1
|
Goedegebuure M, Bury MI, Wang X, Sanfelice P, Cammarata F, Wang L, Sharma TT, Rajinikanth N, Karra V, Siddha V, Sharma AK, Ameer GA. A biodegradable microgrooved and tissue mechanocompatible citrate-based scaffold improves bladder tissue regeneration. Bioact Mater 2024; 41:553-563. [PMID: 39246838 PMCID: PMC11380464 DOI: 10.1016/j.bioactmat.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Chronic bladder dysfunction due to bladder disease or trauma is detrimental to affected patients as it can lead to increased risk of upper urinary tract dysfunction. Current treatment options include surgical interventions that enlarge the bladder with autologous bowel tissue to alleviate pressure on the upper urinary tract. This highly invasive procedure, termed bladder augmentation enterocystoplasty (BAE), significantly increases the risk of patient morbidity and mortality due to the incompatibility between bowel and bladder tissue. Therefore, patients would significantly benefit from an alternative treatment strategy that can regenerate healthy tissue and restore overall bladder function. Previous research has demonstrated the potential of citrate-based scaffolds co-seeded with bone marrow-derived stem/progenitor cells as an alternative graft for bladder augmentation. Recognizing that contact guidance can potentially influence tissue regeneration, we hypothesized that microtopographically patterned scaffolds would modulate cell responses and improve overall quality of the regenerated bladder tissue. We fabricated microgrooved (MG) scaffolds using the citrate-based biomaterial poly (1,8-octamethylene-citrate-co-octanol) (POCO) and co-seeded them with human bone marrow-derived mesenchymal stromal cells (MSCs) and CD34+ hematopoietic stem/progenitor cells (HSPCs). MG POCO scaffolds supported MSC and HSPC attachment, and MSC alignment within the microgrooves. All scaffolds were characterized and assessed for bladder tissue regeneration in an established nude rat bladder augmentation model. In all cases, normal physiological function was maintained post-augmentation, even without the presence of stem/progenitor cells. Urodynamic testing at 4-weeks post-augmentation for all experimental groups demonstrated that bladder capacity increased and bladder compliance was normal. Histological evaluation of the regenerated tissue revealed that cell-seeded scaffolds restored normal bladder smooth muscle content and resulted in increased revascularization and peripheral nerve regeneration. The presence of microgrooves on the cell-seeded scaffolds increased microvasculature formation by 20 % and urothelial layer thickness by 25 % in the regenerating tissue. Thus, this work demonstrates that microtopography engineering can influence bladder tissue regeneration to improve overall anatomical structure and re-establish bladder physiology.
Collapse
Affiliation(s)
- Madeleine Goedegebuure
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Chicago, IL, USA
| | - Matthew I Bury
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Xinlong Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Chicago, IL, USA
| | - Pasquale Sanfelice
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Federico Cammarata
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Larry Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tiffany T Sharma
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Nachiket Rajinikanth
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Vikram Karra
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Vidhika Siddha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Arun K Sharma
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Chicago, IL, USA
- International Institute for Nanotechnology, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Chemistry for Life Processes Institute, Northwestern University, Chicago, IL, USA
| |
Collapse
|
2
|
Sharma S, Rajani S, Hui J, Chen A, Bivalacqua T, Singh A. Development of Enzymatic-Resistant and Compliant Decellularized Extracellular Matrixes via Aliphatic Chain Modification for Bladder Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37301-37315. [PMID: 35948054 DOI: 10.1021/acsami.2c06865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we report the design and development of highly stretchable, compliant, and enzymatic-resistant transiently cross-linked decellularized extracellular matrixes (dECMs) (e.g., porcine small intestine submucosa/dSIS, urinary bladder matrix/dUBM, bovine pericardium/dBP, bovine dermis/dBD, and human dermis/dHD). Specifically, these dECMs were modified with long aliphatic chains (C9, C14, and C18). Upon modification, dECMs became significantly resistant to enzymatic degradation for extended periods, showed increased water contact angle (>20%-90%), and stretched >200% than their control counterparts. Modified dECMs are compliant, undergoing 100% elongation at only 0.3-0.5 MPa of applied tensile stress (∼10%-25% of their control counterparts), similar to the control bladder tissue. Furthermore, modified dECMs remain structurally stable at the physiological temperature with increased storage and loss modulus values but decreased tan δ values compared to their control counterparts. Although modification reduces cell adhesion, the gene expressions in polarized macrophages remain unchanged (e.g., TGFβ, CD163, and CD86), except for the modified bovine pericardium (dBP) where a significant decrease in TNFα gene expression is observed. When implanted in the rat subcutaneous model, modified dECMs degraded relatively slowly and did not cause significant fibrotic tissue formation. The numbers of pro-regenerative macrophages increased to several folds in a later time point of evaluation. Modified dECM also supported the bladder wall regeneration with formations of the urothelium, lamina propria, blood vessels, and muscle bundles and reduced the occurrence of calculi formation by 50% in a rat bladder augmentation model. We anticipate that the enhanced stretchability, compliance, and physiological stability of dECMs indicate their suitability for urologic tissue regeneration.
Collapse
Affiliation(s)
- Shivang Sharma
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sarah Rajani
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Justin Hui
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Aaron Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Trinity Bivalacqua
- Perelman Center for Advanced Medicine & Abramson Cancer Center, Penn Urology Perelman, Philadelphia, Pennsylvania 19104, United States
| | - Anirudha Singh
- Department of Urology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| |
Collapse
|
3
|
Construction of Tissue-Engineered Bladder Scaffolds with Composite Biomaterials. Polymers (Basel) 2022; 14:polym14132654. [PMID: 35808700 PMCID: PMC9269300 DOI: 10.3390/polym14132654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Various congenital and acquired urinary system abnormalities can cause structural damage to patients’ bladders. This study aimed to construct and evaluate a novel surgical patch encapsulated with adipose-derived stem cells (ADSCs) for bladder tissue regeneration. The surgical patch consists of multiple biomaterials, including bladder acellular matrix (BAM), collagen type I from rat tail, microparticle emulsion cross-linking polylactic-co-glycolic acid (PLGA)-chitosan (CS) with PLGA-sodium alginate (SA), and growth factors. ADSCs were seeded on the surgical patch. Approximately 50% of the bladder was excised and replaced with a surgical patch. Histological, immunohistochemical and urodynamic analyses were performed at the 2nd, 4th, and 8th weeks after surgery, respectively. The PLGA-CS, PLGA-SA or surgical patch showed no cytotoxicity to ADSCs. PLGA-CS cross-linked with PLGA-SA at a ratio of 5:5 exhibited a loose microporous structure and was chosen as the candidate for ADSC seeding. We conducted bladder repair surgery in rats using the patch, successfully presenting urothelium layers, muscle bundles, and vessel regeneration and replacing 50% of the rat’s natural bladder in vivo. Experiments through qualitative and quantitative evaluation demonstrate the application potential of the composite biomaterials in promoting the repair and reconstruction of bladder tissue.
Collapse
|
4
|
Osborn SL, Mah LW, Ely EV, Ana S, Huynh C, Ujagar NS, Chan SC, Hsiao P, Hu JC, Chan YY, Christiansen BA, Kurzrock EA. Autologous regeneration of blood vessels in urinary bladder matrices provides early perfusion after transplant to the bladder. J Tissue Eng Regen Med 2022; 16:718-731. [PMID: 35567775 DOI: 10.1002/term.3323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/08/2022]
Abstract
Large animal testing and clinical trials using bioengineered bladder for augmentation have revealed that large grafts fail due to insufficient blood supply. To address this critical issue, an in vivo staged implant strategy was developed and evaluated to create autologous, vascularized bioengineered bladder tissue with potential for clinical translation. Pig bladders were used to create acellular urinary bladder matrices (UBMs), which were implanted on the rectus abdominus muscles of rats and pigs to generate cellular and vascular grafts. Rectus-regenerated bladder grafts (rrBGs) were highly cellularized and contained an abundance of CD31-positive blood vessels, which were shown to be functional by perfusion studies. Muscle patterns within grafts showed increased smooth muscle formation over time and specifically within the detrusor compartment, with no evidence of striated muscle. Large, autologous rrBGs were transplanted to the pig bladder after partial cystectomy and compared to transplantation of control UBMs at 2 weeks and 3 months post-transplant. Functional, ink-perfused blood vessels were found in the central portion of all rrBGs at 2 weeks, while UBM grafts were significantly deteriorated, contracted and lacked central cellularization and vascularization. By 3 months, rrBGs had mature smooth muscle bundles and were morphologically similar to native bladder. This staged implantation technique allows for regeneration and harvest of large bladder grafts that are morphologically similar to native tissue with functional vessels capable of inosculating with host bladder vessels to provide quick perfusion to the central area of the large graft, thereby preventing early ischemia and contraction.
Collapse
Affiliation(s)
- Stephanie L Osborn
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA.,Stem Cell Program, University of California, Davis Institute for Regenerative Cures, Sacramento, California, USA
| | - Leanna W Mah
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Erica V Ely
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA.,Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, California, USA
| | - Stefania Ana
- Stem Cell Program, University of California, Davis Institute for Regenerative Cures, Sacramento, California, USA.,Department of Biological Sciences, CIRM Bridges program, California State University, Sacramento, California, USA
| | - Christina Huynh
- Stem Cell Program, University of California, Davis Institute for Regenerative Cures, Sacramento, California, USA.,Department of Biological Sciences, CIRM Bridges program, California State University, Sacramento, California, USA
| | - Naveena S Ujagar
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Serena C Chan
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Philip Hsiao
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Jonathan C Hu
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Yvonne Y Chan
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Blaine A Christiansen
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, California, USA
| | - Eric A Kurzrock
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA.,Stem Cell Program, University of California, Davis Institute for Regenerative Cures, Sacramento, California, USA
| |
Collapse
|
5
|
Pedersen DD, Kim S, Wagner WR. Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review. J Biomed Mater Res A 2022; 110:1460-1487. [PMID: 35481723 DOI: 10.1002/jbm.a.37394] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Early explorations of tissue engineering and regenerative medicine concepts commonly utilized simple polyesters such as polyglycolide, polylactide, and their copolymers as scaffolds. These biomaterials were deemed clinically acceptable, readily accessible, and provided processability and a generally known biological response. With experience and refinement of approaches, greater control of material properties and integrated bioactivity has received emphasis and a broadened palette of synthetic biomaterials has been employed. Biodegradable polyurethanes (PUs) have emerged as an attractive option for synthetic scaffolds in a variety of tissue applications because of their flexibility in molecular design and ability to fulfill mechanical property objectives, particularly in soft tissue applications. Biodegradable PUs are highly customizable based on their composition and processability to impart tailored mechanical and degradation behavior. Additionally, bioactive agents can be readily incorporated into these scaffolds to drive a desired biological response. Enthusiasm for biodegradable PU scaffolds has soared in recent years, leading to rapid growth in the literature documenting novel PU chemistries, scaffold designs, mechanical properties, and aspects of biocompatibility. Despite the enthusiasm in the field, there are still few examples of biodegradable PU scaffolds that have achieved regulatory approval and routine clinical use. However, there is a growing literature where biodegradable PU scaffolds are being specifically developed for a wide range of pathologies and where relevant pre-clinical models are being employed. The purpose of this review is first to highlight examples of clinically used biodegradable PU scaffolds, and then to summarize the growing body of reports on pre-clinical applications of biodegradable PU scaffolds.
Collapse
Affiliation(s)
- Drake D Pedersen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Sharma S, Basu B. Biomaterials assisted reconstructive urology: The pursuit of an implantable bioengineered neo-urinary bladder. Biomaterials 2021; 281:121331. [PMID: 35016066 DOI: 10.1016/j.biomaterials.2021.121331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Urinary bladder is a dynamic organ performing complex physiological activities. Together with ureters and urethra, it forms the lower urinary tract that facilitates urine collection, low-pressure storage, and volitional voiding. However, pathological disorders are often liable to cause irreversible damage and compromise the normal functionality of the bladder, necessitating surgical intervention for a reconstructive procedure. Non-urinary autologous grafts, primarily derived from gastrointestinal tract, have long been the gold standard in clinics to augment or to replace the diseased bladder tissue. Unfortunately, such treatment strategy is commonly associated with several clinical complications. In absence of an optimal autologous therapy, a biomaterial based bioengineered platform is an attractive prospect revolutionizing the modern urology. Predictably, extensive investigative research has been carried out in pursuit of better urological biomaterials, that overcome the limitations of conventional gastrointestinal graft. Against the above backdrop, this review aims to provide a comprehensive and one-stop update on different biomaterial-based strategies that have been proposed and explored over the past 60 years to restore the dynamic function of the otherwise dysfunctional bladder tissue. Broadly, two unique perspectives of bladder tissue engineering and total alloplastic bladder replacement are critically discussed in terms of their status and progress. While the former is pivoted on scaffold mediated regenerative medicine; in contrast, the latter is directed towards the development of a biostable bladder prosthesis. Together, these routes share a common aspiration of designing and creating a functional equivalent of the bladder wall, albeit, using fundamentally different aspects of biocompatibility and clinical needs. Therefore, an attempt has been made to systematically analyze and summarize the evolution of various classes as well as generations of polymeric biomaterials in urology. Considerable emphasis has been laid on explaining the bioengineering methodologies, pre-clinical and clinical outcomes. Some of the unaddressed challenges, including vascularization, innervation, hollow 3D prototype fabrication and urinary encrustation, have been highlighted that currently delay the successful commercial translation. More importantly, the rapidly evolving and expanding concepts of bioelectronic medicine are discussed to inspire future research efforts towards the further advancement of the field. At the closure, crucial insights are provided to forge the biomaterial assisted reconstruction as a long-term therapeutic strategy in urological practice for patients' care.
Collapse
Affiliation(s)
- Swati Sharma
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
7
|
Abdominoplasty Skin-Based Dressing for Deep Wound Treatment-Evaluation of Different Methods of Preparation on Therapeutic Potential. Pharmaceutics 2021; 13:pharmaceutics13122118. [PMID: 34959399 PMCID: PMC8708629 DOI: 10.3390/pharmaceutics13122118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
The management of hard-to-heal wounds is a significant clinical challenge. Acellular dermal matrices (ADMs) have been successfully introduced to enhance the healing process. Here, we aimed to develop protocol for the preparation of novel ADMs from abdominoplasty skin. We used three different decellularization protocols for skin processing, namely, 1M NaCl and sodium dodecyl sulfate (SDS, in ADM1); 2M NaCl and sodium dodecyl sulfate (SDS, in ADM1); and a combination of recombinant trypsin and Triton X-100 (in hADM 3). We assessed the effectiveness of decellularization and ADM's structure by using histochemical and immunochemical staining. In addition, we evaluated the therapeutic potential of novel ADMs in a murine model of wound healing. Furthermore, targeted transcriptomic profiling of genes associated with wound healing was performed. First, we found that all three proposed methods of decellularization effectively removed cellular components from abdominoplasty skin. We showed, however, significant differences in the presence of class I human leukocyte antigen (HLA class I ABC), Talin 1/2, and chondroitin sulfate proteoglycan (NG2). In addition, we found that protocols, when utilized differentially, influenced the preservation of types I, III, IV, and VII collagens. Finally, we showed that abdominoplasty skin-derived ADMs might serve as an effective and safe option for deep wound treatment. More importantly, our novel dressing (ADM1) improves the kinetics of wound closure and scar maturation in the proliferative and remodeling phases of wound healing. In conclusion, we developed a protocol for abdominoplasty skin decellularization suitable for the preparation of biological dressings. We showed that different decellularization methods affect the purity, structure, and therapeutic properties of ADMs.
Collapse
|
8
|
Hanczar M, Moazen M, Day R. The Significance of Biomechanics and Scaffold Structure for Bladder Tissue Engineering. Int J Mol Sci 2021; 22:ijms222312657. [PMID: 34884464 PMCID: PMC8657955 DOI: 10.3390/ijms222312657] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
Current approaches for bladder reconstruction surgery are associated with many morbidities. Tissue engineering is considered an ideal approach to create constructs capable of restoring the function of the bladder wall. However, many constructs to date have failed to create a sufficient improvement in bladder capacity due to insufficient neobladder compliance. This review evaluates the biomechanical properties of the bladder wall and how the current reconstructive materials aim to meet this need. To date, limited data from mechanical testing and tissue anisotropy make it challenging to reach a consensus on the native properties of the bladder wall. Many of the materials whose mechanical properties have been quantified do not fall within the range of mechanical properties measured for native bladder wall tissue. Many promising new materials have yet to be mechanically quantified, which makes it difficult to ascertain their likely effectiveness. The impact of scaffold structures and the long-term effect of implanting these materials on their inherent mechanical properties are areas yet to be widely investigated that could provide important insight into the likely longevity of the neobladder construct. In conclusion, there are many opportunities for further investigation into novel materials for bladder reconstruction. Currently, the field would benefit from a consensus on the target values of key mechanical parameters for bladder wall scaffolds.
Collapse
Affiliation(s)
- Marta Hanczar
- Applied Biomedical Engineering Group, Centre for Precision Healthcare, UCL Division of Medicine, University College London, London WC1E 6JF, UK;
| | - Mehran Moazen
- UCL Department of Mechanical Engineering, University College London, London WC1E 7JE, UK;
| | - Richard Day
- Applied Biomedical Engineering Group, Centre for Precision Healthcare, UCL Division of Medicine, University College London, London WC1E 6JF, UK;
- Correspondence: ; Tel.: +44-203-108-2183
| |
Collapse
|
9
|
Xiao S, Wang P, Zhao J, Ling Z, An Z, Fu Z, Fu W, Zhang X. Bi-layer silk fibroin skeleton and bladder acellular matrix hydrogel encapsulating adipose-derived stem cells for bladder reconstruction. Biomater Sci 2021; 9:6169-6182. [PMID: 34346416 DOI: 10.1039/d1bm00761k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A scaffold, constructed from a bi-layer silk fibroin skeleton (BSFS) and a bladder acellular matrix hydrogel (BAMH) encapsulated with adipose-derived stem cells (ASCs), was developed for bladder augmentation in a rat model. The BSFS, prepared from silk fibroin (SF), had good mechanical properties that allowed it to maintain the scaffold shape and be used for stitching. The prepared BAM was digested by pepsin and the pH was adjusted to harvest the BAMH that provided an extracellular environment for the ASCs. The constructed BSFS-BAMH-ASCs and BSFS-BAMH scaffolds were wrapped in the omentum to promote neovascularization and then used for bladder augmentation; at the same time, a cystotomy was used as the condition for the control group. Histological staining and immunohistochemical analysis confirmed that the omentum incubation could promote scaffold vascularization. Hematoxylin and eosin and Masson's trichrome staining indicated that the BSFS-BAMH-ASCs scaffold regenerated the bladder wall structure. In addition, immunofluorescence analyses confirmed that the ASCs could promote the regeneration of smooth muscle, neurons and blood vessels and the restoration of physiological function. These results demonstrated that the BSFS-BAMH-ASCs may be a promising scaffold for promoting bladder wall regeneration and the restoration of physiological function of the bladder in a rat bladder augmentation model.
Collapse
Affiliation(s)
- Shuwei Xiao
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Pengchao Wang
- Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China and Department of Urology, Hainan Hospital of PLA General Hospital, Hai tang Bay, Sanya City, Hainan Province 572013, China
| | - Jian Zhao
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Zhengyun Ling
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Ziyan An
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Zhouyang Fu
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Weijun Fu
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Xu Zhang
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
10
|
Sharma S, Mandhani A, Bose S, Basu B. Dynamically crosslinked polydimethylsiloxane-based polyurethanes with contact-killing antimicrobial properties as implantable alloplasts for urological reconstruction. Acta Biomater 2021; 129:122-137. [PMID: 33979672 DOI: 10.1016/j.actbio.2021.04.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
A large population of patients is reported to suffer from urinary bladder-associated irreversible physiological disorders, rationalizing a continuous surge for structural and functional substitutes of urinary tissues, including ureters, bladder-wall, and urethra. The current gold standard for bladder reconstruction, an autologous gastrointestinal graft, is proven not to be an ideal substitute in the clinic. While addressing this unmet clinical need, a unique platform of antimicrobial polydimethyl siloxane-modified polyurethanes (TPU/PDMS) is designed and developed for its potential application as a urological implant. To the best of our knowledge, this study reports for the first time the successful integration of varying contents of PDMS within the molten polyurethane matrix using in situ crosslinking methodology. Thus, compatibilized binary blends possess clinically relevant viscoelastic properties to sustain high pressure, large distensions, and surgical manipulation. Furthermore, different chemical strategies are explored to covalently incorporate quaternized moieties, including 4-vinyl pyridine (4-VP), branched-polyethyleneimine (bPEI) as well as bPEI-grafted-(acrylic acid-co-vinylbenzyltriphenyl phosphonium chloride) (PAP), and counter urinary tract infections. The modified compositions, endowed with contact killing surfaces, reveal nearly three log reduction in bacterial growth in pathogenically infected artificial urine. Importantly, the antimicrobial TPU/PDMS blends support the uninhibited growth of mitochondrially viable murine fibroblasts, in a manner comparable to the medical-grade polyurethane. Collectively, the obtained results affirmed the newly developed polymers as promising biomaterials in reconstructive urology. STATEMENT OF SIGNIFICANCE: The clinical procedure for end-stage bladder disease remains replacement or augmentation of the bladder wall with a section of the patient's gastrointestinal tract. However, the absorptive and mucus-producing epithelium of intestinal segment is liable to short- and long-term complications. The dynamically crosslinked polydimethyl siloxane-based polyurethanes proposed herein, and the associated synthesis strategies to induce polycation grafted non-exhaustive contact-killing surfaces against uropathogents, have a significant clinical prospect in reconstructive urology. As an 'off-the-shelf' available alloplastic substitute, these blends offer the potential to circumvent the challenges associated with non-urinary autografts or scaffold based regenerative engineering and, thereby, shorten as well as simplify the surgical treatment. The targeted application has been conceived for a bladder patch to assist in various urinary diseases including, bladder carcinoma, refractory overactive bladder, interstitial cystitis, etc. However, given the ease of fabrication, moldability and the wide spectrum of mechanical properties that could be encompassed, these blends also present the possibility to be manifested into artificial ureteral or urethral conduits.
Collapse
Affiliation(s)
- Swati Sharma
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India
| | - Anil Mandhani
- Urology and Kidney Transplant Institute, Medanta-The Medicity, Gurgaon-12200, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India; Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
11
|
Wang X, Zhang F, Liao L. Current Applications and Future Directions of Bioengineering Approaches for Bladder Augmentation and Reconstruction. Front Surg 2021; 8:664404. [PMID: 34222316 PMCID: PMC8249581 DOI: 10.3389/fsurg.2021.664404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
End-stage neurogenic bladder usually results in the insufficiency of upper urinary tract, requiring bladder augmentation with intestinal tissue. To avoid complications of augmentation cystoplasty, tissue-engineering technique could offer a new approach to bladder reconstruction. This work reviews the current state of bioengineering progress and barriers in bladder augmentation or reconstruction and proposes an innovative method to address the obstacles of bladder augmentation. The ideal tissue-engineered bladder has the characteristics of high biocompatibility, compliance, and specialized urothelium to protect the upper urinary tract and prevent extravasation of urine. Despite that many reports have demonstrated that bioengineered bladder possessed a similar structure to native bladder, few large animal experiments, and clinical applications have been performed successfully. The lack of satisfactory outcomes over the past decades may have become an important factor hindering the development in this field. More studies should be warranted to promote the use of tissue-engineered bladders in clinical practice.
Collapse
Affiliation(s)
- Xuesheng Wang
- Department of Urology, China Rehabilitation Research Center, Rehabilitation School of Capital Medical University, Beijing, China.,Department of Urology, Capital Medical University, Beijing, China.,University of Rehabilitation, Qingdao, China
| | - Fan Zhang
- Department of Urology, China Rehabilitation Research Center, Rehabilitation School of Capital Medical University, Beijing, China.,Department of Urology, Capital Medical University, Beijing, China.,University of Rehabilitation, Qingdao, China
| | - Limin Liao
- Department of Urology, China Rehabilitation Research Center, Rehabilitation School of Capital Medical University, Beijing, China.,Department of Urology, Capital Medical University, Beijing, China.,University of Rehabilitation, Qingdao, China
| |
Collapse
|
12
|
Zhang XZ, Jiang YL, Hu JG, Zhao LM, Chen QZ, Liang Y, Zhang Y, Lei XX, Wang R, Lei Y, Zhang QY, Li-Ling J, Xie HQ. Procyanidins-crosslinked small intestine submucosa: A bladder patch promotes smooth muscle regeneration and bladder function restoration in a rabbit model. Bioact Mater 2021; 6:1827-1838. [PMID: 33336114 PMCID: PMC7721664 DOI: 10.1016/j.bioactmat.2020.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/05/2023] Open
Abstract
Currently the standard surgical treatment for bladder defects is augmentation cystoplasty with autologous tissues, which has many side effects. Biomaterials such as small intestine submucosa (SIS) can provide an alternative scaffold for the repair as bladder patches. Previous studies have shown that SIS could enhance the capacity and compliance of the bladder, but its application is hindered by issues like limited smooth muscle regeneration and stone formation since the fast degradation and poor mechanical properties of the SIS. Procyanidins (PC), a natural bio-crosslinking agent, has shown anti-calcification, anti-inflammatory and anti-oxidation properties. More importantly, PC and SIS can crosslink through hydrogen bonds, which may endow the material with enhanced mechanical property and stabilized functionalities. In this study, various concentrations of PC-crosslinked SIS (PC-SIS) were prepared to repair the full-thickness bladder defects, with an aim to reduce complications and enhance bladder functions. In vitro assays showed that the crosslinking has conferred the biomaterial with superior mechanical property and anti-calcification property, ability to promote smooth muscle cell adhesion and upregulate functional genes expression. Using a rabbit model with bladder defects, we demonstrated that the PC-SIS scaffold can rapidly promote in situ tissue regrowth and regeneration, in particular smooth muscle remodeling and improvement of urinary functions. The PC-SIS scaffold has therefore provided a promising material for the reconstruction of a functional bladder.
Collapse
Affiliation(s)
- Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Jun-Gen Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Long-Mei Zhao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Qiu-Zhu Chen
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yan Liang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiong-Xin Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Rui Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yi Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Wang C, Wang H, Guo Q, Ang X, Li B, Han F, Fu Y, Chen W. Bladder muscle regeneration enhanced by sustainable delivery of heparin from bilayer scaffolds carrying stem cells in a rat bladder partial cystectomy model. Biomed Mater 2021; 16. [PMID: 33740781 DOI: 10.1088/1748-605x/abf08b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/19/2021] [Indexed: 11/11/2022]
Abstract
In bladder tissue engineering, regeneration of muscle is of equal importance to epithelial regeneration. However, as yet there is no effective strategy for promoting bladder muscle regeneration. In this study we aim to promote bladder muscle regeneration by sustainably delivering heparin from a bilayer scaffold carrying stem cells. The bilayer scaffold [heparin-polycaprolactone (PCL)/bladder decellularized matrix (BAM) Hep-PB/PCL] comprises an electrospun layer (Hep-PB electrospun membrane) and a three-dimensional (3D) printed layer (PCL scaffold), fabricated via coaxial-electrospinning and 3D printing, respectively. Heparin was encapsulated into the core of the Hep-PB fibers with a core-shell structure to sustain its release. The morphology of the bilayer scaffold and the microstructure of the electrospun fibers were characterized. The release behavior of heparin from various electrospun membranes was evaluated. The role of Hep-PB in promoting myogenic differentiation of the adipose-derived stem cells (ADSCs) through sustainable release of heparin was also evaluated. After 7 d culture, Hep-PB/PCL scaffolds carrying ADSCs (defined as ASHP) were used for bladder reconstruction in a rat partial cystotomy model. The result shows that the PCL printed scaffold has ordered macropores (∼370 μm), unlike the compact microstructure of electrospun films. The Hep-PB membrane exhibits a sustained release behavior for heparin. This membrane also shows better growth and proliferation of ADSCs than the other membranes. The polymerase chain reaction results show that the expression of smooth muscle cell markers in ADSCs is enhanced by the Hep-PB scaffold. The results of retrograde urethrography and histological staining indicate that the bladder volume in the ASHP group recovers better, and the regenerated bladder muscle bundles are arranged in a more orderly fashion compared with the direct suture and bladder decellularized matrix groups. Therefore, findings from this study show that bladder muscle regeneration could be enhanced by bilayer scaffolds delivering heparin and carrying stem cells, which may provide a new strategy for bladder tissue engineering.
Collapse
Affiliation(s)
- Chengyuan Wang
- Department of Urology and Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Hui Wang
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, People's Republic of China
| | - Qianping Guo
- Orthopaedic Institute, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Xiaojie Ang
- Department of Urology and Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Bin Li
- Orthopaedic Institute, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Fengxuan Han
- Orthopaedic Institute, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Yingxi Fu
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, People's Republic of China
| | - Weiguo Chen
- Department of Urology and Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| |
Collapse
|
14
|
Zuckerman JM, Nikolavsky D. Is regenerative medicine the future of urology? World J Urol 2020; 38:2073-2074. [DOI: 10.1007/s00345-020-03371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
15
|
Sun XG, Wang RY, Xu JL, Li DG, Chen WX, Li JL, Wang J, Li AW. Surgical outcomes of bladder augmentation: A comparison of three different augmentation procedures. World J Clin Cases 2020; 8:3240-3248. [PMID: 32874978 PMCID: PMC7441248 DOI: 10.12998/wjcc.v8.i15.3240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/01/2020] [Accepted: 07/04/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Augmentation cystoplasty is indispensable in many pediatric diseases, especially neurogenic bladder. Various methods and materials are used to augment the bladder, and these methods are associated with different shortcomings and complications.
AIM The present study reported the mid-term outcomes of patients undergoing various bladder augmentation procedures in a single institution, and assessed whether seromuscular cystoplasty lined with urothelium (SCLU) provided better urodynamic results than auto-augmentation (AA).
METHODS A retrospective review of 96 patients undergoing various augmentation methods between 2003 and 2018 was performed. The patients were divided into three groups according to the type of augmentation, and their outcomes were compared. All patients developed neurogenic bladder due to myelomeningocele or sacrococcygeal teratoma. The clinical data of all patients were collected.
RESULTS The mean ages at surgery in the three groups (standard cystoplasty [SC], SCLU, AA) were 10.8, 7.5, and 4.8 years, respectively, with mean follow-ups of 36, 61, and 36 mo, respectively. The mean preoperative and postoperative bladder capacities of the SC, SCLU, and AA groups were 174 ± 11.7 vs. 387 ± 13.7 (P < 0.0001), 165 ± 12.2 vs. 240 ± 14.7 (P = 0.0002), and 138 ± 16.7 vs. 181 ± 9.9 (P = 0.0360), respectively. Compared with the AA group, the SCLU procedure did not have better postoperative urodynamic parameters. Incontinence was reduced in most patients. The mean times of clean intermittent catheterization per day in the SC, SCLU, and AA groups were 5.6, 7.8, and 8.2, respectively. The main complications of the SC group were recurrent urinary tract infections (8%) and bladder calculi (6%). Re-augmentation was done in patients in the SCLU (8) and AA (3) groups.
CONCLUSION SC provided sufficient bladder capacity and improved compliance with acceptable complications. After AA and SCLU, the patients acquired limited increases in bladder capacity and compliance with a high rate of re-augmentation. Compared with AA, SCLU did not yield better postoperative urodynamic parameters.
Collapse
Affiliation(s)
- Xiao-Gang Sun
- Department of Pediatric Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- Department of Pediatric Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Ruo-Yi Wang
- Department of Pediatric Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Jia-Long Xu
- Department of Pediatric Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Dian-Guo Li
- Department of Pediatric Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Wei-Xiu Chen
- Department of Pediatric Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Jin-Liang Li
- Department of Pediatric Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Jian Wang
- Department of Pediatric Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Ai-Wu Li
- Department of Pediatric Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|