1
|
Filyushin MA, Dzhos EA, Shchennikova AV, Kochieva EZ. Metabolite concentrations and the expression profiles of the corresponding metabolic pathway genes in eggplant (Solanum melongena L.) fruits of contrasting colors. Vavilovskii Zhurnal Genet Selektsii 2024; 28:619-627. [PMID: 39440314 PMCID: PMC11491480 DOI: 10.18699/vjgb-24-69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 10/25/2024] Open
Abstract
Eggplant (Solanum melongena L.) ranks fifth in importance among vegetable crops of the Solanaceae family, in part due to the high antioxidant properties and polyphenol content of the fruit. Along with the popular purple-fruited varieties of S. melongena, there are cultivars, the fruits of which are rich in phenolic compounds, but are white-colored due to the lack of anthocyanin biosynthesis. Determination of the amount of anthocyanins and other phenolic compounds, as well as carotenoids and sugars, is included in the assessment of the quality of eggplant fruits of commercial (technical) ripeness. In addition to antioxidant and taste properties, these metabolites are associated with fruit resistance to various stress factors. In this study, a comparative analysis of the content of anthocyanins, carotenoids and soluble sugars (sucrose, glucose, fructose) in the peel and pulp of the fruit of both technical and biological ripeness was carried out in purple-fruited (cv. Vlas) and white-fruited (cv. Snezhny) eggplant accessions of domestic selection. The peel and pulp of biologically ripe fruits of the cvs Vlas and Snezhny were used for comparative transcriptomic analysis. The key genes of the flavonoid and carotenoid metabolism, sucrose hydrolysis, and soluble sugar transport were shown to be differentially expressed between fruit tissues, both within each cultivar and between them. It has been confirmed that the purple color of the peel of the cv. Vlas fruit is due to substantial amounts of anthocyanins. Flavonoid biosynthesis genes showed a significantly lower expression level in the ripe fruit of the cv. Vlas in comparison with the cv. Snezhny. However, in both cultivars, transcripts of anthocyanin biosynthesis genes (DFR, ANS, UFGT) were not detected. Additionally, the purple fruit of the cv. Vlas accumulated more carotenoids and sucrose and less glucose and fructose than the white fruit of the cv. Snezhny. Biochemical data corresponded to the differential expression pattern of the key genes encoding the structural proteins of metabolism and transport of the compounds analyzed.
Collapse
Affiliation(s)
- M A Filyushin
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - E A Dzhos
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia Federal Scientific Vegetable Center, VNIISSOK village, Moscow region, Russia
| | - A V Shchennikova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - E Z Kochieva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Tao J, Dong F, Wang Y, Xu T, Chen H, Tang M. Arbuscular mycorrhizal fungi alter carbon metabolism and invertase genes expressions of Populus simonii × P. nigra under drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14572. [PMID: 39382057 DOI: 10.1111/ppl.14572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) play a crucial role in regulating the allocation of carbon between source and sink tissues in plants and in regulating their stress responses by changing the sucrose biosynthesis, transportation, and catabolism in plants. Invertase, a key enzyme for plant development, participates in the response of plants to drought stress by regulating sucrose metabolism. However, the detailed mechanisms by which INV genes respond to drought stress in mycorrhizal plants remain unclear. This study examined the sugar content, enzyme activity, and expression profiles of INV genes of Populus simonii × P. nigra (PsnINVs) under two inoculation treatments (inoculation or non-inoculation) and two water conditions (well-watered or drought stress). Results showed that under drought stress, AMF up-regulated the expressions of PsnA/NINV1, PsnA/NINV2, PsnA/NINV3, and PsnA/NINV5 in leaves, which may be related to the enhancement of photosynthetic capacity. Additionally, AMF up-regulated the expressions of PsnA/NINV6, PsnA/NINV10, and PsnA/NINV12 in leaves, which may be related to enhancing osmotic regulation ability and drought tolerance.
Collapse
Affiliation(s)
- Jing Tao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fengxin Dong
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yihan Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tingying Xu
- Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK, United States
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Liu Y, Liu B, Luo K, Yu B, Li X, Zeng J, Chen J, Xia R, Xu J, Liu Y. Genomic identification and expression analysis of acid invertase (AINV) gene family in Dendrobium officinale Kimura et Migo. BMC PLANT BIOLOGY 2024; 24:396. [PMID: 38745125 PMCID: PMC11092110 DOI: 10.1186/s12870-024-05102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Dendrobium officinale Kimura et Migo, a renowned traditional Chinese orchid herb esteemed for its significant horticultural and medicinal value, thrives in adverse habitats and contends with various abiotic or biotic stresses. Acid invertases (AINV) are widely considered enzymes involved in regulating sucrose metabolism and have been revealed to participate in plant responses to environmental stress. Although members of AINV gene family have been identified and characterized in multiple plant genomes, detailed information regarding this gene family and its expression patterns remains unknown in D. officinale, despite their significance in polysaccharide biosynthesis. RESULTS This study systematically analyzed the D. officinale genome and identified four DoAINV genes, which were classified into two subfamilies based on subcellular prediction and phylogenetic analysis. Comparison of gene structures and conserved motifs in DoAINV genes indicated a high-level conservation during their evolution history. The conserved amino acids and domains of DoAINV proteins were identified as pivotal for their functional roles. Additionally, cis-elements associated with responses to abiotic and biotic stress were found to be the most prevalent motif in all DoAINV genes, indicating their responsiveness to stress. Furthermore, bioinformatics analysis of transcriptome data, validated by quantitative real-time reverse transcription PCR (qRT-PCR), revealed distinct organ-specific expression patterns of DoAINV genes across various tissues and in response to abiotic stress. Examination of soluble sugar content and interaction networks provided insights into stress release and sucrose metabolism. CONCLUSIONS DoAINV genes are implicated in various activities including growth and development, stress response, and polysaccharide biosynthesis. These findings provide valuable insights into the AINV gene amily of D. officinale and will aid in further elucidating the functions of DoAINV genes.
Collapse
Affiliation(s)
- Yujia Liu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Boting Liu
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Kefa Luo
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Baiyin Yu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China.
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China.
| | - Xiang Li
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Jian Zeng
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Jie Chen
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuanlong Liu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Song C, Zhang Y, Zhang W, Manzoor MA, Deng H, Han B. The potential roles of acid invertase family in Dendrobium huoshanense: Identification, evolution, and expression analyses under abiotic stress. Int J Biol Macromol 2023; 253:127599. [PMID: 37871722 DOI: 10.1016/j.ijbiomac.2023.127599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/22/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Dendrobium huoshanense, a traditional Chinese medicine prized for its horticultural and medicinal properties, thrives in an unfavorable climate and is exposed to several adverse environmental conditions. Acid invertase (AINV), a widely distributed enzyme that has been demonstrated to play a significant role in response to environmental stresses. However, the identification of the AINV gene family in D. huoshanense, the collinearity between relative species, and the expression pattern under external stress have yet to be resolved. We systematically retrieved the D. huoshanense genome and screened out four DhAINV genes, which were further classified into two subfamilies by the phylogenetic analysis. The evolutionary history of AINV genes in D. huoshanense was uncovered by comparative genomics investigations. The subcellular localization predicted that the DhVINV genes may be located in the vacuole, while the DhCWINV genes may be located in the cell wall. The exon/intron structures and conserved motifs of DhAINV genes were found to be highly conserved in two subclades. The conserved amino acids and catalytic motifs in DhAINV proteins were determined to be critical to their function. Notably, the cis-acting elements in all DhAINV genes were mainly relevant to abiotic stresses and light response. In addition, the expression profile coupled with qRT-PCR revealed the typical expression patterns of DhAINV in response to diverse abiotic stresses. Our findings could be beneficial to the characterization and further investigation of AINV functions in Dendrobium plants.
Collapse
Affiliation(s)
- Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan 237012, China.
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Wenwu Zhang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Hui Deng
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan 237012, China
| | - Bangxing Han
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan 237012, China.
| |
Collapse
|
5
|
Cheng L, Jin J, He X, Luo Z, Wang Z, Yang J, Xu X. Genome-wide identification and analysis of the invertase gene family in tobacco ( Nicotiana tabacum) reveals NtNINV10 participating the sugar metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1164296. [PMID: 37332710 PMCID: PMC10272776 DOI: 10.3389/fpls.2023.1164296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Sucrose (Suc) is directly associated with plant growth and development as well as tolerance to various stresses. Invertase (INV) enzymes played important role in sucrose metabolism by irreversibly catalyzing Suc degradation. However, genome-wide identification and function of individual members of the INV gene family in Nicotiana tabacum have not been conducted. In this report, 36 non-redundant NtINV family members were identified in Nicotiana tabacum including 20 alkaline/neutral INV genes (NtNINV1-20), 4 vacuolar INV genes (NtVINV1-4), and 12 cell wall INV isoforms (NtCWINV1-12). A comprehensive analysis based on the biochemical characteristics, the exon-intron structures, the chromosomal location and the evolutionary analysis revealed the conservation and the divergence of NtINVs. For the evolution of the NtINV gene, fragment duplication and purification selection were major factors. Besides, our analysis revealed that NtINV could be regulated by miRNAs and cis-regulatory elements of transcription factors associated with multiple stress responses. In addition, 3D structure analysis has provided evidence for the differentiation between the NINV and VINV. The expression patterns in diverse tissues and under various stresses were investigated, and qRT-PCR experiments were conducted to confirm the expression patterns. Results revealed that changes in NtNINV10 expression level were induced by leaf development, drought and salinity stresses. Further examination revealed that the NtNINV10-GFP fusion protein was located in the cell membrane. Furthermore, inhibition of the expression of NtNINV10 gene decreased the glucose and fructose in tobacco leaves. Overall, we have identified possible NtINV genes functioned in leaf development and tolerance to environmental stresses in tobacco. These findings provide a better understanding of the NtINV gene family and establish the basis for future research.
Collapse
Affiliation(s)
- Lingtong Cheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xinxi He
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xin Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
6
|
Chavez Mendoza K, Peña-Valdivia CB, Hernández Rodríguez M, Vázquez Sánchez M, Morales Elías NC, Jiménez Galindo JC, García Esteva A, Padilla Chacón D. Phenotypic, Anatomical, and Diel Variation in Sugar Concentration Linked to Cell Wall Invertases in Common Bean Pod Racemes under Water Restriction. PLANTS 2022; 11:plants11131622. [PMID: 35807573 PMCID: PMC9268661 DOI: 10.3390/plants11131622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
Abstract
The common bean (Phaseolus vulgaris L.) pod wall is essential for seed formation and to protect seeds. To address the effect of water restriction on sugar metabolism in fruits differing in sink strength under light–dark cycles, we used plants of cv. OTI at 100% field capacity (FC) and at 50% FC over 10 days at the beginning of pod filling. Water restriction intensified the symptoms of leaf senescence. However, pods maintained a green color for several days longer than leaves did. In addition, the functionality of pods of the same raceme was anatomically demonstrated, and no differences were observed between water regimes. The glucose and starch concentrations were lower than those of sucrose, independent of pod wall size. Remarkably, the fructose concentration decreased only under water restriction. The cell wall invertase activity was twofold higher in the walls of small pods than in those of large ones in both water regimes; similar differences were not evident for cytosolic or vacuolar invertase. Using bioinformatics tools, six sequences of invertase genes were identified in the P. vulgaris genome. The PvINVCW4 protein sequence contains substitutions for conserved residues in the sucrose-binding site, while qPCR showed that transcript levels were induced in the walls of small pods under stress. The findings support a promising strategy for addressing sink strength under water restriction.
Collapse
Affiliation(s)
- Karla Chavez Mendoza
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico; (K.C.M.); (C.B.P.-V.); (M.V.S.); (N.C.M.E.); (A.G.E.)
| | - Cecilia Beatriz Peña-Valdivia
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico; (K.C.M.); (C.B.P.-V.); (M.V.S.); (N.C.M.E.); (A.G.E.)
| | - Martha Hernández Rodríguez
- Postgrado en Recursos Genéticos y Productividad-Genética, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico;
| | - Monserrat Vázquez Sánchez
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico; (K.C.M.); (C.B.P.-V.); (M.V.S.); (N.C.M.E.); (A.G.E.)
| | - Norma Cecilia Morales Elías
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico; (K.C.M.); (C.B.P.-V.); (M.V.S.); (N.C.M.E.); (A.G.E.)
| | | | - Antonio García Esteva
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico; (K.C.M.); (C.B.P.-V.); (M.V.S.); (N.C.M.E.); (A.G.E.)
| | - Daniel Padilla Chacón
- CONACYT-Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico
- Correspondence: ; Tel.: +52-595-952-0200 (ext. 1344)
| |
Collapse
|
7
|
Li B, Wang H, He S, Ding Z, Wang Y, Li N, Hao X, Wang L, Yang Y, Qian W. Genome-Wide Identification of the PMEI Gene Family in Tea Plant and Functional Analysis of CsPMEI2 and CsPMEI4 Through Ectopic Overexpression. FRONTIERS IN PLANT SCIENCE 2022; 12:807514. [PMID: 35154201 PMCID: PMC8829431 DOI: 10.3389/fpls.2021.807514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 05/26/2023]
Abstract
Pectin methylesterase inhibitor (PMEI) inhibits pectin methylesterase (PME) activity at post-translation level, which plays core roles in vegetative and reproductive processes and various stress responses of plants. However, the roles of PMEIs in tea plant are still undiscovered. Herein, a total of 51 CsPMEIs genes were identified from tea plant genome. CsPMEI1-4 transcripts were varied in different tea plant tissues and regulated by various treatments, including biotic and abiotic stresses, sugar treatments, cold acclimation and bud dormancy. Overexpression of CsPMEI4 slightly decreased cold tolerance of transgenic Arabidopsis associated with lower electrolyte leakage, soluble sugars contents and transcripts of many cold-induced genes as compared to wild type plants. Under long-day and short-day conditions, CsPMEI2/4 promoted early flowering phenotypes in transgenic Arabidopsis along with higher expression levels of many flowering-related genes. Moreover, overexpression of CsPMEI2/4 decreased PME activity, but increased sugars contents (sucrose, glucose, and fructose) in transgenic Arabidopsis as compared with wild type plants under short-day condition. These results indicate that CsPMEIs are widely involved in tea plant vegetative and reproductive processes, and also in various stress responses. Moreover, CsPMEI4 negatively regulated cold response, meanwhile, CsPMEI2/4 promoted early flowering of transgenic Arabidopsis via the autonomous pathway. Collectively, these results open new perspectives on the roles of PMEIs in tea plant.
Collapse
Affiliation(s)
- Bo Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Huan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Shan He
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Zhaotang Ding
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Yu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Nana Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Wenjun Qian
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| |
Collapse
|
8
|
Zhu C, Yang K, Li G, Li Y, Gao Z. Identification and Expression Analyses of Invertase Genes in Moso Bamboo Reveal Their Potential Drought Stress Functions. Front Genet 2021; 12:696300. [PMID: 34527019 PMCID: PMC8435750 DOI: 10.3389/fgene.2021.696300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022] Open
Abstract
Invertases (INVs) can irreversibly hydrolyze sucrose into fructose and glucose, which play principal roles in carbon metabolism and responses to various stresses in plants. However, little is known about the INV family in bamboos, especially their potential function in drought stress. In this study, 29 PeINVs were identified in moso bamboo (Phyllostachys edulis). They were clustered into alkaline/neutral invertase (NINV) and acid invertase (AINV) groups based on the gene structures, conserved motifs, and phylogenetic analysis results. The collinearity analysis showed nine segmental duplication pairs within PeINVs, and 25 pairs were detected between PeINVs and OsINVs. PeINVs may have undergone strong purification selection during evolution, and a variety of stress and phytohormone-related regulatory elements were found in the promoters of PeINVs. The tissue-specific expression analysis showed that PeINVs were differentially expressed in various moso bamboo tissues, which suggested that they showed functional diversity. Both the RNA-seq and quantitative real-time PCR results indicated that four PeINVs were significantly upregulated under drought stress. Co-expression network and Pearson’s correlation coefficient analyses showed that these PeINVs co-expressed positively with sugar and water transport genes (SWTGs), and the changes were consistent with sugar content. Overall, we speculate that the identified PeINVs are spatiotemporally expressed, which enables them to participate in moso bamboo growth and development. Furthermore, PeINVs, together with SWTGs, also seem to play vital roles in the response to drought stress. These results provide a comprehensive information resource for PeINVs, which will facilitate further study of the molecular mechanism underlying PeINVs involvement in the response to drought stress in moso bamboo.
Collapse
Affiliation(s)
- Chenglei Zhu
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China.,Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| | - Kebin Yang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China.,Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| | - Guangzhu Li
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China.,Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| | - Ying Li
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China.,Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| | - Zhimin Gao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China.,Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| |
Collapse
|
9
|
Feng Z, Zheng F, Wu S, Li R, Li Y, Zhong J, Zhao H. Functional Characterization of a Cucumber ( Cucumis sativus L.) Vacuolar Invertase, CsVI1, Involved in Hexose Accumulation and Response to Low Temperature Stress. Int J Mol Sci 2021; 22:ijms22179365. [PMID: 34502273 PMCID: PMC8431200 DOI: 10.3390/ijms22179365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/24/2023] Open
Abstract
Cucumber (Cucumis sativus L.), an important vegetable plant species, is susceptible to low temperature stress especially during the seedling stage. Vacuolar invertase (VI) plays important roles in plant responses to abiotic stress. However, the molecular and biochemical mechanisms of VI function in cucumber, have not yet been completely understood and VI responses to low temperature stress and it functions in cold tolerance in cucumber seedlings are also in need of exploration. The present study found that hexose accumulation in the roots of cucumber seedlings under low temperature stress is closely related to the observed enhancement of invertase activity. Our genome-wide search for the vacuolar invertase (VI) genes in cucumber identified the candidate VI-encoding gene CsVI1. Expression profiling of CsVI1 showed that it was mainly expressed in the young roots of cucumber seedlings. In addition, transcriptional analysis indicated that CsVI1 expression could respond to low temperature stress. Recombinant CsVI1 proteins purified from Pichia pastoris and Nicotiana benthamiana leaves could hydrolyze sucrose into hexoses. Further, overexpression of CsVI1 in cucumber plants could increase their hexose contents and improve their low temperature tolerance. Lastly, a putative cucumber invertase inhibitor was found could form a complex with CsVI1. In summary, these results confirmed that CsVI1 functions as an acid invertase involved in hexose accumulation and responds to low temperature stress in cucumber seedlings.
Collapse
Affiliation(s)
- Zili Feng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 732001, China;
| | - Fenghua Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.W.); (R.L.); (Y.L.)
| | - Silin Wu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.W.); (R.L.); (Y.L.)
| | - Rui Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.W.); (R.L.); (Y.L.)
| | - Yue Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.W.); (R.L.); (Y.L.)
| | - Jiaxin Zhong
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.W.); (R.L.); (Y.L.)
- Correspondence:
| |
Collapse
|
10
|
Ferreira-Neto JRC, da Silva MD, Rodrigues FA, Nepomuceno AL, Pandolfi V, de Lima Morais DA, Kido EA, Benko-Iseppon AM. Importance of inositols and their derivatives in cowpea under root dehydration: An omics perspective. PHYSIOLOGIA PLANTARUM 2021; 172:441-462. [PMID: 33247842 DOI: 10.1111/ppl.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
This work presents a robust analysis of the inositols (INSs) and raffinose family oligosaccharides (RFOs) pathways, using genomic and transcriptomic tools in cowpea under root dehydration. Nineteen (~70%) of the 26 scrutinized enzymes presented transcriptional up-regulation in at least one treatment time. The transcriptional orchestration allowed categorization of the analyzed enzymes as time-independent (those showing the same regulation throughout the assay) and time-dependent (those showing different transcriptional regulation over time). It is suggested that up-regulated time-independent enzymes (INSs: myo-inositol oxygenase, inositol-tetrakisphosphate 1-kinase 3, phosphatidylinositol 4-phosphate 5-kinase 4-like, 1-phosphatidylinositol-3-phosphate 5-kinase, phosphoinositide phospholipase C, and non-specific phospholipase C; RFOs: α-galactosidase, invertase, and raffinose synthase) actively participate in the reorganization of cowpea molecular physiology under the applied stress. In turn, time-dependent enzymes, especially those up-regulated in some of the treatment times (INSs: inositol-pentakisphosphate 2-kinase, phosphatidylinositol 4-kinase, phosphatidylinositol synthase, multiple inositol polyphosphate phosphatase 1, methylmalonate-semialdehyde dehydrogenase, triosephosphate isomerase, myo-inositol-3-phosphate synthase, phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and protein-tyrosine-phosphatase, and phosphatidylinositol 3-kinase; RFOs: galactinol synthase) seem to participate in fine-tuning of the molecular physiology, helping the cowpea plants to acclimatize under dehydration stress. Not all loci encoding the studied enzymes were expressed during the assay; most of the expressed ones exhibited a variable transcriptional profile in the different treatment times. Genes of the INSs and RFOs pathways showed high orthology with analyzed Phaseoleae members, suggesting a relevant role within this legume group. Regarding the promoter regions of INSs and RFOs genes, some bona fide cis-regulatory elements were identified in association with seven transcription factor families (AP2-EFR, Dof-type, MADS-box, bZIP, CPP, ZF-HD, and GATA-type). Members of INSs and RFOs pathways potentially participate in other processes regulated by these proteins in cowpea.
Collapse
Affiliation(s)
- José R C Ferreira-Neto
- Laboratory of Molecular Genetics, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| | | | - Fabiana A Rodrigues
- Federal Institute of Education, Science and Technology of Mato Grosso do Sul, Cuiaba, Brazil
| | - Alexandre L Nepomuceno
- Brazilian Agricultural Research Corporation's-EMBRAPA Soybean, Rodovia Carlos João Strass-Distrito de Warta, Londrina, Brazil
| | - Valesca Pandolfi
- Laboratory of Plant Genetics and Biotechnology, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| | | | - Ederson A Kido
- Laboratory of Molecular Genetics, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| | - Ana M Benko-Iseppon
- Laboratory of Plant Genetics and Biotechnology, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
11
|
Liu C, Xi H, Chen X, Zhao Y, Yao J, Si J, Zhang L. Genome-wide identification and expression pattern of alkaline/neutral invertase gene family in Dendrobium catenatum. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1901610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Chen Liu
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Hangxian Xi
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Xueliang Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Yuxue Zhao
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Jinbo Yao
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, PR China
| |
Collapse
|
12
|
Wang H, Ding Z, Gou M, Hu J, Wang Y, Wang L, Wang Y, Di T, Zhang X, Hao X, Wang X, Yang Y, Qian W. Genome-wide identification, characterization, and expression analysis of tea plant autophagy-related genes (CsARGs) demonstrates that they play diverse roles during development and under abiotic stress. BMC Genomics 2021; 22:121. [PMID: 33596831 PMCID: PMC7891152 DOI: 10.1186/s12864-021-07419-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
Background Autophagy, meaning ‘self-eating’, is required for the degradation and recycling of cytoplasmic constituents under stressful and non-stressful conditions, which helps to maintain cellular homeostasis and delay aging and longevity in eukaryotes. To date, the functions of autophagy have been heavily studied in yeast, mammals and model plants, but few studies have focused on economically important crops, especially tea plants (Camellia sinensis). The roles played by autophagy in coping with various environmental stimuli have not been fully elucidated to date. Therefore, investigating the functions of autophagy-related genes in tea plants may help to elucidate the mechanism governing autophagy in response to stresses in woody plants. Results In this study, we identified 35 C. sinensis autophagy-related genes (CsARGs). Each CsARG is highly conserved with its homologues from other plant species, except for CsATG14. Tissue-specific expression analysis demonstrated that the abundances of CsARGs varied across different tissues, but CsATG8c/i showed a degree of tissue specificity. Under hormone and abiotic stress conditions, most CsARGs were upregulated at different time points during the treatment. In addition, the expression levels of 10 CsARGs were higher in the cold-resistant cultivar ‘Longjing43’ than in the cold-susceptible cultivar ‘Damianbai’ during the CA period; however, the expression of CsATG101 showed the opposite tendency. Conclusions We performed a comprehensive bioinformatic and physiological analysis of CsARGs in tea plants, and these results may help to establish a foundation for further research investigating the molecular mechanisms governing autophagy in tea plant growth, development and response to stress. Meanwhile, some CsARGs could serve as putative molecular markers for the breeding of cold-resistant tea plants in future research. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07419-2.
Collapse
Affiliation(s)
- Huan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhaotang Ding
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengjie Gou
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianhui Hu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Yuchun Wang
- College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Taimei Di
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Xinfu Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Wenjun Qian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
13
|
Tarelkina TV, Galibina NA, Moshchenskaya YL, Novitskaya LL. In Silico Analysis of Regulatory cis-Elements in the Promoters of Genes Encoding Apoplastic Invertase and Sucrose Synthase in Silver Birch. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420050082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Wang X, Wang S, Xue Y, Ren X, Xue J, Zhang X. Defoliation, not gibberellin, induces tree peony autumn reflowering regulated by carbon allocation and metabolism in buds and leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:545-555. [PMID: 32305821 DOI: 10.1016/j.plaphy.2020.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Short and concentrated natural fluorescence hinders tree peony (Paeonia suffruticosa) annual production, and defoliation and gibberellin (GA) application is used to induce its reflowering in autumn. Here, the individual roles of defoliation and GA treatment were determined by monitoring morphological and soluble sugar changes in buds and leaves, and by investigating carbon allocation- and metabolism-related gene expression. Both defoliation and GA treatment induced early bud development, but induction was faster using the GA treatment. Only defoliation, not GA treatment, induced the final reflowering, although their combination accelerated it. Furthermore, defoliation decreased the sucrose content in buds much faster than the GA treatment. This sucrose reduction may play a key role in tree peony reflowering, and the higher carbon metabolism activity in young leaves after defoliation may further help the reflowering process. Defoliation enhanced the expression of sucrose transporters PsSUT4 and PsSWEET12 in buds, and their expression in young leaves was greater than after GA treatment. This indicated that PsSUT4 and PsSWEET12 may help transport carbon into buds after defoliation. In addition, the invertases, PsCIN2 and PsCWIN1 in young leaves were more highly expressed after defoliation, indicating that they may contribute to reflowering after defoliation by accelerating sucrose hydrolysis in young leaves. In addition, the expression levels of PsVIN1 and PsVIN2 in leaves, and PsVIN2 in buds were more highly induced by GA treatment than by defoliation, indicating that PsVINs may mainly respond to GA treatment. These results may help improve the tree peony forcing culture technology and related industrial production.
Collapse
Affiliation(s)
- Xiaoping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Shunli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yuqian Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xiuxia Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Jingqi Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Xiuxin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
15
|
|
16
|
Zhou H, Li C, Qiu X, Lu S. Systematic Analysis of Alkaline/Neutral Invertase Genes Reveals the Involvement of Smi-miR399 in Regulation of SmNINV3 and SmNINV4 in Salvia miltiorrhiza. PLANTS 2019; 8:plants8110490. [PMID: 31717988 PMCID: PMC6918228 DOI: 10.3390/plants8110490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 01/25/2023]
Abstract
Alkaline/neutral invertases (NINVs), which irreversibly catalyze the hydrolysis of sucrose into fructose and glucose, play crucial roles in carbohydrate metabolism and plant development. Comprehensive insights into NINV genes are lacking in Salvia miltiorrhiza, a well-known traditional Chinese medicinal (TCM) plant with significant medicinal and economic value. Through genome-wide prediction, nine putative SmNINV genes, termed SmNINV1-SmNINV9, were identified. Integrated analysis of gene structures, sequence features, conserved domains, conserved motifs and phylogenetic trees revealed the conservation and divergence of SmNINVs. The identified SmNINVs were differentially expressed in roots, stems, leaves, flowers, and different root tissues. They also responded to drought, salicylic acid, yeast extract, and methyl jasmonate treatments. More importantly, computational prediction and experimental validation showed that SmNINV3 and SmNINV4 were targets of Smi-miR399, a conserved miRNA previously shown to affect Pi uptake and translocation through the cleavage of PHOSPHATE2 (PHO2). Consistently, analysis of 43 NINV genes and 26 miR399 sequences from Arabidopsis thaliana, Populus trichocarpa, Manihot esculenta, and Solanum lycopersicum showed that various AtNINV, PtNINV, MeNINV, and SlNINV genes were regulated by miR399. It indicates that the miR399-NINV module exists widely in plants. Furthermore, Smi-miR399 also cleaved SmPHO2 transcripts in S. miltiorrhiza, suggesting the complexity of NINVs, PHO2, and miR399 networks.
Collapse
Affiliation(s)
| | | | | | - Shanfa Lu
- Correspondence: ; Tel./Fax: +86-10-57833366
| |
Collapse
|
17
|
Transcriptional Analysis of Masson Pine ( Pinus massoniana) under High CO 2 Stress. Genes (Basel) 2019; 10:genes10100804. [PMID: 31614914 PMCID: PMC6826509 DOI: 10.3390/genes10100804] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022] Open
Abstract
To explore the molecular mechanism of the response of Masson pine (Pinus massoniana), the main coniferous tree in southern China, to high CO2 stress, transcriptome sequencing was carried out to analyze the genome-wide responses of annual seedlings under different durations (0 h, 6 h, 12 h and 24 h) of high CO2 stress. The results showed that a total of 3080/1908, 3110/2115 and 2684/1483 genes were up-/down-regulated after 6 h, 12 h and 24 h of treatment, respectively, compared with control check group (CK, 0 h). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that most of these differentially expressed genes (DEGs) were enriched in energy metabolism, carbohydrate synthesis, cell wall precursor synthesis and hormone regulation pathways. For energy metabolism, the expression of most genes involved in photosynthesis (including the light reaction and Calvin cycle) was generally inhibited, while the expression of genes related glycolysis, the tricarboxylic acid (TCA) cycle and PPP pathway was up-regulated. In addition, the increase in the CO2 concentration induced the up-regulation of gene expression in the sucrose synthesis pathway. Among all starch synthesis genes, GBSS (granule-bound starch synthase) had the highest expression level. On the other hand, during the synthesis of hemicellulose and pectin (cell wall precursor substances), the expression levels of GMD (GDP-mannose 4,6-dehydratase), MGP (Mannose-1-phosphate guanylyl transferase) and RHM (Rhamnose biosynthetic enzyme) were the highest, suggesting that the synthesis of the raw materials hemicellulose and pectin in Masson pine under stress were mainly supplied by GDP-Man, GDP-Fuc and UDP-Rha. Finally, stress inhibited gene expression in the ABA (Abscisic Acid) synthesis pathway and induced gene expression in the GA (Gibberellin), SA (Salicylic acid), BR(Brassinolide) and MeJA (Methyl Jasmonate) pathways. Stomatal switches were regulated by hormonal interactions. This experiment elaborated on the response and molecular mechanism of Masson pine to CO2 stress and aided in screening carbon sequestration genes for the corresponding molecular research of Masson pine in the future.
Collapse
|
18
|
Liu J, Chen X, Wang S, Wang Y, Ouyang Y, Yao Y, Li R, Fu S, Hu X, Guo J. MeABL5, an ABA Insensitive 5-Like Basic Leucine Zipper Transcription Factor, Positively Regulates MeCWINV3 in Cassava ( Manihot esculenta Crantz). FRONTIERS IN PLANT SCIENCE 2019; 10:772. [PMID: 31316528 PMCID: PMC6609874 DOI: 10.3389/fpls.2019.00772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/28/2019] [Indexed: 05/20/2023]
Abstract
The basic leucine zipper (bZIP) transcription factor family plays crucial roles in multiple biological processes, especially stress responses. Cassava (Manihot esculenta Crantz) is an important tropical crop with a strong tolerance to environmental stresses such as drought, heat, and low-fertility environments. Currently, limited information is available regarding the functional identification of bZIP transcription factors in response to abiotic stress in cassava. Herein, a gene encoding an ABA Insensitive 5 (ABI5)-like transcription factor, designated as MeABL5, was identified in cassava. Sequence and phylogenetic analysis showed that MeABL5 is a cassava bZIP transcription factor that is not included in the previously identified cassava bZIP family members, belongs to subfamily A, and has high sequence similarity to ABI5-like proteins. Subcellular localization and transactivation assays revealed that MeABL5 was a nuclear-localized protein and possessed transactivation activity. Furthermore, MeABL5 was able to specifically interact with the ABRE cis-element in the promoter of the cassava major cell wall invertase gene, MeCWINV3, in vitro and in vivo. MeABL5 and MeCWINV3 exhibited similar expression patterns in various organs or tissues and under abiotic stress in cassava. The expressions of MeABL5 and MeCWINV3 within cassava plantlets were both induced by exogenous abscisic acid (ABA), gibberellic acid (GA3), methyl jasmonate (MeJA), and heat. Overexpression of MeABL5 increased the activity of the MeCWINV3 gene, and the up-regulated expressions of MeCWINV3 were significantly activated under ABA-, salicylic acid (SA)-, and MeJA-induced conditions. Overall, these results suggest that MeABL5 is a positive regulator of MeCWINV3 and might participate in the robust resistance of cassava in response to abiotic stress. This study also provides a foundation for further research on ABA-mediated and stress-related signaling pathways in cassava.
Collapse
Affiliation(s)
- Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xia Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Shuo Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Dazhou Mingrenyuan Middle School, Dazhou, China
| | - Yuanyuan Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yujun Ouyang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Ruimei Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shaoping Fu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xinwen Hu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- *Correspondence: Xinwen Hu,
| | - Jianchun Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Jianchun Guo,
| |
Collapse
|
19
|
Qian W, Xiao B, Wang L, Hao X, Yue C, Cao H, Wang Y, Li N, Yu Y, Zeng J, Yang Y, Wang X. CsINV5, a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2018; 18:228. [PMID: 30309330 PMCID: PMC6182829 DOI: 10.1186/s12870-018-1456-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/01/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Vacuolar invertases (VINs) have been reported to regulate plant growth and development and respond to abiotic stresses such as drought and cold. With our best knowledge, the functions of VIN genes little have been reported in tea plant (Camellia sinensis L.). Therefore, it is necessary to develop research in this field. RESULTS Here, we identified a VIN gene, CsINV5, which was induced by cold acclimation and sugar treatments in the tea plant. Histochemical assays results showed that the 1154 bp 5'-flanking sequence of CsINV5 drove β-glucuronidase (GUS) gene expression in roots, stems, leaves, flowers and siliques of transgenic Arabidopsis during different developmental stages. Moreover, promoter deletion analysis results revealed that an LTRE-related motif (CCGAAA) and a WBOXHVISO1 motif (TGACT) within the promoter region of CsINV5 were the core cis-elements in response to low temperature and sugar signaling, respectively. In addition, overexpression of CsINV5 in Arabidopsis promoted taproot and lateral root elongation through glucose-mediated effects on auxin signaling. Based on physiological and RNA-seq analysis, we found that overexpression of CsINV5 improved cold tolerance in transgenic Arabidopsis mainly by increasing the contents of glucose and fructose, the corresponding ratio of hexose to sucrose, and the transcription of osmotic-stress-related genes (P5CS1, P5CS2, AtLEA3, COR413-PM1 and COR15B) to adjust its osmotic potential. CONCLUSIONS Comprehensive experimental results suggest that overexpression of CsINV5 may enhance the cold tolerance of plant through the modification of cellular sugar compounds contents and osmotic regulation related pathways.
Collapse
Affiliation(s)
- Wenjun Qian
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong China
| | - Bin Xiao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi China
| | - Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Chuan Yue
- Department of Tea Science, College of Horticulture, Fujian A & F University, Fuzhou, China
| | - Hongli Cao
- Department of Tea Science, College of Horticulture, Fujian A & F University, Fuzhou, China
| | - Yuchun Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Nana Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Youben Yu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi China
| | - Jianming Zeng
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
20
|
Su T, Han M, Min J, Chen P, Mao Y, Huang Q, Tong Q, Liu Q, Fang Y. Genome-Wide Survey of Invertase Encoding Genes and Functional Characterization of an Extracellular Fungal Pathogen-Responsive Invertase in Glycine max. Int J Mol Sci 2018; 19:E2395. [PMID: 30110937 PMCID: PMC6121457 DOI: 10.3390/ijms19082395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023] Open
Abstract
Invertases are essential enzymes that irreversibly catalyze the cleavage of sucrose into glucose and fructose. Cell wall invertase (CWI) and vacuolar invertase (VI) are glycosylated proteins and exert fundamental roles in plant growth as well as in response to environmental cues. As yet, comprehensive insight into invertase encoding genes are lacking in Glycine max. In the present study, the systematic survey of gene structures, coding regions, regulatory elements, conserved motifs, and phylogenies resulted in the identification of thirty⁻two putative invertase genes in soybean genome. Concomitantly, impacts on gene expression, enzyme activities, proteins, and soluble sugar accumulation were explored in specific tissues upon stress perturbation. In combination with the observation of subcellular compartmentation of the fluorescent fusion protein that indeed exported to apoplast, heterologous expression, and purification in using Pichia pastoris system revealed that GmCWI4 was a typical extracellular invertase. We postulated that GmCWI4 may play regulatory roles and be involved in pathogenic fungi defense. The experimental evaluation of physiological significance via phenotypic analysis of mutants under stress exposure has been initiated. Moreover, our paper provides theoretical basis for elucidating molecular mechanisms of invertase in association with inhibitors underlying the stress regime, and will contribute to the improvement of plant performance to a diverse range of stressors.
Collapse
Affiliation(s)
- Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jie Min
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Peixian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yuxin Mao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiao Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qian Tong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiuchen Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
21
|
Wang L, Yao L, Hao X, Li N, Qian W, Yue C, Ding C, Zeng J, Yang Y, Wang X. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis. PLANT MOLECULAR BIOLOGY 2018; 96:577-592. [PMID: 29616437 DOI: 10.1007/s11103-018-0716-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/06/2018] [Indexed: 05/18/2023]
Abstract
Thirteen SWEET transporters were identified in Camellia sinensis and the cold-suppression gene CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. The sugars will eventually be exported transporters (SWEET) family of sugar transporters in plants is a recently identified protein family of sugar uniporters that contain seven transmembrane helices harbouring two MtN3 motifs. SWEETs play important roles in various biological processes, including plant responses to environmental stimuli. In this study, 13 SWEET transporters were identified in Camellia sinensis and were divided into four clades. Transcript abundances of CsSWEET genes were detected in various tissues. CsSWEET1a/1b/2a/2b/2c/3/9b/16/17 were expressed in all of the selected tissues, whereas the expression of CsSWEET5/7/9a/15 was not detected in some tissues, including those of mature leaves. Expression analysis of nine CsSWEET genes in leaves in response to abiotic stresses, natural cold acclimation and Colletotrichum camelliae infection revealed that eight CsSWEET genes responded to abiotic stress, while CsSWEET3 responded to C. camelliae infection. Functional analysis of 13 CsSWEET activities in yeast revealed that CsSWEET1a/1b/7/17 exhibit transport activity for glucose analogues and other types of hexose molecules. Further characterization of the cold-suppression gene CsSWEET16 revealed that this gene is localized in the vacuolar membrane. CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. Together, these findings demonstrate that CsSWEET genes play important roles in the response to abiotic and biotic stresses in tea plants and provide insights into the characteristics of SWEET genes in tea plants, which could serve as the basis for further functional identification of such genes.
Collapse
Affiliation(s)
- Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Lina Yao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Nana Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Wenjun Qian
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Chuan Yue
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Changqing Ding
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Jianming Zeng
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China.
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China.
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China.
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China.
| |
Collapse
|