1
|
Zoughaib WS, Fry MJ, Singhal A, Coggan AR. Beetroot juice supplementation and exercise performance: is there more to the story than just nitrate? Front Nutr 2024; 11:1347242. [PMID: 38445207 PMCID: PMC10912565 DOI: 10.3389/fnut.2024.1347242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
This mini-review summarizes the comparative effects of different sources of dietary nitrate (NO3-), beetroot juice (BRJ) and nitrate salts (NIT), on physiological function and exercise capacity. Our objectives were to determine whether BRJ is superior to NIT in enhancing exercise-related outcomes, and to explore the potential contribution of other putatively beneficial compounds in BRJ beyond NO3-. We conducted a comparative analysis of recent studies focused on the impact of BRJ versus NIT on submaximal oxygen consumption (VO2), endurance performance, adaptations to training, and recovery from muscle-damaging exercise. While both NO3- sources provide benefits, there is some evidence that BRJ may offer additional advantages, specifically in reducing VO2 during high-intensity exercise, magnifying performance improvements with training, and improving recovery post-exercise. These reported differences could be due to the hypothesized antioxidant and/or anti-inflammatory properties of BRJ resulting from the rich spectrum of phytonutrients it contains. However, significant limitations to published studies directly comparing BRJ and NIT make it quite challenging to draw any firm conclusions. We provide recommendations to help guide further research into the important question of whether there is more to the story of BRJ than just NO3-.
Collapse
Affiliation(s)
- William S. Zoughaib
- Department of Kinesiology, School of Health & Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States
| | - Madison J. Fry
- Department of Kinesiology, School of Health & Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States
| | - Ahaan Singhal
- School of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrew R. Coggan
- Department of Kinesiology, School of Health & Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
2
|
Jurga J, Samborowska E, Zielinski J, Olek RA. Effects of Acute Beetroot Juice and Sodium Nitrate on Selected Blood Metabolites and Response to Transient Ischemia: A Crossover Randomized Clinical Trial. J Nutr 2024; 154:491-497. [PMID: 38110180 DOI: 10.1016/j.tjnut.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Modification of the nitrate (NO3)-nitrite (NO2)-nitric oxide (NO) pathway can be induced by oral intake of inorganic NO3 (NIT) or NO3-rich products, such as beetroot juice (BRJ). OBJECTIVES The primary aim of this study was to evaluate the plasma changes in betaine, choline, trimethylamine (TMA), trimethylamine N-oxide (TMAO), and NO3/NO2 (NOx) concentrations over 4 h after single oral ingestion of NIT or BRJ. The flow-mediated skin fluorescence (FMSF) method was applied to measure the changes in nicotinamide adenine dinucleotide reduced form (NADH) in response to transient ischemia and reperfusion. We hypothesized that various sources of NO3 may differently affect endothelial and mitochondrial functions in healthy human subjects. METHODS In a randomized crossover trial, 8 healthy young adults ingested 800 mg NO3 from either NIT or BRJ on 2 separate days with ≥3 d apart. Venous blood samples were collected every hour, and FMSF determination was applied bihourly. RESULTS Plasma betaine and choline concentrations peaked at 1 h after BRJ ingestion, and remained significantly higher than baseline values at all time points (P < 0.001 and P < 0.001, compared to preingestion values). Over time, BRJ was more effective in increasing NOx compared with NIT (fixed-trial effect P < 0.001). Baseline fluorescence decreased after both NIT and BRJ consumption (fixed-time effect P = 0.005). Transient ischemia and reperfusion response increased because of NO3 consumption (fixed-time effect P = 0.003), with no differences between trials (P = 0.451; P = 0.912; P = 0.819 at 0, 2, and 4 h, respectively). CONCLUSIONS Acute ingestion of BRJ elevated plasma betaine and choline, but not TMA and TMAO. Moreover, plasma NOx levels were higher in the BRJ trial than in the NIT trial. Various sources of NO3 positively affected endothelial and mitochondrial functions. This trial was registered at clinicaltrials.gov as NCT05004935.
Collapse
Affiliation(s)
- Jakub Jurga
- Doctoral School, Poznan University of Physical Education, Poznan, Poland
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Zielinski
- Department of Athletics, Strength, and Conditioning, Poznan University of Physical Education, Poznan, Poland
| | - Robert A Olek
- Department of Athletics, Strength, and Conditioning, Poznan University of Physical Education, Poznan, Poland.
| |
Collapse
|
3
|
Rajabian F, Rajabian A, Tayarani-Najaran Z. The Antioxidant Activity of Betanin protects MRC-5 cells Against Cadmium Induced Toxicity. Biol Trace Elem Res 2023; 201:5183-5191. [PMID: 37099220 DOI: 10.1007/s12011-023-03662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023]
Abstract
Cadmium (Cd) can induce both acute and chronic effects in the lungs depending on the time and the exposure route. Betanin is a component derived from the roots of red beets and it is well-known for its antioxidant and anti-apoptosis effects. The current study aimed to survey the protective effects of betanin on cell toxicity induced by Cd. Different concentration of Cd alone and in combination with betanin was assessed in MRC-5 cells. The viability and oxidative stress were measured using resazurin and DCF-DA methods respectively. Apoptotic cells were assessed by PI staining of the fragmented DNA and western blot analysis detected the activation of caspase 3 and PARP proteins. Cd exposure for 24 h declined viability and increased ROS production in MRC-5 cells compared to the control group (p < 0.001). Also, Cd (35 μM) elevated DNA fragmentation (p < 0.05), and the level of caspase 3-cleaved and cleaved PARP proteins in MRC-5 cells (p < 0.001). Co-treatment of cells with betanin for 24 h significantly enhanced viability in concentrations of 1.25 and 2.5 μM (p < 0.001) and 5 μM (p < 0.05) and declined ROS generation (1.25 and 5 μM p < 0.001, and 2.5 μM p < 0.01). As well as, betanin reduced DNA fragmentation (p < 0.01), and the markers of apoptosis (p < 0.001) compared to the Cd-treated group. In conclusion, betanin protects lung cells against Cd-induced toxicity through antioxidant activity and inhibition of apoptosis.
Collapse
Affiliation(s)
- Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 9188617871, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 9188617871, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Da Silva DVT, Baião DDS, Magalhães A, Almeida NF, Conte CA, Paschoalin VMF. Combining Conventional Organic Solvent Extraction, Ultrasound-Assisted Extraction, and Chromatographic Techniques to Obtain Pure Betanin from Beetroot for Clinical Purposes. Antioxidants (Basel) 2023; 12:1823. [PMID: 37891902 PMCID: PMC10604211 DOI: 10.3390/antiox12101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Red beetroot extract (E162) is a natural colorant that owes its color to betanin, its major red pigment. Betanin displays remarkable antioxidant, anti-inflammatory, and chemoprotective properties mediated by its structure and influence on gene expression. However, the betanin employed in most preclinical assays is a beetroot extract diluted in dextrin, not pure betanin, as no isolated compound is commercially available. This makes its use inaccurate concerning product content estimates and biological effect assessments. Herein, a combination of conventional extraction under orbital shaking and ultrasound-assisted extraction (UAE) to purify betanin by semi-preparative HPLC was performed. The employed methodology extracts betalains at over a 90% yield, achieving 1.74 ± 0.01 mg of pure betanin/g beetroot, a 41% yield from beetroot contents increasing to 50 %, considering the betalains pool. The purified betanin exhibited an 85% purity degree against 32 or 72% of a commercial standard evaluated by LC-MS or HPLC methods, respectively. The identity of purified betanin was confirmed by UV-Vis, LC-MS, and 1H NMR. The combination of a conventional extraction, UAE, and semi-preparative HPLC allowed for betanin purification with a high yield, superior purity, and almost three times more antioxidant power compared to commercial betanin, being, therefore, more suitable for clinical purposes.
Collapse
Affiliation(s)
| | | | | | | | | | - Vania Margaret Flosi Paschoalin
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (D.V.T.D.S.); (D.d.S.B.); (A.M.); (N.F.A.); (C.A.C.J.)
| |
Collapse
|
5
|
Effect of two-week red beetroot juice consumption on modulation of gut microbiota in healthy human volunteers - A pilot study. Food Chem 2023; 406:134989. [PMID: 36527987 DOI: 10.1016/j.foodchem.2022.134989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
With very little research exploring intestinal effects of red beetroot consumption, the present pilot study investigated gut microbial changes following red beetroot consumption, via a 14-day intervention trial in healthy adults. Compared to baseline, the study demonstrates transient changes in abundance of some taxa e.g., Romboutsia and Christensenella, after different days of intervention (p < 0.05). Enrichment of Akkermansia muciniphila and decrease of Bacteroides fragilis (p < 0.05) were observed after 3 days of juice consumption, followed by restoration in abundance after 14 days. With native betacyanins and catabolites detected in stool after juice consumption, betacyanins were found to correlate positively with Bifidobacterium and Coprococcus, and inversely with Ruminococcus (p < 0.1), potentiating a significant rise in (iso)butyric acid content (172.7 ± 30.9 µmol/g stool). Study findings indicate the potential of red beetroot to influence gut microbial populations and catabolites associated with these changes, emphasizing the potential benefit of red beetroot on intestinal as well as systemic health.
Collapse
|
6
|
Trindade LRD, Baião DDS, da Silva DVT, Almeida CC, Pauli FP, Ferreira VF, Conte-Junior CA, Paschoalin VMF. Microencapsulated and Ready-to-Eat Beetroot Soup: A Stable and Attractive Formulation Enriched in Nitrate, Betalains and Minerals. Foods 2023; 12:foods12071497. [PMID: 37048318 PMCID: PMC10093833 DOI: 10.3390/foods12071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Beetroot is a tuber rich in antioxidant compounds, i.e., betanin and saponins, and is one of the main sources of dietary nitrate. The aim of the present study was to microencapsulate a ready-to-eat beetroot soup by lyophilization using different encapsulating agents, which supply the required amount of bioactive nutrients. Particle size distributions ranged from 7.94 ± 1.74 to 245.66 ± 2.31 µm for beetroot soup in starch and from 30.56 ± 1.66 to 636.34 ± 2.04 µm in maltodextrin. Microparticle yields of powdered beetroot soup in starch varied from 77.68% to 88.91%, and in maltodextrin from 75.01% to 80.25%. The NO3− and total betalain contents at a 1:2 ratio were 10.46 ± 0.22 mmol·100 g−1 fresh weight basis and 219.7 ± 4.92 mg·g−1 in starch powdered beetroot soup and 8.43 ± 0.09 mmol·100 g−1 fresh weight basis and 223.9 ± 4.21 mg·g−1 in maltodextrin powdered beetroot soup. Six distinct minerals were identified and quantified in beetroot soups, namely Na, K, Mg, Mn, Zn and P. Beetroot soup microencapsulated in starch or maltodextrin complied with microbiological quality guidelines for consumption, with good acceptance and purchase intention throughout 90 days of storage. Microencapsulated beetroot soup may, thus, comprise a novel attractive strategy to offer high contents of bioaccessible dietary nitrate and antioxidant compounds that may aid in the improvement of vascular-protective effects.
Collapse
Affiliation(s)
- Lucileno Rodrigues da Trindade
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitria, Rio de Janeiro 21941-909, Brazil
| | - Diego dos Santos Baião
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Davi Vieira Teixeira da Silva
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Cristine Couto Almeida
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-598, Brazil
| | - Fernanda Petzold Pauli
- Institute of Chemistry (IQ), Fluminense Federal University, R. Dr. Mario Vianna, 523, Niterói 24210-141, Brazil
| | - Vitor Francisco Ferreira
- Institute of Chemistry (IQ), Fluminense Federal University, R. Dr. Mario Vianna, 523, Niterói 24210-141, Brazil
| | - Carlos Adam Conte-Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-598, Brazil
| | - Vania Margaret Flosi Paschoalin
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
7
|
Ageing modifies acute resting blood pressure responses to incremental consumption of dietary nitrate: a randomised, cross-over clinical trial. Br J Nutr 2023; 129:442-453. [PMID: 35508923 DOI: 10.1017/s0007114522001337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Beetroot (BR) is a rich source of nitrate (NO3-) that has been shown to reduce blood pressure (BP). Yet, no studies have examined the vascular benefits of BR in whole-food form and whether the effects are modified by age. This study was a four-arm, randomised, open-label, cross-over design in twenty-four healthy adults (young n 12, age 27 ± 4 years, old n 12, age 64 ± 5 years). Participants consumed whole-cooked BR at portions of (NO3- content in brackets) 100 g (272 mg), 200 g (544 mg) and 300 g (816 mg) and a 200-ml solution containing 1000 mg of potassium nitrate (KNO3) on four separate occasions over a 4-week period (≥7-d washout period). BP, plasma NO3- and nitrite (NO2-) concentrations, and post-occlusion reactive hyperaemia via laser Doppler, were measured pre- and up to 5-h post-intervention. Data were analysed by repeated-measures ANOVA. Plasma NO2- concentrations were higher in the young v. old at baseline and post-intervention (P < 0·05). All NO3- interventions decreased systolic and diastolic BP in young participants (P < 0·05), whereas only KNO3 (at 240-300 min post-intake) significantly decreased systolic (-4·8 mmHg, -3·5 %, P = 0·024) and diastolic (-5·4 mmHg, -6·5 %, P = 0·007) BP in older participants. In conclusion, incremental doses of dietary NO3- reduced systolic and diastolic BP in healthy young adults whereas in the older group a significant decrease was only observed with the highest dose. The lower plasma NO2- concentrations in older participants suggest that there may be mechanistic differences in the production of NO from dietary NO3- in young and older populations.
Collapse
|
8
|
Mohd Daud SM, Sukri NM, Johari MH, Gnanou J, Manaf FA. Pure Juice Supplementation: Its Effect on Muscle Recovery and Sports Performance. Malays J Med Sci 2023; 30:31-48. [PMID: 36875192 PMCID: PMC9984102 DOI: 10.21315/mjms2023.30.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/07/2021] [Indexed: 03/05/2023] Open
Abstract
Strenuous exercise causes increased production of reactive oxygen species (ROS), creating an imbalance between ROS and antioxidants. The reduced antioxidant defence leads to defective elimination of ROS and consequently, delayed-onset muscle soreness (DOMS). DOMS due to exhaustive or prolonged exercise typically peaks between 24 h and 72 h after exercise results in soreness, inflammation, pain and decreased muscle function. As a result, muscle strength will be reduced progressively and this situation might be detrimental to one's athletic performance, especially amidst competition season. Therefore, supplementation to improve muscle recovery and sports performance has become a common practice among athletes. However, it is suggested to consume natural-based fruit-derived antioxidants as a more effective and safe nutritional strategy. Fruits containing a high amount of polyphenol protect muscle cells from excessive and harmful ROS due to their anti-inflammatory and antioxidant characteristics. To date, there are several expended studies on the consumption of supplements from various antioxidant-rich fruits to provide evidence on their effectiveness, giving better solutions and wider choices of supplementation to the athletes. Therefore, this review aims to provide a comprehensive overview of nutritional standpoint from previous literature on the effect of fruit juices supplementation on muscle recovery and sports performance.
Collapse
Affiliation(s)
- Siti Maizura Mohd Daud
- Defence Fitness Academy, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Nursyuhada Mohd Sukri
- Defence Fitness Academy, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Mohamad Hanapi Johari
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Justin Gnanou
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Faizal Abdul Manaf
- Defence Fitness Academy, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Shafqat O, Rehman Z, Shah MM, Ali SHB, Jabeen Z, Rehman S. Synthesis, structural characterization and in vitro pharmacological properties of betanin-encapsulated chitosan nanoparticles. Chem Biol Interact 2023; 370:110291. [PMID: 36513144 DOI: 10.1016/j.cbi.2022.110291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Betanin, a natural food color and the only betalain, is approved for use in pharmaceutical and food industries as natural antioxidative and preservative agent, respectively. However, the antioxidant power and health-promoting properties of betanin have been disregarded due to its low stability in physiological conditions. Therefore, this study is designed to synthesize and evaluate in vitro pharmacological characteristics of betanin-encapsulated chitosan nanoparticles (ChBetNPs). ChBetNPs were synthesized by ionic gelation method and characterized by DLS, UV, FTIR, SEM and zeta potential analysis. The encapsulation efficiency (EE) and in vitro release kinetics were analyzed using spectrophotometric technique for quantifying the encapsulated amount of betanin in ChBetNPs as a function of time. The antioxidant activity of ChBetNPs was analyzed by DPPH and H2O2 radical scavenging assays, anti-inflammatory activity by protein denaturation and human RBCs stabilization assays, and anti-acetylcholinesterase activity using standard protocol with minor modifications. Unloaded chitosan nanoparticles (CSNPs) were found to be sized at 161.4 ± 5.75 nm while an increase in the size to 270.3 ± 8.50 nm was noticed upon encapsulating betanin. EE of ChBetNPs was measured to be ∼87.5%. The IC50 of ChBetNPs depicted significant free radical scavenging activities as compared to CSNPs. Similarly, a strong anti-inflammatory activity of ChBetNPs was noted. Significant decrease in acetylcholinesterase activity by ChBetNPs was measured (IC50 0.5255 μg/mL vs. control 26.09 μg/mL). The vegetables coated with 3% ChBetNPs showed decreased weight loss as compared to uncoated control. ChBetNPs was shown to exhibit strong antioxidant, anti-inflammatory and anti-acetylcholinesterase activities thus making it a significant therapeutic agent for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Omayya Shafqat
- Department of Biosciences, COMSATS University Islamabad CUI, 45550, Pakistan
| | - Zartasha Rehman
- Department of Biosciences, COMSATS University Islamabad CUI, 45550, Pakistan
| | | | | | - Zahra Jabeen
- Department of Biosciences, COMSATS University Islamabad CUI, 45550, Pakistan
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad CUI, 45550, Pakistan.
| |
Collapse
|
10
|
Kambale EK, Quetin-Leclercq J, Memvanga PB, Beloqui A. An Overview of Herbal-Based Antidiabetic Drug Delivery Systems: Focus on Lipid- and Inorganic-Based Nanoformulations. Pharmaceutics 2022; 14:2135. [PMID: 36297570 PMCID: PMC9610297 DOI: 10.3390/pharmaceutics14102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetes is a metabolic pathology with chronic high blood glucose levels that occurs when the pancreas does not produce enough insulin or the body does not properly use the insulin it produces. Diabetes management is a puzzle and focuses on a healthy lifestyle, physical exercise, and medication. Thus far, the condition remains incurable; management just helps to control it. Its medical treatment is expensive and is to be followed for the long term, which is why people, especially from low-income countries, resort to herbal medicines. However, many active compounds isolated from plants (phytocompounds) are poorly bioavailable due to their low solubility, low permeability, or rapid elimination. To overcome these impediments and to alleviate the cost burden on disadvantaged populations, plant nanomedicines are being studied. Nanoparticulate formulations containing antidiabetic plant extracts or phytocompounds have shown promising results. We herein aimed to provide an overview of the use of lipid- and inorganic-based nanoparticulate delivery systems with plant extracts or phytocompounds for the treatment of diabetes while highlighting their advantages and limitations for clinical application. The findings from the reviewed works showed that these nanoparticulate formulations resulted in high antidiabetic activity at low doses compared to the corresponding plant extracts or phytocompounds alone. Moreover, it was shown that nanoparticulate systems address the poor bioavailability of herbal medicines, but the lack of enough preclinical and clinical pharmacokinetic and/or pharmacodynamic trials still delays their use in diabetic patients.
Collapse
Affiliation(s)
- Espoir K. Kambale
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
11
|
Agri-Food Waste from Apple, Pear, and Sugar Beet as a Source of Protective Bioactive Molecules for Endothelial Dysfunction and Its Major Complications. Antioxidants (Basel) 2022; 11:antiox11091786. [PMID: 36139860 PMCID: PMC9495678 DOI: 10.3390/antiox11091786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Endothelial damage is recognized as the initial step that precedes several cardiovascular diseases (CVD), such as atherosclerosis, hypertension, and coronary artery disease. It has been demonstrated that the best treatment for CVD is prevention, and, in the frame of a healthy lifestyle, the consumption of vegetables, rich in bioactive molecules, appears effective at reducing the risk of CVD. In this context, the large amount of agri-food industry waste, considered a global problem due to its environmental and economic impact, represents an unexplored source of bioactive compounds. This review provides a summary regarding the possible exploitation of waste or by-products derived by the processing of three traditional Italian crops-apple, pear, and sugar beet-as a source of bioactive molecules to protect endothelial function. Particular attention has been given to the bioactive chemical profile of these pomaces and their efficacy in various pathological conditions related to endothelial dysfunction. The waste matrices of apple, pear, and sugar beet crops can represent promising starting material for producing "upcycled" products with functional applications, such as the prevention of endothelial dysfunction linked to cardiovascular diseases.
Collapse
|
12
|
Silva KVC, Costa BD, Gomes AC, Saunders B, Mota JF. Factors that Moderate the Effect of Nitrate Ingestion on Exercise Performance in Adults: A Systematic Review with Meta-Analyses and Meta-Regressions. Adv Nutr 2022; 13:1866-1881. [PMID: 35580578 PMCID: PMC9526841 DOI: 10.1093/advances/nmac054] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/16/2021] [Accepted: 05/09/2022] [Indexed: 01/28/2023] Open
Abstract
To identify how variables such as exercise condition, supplementation strategy, participant characteristics and demographics, and practices that control oral microbiota diversity could modify the effect of inorganic nitrate ingestion (as nitrate salt supplements, beetroot juice, and nitrate-rich vegetables) on exercise performance, we conducted a systematic review with meta-analysis. Studies were identified in PubMed, Embase, and Cochrane databases. Eligibility criteria included randomized controlled trials assessing the effect of inorganic nitrate on exercise performance in healthy adults. To assess the variation in effect size, we used meta-regression models for continuous variables and subgroup analysis for categorical variables. A total of 123 studies were included in this meta-analysis, comprising 1705 participants. Nitrate was effective for improving exercise performance (standardized mean difference [SMD]: 0.101; 95% CI: 0.051, 0.151, P <0.001, I2 = 0%), although nitrate salts supplementation was not as effective (P = 0.629) as ingestion via beetroot juice (P <0.001) or a high-nitrate diet (P = 0.005). Practices that control oral microbiota diversity influenced the nitrate effect, with practices harmful to oral bacteria decreasing the ergogenic effect of nitrate. The ingestion of nitrate was most effective for exercise lasting between 2 and 10 min (P <0.001). An inverse dose-response relation between the fraction of inspired oxygen and the effect size (coefficient: -0.045, 95% CI: -0.085, -0.005, P = 0.028) suggests that nitrate was more effective in increasingly hypoxic conditions. There was a dose-response relation for acute administration (P = 0.049). The most effective acute dose was between 5 and 14.9 mmol provided ≥150 min prior to exercise (P <0.001). An inverse dose-response for protocols ≥2 d was observed (P = 0.025), with the optimal dose between 5 and 9.9 mmol·d-1 (P <0.001). Nitrate, via beetroot juice or a high-nitrate diet, improved exercise performance, in particular, in sessions lasting between 2 and 10 min. Ingestion of 5-14.9 mmol⋅d-1 taken ≥150 min prior to exercise appears optimal for performance gains and athletes should be aware that practices controlling oral microbiota diversity may decrease the effect of nitrate.
Collapse
Affiliation(s)
| | - Breno Duarte Costa
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Aline Corado Gomes
- Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Goiás, Brazil
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
13
|
Tan R, Wylie LJ, Wilkerson DP, Vanhatalo A, Jones AM. Effects of dietary nitrate on the O 2 cost of submaximal exercise: Accounting for "noise" in pulmonary gas exchange measurements. J Sports Sci 2022; 40:1149-1157. [PMID: 35301929 DOI: 10.1080/02640414.2022.2052471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dietary nitrate (NO3-) supplementation can reduce the oxygen cost of submaximal exercise, but this has not been reported consistently. We hypothesised that the number of step transitions to moderate-intensity exercise, and corresponding effects on the signal-to-noise ratio for pulmonary V˙ O2, may be important in this regard. Twelve recreationally active participants were assigned in a randomised, double-blind, crossover design to supplement for 4 days in three conditions: 1) control (CON; water); 2); PL (NO3--depleted beetroot juice); and 3) BR (NO3--rich beetroot juice). On days 3 and 4, participants completed two 6-min step transitions to moderate-intensity cycle exercise. Breath-by-breath V˙ O2 data were collected and V˙ O2 kinetic responses were determined for a single transition and when the responses to 2, 3 and 4 transitions were ensemble-averaged. Steady-state V˙ O2 was not different between PL and BR when the V˙ O2 response to one-, two- or three-step transition was compared but was significantly lower in BR compared to PL when four-step transitions was considered (PL: 1.33 ± 0.34 vs. BR: 1.31 ± 0.34 L·min-1, P < 0.05). There were no differences in pulmonary V˙ O2 responses between CON and PL (P > 0.05). Multiple step transitions may be required to detect the influence of NO3- supplementation on steady-state V˙ O2.
Collapse
Affiliation(s)
- Rachel Tan
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Lee J Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Daryl P Wilkerson
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| |
Collapse
|
14
|
Capper TE, Siervo M, Clifford T, Taylor G, Iqbal W, West D, Stevenson EJ. Pharmacokinetic Profile of Incremental Oral Doses of Dietary Nitrate in Young and Older Adults: A Crossover Randomized Clinical Trial. J Nutr 2021; 152:130-139. [PMID: 34718635 PMCID: PMC8754575 DOI: 10.1093/jn/nxab354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dietary nitrate consumption can increase concentrations of nitrate and nitrite in blood, saliva, and urine. Whether the change in concentrations is influenced by age is currently unknown. OBJECTIVES We aimed to measure changes in nitrate and nitrite concentrations in plasma, urine, and saliva and exhaled NO concentrations after single incremental doses of dietary nitrate in young and older healthy adults. METHODS Twelve young (18-35 y old) and 12 older (60-75 y old) healthy, nonsmoking participants consumed single doses of 100 g, 200 g, 300 g whole beetroot (BR) and 1000 mg potassium nitrate (positive control) ≥7 d apart in a crossover, randomized clinical trial. Plasma nitrate and nitrite concentrations and exhaled NO concentrations were measured over a 5-h period. Salivary nitrate and nitrite concentrations were measured over a 12-h period and urinary nitrate over a 24-h period. Time, intervention, age, and interaction effects were measured with repeated-measures ANOVAs. RESULTS Dose-dependent increases were seen in plasma, salivary, and urinary nitrate after BR ingestion (all P ≤ 0.002) but there were no differences between age groups at baseline (all P ≥ 0.56) or postintervention (all P ≥ 0.12). Plasma nitrite concentrations were higher in young than older participants at baseline (P = 0.04) and after consumption of 200 g (P = 0.04; +25.7 nmol/L; 95% CI: 0.97, 50.3 nmol/L) and 300 g BR (P = 0.02; +50.3 nmol/L; 95% CI: 8.57, 92.1 nmol/L). Baseline fractional exhaled NO (FeNO) concentrations were higher in the younger group [P = 0.03; +8.60 parts per billion (ppb); 95% CI: 0.80, 16.3 ppb], and rose significantly over the 5-h period, peaking 5 h after KNO3 consumption (39.4 ± 4.5 ppb; P < 0.001); however, changes in FeNO were not influenced by age (P = 0.276). CONCLUSIONS BR is a source of bioavailable dietary nitrate in both young and older adults and can effectively raise nitrite and nitrate concentrations. Lower plasma nitrite and FeNO concentrations were found in older subjects, confirming the impact of ageing on NO bioavailability across different systems.This trial was registered at www.isrctn.com as ISRCTN86706442.
Collapse
Affiliation(s)
| | | | - Tom Clifford
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Guy Taylor
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wasim Iqbal
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel West
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
15
|
Akan S, Tuna Gunes N, Erkan M. Red beetroot: Health benefits, production techniques, and quality maintaining for food industry. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Selen Akan
- Faculty of Agriculture Department of Horticulture Ankara University Ankara Turkey
| | - Nurdan Tuna Gunes
- Faculty of Agriculture Department of Horticulture Ankara University Ankara Turkey
| | - Mustafa Erkan
- Faculty of Agriculture Department of Horticulture Akdeniz University Antalya Turkey
| |
Collapse
|
16
|
Characterizing Marathon-Induced Metabolic Changes Using 1H-NMR Metabolomics. Metabolites 2021; 11:metabo11100656. [PMID: 34677371 PMCID: PMC8541139 DOI: 10.3390/metabo11100656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Although physical activity is a health-promoting, popular global pastime, regular engagement in strenuous exercises, such as long-distance endurance running races, has been associated with a variety of detrimental physiological and immunological health effects. The resulting altered physiological state has previously been associated with fluctuations in various key metabolite concentrations; however, limited literature exists pertaining to the global/holistic metabolic changes that are induced by such. This investigation subsequently aims at elucidating the metabolic changes induced by a marathon by employing an untargeted proton nuclear magnetic resonance (1H-NMR) spectrometry metabolomics approach. A principal component analysis (PCA) plot revealed a natural differentiation between pre- and post-marathon metabolic profiles of the 30-athlete cohort, where 17 metabolite fluctuations were deemed to be statistically significant. These included reduced concentrations of various amino acids (AA) along with elevated concentrations of ketone bodies, glycolysis, tricarboxylic acid (TCA) cycle, and AA catabolism intermediates. Moreover, elevated concentrations of creatinine and creatine in the post-marathon group supports previous findings of marathon-induced muscle damage. Collectively, the results of this investigation characterize the strenuous metabolic load induced by a marathon and the consequential regulation of main energy-producing pathways to accommodate this, and a better description of the cause of the physiological changes seen after the completion of a marathon.
Collapse
|
17
|
Jones L, Bailey SJ, Rowland SN, Alsharif N, Shannon OM, Clifford T. The Effect of Nitrate-Rich Beetroot Juice on Markers of Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis of Human Intervention Trials. J Diet Suppl 2021; 19:749-771. [PMID: 34151694 DOI: 10.1080/19390211.2021.1939472] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This systematic review and meta-analysis of randomized controlled trials examined whether dietary nitrate supplementation attenuates exercise-induced muscle damage (EIMD) and is reported according to the PRISMA guidelines. Medline and SPORTDiscus databases were searched from inception to June 2020. Inclusion criteria were studies in adult humans consuming inorganic nitrate before and after exercise and that measured markers implicated in the etiology of EIMD (muscle function, muscle soreness, inflammation, myocellular protein efflux, oxidative stress, range of motion) <168 h post. The Cochrane Collaboration risk of bias two tool was used to critically appraise the studies; forest plots were generated with random-effects models and standardized mean differences (SMD). Nine studies were included in the systematic review and six in the meta-analysis. All studies were rated to have some concerns for risk of bias. All trials in the meta-analysis provided nitrate as beetroot juice, which accelerated isometric strength recovery 72 h post-exercise (SMD: 0.54, p = 0.01) and countermovement jump performance 24-72 h post-exercise (SMD range: 0.75-1.32, p < 0.03). Pressure pain threshold was greater with beetroot juice 48 (SMD: 0.58, p = 0.03) and 72 h post-exercise (SMD: 0.61, p = 0.02). Beetroot juice had no effect on markers of oxidative stress and creatine kinase (p > 0.05), but c-reactive protein was higher vs. placebo at 48 h post-exercise (SMD: 0.55, p = 0.03). These findings suggest that nitrate-rich beetroot juice may attenuate some markers of EIMD, but more large-scale controlled trials in elite athletes are needed.
Collapse
Affiliation(s)
- Louise Jones
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Samantha N Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Nehal Alsharif
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
18
|
Sadowska-Bartosz I, Bartosz G. Biological Properties and Applications of Betalains. Molecules 2021; 26:2520. [PMID: 33925891 PMCID: PMC8123435 DOI: 10.3390/molecules26092520] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Betalains are water-soluble pigments present in vacuoles of plants of the order Caryophyllales and in mushrooms of the genera Amanita, Hygrocybe and Hygrophorus. Betalamic acid is a constituent of all betalains. The type of betalamic acid substituent determines the class of betalains. The betacyanins (reddish to violet) contain a cyclo-3,4-dihydroxyphenylalanine (cyclo-DOPA) residue while the betaxanthins (yellow to orange) contain different amino acid or amine residues. The most common betacyanin is betanin (Beetroot Red), present in red beets Beta vulgaris, which is a glucoside of betanidin. The structure of this comprehensive review is as follows: Occurrence of Betalains; Structure of Betalains; Spectroscopic and Fluorescent Properties; Stability; Antioxidant Activity; Bioavailability, Health Benefits; Betalains as Food Colorants; Food Safety of Betalains; Other Applications of Betalains; and Environmental Role and Fate of Betalains.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland;
| |
Collapse
|
19
|
Aguirre-Calvo TR, Molino S, Perullini M, Rufián-Henares J, Santagapita PR. Effects of in vitro digestion-fermentation over global antioxidant response and short chain fatty acid production of beet waste extracts in Ca(ii)-alginate beads. Food Funct 2020; 11:10645-10654. [PMID: 33216078 DOI: 10.1039/d0fo02347g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of the present work was to analyze the effect of in vitro gastrointestinal digestion-fermentation on antioxidant capacity, total phenols and production of short chain fatty acids (SCFAs) from biocompounds derived from beet waste (leaf and stem) encapsulated in different formulations of Ca(ii)-alginate beads. The encapsulated systems presented higher antioxidant capacity in different phases (digested and fermented) than the extracts without encapsulation, making Ca(ii)-alginate beads a suitable delivery vehicle. Levels of total phenolic compounds and antioxidant capacity of the fermented fraction were up to ten times higher than those of the digested fraction, boosted by the contribution of bioactive compounds from the by-product of beet as well as by sugars and biopolymers. Among the formulations used, those that had excipients (sugars and/or biopolymers) presented a better overall antioxidant response than the beads with just alginate. Guar gum and sucrose lead to a promising enhancement of Ca(ii)-alginate beads not only for preservation and protection but also in terms of stability under in vitro digestion-fermentation and production of SCFAs.
Collapse
Affiliation(s)
- Tatiana Rocio Aguirre-Calvo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica y Departamento de Industrias, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
20
|
dos S. Baião D, da Silva DVT, Paschoalin VMF. Beetroot, a Remarkable Vegetable: Its Nitrate and Phytochemical Contents Can be Adjusted in Novel Formulations to Benefit Health and Support Cardiovascular Disease Therapies. Antioxidants (Basel) 2020; 9:E960. [PMID: 33049969 PMCID: PMC7600128 DOI: 10.3390/antiox9100960] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
The cardioprotective effects of dietary nitrate from beetroot in healthy and hypertensive individuals are undeniable and irrefutable. Nitrate and nitrate-derived nitrite are precursors for nitric oxide synthesis exhibiting an effect on cardiomyocytes and myocardial ischemia/reperfusion, improving endothelial function, reducing arterial stiffness and stimulating smooth muscle relaxation, decreasing systolic and diastolic blood pressures. Beetroot phytochemicals like betanin, saponins, polyphenols, and organic acids can resist simulated gastrointestinal digestion, raising the hypothesis that the cardioprotective effects of beetroots result from the combination of nitrate/nitrite and bioactive compounds that limit the generation of reactive oxygen species and modulate gene expression. Nitrate and phytochemical concentrations can be adjusted in beet formulations to fulfill requirements for acute or long-term supplementations, enhancing patient adherence to beet intervention. Based on in vitro, in vivo, and clinical trials, beet nitrate and its bioactive phytochemicals are promising as a novel supportive therapy to ameliorate cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Vania M. F. Paschoalin
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (D.V.T.d.S.)
| |
Collapse
|
21
|
Barua A, Choudhury P, Mandal S, Panda CK, Saha P. Anti-Metastatic Potential of a Novel Xanthone Sourced by Swertia chirata Against In Vivo and In Vitro Breast Adenocarcinoma Frameworks. Asian Pac J Cancer Prev 2020; 21:2865-2875. [PMID: 33112542 PMCID: PMC7798162 DOI: 10.31557/apjcp.2020.21.10.2865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The Anticancer property of Swertia chirata has been well established. It forms a rich source of compounds to which its anticancer property can be attributed, among the compounds found in S. chirata xanthones form an important group. Among the most abundant xanthones found in S. chirata, 1,5,8-trihydroxy-3-methoxy xanthone (TMX) was found to be most effective. As metastasis is the underlying cause of most cancer-related deaths, in this study, we evaluated the anti-metastatic potential of TMX against adenocarcinoma both in vivo and in vitro. MATERIALS AND METHODS In vivo anti-metastatic potential was proved by histological evidence of different organs, giemsa staining of bone marrow, subcutaneous re-injection of the aberrant bone marrow cells into the right flank of the mice to observe the formation of tumors and analyzing the markers related to metastasis by immunohistochemistry (IHC) and western blot. In vitro validation of anti-metastatic potential was carried out against human breast adenocarcinoma cell line MCF-7 by primarily analyzing the migratory property of cells through scratch wound healing assay and the ability of cells to form colonies. The re-validation part was performed by western blot of markers related to metastasis and real-time analysis of EMT related markers. RESULTS In vivo, TMX treatment restricted metastasis of EAC induced solid tumor to liver, lung, bone marrow, and validation of this finding was achieved by down regulation of metastatic and EMT markers. In vitro, TMX treatment restricted migratory and colony forming ability of MCF-7 cells by down regulating metastatic and EMT markers. CONCLUSION It was proved from our study that TMX treatment successfully reduced the metastatic potential of EAC induced solid tumor, with in vitro validation TMX on the MCF-7 cell line.
Collapse
Affiliation(s)
- Atish Barua
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, West Bengal, India
| | - Pritha Choudhury
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, West Bengal, India
| | - Suvra Mandal
- National Research Institute of Ayurvedic Drug Development, 4 Minerva Road, CN Block, Sector V, Bidhannagar, Kolkata, West Bengal, India
| | - Chinmay Kumar Panda
- Department of Oncogenne regulation, Chittaranjan National Cancer Institute, West Bengal, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, West Bengal, India
| |
Collapse
|
22
|
Madadi E, Mazloum-Ravasan S, Yu JS, Ha JW, Hamishehkar H, Kim KH. Therapeutic Application of Betalains: A Review. PLANTS 2020; 9:plants9091219. [PMID: 32957510 PMCID: PMC7569795 DOI: 10.3390/plants9091219] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
Anthocyanins, betalains, riboflavin, carotenoids, chlorophylls and caramel are the basic natural food colorants used in modern food manufacture. Betalains, which are composed of red–violet betacyanin and yellow betaxanthins, are water-soluble pigments that color flowers and fruits. Betalains are pigments primarily produced by plants of the order Caryophyllales. Because of their anti-inflammatory, cognitive impairment, anticancer and anti-hepatitis properties, betalains are useful as pharmaceutical agents and dietary supplements. Betalains also exhibit antimicrobial and antimalarial effects, and as an example, betalain-rich Amaranthus spinosus displays prominent antimalarial activity. Studies also confirmed the antidiabetic effect of betalains, which reduced glycemia by 40% without causing weight loss or liver impairment. These findings show that betalain colorants may be a promising alternative to the synthetic dyes currently used as food additives.
Collapse
Affiliation(s)
- Elaheh Madadi
- Biotechnology Research Center and Student’s Research Committee, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Sahand Mazloum-Ravasan
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.S.Y.); (J.W.H.)
| | - Ji Won Ha
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.S.Y.); (J.W.H.)
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran
- Correspondence: (H.H.); (K.H.K.); Tel.: +98-41-3336-3277 (H.H.); +82-31-290-7700 (K.H.K.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.S.Y.); (J.W.H.)
- Correspondence: (H.H.); (K.H.K.); Tel.: +98-41-3336-3277 (H.H.); +82-31-290-7700 (K.H.K.)
| |
Collapse
|
23
|
Bongiovanni T, Genovesi F, Nemmer M, Carling C, Alberti G, Howatson G. Nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage and accelerate recovery in athletes: current knowledge, practical application and future perspectives. Eur J Appl Physiol 2020; 120:1965-1996. [PMID: 32661771 DOI: 10.1007/s00421-020-04432-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This review provides an overview of the current knowledge of the nutritional strategies to treat the signs and symptoms related to EIMD. These strategies have been organized into the following sections based upon the quality and quantity of the scientific support available: (1) interventions with a good level of evidence; (2) interventions with some evidence and require more research; and (3) potential nutritional interventions with little to-no-evidence to support efficacy. METHOD Pubmed, EMBASE, Scopus and Web of Science were used. The search terms 'EIMD' and 'exercise-induced muscle damage' were individually concatenated with 'supplementation', 'athletes', 'recovery', 'adaptation', 'nutritional strategies', hormesis'. RESULT Supplementation with tart cherries, beetroot, pomegranate, creatine monohydrate and vitamin D appear to provide a prophylactic effect in reducing EIMD. β-hydroxy β-methylbutyrate, and the ingestion of protein, BCAA and milk could represent promising strategies to manage EIMD. Other nutritional interventions were identified but offered limited effect in the treatment of EIMD; however, inconsistencies in the dose and frequency of interventions might account for the lack of consensus regarding their efficacy. CONCLUSION There are clearly varying levels of evidence and practitioners should be mindful to refer to this evidence-base when prescribing to clients and athletes. One concern is the potential for these interventions to interfere with the exercise-recovery-adaptation continuum. Whilst there is no evidence that these interventions will blunt adaptation, it seems pragmatic to use a periodised approach to administering these strategies until data are in place to provide and evidence base on any interference effect on adaptation.
Collapse
Affiliation(s)
- Tindaro Bongiovanni
- Department of Health, Performance and Recovery, Parma Calcio 1913, Parma, Italy.
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milano, Italy.
| | | | - Monika Nemmer
- Nutrition Department Liverpool Football Club, Liverpool, UK
| | - Christopher Carling
- Centre for Elite Performance, French Football Federation, 75015, Paris, France
| | - Giampietro Alberti
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milano, Italy
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
24
|
Salimi A, Bahiraei T, Ahdeno S, Vatanpour S, Pourahmad J. Evaluation of Cytotoxic Activity of Betanin Against U87MG Human Glioma Cells and Normal Human Lymphocytes and Its Anticancer Potential Through Mitochondrial Pathway. Nutr Cancer 2020; 73:450-459. [PMID: 32420763 DOI: 10.1080/01635581.2020.1764068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recent studies revealed an antioxidant activity and anticancer efficiency of betanin. In this study, we investigated the cytotoxic effects and the possible mechanisms of betanin-induced apoptosis against U87MG human glioma cells and compared the results to those of human normal lymphocytes. MTT assay, caspase-3 activation assays in cells and succinate dehydrogenases (SDH), mitochondrial swelling, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and cytochrome C release assays in isolated mitochondria were obtained from U87MG human glioma cells and noncancerous human lymphocytes The results illustrated the significant cytotoxic effect of betanin on U87MG human glioma cells, with a concentration value that inhibits 50% of the cell growth of 7 µg/ml after 12 h of treatment. MTT assay demonstrated that the betanin is selectively toxic to U87MG human glioma cells, and betanin induced cell apoptosis via activation of caspase-3 along with modulation of apoptosis-related mitochondria. Meanwhile, betanin selectively increased ROS formation, mitochondria swelling, MMP decrease, and cytochrome c release in cancerous mitochondria but in normal mitochondria. Based on the evidence obtained from this study, it is concluded that the betanin is a promising natural compound to fight U87MG human glioma cells via induction of apoptosis through activation of intrinsic pathways.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Tannaz Bahiraei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sana Ahdeno
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saba Vatanpour
- Department of Biology, University of British Columbia, Vancouver, Canada
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Tawa M, Masuoka T, Yamashita Y, Nakano K, Ishibashi T. Effect of Betanin, a Beetroot Component, on Vascular Tone in Isolated Porcine Arteries. Am J Hypertens 2020; 33:305-309. [PMID: 31913440 DOI: 10.1093/ajh/hpaa006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/06/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Beetroot has attracted much attention because of its blood pressure-lowering properties. Although beetroot contains various nutritional compounds, including inorganic nitrate, some of their physiological properties are not fully understood. In this study, we examined whether betanin, a beetroot component, has a regulatory effect on vascular tone. METHODS Mechanical responses of isolated porcine coronary, mesenteric, and pulmonary arteries were assessed by organ chamber technique. In some cases, the vascular reactivity was observed in the presence of a physiological concentration of betanin (10 µM). RESULTS Betanin did not induce vasorelaxation at physiological concentrations both in endothelium-intact and -denuded coronary, mesenteric, and pulmonary arteries. The endothelium-dependent agonists, bradykinin and A23187 induced vasorelaxation of endothelium-intact coronary arteries, both of which were not affected by exposure to betanin. Likewise, endothelium-independent vasorelaxation induced by sodium nitrite and sodium nitroprusside was also not affected by the presence of betanin. In addition, exposure of endothelium-intact coronary arteries to betanin did not attenuate prostaglandin F2α- and endothelin-1-induced vasocontraction. CONCLUSIONS These findings suggest that betanin does not have a vasorelaxant activity. It is unlikely that betanin is a component directly responsible for the beetroot-induced acute blood pressure-lowering effect in a nitrate-independent manner.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Takayoshi Masuoka
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Yuka Yamashita
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Katsuya Nakano
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Takaharu Ishibashi
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| |
Collapse
|
26
|
Unterberger S, Maier-Salamon A, Jäger W, Wessner B, Wagner KH. Data on the highly diverse plasma response to a drink containing nutrients. Data Brief 2020; 29:105309. [PMID: 32154346 PMCID: PMC7058524 DOI: 10.1016/j.dib.2020.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 12/02/2022] Open
Abstract
Bioavailability of nutrients is highly diverse and depends on a variety of endogenous and exogenous factors in humans. This data article reports on the plasma response of 10 human subjects (5 females, 5 males) to a single dose of a multivitamin drink within 6h (blood taken after 1, 2, 4, and 6h). Nutrients, which were considered in the assessment, were folate (Radioimmuno Assay), vitamin B12 (Radioimmuno Assay) and resveratrol and its plasma metabolites resveratrol-3-O-glucuronide (R3G), resveratrol-4′-O-glucuronide (R4G), resveratrol-3-O-sulfate (R3S) and resveratrol-3-O-4′-O-disulfate (RD, all HPLC). Biological outcome measures were malondialdehyde (MDA, HPLC) and Ferric Reducing ability potential (FRAP, Microplate reader). Mean plasma concentration increased over time significantly for folate (p < 0.05, maximum concentration (Tmax) after 2h), R3G, R4G, R3S (all p < 0.05, Tmax after 1h), RD (p < 0.05, Tmax after 2h) as well as MDA, which decreased (p < 0.05, Tmax after 2h). No significant change was observed for vitamin B12 and FRAP. Within this mean development, individual changes of participants were highly diverse such as for folate from +42 to +422%, for MDA from −49 to +30% or vitamin B12 from −4 to +33%. For R4G 4 out of 10 subjects showed even no increase in plasma at all. For R4G plasma response ranged from 0 to 36 ng/ml, for R3G from 0 to 53 ng/ml or for R4S from 62 to 265 ng/ml. There was no gender difference regarding the plasma response.
Collapse
Affiliation(s)
| | | | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Austria
| | - Barbara Wessner
- Centre for Sport Science and University Sports, University of Vienna, Austria
| | | |
Collapse
|
27
|
Gómez-Maqueo A, Antunes-Ricardo M, Welti-Chanes J, Cano MP. Digestive Stability and Bioaccessibility of Antioxidants in Prickly Pear Fruits from the Canary Islands: Healthy Foods and Ingredients. Antioxidants (Basel) 2020; 9:E164. [PMID: 32079367 PMCID: PMC7070381 DOI: 10.3390/antiox9020164] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Although prickly pear fruits have become an important part of the Canary diet, their native varieties are yet to be characterized in terms of betalains and phenolic compounds. To exert potential health benefits, these antioxidants must be released from the food matrix and be stable in the gastrointestinal tract. Our aim was to characterize the betalain and phenolic profile of four prickly pear varieties from the Canary Islands (Spain) and determine their digestive stability and bioaccessibility via in vitro gastrointestinal digestion. Digestive studies were performed considering the (i) importance of the edible fraction (pulps) and (ii) potential of fruit peels as by-products to obtain healthy ingredients. Betalains and phenolic profiles were analyzed by HPLC-DAD-ESI/MS and HPLC-DAD-MS/QTOF. Pulps in Colorada and Fresa varieties presented high indicaxanthin and betanin content, respectively. Despite low pH in the gastric phase, betalains were stable to reach the intestinal phase, although indicaxanthin presented a higher bioaccessibility. Blanco Buenavista peels contained a distinct flavonoid profile including a new isorhamnetin-hexosyl-rhamnoside. Phenolic compounds were abundant and highly bioaccessible in fruit peels. These findings suggest that prickly pear pulps are rich in bioaccessible betalains; and that their peels could be proposed as potential by-products to obtain sustainable healthy ingredients.
Collapse
Affiliation(s)
- Andrea Gómez-Maqueo
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain;
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Eugenio Garza Sada 2501, 64700 Monterrey NL, Mexico; (M.A.-R.); (J.W.-C.)
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Eugenio Garza Sada 2501, 64700 Monterrey NL, Mexico; (M.A.-R.); (J.W.-C.)
| | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Eugenio Garza Sada 2501, 64700 Monterrey NL, Mexico; (M.A.-R.); (J.W.-C.)
| | - M. Pilar Cano
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain;
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Eugenio Garza Sada 2501, 64700 Monterrey NL, Mexico; (M.A.-R.); (J.W.-C.)
| |
Collapse
|
28
|
MIRANDA NETO MANOEL, TOSCANO LYDIANEL, TAVARES RENATAL, TOSCANO LUCIANAT, PADILHAS ORRANETTEP, SILVA CÁSSIASDA, CERQUEIRA GILBERTOS, SILVA ALEXANDRES. Whole purple grape juice increases nitric oxide production after training session in high level beach handball athletes. AN ACAD BRAS CIENC 2020; 92:e20191371. [DOI: 10.1590/0001-3765202020191371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/06/2020] [Indexed: 11/22/2022] Open
|
29
|
Betanin-enriched red beet extract attenuated platelet activation and aggregation by suppressing Akt and P38 Mitogen-activated protein kinases phosphorylation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
30
|
Vitale K, Getzin A. Nutrition and Supplement Update for the Endurance Athlete: Review and Recommendations. Nutrients 2019; 11:E1289. [PMID: 31181616 PMCID: PMC6628334 DOI: 10.3390/nu11061289] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Endurance events have experienced a significant increase in growth in the new millennium and are popular activities for participation globally. Sports nutrition recommendations for endurance exercise however remains a complex issue with often opposing views and advice by various health care professionals. METHODS A PubMed/Medline search on the topics of endurance, athletes, nutrition, and performance was undertaken and a review performed summarizing the current evidence concerning macronutrients, hydration, and supplements as it pertains to endurance athletes. RESULTS Carbohydrate and hydration recommendations have not drastically changed in years, while protein and fat intake have been traditionally underemphasized in endurance athletes. Several supplements are commercially available to athletes, of which, few may be of benefit for endurance activities, including nitrates, antioxidants, caffeine, and probiotics, and are reviewed here. The topic of "train low," training in a low carbohydrate state is also discussed, and the post-exercise nutritional "recovery window" remains an important point to emphasize to endurance competitors. CONCLUSIONS This review summarizes the key recommendations for macronutrients, hydration, and supplements for endurance athletes, and helps clinicians treating endurance athletes clear up misconceptions in sports nutrition research when counseling the endurance athlete.
Collapse
Affiliation(s)
- Kenneth Vitale
- Department of Orthopaedic Surgery, Division of Sports Medicine, University of California San Diego, La Jolla, CA 92037, USA.
| | - Andrew Getzin
- Sports Medicine, Cayuga Medical Center, Ithaca, NY 14850, USA.
| |
Collapse
|
31
|
Lechner JF, Stoner GD. Red Beetroot and Betalains as Cancer Chemopreventative Agents. Molecules 2019; 24:E1602. [PMID: 31018549 PMCID: PMC6515411 DOI: 10.3390/molecules24081602] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 12/21/2022] Open
Abstract
Carcinogenesis is the process whereby a normal cell is transformed into a neoplastic cell. This action involves several steps starting with initiation and followed by promotion and progression. Driving these stages are oxidative stress and inflammation, which in turn encompasses a myriad of aberrant gene expressions, both within the transforming cell population and the cells within the surrounding lesion. Chemoprevention of cancer with bioreactive foods or their extracted/purified components occurs via normalizing these inappropriate gene activities. Various foods/agents have been shown to affect different gene expressions. In this review, we discuss whereby the chemoprevention activities of the red beetroot itself may disrupt carcinogenesis and the activities of the water-soluble betalains extracted from the plant.
Collapse
Affiliation(s)
- John F Lechner
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Gary D Stoner
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
32
|
Kaur G, Thawkar B, Dubey S, Jadhav P. Pharmacological potentials of betalains. ACTA ACUST UNITED AC 2018; 15:/j/jcim.ahead-of-print/jcim-2017-0063/jcim-2017-0063.xml. [DOI: 10.1515/jcim-2017-0063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 02/12/2018] [Indexed: 11/15/2022]
Abstract
Abstract
Betalains are water soluble plant pigments in plants of the order Caryophyllales, which are widely used as colorants. Several preclinical studies reported that betanin reveals antioxidants, anti-inflammatory, hepatoprotective, anticancer, anti-diabetes, anti-lipid emic, antimicrobial activity, radio protective and anti-proliferative activity. They are isolated from sources such as red beetroot, amaranth, prickly pear, red pitahaya, etc. Betalains are divided into two groups based on the colour and confer either the betacyanins (purple reddish) or betaxanthins (yellowish orange). Betalain is one of the promising nutraceuticals which can provide beneficial effects for prevention and cure of various diseases. The purpose of this review is to focus on nutraceutical facts of betalains by focusing on the ongoing treatment using betalains and to address its future nutraceuticals implications.
Collapse
|
33
|
Mumford PW, Kephart WC, Romero MA, Haun CT, Mobley CB, Osburn SC, Healy JC, Moore AN, Pascoe DD, Ruffin WC, Beck DT, Martin JS, Roberts MD, Young KC. Effect of 1-week betalain-rich beetroot concentrate supplementation on cycling performance and select physiological parameters. Eur J Appl Physiol 2018; 118:2465-2476. [DOI: 10.1007/s00421-018-3973-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022]
|
34
|
The impact of the matrix of red beet products and interindividual variability on betacyanins bioavailability in humans. Food Res Int 2018; 108:530-538. [DOI: 10.1016/j.foodres.2018.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 12/11/2022]
|
35
|
Sawicki T, Topolska J, Romaszko E, Wiczkowski W. Profile and Content of Betalains in Plasma and Urine of Volunteers after Long-Term Exposure to Fermented Red Beet Juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4155-4163. [PMID: 29638119 DOI: 10.1021/acs.jafc.8b00925] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aim of this study was to determine profile and content of betalains in volunteers' plasma and urine after long-term exposure to fermented red beet juice. During 6 weeks, 24 healthy volunteers consumed juice with a dose of 0.7 mg betalains/kg body weight. Betalains were analyzed by means of micro-HPLC-MS/MS. Twelve betalain derivatives were found in blood plasma and urine after juice intake. The highest betalains level in blood plasma (87.65 ± 15.71 nmol/L) and urine (1.14 ± 0.12 μmol) was found after the first and second week of juice intake, respectively. During juice consumption, the contribution of betalain metabolites was higher than that of native betalains, and interindividual variability in profile and content of betalains was observed. Summarizing, it was observed that long-term and regular consumption of the juice causes stabilization of profile and content of betalains in physiological fluids of volunteers, which include native compounds and their decarboxylated and dehydrogenated metabolites.
Collapse
Affiliation(s)
- Tomasz Sawicki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10 Str. , 10-748 Olsztyn , Poland
| | - Joanna Topolska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10 Str. , 10-748 Olsztyn , Poland
| | - Ewa Romaszko
- NZOZ Atarax, 1 Maja 3 Str. , 10-117 Olsztyn , Poland
| | - Wiesław Wiczkowski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10 Str. , 10-748 Olsztyn , Poland
| |
Collapse
|
36
|
Amjadi S, Ghorbani M, Hamishehkar H, Roufegarinejad L. Improvement in the stability of betanin by liposomal nanocarriers: Its application in gummy candy as a food model. Food Chem 2018; 256:156-162. [PMID: 29606432 DOI: 10.1016/j.foodchem.2018.02.114] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 11/28/2022]
Abstract
Betanin is a red food pigment with health beneficial effects. Despite interest in the use of betanin, low bioaccessibility and oxidation limit its application. To overcome these restrictions, the betanin was loaded in liposomal nanocarriers with the encapsulation efficiency of 80.35 ± 1%. To assess the efficiency of these nanocarriers, gummy candy was selected as a food model and its nutritional properties such as betanin stability and antioxidant activity were probed. The results showed that the betanin content and antioxidant activity of samples containing betanin-nanoliposomes were at least twice to those of samples containing free betanin. The tests show no differences in the sensory parameters of panelists for gummy candies fortified by betanin-loaded nanoliposomes compared to those fortified by betanin alone. As a result, the liposomal nanoparticles may be introduced as a suitable platform to stabilize and increase the bioavailability of betanin for applications in nutraceutical and medical fields.
Collapse
Affiliation(s)
- Sajed Amjadi
- Department of Food Sciences, Tabriz branch, Islamic Azad University, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Stem Cell & Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Leila Roufegarinejad
- Department of Food Sciences, Tabriz branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
37
|
Sawicki T, Juśkiewicz J, Wiczkowski W. Using the SPE and Micro-HPLC-MS/MS Method for the Analysis of Betalains in Rat Plasma after Red Beet Administration. Molecules 2017; 22:molecules22122137. [PMID: 29207522 PMCID: PMC6149673 DOI: 10.3390/molecules22122137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to develop a simple and reproducible method for the qualitative and quantitative analysis of betalains in plasma samples, based on Solid Phase Extraction (SPE) and micro-high performance liquid chromatography coupled with mass spectrometry (micro-HPLC-MS/MS). The eight betalain compounds detected and quantified were characterized in the fortified rat blood plasma samples. The developed method showed a good coefficient of determination (R2 = 0.999), good recovery, precision, and appropriate limits of detection (LOD) and quantification (LOQ) for these compounds. Application of this method for the treatment of rat plasma samples collected after the betalain preparation administration, for the first time, revealed the presence of native betalains and their metabolites in plasma samples. Moreover, among them, betanin (2.14 ± 0.06 µmol/L) and isobetanin (3.28 ± 0.04 µmol/L) were found at the highest concentration. The results indicated that the combination of an SPE method with a micro-HPLC-MS/MS analysis may be successfully applied for the determination of betalains in the blood plasma.
Collapse
Affiliation(s)
- Tomasz Sawicki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Wiesław Wiczkowski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
38
|
Clifford T, Bowman A, Capper T, Allerton DM, Foster E, Birch-Machin M, Lietz G, Howatson G, Stevenson EJ. A pilot study investigating reactive oxygen species production in capillary blood after a marathon and the influence of an antioxidant-rich beetroot juice. Appl Physiol Nutr Metab 2017; 43:303-306. [PMID: 29125915 DOI: 10.1139/apnm-2017-0587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report that reactive oxygen species (ROS), as measured in capillary blood taken from the finger-tip, increased after a marathon (+128% P < 0.01; effect size = 1.17), indicating that this collection method might be useful for measuring ROS in field settings. However, mitochondrial DNA damage remained unchanged. Beetroot juice, taken before and after exercise, was unable to mitigate exercise-induced ROS production, questioning its use an antioxidant-rich food.
Collapse
Affiliation(s)
- Tom Clifford
- a School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Amy Bowman
- b Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Tess Capper
- b Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Dean M Allerton
- a School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Emma Foster
- b Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Mark Birch-Machin
- b Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Georg Lietz
- b Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Glyn Howatson
- c Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK.,d Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom 2520, South Africa
| | - Emma J Stevenson
- b Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
39
|
Clifford T, Howatson G, West DJ, Stevenson EJ. Beetroot juice is more beneficial than sodium nitrate for attenuating muscle pain after strenuous eccentric-bias exercise. Appl Physiol Nutr Metab 2017; 42:1185-1191. [DOI: 10.1139/apnm-2017-0238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to compare the effects of beetroot juice (BTJ) and a nitrate only drink (sodium nitrate; SN) on indices of exercise-induced muscle damage (EIMD). Thirty recreationally active males consumed either BTJ (n = 10), a nitrate-matched SN drink (n = 10), or an isocaloric placebo (PLA; n = 10) immediately and at 24 and 48 h after performing 100 drop jumps. To assess muscle damage, maximal isometric voluntary contractions (MIVCs), countermovement jumps (CMJs), pressure-pain threshold (PPT), creatine kinase (CK), and high-sensitivity C-reactive protein (hs-CRP) were measured before, immediately after and at 24, 48, and 72 h following the drop jumps. BTJ and SN increased serum nitric oxide, which peaked at 2 h post-ingestion (136 ± 78 and 189 ± 79 μmol·L−1, respectively). PPT decreased in all groups postexercise (P = 0.001), but was attenuated with BTJ compared with SN and PLA (P = 0.043). PPT was 104% ± 26% of baseline values at 72 h after BTJ, 94% ± 16% after SN, and 91% ± 19% after PLA. MIVC and CMJ were reduced following exercise (−15% to 25%) and did not recover to baseline by 72 h in all groups; however, no group differences were observed (P > 0.05). Serum CK increased after exercise but no group differences were present (P > 0.05). hsCRP levels were unaltered by the exercise protocol (P > 0.05). These data suggest that BTJ supplementation is more effective than SN for attenuating muscle pain associated with EIMD, and that any analgesic effects are likely due to phytonutrients in BTJ other than nitrate, or interactions between them.
Collapse
Affiliation(s)
- Tom Clifford
- School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
- Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom 2520, South Africa
| | - Daniel J. West
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Emma J. Stevenson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
40
|
Ninfali P, Antonini E, Frati A, Scarpa ES. C-Glycosyl Flavonoids from Beta vulgaris Cicla and Betalains from Beta vulgaris rubra: Antioxidant, Anticancer and Antiinflammatory Activities-A Review. Phytother Res 2017; 31:871-884. [PMID: 28464411 DOI: 10.1002/ptr.5819] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 11/07/2022]
Abstract
The green beet (Beta vulgaris var. cicla L.) and red beetroot (B. vulgaris var. rubra L.) contain phytochemicals that have beneficial effects on human health. Specifically, the green beet contains apigenin, vitexin, vitexin-2-O-xyloside and vitexin-2-O-rhamnoside, while the red beetroot is a source of betaxanthins and betacyanins. These phytochemicals show considerable antioxidant activity, as well as antiinflammatory and antiproliferative activities. Vitexin-2-O-xyloside, in combination with betaxanthins and betacyanins, exerts antiproliferative activity in breast, liver, colon and bladder cancer cell lines, through the induction of both intrinsic and extrinsic apoptotic pathways. A significant body of evidence also points to the role of these phytochemicals in the downregulation of the pro-survival genes, baculoviral inhibitor of apoptosis repeat-containing 5 and catenin beta-1, as well as the genes controlling angiogenesis, hypoxia inducible factor 1A and vascular endothelial growth factor A. The multi-target action of these phytochemicals enhances their anticancer activity. Vitexin-2-O-xyloside, betaxanthins and betacyanins can be used in combination with conventional anticancer drugs to reduce their toxicity and overcome the multidrug resistance of cancer cells. In this review, we describe the molecular mechanisms that enable these dietary phytochemicals to block the proliferation of tumor cells and inhibit their pro-survival pathways. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Paolino Ninfali
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', via Saffi, 2, 61029, Urbino, PU, Italy
| | - Elena Antonini
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', via Saffi, 2, 61029, Urbino, PU, Italy
| | - Alessandra Frati
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', via Saffi, 2, 61029, Urbino, PU, Italy
| | - Emanuele-Salvatore Scarpa
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', via Saffi, 2, 61029, Urbino, PU, Italy
| |
Collapse
|
41
|
Clifford T, Allerton DM, Brown MA, Harper L, Horsburgh S, Keane KM, Stevenson EJ, Howatson G. Minimal muscle damage after a marathon and no influence of beetroot juice on inflammation and recovery. Appl Physiol Nutr Metab 2016; 42:263-270. [PMID: 28165768 DOI: 10.1139/apnm-2016-0525] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study examined whether beetroot juice (BTJ) would attenuate inflammation and muscle damage following a marathon. Using a double blind, independent group design, 34 runners (each having completed ca. ∼16 previous marathons) consumed either BTJ or an isocaloric placebo (PLA) for 3 days following a marathon. Maximal isometric voluntary contractions (MIVC), countermovement jumps (CMJ), muscle soreness, serum cytokines, leucocytosis, creatine kinase (CK), high sensitivity C-reactive protein (hs-CRP), and aspartate aminotransferase (AST) were measured pre, post, and 2 days after the marathon. CMJ and MIVC were reduced after the marathon (P < 0.05), but no group differences were observed (P > 0.05). Muscle soreness was increased in the day after the marathon (BTJ; 45 ± 48 vs. PLA; 46 ± 39 mm) and had returned to baseline by day 2, irrespective of supplementation (P = 0.694). Cytokines (interleukin-6; IL-6, interleukin-8, tumour necrosis factor-α) were increased immediately post-marathon but apart from IL-6 had returned to baseline values by day 1 post. No interaction effects were evident for IL-6 (P = 0.213). Leucocytes increased 1.7-fold after the race and remained elevated 2 days post, irrespective of supplement (P < 0.0001). CK peaked at 1 day post marathon (BTJ: 965 ± 967, and PLA: 1141 ± 979 IU·L-1) and like AST and hs-CRP, was still elevated 2 days after the marathon (P < 0.05); however, no group differences were present for these variables. Beetroot juice did not attenuate inflammation or reduce muscle damage following a marathon, possibly because most of these indices were not markedly different from baseline values in the days after the marathon.
Collapse
Affiliation(s)
- Tom Clifford
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Dean M Allerton
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Meghan A Brown
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Liam Harper
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Steven Horsburgh
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Karen M Keane
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Emma J Stevenson
- b Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle NE1 7RU, UK
| | - Glyn Howatson
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK.,c Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom 2520, South Africa
| |
Collapse
|
42
|
Effects of Beetroot Juice on Recovery of Muscle Function and Performance between Bouts of Repeated Sprint Exercise. Nutrients 2016; 8:nu8080506. [PMID: 27548212 PMCID: PMC4997419 DOI: 10.3390/nu8080506] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 12/28/2022] Open
Abstract
This study examined the effects of beetroot juice (BTJ) on recovery between two repeated-sprint tests. In an independent groups design, 20 male, team-sports players were randomized to receive either BTJ or a placebo (PLA) (2 × 250 mL) for 3 days after an initial repeated sprint test (20 × 30 m; RST1) and after a second repeated sprint test (RST2), performed 72 h later. Maximal isometric voluntary contractions (MIVC), countermovement jumps (CMJ), reactive strength index (RI), pressure-pain threshold (PPT), creatine kinase (CK), C-reactive protein (hs-CRP), protein carbonyls (PC), lipid hydroperoxides (LOOH) and the ascorbyl free radical (A•−) were measured before, after, and at set times between RST1 and RST2. CMJ and RI recovered quicker in BTJ compared to PLA after RST1: at 72 h post, CMJ and RI were 7.6% and 13.8% higher in BTJ vs. PLA, respectively (p < 0.05). PPT was 10.4% higher in BTJ compared to PLA 24 h post RST2 (p = 0.012) but similar at other time points. No group differences were detected for mean and fastest sprint time or fatigue index. MIVC, or the biochemical markers measured (p > 0.05). BTJ reduced the decrement in CMJ and RI following and RST but had no effect on sprint performance or oxidative stress.
Collapse
|