynthesis in plants largely remains unclear. Chalcone isomerase an important class of enzyme presents crucial role during flavonoid metabolism in many plants. Here, we isolated the full-length cDNA (1161 bp) of a novel Chalcone Isomerase from safflower encoding 217 amino acid polypeptide using oligos from 5′ and 3′ ends. The result of Sanger sequencing and phylogenetic analysis revealed that CtCHI is highly homologous to other plants, including typical polyadenylation signals AATAA and Poly A tail. The transient expression in tobacco mesophyll cells using Green Fluorescent Protein tagging determined the subcellular localization of CtCHI in cell membrane and nucleus. The CtCHI ectopic expression in different safflower varieties at different flowering stages showed that CtCHI were found in abundance at the bud stage of Jihong No. 1. Further correlation analysis between CtCHI expression and flavonoid accumulation at various flowering phases suggested that CtCHI might play a potential role during flavonoid biosynthesis in safflower. In addition, the overexpression of pBASTA-CtCHI in transgenic Arabidopsis infiltrated with floral dip transformation showed relatively higher expression level and increased flavonoid accumulation than wild type. Moreover, the in vitro enzymatic activity and HPLC analysis of transgenic Arabidopsis confirmed the de novo biosynthesis of Rutin. Taken together, our findings laid the foundation of identifying an important gene that might influence flavonoid metabolism in safflower.
Collapse
|
23
|
Meng J, Wang B, He G, Wang Y, Tang X, Wang S, Ma Y, Fu C, Chai G, Zhou G. Metabolomics Integrated with Transcriptomics Reveals Redirection of the Phenylpropanoids Metabolic Flux in Ginkgo biloba. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3284-3291. [PMID: 30802049 DOI: 10.1021/acs.jafc.8b06355] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ginkgo biloba is a monotypic species native to China with great economic and ecological values. Leaves extract of this tree contains about 24% flavonoids, which are widely used in the pharmaceutical industry. However, the flavonoids biosynthesis pathway is poorly understood in Ginkgo. In this study, we comprehensively compared the transcriptome and metabolite profiles of Ginkgo high-flavonoids mutant (ZY1) and Anlu1 (control) leaves. A total of 122 significantly changed metabolites and 1683 differentially expressed genes (DEGs), including 45 transcription factors, were identified in ZY1 compared to those in Anlu1. An integrated analysis of metabolic and transcriptomic data revealed that the abundances of some major flavonoids (especially flavone and flavonol) were most significantly increased, while other phenylpropanoid-derived products and lipids showed the most largely reduced abundances in ZY1 compared to those in Anlu1. Quantitative real-time polymerase chain reaction results confirmed the alterations in the expression levels of genes encoding components of pathways involved in phenylpropanoids and lipids. The redirection of metabolic flux may contribute to increased accumulation of flavonoid levels in ZY1 leaves. Our results provide valuable information for metabolic engineering of Ginkgo flavonoids biosynthesis.
Collapse
Affiliation(s)
- Jie Meng
- College of Resources and Environment , Qingdao Agricultural University , Qingdao 266109 , China
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Bo Wang
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Guo He
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Yu Wang
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Xianfeng Tang
- College of Resources and Environment , Qingdao Agricultural University , Qingdao 266109 , China
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Shumin Wang
- College of Resources and Environment , Qingdao Agricultural University , Qingdao 266109 , China
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Yubin Ma
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Chunxiang Fu
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Guohua Chai
- College of Resources and Environment , Qingdao Agricultural University , Qingdao 266109 , China
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Gongke Zhou
- College of Resources and Environment , Qingdao Agricultural University , Qingdao 266109 , China
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| |
Collapse
|
24
|
Yin YC, Zhang XD, Gao ZQ, Hu T, Liu Y. The Research Progress of Chalcone Isomerase (CHI) in Plants. Mol Biotechnol 2019; 61:32-52. [PMID: 30324542 DOI: 10.1007/s12033-018-0130-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chalcone isomerase (CHI) is the second rate-limiting and the first reported enzyme involved in the biosynthetic pathway of flavonoids. It catalyzes the intramolecular cyclization reaction, converting the bicyclic chalcone into tricyclic (2S)-flavanone. In this paper, we obtained and analyzed 916 DNA sequences, 1310 mRNA sequences, and 2403 amino acid sequences of CHI registered in NCBI by Jan 2018. The full length of CHI DNA sequences ranges from 218 to 3758 bp, CHI mRNA sequences ranges from 265 to 1436 bp, and CHI amino acid sequences ranges from 35 to 465 amino acid residues. Forty representative species were selected from each family to construct the maximum likelihood tree and analyze the evolutionary relationship. According to the medicinal and agricultural use, 13 specific species were selected, and their physicochemical properties were analyzed. The molecular weight of CHI ranges from 23 to 26 kD, and the isoelectric point of CHI ranges from 4.93 to 5.85. All the half-life periods of CHI are 30 h in mammalian reticulocytes in vitro, 20 h in yeast, and 10 h in E. coli in vivo, theoretically. The consistency of the 13 CHI amino acid sequences is 63.55%. According to the similarity between each sequence, we selected four CHI sequences of Paeonia suffruticosa, Paeonia lactiflora, Taxus wallichiana, and Tradescantia hirsutiflora for secondary structure, three-dimensional protein models, conserved domains, transmembrane structure, and signal peptide prediction analysis. It was found that CHI sequences of Paeonia suffruticosa and Paeonia lactiflora owned a higher similarity; they both share the template 4doi.1.A. The four CHI all have no signal peptides, and they exert their activities in cytoplasm. Then, PubMed, Web of Science, Science Direct, and Research Gate were used as information sources through the search terms 'chalcone isomerase', 'biosynthesis', 'expression', and their combinations to get the latest and comprehensive information of CHI, mainly from the year 2010 to 2018. More than 300 papers were searched and 116 papers were reviewed in the present work. We summarized the classification of CHI, catalytic reaction mechanism of CHI, and progress of genetic engineering regarding CHI clone, expression, and exogenous stimulator regulation. This paper will lay a foundation for further studies of CHI and other functional genes involved in flavonoids biosynthetic pathway.
Collapse
Affiliation(s)
- Yan-Chao Yin
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Xiao-Dong Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Zhi-Qiang Gao
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Ting Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China.
| |
Collapse
|
25
|
Sun W, Shen H, Xu H, Tang X, Tang M, Ju Z, Yi Y. Chalcone Isomerase a Key Enzyme for Anthocyanin Biosynthesis in Ophiorrhiza japonica. FRONTIERS IN PLANT SCIENCE 2019; 10:865. [PMID: 31338101 PMCID: PMC6629912 DOI: 10.3389/fpls.2019.00865] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/17/2019] [Indexed: 05/20/2023]
Abstract
Anthocyanins are distributed ubiquitously to terrestrial plants and chalcone isomerase (CHI) catalyzes the stereospecific isomerization of chalcones - a committed step in the anthocyanin biosynthesis pathway. In this study, one gene encoding CHI was isolated from Ophiorrhiza japonica and designated as OjCHI. Multiple sequence alignments and phylogenetic analysis revealed that OjCHI had the conserved CHI active site residues and was classified into type I CHI group. In order to better understand the mechanisms of anthocyanin synthesis in O. japonica, integrative analysis between metabolites and OjCHI expression was conducted. The results showed OjCHI expression matched the accumulation patterns of anthocyanins not only in different tissues but also during the flower developmental stages, suggesting the potential roles of OjCHI in the biosynthesis of anthocyanin. Then biochemical analysis indicated that recombinant OjCHI protein exhibited a typical type I CHI activity which catalyzed the production of naringenin from naringenin chalcone. Moreover, expressing OjCHI in Arabidopsis tt5 mutant restored the anthocyanins and flavonols phenotype of hypocotyl, cotyledon and seed coat, indicating its function as a chalcone isomerase in vivo. In summary, our findings reveal the in vitro as well as in vivo functions of OjCHI and provide a resource to understand the mechanism of anthocyanin biosynthesis in O. japonica.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Development Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Huan Shen
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Development Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Hui Xu
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Development Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Xiaoxin Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Development Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Ming Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Development Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Zhigang Ju
- Pharmacy College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- *Correspondence: Zhigang Ju,
| | - Yin Yi
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Development Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Yin Yi,
| |
Collapse
|
26
|
Ni J, Dong L, Jiang Z, Yang X, Chen Z, Wu Y, Xu M. Comprehensive transcriptome analysis and flavonoid profiling of Ginkgo leaves reveals flavonoid content alterations in day-night cycles. PLoS One 2018; 13:e0193897. [PMID: 29494702 PMCID: PMC5833276 DOI: 10.1371/journal.pone.0193897] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Ginkgo leaves are raw materials for flavonoid extraction. Thus, the timing of their harvest is important to optimize the extraction efficiency, which benefits the pharmaceutical industry. In this research, we compared the transcriptomes of Ginkgo leaves harvested at midday and midnight. The differentially expressed genes with the highest probabilities in each step of flavonoid biosynthesis were down-regulated at midnight. Furthermore, real-time PCR corroborated the transcriptome results, indicating the decrease in flavonoid biosynthesis at midnight. The flavonoid profiles of Ginkgo leaves harvested at midday and midnight were compared, and the total flavonoid content decreased at midnight. A detailed analysis of individual flavonoids showed that most of their contents were decreased by various degrees. Our results indicated that circadian rhythms affected the flavonoid contents in Ginkgo leaves, which provides valuable information for optimizing their harvesting times to benefit the pharmaceutical industry.
Collapse
Affiliation(s)
- Jun Ni
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
- * E-mail: (JN); (MX)
| | - Lixiang Dong
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Zhifang Jiang
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Xiuli Yang
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Ziying Chen
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yuhuan Wu
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Maojun Xu
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
- * E-mail: (JN); (MX)
| |
Collapse
|
27
|
Crystal structure and enzymatic properties of chalcone isomerase from the Antarctic vascular plant Deschampsia antarctica Desv. PLoS One 2018; 13:e0192415. [PMID: 29394293 PMCID: PMC5796730 DOI: 10.1371/journal.pone.0192415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/23/2018] [Indexed: 02/06/2023] Open
Abstract
Chalcone isomerase (CHI) is an important enzyme for flavonoid biosynthesis that catalyzes the intramolecular cyclization of chalcones into (S)-flavanones. CHIs have been classified into two types based on their substrate specificity. Type I CHIs use naringenin chalcone as a substrate and are found in most of plants besides legumes, whereas type II CHIs in leguminous plants can also utilize isoliquiritigenin. In this study, we found that the CHI from the Antarctic plant Deschampsia antarctica (DaCHI1) is of type I based on sequence homology but can use type II CHI substrates. To clarify the enzymatic mechanism of DaCHI1 at the molecular level, the crystal structures of unliganded DaCHI1 and isoliquiritigenin-bound DaCHI1 were determined at 2.7 and 2.1 Å resolutions, respectively. The structures revealed that isoliquiritigenin binds to the active site of DaCHI1 and induces conformational changes. Additionally, the activity assay showed that while DaCHI1 exhibits substrate preference for naringenin chalcone, it can also utilize isoliquiritigenin although the catalytic activity was relatively low. Based on these results, we propose that DaCHI1 uses various substrates to produce antioxidant flavonoids as an adaptation to oxidative stresses associated with harsh environmental conditions.
Collapse
|
28
|
Cheng AX, Zhang X, Han XJ, Zhang YY, Gao S, Liu CJ, Lou HX. Identification of chalcone isomerase in the basal land plants reveals an ancient evolution of enzymatic cyclization activity for synthesis of flavonoids. THE NEW PHYTOLOGIST 2018; 217:909-924. [PMID: 29083033 DOI: 10.1111/nph.14852] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 05/07/2023]
Abstract
Flavonoids ubiquitously distribute to the terrestrial plants and chalcone isomerase (CHI)-catalyzed intramolecular and stereospecific cyclization of chalcones is a committed step in the production of flavonoids. However, so far the bona fide CHIs are found only in vascular plants, and their origin and evolution remains elusive. We conducted transcriptomic and/or genomic sequence search, subsequent phylogenetic analysis, and detailed biochemical and genetic characterization to explore the potential existence of CHI proteins in the basal bryophyte liverwort species and the lycophyte Selaginella moellendorffii. We found that both liverwort and Selaginella species possess canonical CHI-fold proteins that cluster with their corresponding higher plant counterparts. Among them, some members exhibited bona fide CHI activity, which catalyze stereospecific cyclization of both 6'-hydroxychalcone and 6'-deoxychalcone, yielding corresponding 5-hydroxy and 5-deoxyflavanones, resembling the typical type II CHIs currently known to be 'specific' for legume plants. Expressing those primitive bona fide CHIs in the Arabidopsis chi mutant restores the seed coat transparent testa phenotype and the accumulation of flavonoids. These findings, in contrast to our current understanding of the evolution of enzymatic CHIs, suggest that emergence of the bona fide type II CHIs is an ancient evolution event that occurred before the divergence of liverwort lineages.
Collapse
Affiliation(s)
- Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xuebin Zhang
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Xiao-Juan Han
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yu-Ying Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Shuai Gao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| |
Collapse
|
29
|
Wang L, Liu X, Meng X, Wu G, Xu F. Cloning and Expression Analysis of a Chalcone isomerase (CnCHI) Gene from Chamaemelum nobile. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/biotech.2018.19.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Su X, Shen G, Di S, Dixon RA, Pang Y. Characterization of UGT716A1 as a Multi-substrate UDP:Flavonoid Glucosyltransferase Gene in Ginkgo biloba. FRONTIERS IN PLANT SCIENCE 2017; 8:2085. [PMID: 29270187 PMCID: PMC5725826 DOI: 10.3389/fpls.2017.02085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/22/2017] [Indexed: 05/10/2023]
Abstract
Ginkgo biloba L., a "living fossil" and medicinal plant, is a well-known rich source of bioactive flavonoids. The molecular mechanism underlying the biosynthesis of flavonoid glucosides, the predominant flavonoids in G. biloba, remains unclear. To better understand flavonoid glucosylation in G. biloba, we generated a transcriptomic dataset of G. biloba leaf tissue by high-throughput RNA sequencing. We identified 25 putative UDP-glycosyltransferase (UGT) unigenes that are potentially involved in the flavonoid glycosylation. Among them, we successfully isolated and expressed eight UGT genes in Escherichia coli, and found that recombinant UGT716A1 protein was active toward broad range of flavonoid/phenylpropanoid substrates. In particular, we discovered the first recombinant UGT protein, UGT716A1 from G. biloba, possessing unique activity toward flavanol gallates that have been extensively documented to have significant bioactivity relating to human health. UGT716A1 expression level paralleled the flavonoid distribution pattern in G. biloba. Ectopic over-expression of UGT716A1 in Arabidopsis thaliana led to increased accumulation of several flavonol glucosides. Identification and comparison of the in vitro enzymatic activity of UGT716A1 homologs revealed a UGT from the primitive land species Physcomitrella patens also showed broader substrate spectrum than those from higher plants A. thaliana, Vitis vinifera, and Medicago truncatula. The characterization of UGT716A1 from G. biloba bridges a gap in the evolutionary history of UGTs in gymnosperms. We also discuss the implication of UGT716A1 for biosynthesis, evolution, and bioengineering of diverse glucosylated flavonoids.
Collapse
Affiliation(s)
- Xiaojia Su
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoan Shen
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shaokang Di
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX, United States
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yongzhen Pang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Meng X, Song Q, Ye J, Wang L, Xu F. Characterization, Function, and Transcriptional Profiling Analysis of 3-Hydroxy-3-methylglutaryl-CoA Synthase Gene (GbHMGS1) towards Stresses and Exogenous Hormone Treatments in Ginkgo biloba. Molecules 2017; 22:molecules22101706. [PMID: 29023415 PMCID: PMC6151752 DOI: 10.3390/molecules22101706] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/08/2017] [Indexed: 12/11/2022] Open
Abstract
3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS) is one of the rate-limiting enzymes in the mevalonate pathway as it catalyzes the condensation of acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA. In this study, A HMGS gene (designated as GbHMGS1) was cloned from Ginkgo biloba for the first time. GbHMGS1 contained a 1422-bp open-reading frame encoding 474 amino acids. Comparative and bioinformatics analysis revealed that GbHMGS1 was extensively homologous to HMGSs from other plant species. Phylogenetic analysis indicated that the GbHMGS1 belonged to the plant HMGS superfamily, sharing a common evolutionary ancestor with other HMGSs, and had a further relationship with other gymnosperm species. The yeast complement assay of GbHMGS1 in HMGS-deficient Saccharomyces cerevisiae strain YSC6274 demonstrated that GbHMGS1 gene encodes a functional HMGS enzyme. The recombinant protein of GbHMGS1 was successfully expressed in E. coli. The in vitro enzyme activity assay showed that the kcat and Km values of GbHMGS1 were 195.4 min−1 and 689 μM, respectively. GbHMGS1 was constitutively expressed in all tested tissues, including the roots, stems, leaves, female flowers, male flowers and fruits. The transcript accumulation for GbHMGS1 was highest in the leaves. Expression profiling analyses revealed that GbHMGS1 expression was induced by abiotic stresses (ultraviolet B and cold) and hormone treatments (salicylic acid, methyl jasmonate, and ethephon) in G. biloba, indicating that GbHMGS1 gene was involved in the response to environmental stresses and plant hormones.
Collapse
Affiliation(s)
- Xiangxiang Meng
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Qiling Song
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Lanlan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
32
|
Characterization and functional analysis of a MYB gene (GbMYBFL) related to flavonoid accumulation in Ginkgo biloba. Genes Genomics 2017; 40:49-61. [PMID: 29892898 DOI: 10.1007/s13258-017-0609-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Flavonoids are a group of metabolites in Ginkgo biloba thought to provide health benefits. R2R3-MYB transcription factors (TFs) play key roles in the transcriptional regulation of the flavonoid biosynthesis in plants. In this study, an R2R3-MYB transcription factor gene, GbMYBFL, was isolated from G. biloba and characterized. Results of bioinformatic analysis indicated that GbMYBFL is more closely related to the R2R3-MYB involved in flavonoid biosynthesis and displayed high similarity to MYB from other plants. The genmomic sequence of GbMYBFL had three exons and two introns, with its upstream sequence containing cis-acting regulatory elements Myb binding site, Myc recognition sites, and light, SA, MeJA responsive elements. Subcellular localization analysis indicates that GbMYBFL was located in the nucleus. Quantitative real-time PCR revealed that GbMYBFL was expressed in leaves, stems, roots, young fruits, male flower and female flower, and the level of transcription in male flower and leaves were higher than that in female flower, stems, roots, and young fruits. During G. biloba leaf growth, the transcription of GbMYBFL is positively correlated with the flavonoid content, suggesting that the GbMYBFL is involved in the flavonoid biosynthesis. Overexpression of GbMYBFL under the control of the CaMV35S promoter in Ginkgo callus notably enhanced the accumulation of flavonoids and anthocyanin compared with non-transformed callus. This finding suggested that GbMYBFL positively related to flavonoid biosynthesis, and the overexpression of GbMYBFL was sufficient to induce flavonoids and anthocyanin accumulation.
Collapse
|
33
|
Liu X, Yu W, Zhang X, Wang G, Cao F, Cheng H. Identification and expression analysis under abiotic stress of the R2R3- MYB genes in Ginkgo biloba L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:503-516. [PMID: 28878490 PMCID: PMC5567697 DOI: 10.1007/s12298-017-0436-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/11/2017] [Accepted: 03/20/2017] [Indexed: 05/25/2023]
Abstract
The R2R3-MYB gene family is the largest MYB subfamily in plants and is involved in the regulation of plant secondary metabolism and specific morphogenesis, as well as the response to biotic and abiotic stress. However, a systematic identification and characterization of this gene family has not been carried out in Ginkgo biloba. In this study, we performed a transcriptome-wide survey from four tissues of G. biloba to determine the genetic variation and expression pattern of the R2R3-MYB genes. We analyzed 45 GbMYBs and identified 42 with a complete coding sequence via conserved motif searches. The MYB domain and other motifs in GbMYBs are highly conserved with Arabidopsis thaliana AtMYBs. Phylogenetic analysis of the GbMYBs and AtMYBs categorized the R2R3-MYBs into 26 subgroups, of which 11 subgroups included proteins from both G. biloba and Arabidopsis, and 1 subgroup was specific to G. biloba. Moreover, the GbMYBs expression patterns were analyzed in different tissues and abiotic stress conditions. The results revealed that GbMYBs were differentially expressed in various tissues and following abiotic stresses and phytohormone treatments, indicating their possible roles in biological processes and abiotic stress tolerance and adaptation. Our study demonstrated the functional diversity of the GbMYBs and will provide a foundation for future research into their biological and molecular functions.
Collapse
Affiliation(s)
- Xinliang Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangxi Academy of Forestry, Nanchang, 330032 China
| | - Wanwen Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210037 China
| | - Xuhui Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Hua Cheng
- Economic Forest Germplasm Improvement and Comprehensive Utilization of Resources of Hubei Key Laboratories, Huanggang Normal University, Huanggang, 438000 China
| |
Collapse
|
34
|
Ni J, Hao J, Jiang Z, Zhan X, Dong L, Yang X, Sun Z, Xu W, Wang Z, Xu M. NaCl Induces Flavonoid Biosynthesis through a Putative Novel Pathway in Post-harvest Ginkgo Leaves. FRONTIERS IN PLANT SCIENCE 2017; 8:920. [PMID: 28659935 PMCID: PMC5466993 DOI: 10.3389/fpls.2017.00920] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/16/2017] [Indexed: 06/01/2023]
Abstract
The flavonoids in the extracts of Ginkgo leaves have been shown to have great medical value: thus, a method to increase the flavonoid contents in these extracts is of significant importance for human health. In the present study, we investigated the changes in flavonoid contents and the corresponding gene expression levels in post-harvest Ginkgo leaves after various treatments. We found that both ultraviolet-B and NaCl treatment induced flavonoid accumulation. However, gene expression analysis showed that the increases in flavonoid contents were achieved by different pathways. Furthermore, post-harvest Ginkgo leaves responded differently to NaCl treatment compared with naturally grown leaves in both flavonoid contents and corresponding gene expression. In addition, combined treatment with ultraviolet-B and NaCl did not further increase the flavonoid contents compared with ultraviolet-B or NaCl treatment alone. Our results indicate the existence of a novel mechanism in response to NaCl treatment in post-harvest Ginkgo leaves, and provide a technique to increase flavonoid content in the pharmaceutical industry.
Collapse
Affiliation(s)
- Jun Ni
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal UniversityHangzhou, China
| | - Juan Hao
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal UniversityHangzhou, China
| | - Zhifang Jiang
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal UniversityHangzhou, China
| | - Xiaori Zhan
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal UniversityHangzhou, China
| | - Lixiang Dong
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal UniversityHangzhou, China
| | - Xiuli Yang
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal UniversityHangzhou, China
| | - Zhehang Sun
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Wenya Xu
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Zhikun Wang
- Department of Molecular Cellular and Developmental Biology, College of Letters and Science, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Maojun Xu
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal UniversityHangzhou, China
| |
Collapse
|
35
|
He F, Pan Y. Purification and characterization of chalcone isomerase from fresh-cut Chinese water-chestnut. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Transcriptomic Analysis of Leaf in Tree Peony Reveals Differentially Expressed Pigments Genes. Molecules 2017; 22:molecules22020324. [PMID: 28230761 PMCID: PMC6155769 DOI: 10.3390/molecules22020324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 02/13/2017] [Indexed: 12/11/2022] Open
Abstract
Tree peony (Paeonia suffruticosa Andrews) is an important traditional flower in China. Besides its beautiful flower, the leaf of tree peony has also good ornamental value owing to its leaf color change in spring. So far, the molecular mechanism of leaf color change in tree peony is unclear. In this study, the pigment level and transcriptome of three different color stages of tree peony leaf were analyzed. The purplish red leaf was rich in anthocyanin, while yellowish green leaf was rich in chlorophyll and carotenoid. Transcriptome analysis revealed that 4302 differentially expressed genes (DEGs) were upregulated, and 4225 were downregulated in the purplish red leaf vs. yellowish green leaf. Among these DEGs, eight genes were predicted to participate in anthocyanin biosynthesis, eight genes were predicted involved in porphyrin and chlorophyll metabolism, and 10 genes were predicted to participate in carotenoid metabolism. In addition, 27 MYBs, 20 bHLHs, 36 WD40 genes were also identified from DEGs. Anthocyanidin synthase (ANS) is the key gene that controls the anthocyanin level in tree peony leaf. Protochlorophyllide oxido-reductase (POR) is the key gene which regulated the chlorophyll content in tree peony leaf.
Collapse
|
37
|
Gai QY, Jiao J, Luo M, Wang W, Gu CB, Fu YJ, Ma W. Tremendous enhancements of isoflavonoid biosynthesis, associated gene expression and antioxidant capacity in Astragalus membranaceus hairy root cultures elicited by methyl jasmonate. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Guo L, Chen X, Li LN, Tang W, Pan YT, Kong JQ. Transcriptome-enabled discovery and functional characterization of enzymes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering. Microb Cell Fact 2016; 15:27. [PMID: 26846670 PMCID: PMC4743118 DOI: 10.1186/s12934-016-0424-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/19/2016] [Indexed: 11/30/2022] Open
Abstract
Background (2S)-Pinocembrin is a chiral flavanone with versatile pharmacological and biological activities. Its health-promoting effects have spurred on research effects on the microbial production of (2S)-pinocembrin. However, an often-overlooked salient feature in the analysis of microbial (2S)-pinocembrin is its chirality. Results Here, we presented a full characterization of absolute configuration of microbial (2S)-pinocembrin from engineered Escherichia coli. Specifically, a transcriptome-wide search for genes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum, a plant rich in flavonoids, was first performed in the present study. A total of 104,180 unigenes were finally generated with an average length of 520 bp. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping assigned 26 unigenes, representing three enzyme families of 4-coumarate:coenzyme A ligase (4CL), chalcone synthase (CHS) and chalcone isomerase(CHI), onto (2S)-pinocembrin biosynthetic pathway. A total of seven, three and one full-length candidates encoding 4CL, CHS and CHI were then verified by reverse transcription polymerase chain reaction, respectively. These candidates were screened by functional expression in E. coli individual or coupled multienzyme reaction systems based on metabolic engineering processes. Oc4CL1, OcCHS2 and OcCHI were identified to be bona fide genes encoding respective pathway enzymes of (2S)-pinocembrin biosynthesis. Then Oc4CL1, OcCHS2 and MsCHI from Medicago sativa, assembled as artificial gene clusters in different organizations, were used for fermentation production of (2S)-pinocembrin in E. coli. The absolute configuration of the resulting microbial pinocembrin at C-2 was assigned to be 2S-configured by combination of retention time, UV spectrum, LC–MS, NMR, optical rotation and circular dichroism spectroscopy. Improvement of (2S)-pinocembrin titres was then achieved by optimization of gene organizations, using of codon-optimized pathway enzymes and addition of cerulenin for increasing intracellular malonyl CoA pools. Overall, the optimized strain can produce (2S)-pinocembrin of 36.92 ± 4.1 mg/L. Conclusions High titre of (2S)-pinocembrin can be obtained from engineered E. coli by an efficient method. The fermentative production of microbial (2S)-pinocembrin in E. coli paved the way for yield improvement and further pharmacological testing. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0424-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.
| | - Xi Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China. .,School of Medicine of Wuhan University, Wuhan, China.
| | - Li-Na Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.
| | - Wei Tang
- School of Medicine of Wuhan University, Wuhan, China.
| | - Yi-Ting Pan
- School of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China.
| | - Jian-Qiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.
| |
Collapse
|
39
|
Zheng W, Li X, Zhang L, Zhang Y, Lu X, Tian J. Improved metabolites of pharmaceutical ingredient gradeGinkgo bilobaand the correlated proteomics analysis. Proteomics 2015; 15:1868-83. [DOI: 10.1002/pmic.201400258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 12/02/2014] [Accepted: 01/15/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Wen Zheng
- College of Biomedical Engineering & Instrument Science; Zhejiang University; Hangzhou Zhejiang P. R. China
| | - Ximin Li
- College of Biomedical Engineering & Instrument Science; Zhejiang University; Hangzhou Zhejiang P. R. China
| | - Lin Zhang
- Education Ministry Key Laboratory for Biomedical Engineering; Zhejiang University; Hangzhou Zhejiang P. R. China
| | - Yanzhen Zhang
- College of Biomedical Engineering & Instrument Science; Zhejiang University; Hangzhou Zhejiang P. R. China
| | - Xiaoping Lu
- Education Ministry Key Laboratory for Biomedical Engineering; Zhejiang University; Hangzhou Zhejiang P. R. China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science; Zhejiang University; Hangzhou Zhejiang P. R. China
| |
Collapse
|
40
|
Przysiecka Ł, Książkiewicz M, Wolko B, Naganowska B. Structure, expression profile and phylogenetic inference of chalcone isomerase-like genes from the narrow-leafed lupin (Lupinus angustifolius L.) genome. FRONTIERS IN PLANT SCIENCE 2015; 6:268. [PMID: 25954293 PMCID: PMC4404975 DOI: 10.3389/fpls.2015.00268] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/03/2015] [Indexed: 05/20/2023]
Abstract
Lupins, like other legumes, have a unique biosynthesis scheme of 5-deoxy-type flavonoids and isoflavonoids. A key enzyme in this pathway is chalcone isomerase (CHI), a member of CHI-fold protein family, encompassing subfamilies of CHI1, CHI2, CHI-like (CHIL), and fatty acid-binding (FAP) proteins. Here, two Lupinus angustifolius (narrow-leafed lupin) CHILs, LangCHIL1 and LangCHIL2, were identified and characterized using DNA fingerprinting, cytogenetic and linkage mapping, sequencing and expression profiling. Clones carrying CHIL sequences were assembled into two contigs. Full gene sequences were obtained from these contigs, and mapped in two L. angustifolius linkage groups by gene-specific markers. Bacterial artificial chromosome fluorescence in situ hybridization approach confirmed the localization of two LangCHIL genes in distinct chromosomes. The expression profiles of both LangCHIL isoforms were very similar. The highest level of transcription was in the roots of the third week of plant growth; thereafter, expression declined. The expression of both LangCHIL genes in leaves and stems was similar and low. Comparative mapping to reference legume genome sequences revealed strong syntenic links; however, LangCHIL2 contig had a much more conserved structure than LangCHIL1. LangCHIL2 is assumed to be an ancestor gene, whereas LangCHIL1 probably appeared as a result of duplication. As both copies are transcriptionally active, questions arise concerning their hypothetical functional divergence. Screening of the narrow-leafed lupin genome and transcriptome with CHI-fold protein sequences, followed by Bayesian inference of phylogeny and cross-genera synteny survey, identified representatives of all but one (CHI1) main subfamilies. They are as follows: two copies of CHI2, FAPa2 and CHIL, and single copies of FAPb and FAPa1. Duplicated genes are remnants of whole genome duplication which is assumed to have occurred after the divergence of Lupinus, Arachis, and Glycine.
Collapse
Affiliation(s)
- Łucja Przysiecka
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of SciencesPoznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz UniversityPoznań, Poland
| | - Michał Książkiewicz
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of SciencesPoznań, Poland
- *Correspondence: Michał Książkiewicz, Department of Genomics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of SciencesPoznań, Poland
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of SciencesPoznań, Poland
| |
Collapse
|
41
|
The homoeologous genes encoding chalcone–flavanone isomerase in Triticum aestivum L.: Structural characterization and expression in different parts of wheat plant. Gene 2014; 538:334-41. [DOI: 10.1016/j.gene.2014.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/27/2013] [Accepted: 01/04/2014] [Indexed: 11/18/2022]
|
42
|
Xu F, Ning Y, Zhang W, Liao Y, Li L, Cheng H, Cheng S. An R2R3-MYB transcription factor as a negative regulator of the flavonoid biosynthesis pathway in Ginkgo biloba. Funct Integr Genomics 2013; 14:177-89. [DOI: 10.1007/s10142-013-0352-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/12/2013] [Indexed: 01/14/2023]
|
43
|
Molecular cloning and characterization of three genes encoding dihydroflavonol-4-reductase from Ginkgo biloba in anthocyanin biosynthetic pathway. PLoS One 2013; 8:e72017. [PMID: 23991027 PMCID: PMC3753345 DOI: 10.1371/journal.pone.0072017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 07/12/2013] [Indexed: 12/02/2022] Open
Abstract
Dihydroflavonol-4-reductase (DFR, EC1.1.1.219) catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins), and other flavonoids important to plant survival and human nutrition. Three DFR cDNA clones (designated GbDFRs) were isolated from the gymnosperm Ginkgo biloba. The deduced GbDFR proteins showed high identities to other plant DFRs, which form three distinct DFR families. Southern blot analysis showed that the three GbDFRs each belong to a different DFR family. Phylogenetic tree analysis revealed that the GbDFRs share the same ancestor as other DFRs. The expression of the three recombinant GbDFRs in Escherichia coli showed that their actual protein sizes were in agreement with predictions from the cDNA sequences. The recombinant proteins were purified and their activity was analyzed; both GbDFR1 and GbDFR3 could catalyze dihydroquercetin conversion to leucocyanidin, while GbDFR2 catalyzed dihydrokaempferol conversion to leucopelargonidin. qRT-PCR showed that the GbDFRs were expressed in a tissue-specific manner, and transcript accumulation for the three genes was highest in young leaves and stamens. These transcription patterns were in good agreement with the pattern of anthocyanin accumulation in G.biloba. The expression profiles suggested that GbDFR1 and GbDFR2 are mainly involved in responses to plant hormones, environmental stress and damage. During the annual growth cycle, the GbDFRs were significantly correlated with anthocyanin accumulation in leaves. A fitted linear curve showed the best model for relating GbDFR2 and GbDFR3 with anthocyanin accumulation in leaves. GbDFR1 appears to be involved in environmental stress response, while GbDFR3 likely has primary functions in the synthesis of anthocyanins. These data revealed unexpected properties and differences in three DFR proteins from a single species.
Collapse
|
44
|
Pang Y, Cheng X, Huhman DV, Ma J, Peel GJ, Yonekura-Sakakibara K, Saito K, Shen G, Sumner LW, Tang Y, Wen J, Yun J, Dixon RA. Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis. PLANTA 2013; 238:139-54. [PMID: 23592226 DOI: 10.1007/s00425-013-1879-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/29/2013] [Indexed: 05/13/2023]
Abstract
In the first reaction specific for proanthocyanidin (PA) biosynthesis in Arabidopsis thaliana and Medicago truncatula, anthocyanidin reductase (ANR) converts cyanidin to (-)-epicatechin. The glucosyltransferase UGT72L1 catalyzes formation of epicatechin 3'-O-glucoside (E3'OG), the preferred substrate for MATE transporters implicated in PA biosynthesis in both species. The mechanism of PA polymerization is still unclear, but may involve the laccase-like polyphenol oxidase TRANSPARENT TESTA 10 (TT10). We have employed a combination of cell biological, biochemical and genetic approaches to evaluate this PA pathway model. The promoter regions of UGT72L1 and MtANR share common cis-acting elements and direct overlapping, but partially distinct, expression patterns. UGT72L1 and MtANR are localized in the cytosol, whereas TT10 is localized to the vacuole. Over-expression of UGT72L1 in M. truncatula hairy roots results in increased accumulation of PA-like compounds, and loss of function of UGT72L1 partially reduces epicatechin, E3'OG and extractable PA levels in M. truncatula seeds. Expression of UGT72L1 in A. thaliana leads to a massive increase in E3'OG in immature seed, but reduced levels of extractable PAs. However, when UGT72L1 was expressed in the Arabidopsis tt10 mutant, extractable PA levels increased and seed coat browning was delayed. Our results suggest that glycosylation of epicatechin is important for both PA precursor transport and assembly, but that additional redundant pathways may exist.
Collapse
Affiliation(s)
- Yongzhen Pang
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hua C, Linling L, Feng X, Yan W, Honghui Y, Conghua W, Shaobing W, Zhiqin L, Juan H, Yuping W, Shuiyuan C, Fuliang C. Expression patterns of an isoflavone reductase-like gene and its possible roles in secondary metabolism in Ginkgo biloba. PLANT CELL REPORTS 2013; 32:637-650. [PMID: 23459862 DOI: 10.1007/s00299-013-1397-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/27/2013] [Accepted: 02/08/2013] [Indexed: 06/01/2023]
Abstract
Our results showed that GbIRL1 belongs to the PCBER protein family. Besides, IRL1 gene was a novel gene regulating lignin change and also effecting the accumulation of flavonoids in Ginkgo. A cDNA encoding the IFR-like protein was isolated from the leaves of Ginkgo biloba L., designated as GbIRL1 (Accession no. KC244282). The cDNA of GbIRL1 was 1,203 bp containing a 921 bp open reading frame encoding a polypeptide of 306 amino acids. Comparative and bioinformatic analyses revealed that GbIRL1 showed extensive homology with IFLs from other gymnosperm species. Phylogenetic tree analysis revealed that GbIRL1 shared the same ancestor in evolution with other PCBERs protein and had a further relationship with other gymnosperm species. The recombinant protein was successfully expressed in E. coli strain with pET-28a vector. The vitro enzyme activity assay by HPLC indicated that recombinant GbIRL1 protein could catalyze the formation the TDDC, IDDDC from DDDC, DDC. Tissue expression pattern analysis showed that GbIRL1 was constitutively expressed in stem and roots, especially in the parts of the pest and fungal infection, with the lower expression being found in 1- or 2-year old stem. The increased expression of GbIRL1 was detected when the seedlings were treated with Ultraviole-B, ALA, wounding and ethephon, abscisic acid, salicylic acid. Correlation analysis between GbIRL1 activity and flavonoid accumulation during Ginkgo leaf growth indicated that GbIRL1 might be the rate-limiting enzyme in the biosynthesis pathway of flavonoids in Ginkgo leaves. Results of RT-PCR analysis showed that the transcription level of change in GbIRL1 power correlated with flavonoid contents, suggesting IRL1 gene as a novel gene regulating lignin change and also effecting the accumulation of flavonoids in Ginkgo.
Collapse
Affiliation(s)
- Cheng Hua
- Economic Forest Germplasm Improvement and Comprehensive Utilization of Resources of Hubei Key Laboratories, Hubei Huanggang, 438000, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tohge T, Watanabe M, Hoefgen R, Fernie AR. The evolution of phenylpropanoid metabolism in the green lineage. Crit Rev Biochem Mol Biol 2013; 48:123-52. [PMID: 23350798 DOI: 10.3109/10409238.2012.758083] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Phenolic secondary metabolites are only produced by plants wherein they play important roles in both biotic and abiotic defense in seed plants as well as being potentially important bioactive compounds with both nutritional and medicinal benefits reported for animals and humans as a consequence of their potent antioxidant activity. During the long evolutionary period in which plants have adapted to the environmental niches in which they exist (and especially during the evolution of land plants from their aquatic algal ancestors), several strategies such as gene duplication and convergent evolution have contributed to the evolution of this pathway. In this respect, diversity and redundancy of several key genes of phenolic secondary metabolism such as polyketide synthases, cytochrome P450s, Fe(2+)/2-oxoglutarate-dependent dioxygenases and UDP-glycosyltransferases have played an essential role. Recent technical developments allowing affordable whole genome sequencing as well as a better inventory of species-by-species chemical diversity have resulted in a dramatic increase in the number of tools we have to assess how these pathways evolved. In parallel, reverse genetics combined with detailed molecular phenotyping is allowing us to elucidate the functional importance of individual genes and metabolites and by this means to provide further mechanistic insight into their biological roles. In this review, phenolic metabolite-related gene sequences (for a total of 65 gene families including shikimate biosynthetic genes) are compared across 23 independent species, and the phenolic metabolic complement of various plant species are compared with one another, in attempt to better understand the evolution of diversity in this crucial pathway.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
47
|
Expression patterns of a cinnamyl alcohol dehydrogenase gene involved in lignin biosynthesis and environmental stress in Ginkgo biloba. Mol Biol Rep 2012; 40:707-21. [PMID: 23143181 DOI: 10.1007/s11033-012-2111-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
The cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis as it catalyzes the final step in the synthesis of monolignols. A cDNA sequence encoding the CAD gene was isolated from the leaves of Ginkgo biloba L, designated as GbCAD1. The full-length cDNA of GbCAD1 was 1,494 bp containing a 1,074 bp open reading frame encoding a polypeptide of 357 amino acids with a calculated molecular mass of 38.7 kDa and an isoelectric point of 5.74. Comparative and bioinformatic analyses revealed that GbCAD1 showed extensive homology with CADs from other gymnosperm species. Southern blot analysis indicated that GbCAD1 belonged to a multi-gene family. Phylogenetic tree analysis revealed that GbCAD1 shared the same ancestor in evolution with other CADs and had a further relationship with other gymnosperm species. GbCAD1 was an enzyme being pH-dependent and temperature-sensitive, and showing a selected catalyzing. Tissue expression pattern analysis showed that GbCAD1 was constitutively expressed in stems and roots, especially in the parts of the pest and disease infection, with the lower expression being found in two- to four-year-old stem. Further analysis showed the change in lignin content had some linear correlation with the expression level of GbCAD1 mRNA in different tissues. The increased expression of GbCAD1 was detected when the seedling were treated with exogenous abscisic acid, salicylic acid, ethephon, ultraviolet and wounding. These results indicate that the GbCAD1 gene may play a role in the resistance mechanism to biotic and abiotic stresses as well as in tissue-specific developmental lignification.
Collapse
|
48
|
Isolation, characterization, and function analysis of a flavonol synthase gene from Ginkgo biloba. Mol Biol Rep 2011; 39:2285-96. [PMID: 21643949 DOI: 10.1007/s11033-011-0978-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 05/26/2011] [Indexed: 12/19/2022]
Abstract
Flavonols are produced by the desaturation of dihydroflavanols, which is catalyzed by flavonol synthase (FLS). FLS belongs to the 2-oxoglutarate iron-dependent oxygenase family. The full-length cDNA and genomic DNA sequences of the FLS gene (designated as GbFLS) were isolated from Ginkgo biloba. The full-length cDNA of GbFLS contained a 1023-bp open reading frame encoding a 340-amino-acid protein. The GbFLS genomic DNA had three exons and two introns. The deduced GbFLS protein showed high identities with other plant FLSs. The conserved amino acids (H-X-D) ligating ferrous iron and residues (R-X-S) participating in 2-oxoglutarate binding were found in GbFLS at similar positions like other FLSs. GbFLS was found to be expressed in all tested tissues including roots, stems, leaves, and fruits. Expression profiling analyses revealed that GbFLS expression was induced by all of the six tested abiotic stresses, namely, UV-B, abscisic acid, cold, sucrose, salicylic acid, and ethephon, consistent with the in silico analysis results of the promoter region. The recombinant protein was successfully expressed in the E. coli strain BL21 (DE3) with a pET-28a vector. The in vitro enzyme activity assay by high performance liquid chromatography indicated that recombinant GbFLS protein could catalyze the formation of dihydrokaempferol to kaempferol and the conversion of kaempferol from naringenin, suggesting that GbFLS is a bifunctional enzyme within the flavonol biosynthetic pathway.
Collapse
|